PRELIMINARY TECHNICAL INFORMATION REPORT

for

LEARY FLOYD SUBDIVISION

Preliminary Plat

24637 & 24649 NE 18th Street

King County, Washington

DRS Project No. 18040 King County File No. PLATXX-XXXX

Owner/Applicant

Toll Bros, Inc. 8815 - 122nd Ave NE, Suite 200 Kirkland, Washington 98033

Report Prepared by

D. R. STRONG Consulting Engineers, Inc. 620 7th Avenue Kirkland WA 98033 (425) 827-3063

> Report Issue Date October 29, 2019

PRELIMINARY TECHNICAL INFORMATION REPORT

LEARY FLOYD SUBDIVISION PRELIMINARY PLAT TABLE OF CONTENTS

SECTION I	3
Project Overview Predeveloped Site Conditions Developed Site Conditions	
Natural Drainage System Functions	4
SECTION II	17
Conditions and Requirements Summary	17
SECTION III	19
Off-Site Analysis Task 1: Define and Map the Study Area Task 2: Resource Review Task 3: Field Inspection Task 4: Drainage System Description and Problem Descriptions Task 5: Mitigation of Existing or Potential Problems	
SECTION IV	
 Flow Control and Water Quality Facility Analysis and Design Existing Site Hydrology (Part A) Developed Site Area Hydrology (PART B) Performance Standards (Part C) Flow Control System (Part D) Flow Control BMP Selection Flow Control Facility Design Output 	
SECTION V	47
Conveyance System Analysis and Design	
SECTION VI	48
Special Reports and Studies	
SECTION VII	49

SECTION VIII	50
ESC Plan Analysis and Design (Part A) SWPPS Plan Design (Part B)	50 51
SECTION IX	52
Bond Quantities, Facility Summaries, and Declaration of Covenant	52
SECTION X	53
Operations and Maintenance Manual	53
APPENDICES	54
Appendix A WWHM Output	54

List of Figures

Figure 1 TIR Worksheet	5
Figure 2 Vicinity Map	
Figure 3 Drainage Basins, Subbasins, and Site Characteristics Map	
Figure 4 Soils	
Figure 5 Streams and 100-Year Floodplains and Floodway	
Figure 6 Wetlands	
Figure 7 Erosion Hazard Areas	
Figure 8 Landslide Hazard Areas	
Figure 9 Seismic Hazard Areas	
Figure 10 FEMA – Flood Insurance Rate Map	
Figure 11 Drainage Complaints	
Figure 12 Offsite Analysis Downstream Map	
Figure 13 Offsite Analysis Downstream Table	
Figure 14 Predevelopment Area Map	
Figure 15 Developed Area Map	
Figure 16 Detention & Water Quality Facility Details	

SECTION I

PROJECT OVERVIEW

The Project is the subdivision of three existing parcels into 17 single-family residential lots per the King County (County) subdivision process. Each parcel is zoned R4 and sums up to a total Site area of 6.01 acres, known as Tax Parcels 2625069029, 2625069055, and 2625069007. The Project is located at 24637 & 24649 NE 18th Street, Sammamish, Washington. The Project will meet the drainage requirements of the 2016 King County Surface Water Design Manual (Manual).

PREDEVELOPED SITE CONDITIONS

The total area of the three parcels is 6.01 acres. A boundary line adjustment is proposed to provide a parcel totaling 49,802 s.f. for the residence addressed 24649 NE 18th Street. This leaves 4.87 acres for the development of the proposed subdivision.

Predeveloped Site conditions show the Site sloping from west to east. There exists multiple critical areas on the existing Site. The Allen Lake Outfall Channel is located on the westerly portion of the Site, flowing from south to north. There also exists two existing wetlands on Site, as delineated by Raedeke Associates, Inc in the Wetland Delineation Report provided in Appendix B.

The Site is contained within one Threshold Discharge Area (TDA) with two Natural Discharge Areas (NDA): NDA East and NDA West. Both NDAs contain developed areas of landscaping and residences. NDA East drains to the Allen Lake Outfall Channel, which discharges from the Site on the northerly property line. NDA West discharges from the Site as sheet flow over the northerly property line and then flows east along NE 18th Street for approximately 290 ft, where it converges with NDA East in the Allen Lake Outfall Channel, maintaining one TDA. For the purposes of hydrologic calculations, the entire Site is modeled as till forest. See Section III for details.

DEVELOPED SITE CONDITIONS

The applicant is seeking approval to subdivide 5.38 acres into 17 single–family residential lots with sizes ranging from approximately 2,951 s.f. to 5,500 s.f. The Site is divided in to two main areas by the existing wetlands, each with separate access routes and utility designs. The northern section, accessed from NE 18th Street via a fully improved public road, contains Lots 1-15. The southern section, accessed from NE 16th Steet via a joint use driveway, includes lots 16-17. Impervious surfaces include the 17 residences and their driveways, the proposed roadways and recreation space areas. The remainder of the Site will be landscaped and/or left undisturbed. The existing single-family residence located on parcel 2625069029 will be preserved while all other existing improvements located on Site will be demolished or removed during construction.

The Project is located in a Conservation Flow Control area and is required to provide Level 2 Flow Control and Basic Water Quality treatment, per the 2016 KCSWDM (Manual). However, the Project discharges to the east to the Allen Lake Outfall Channel which has been documented as Type 3 severe flooding problem. Therefore, the Project will be required to meet the Level 3 flow control standard for detention design. Surface water runoff from impervious surfaces will be collected and conveyed to two stormwater detention/water quality vaults in Tract A. Due to topography relative to the available discharge elevations, the Project will be divided into two basins and will meet the flow control requirements at one downstream point of compliance.

Detention/water quality vault 1 will provide flow control for the Project Site frontage (NE 18th Street), and detention/water quality vault 2 will provide flow control for the main Project Site. The vaults will meet Basic Water Quality requirements by provided dead storage for the detention vaults. The two detention wetvaults will outlet to the existing conveyance network in NE 18th Street.

The Project also includes two Lots, Lots 16 and 17, that are separated from the main Site by a critical area tract. The proposed lots will meet water quality and flow control requirements by utilizing full dispersion towards the critical area tracts located on Site. The utilization of full dispersion via gravel filled trenches will meet all requirements set forth by the Manual and will also satisfy Core Requirement 9, Flow Control BMPs.

NATURAL DRAINAGE SYSTEM FUNCTIONS

The Site consists of one Threshold Discharge Area (TDA) and two Natural Discharge Areas (NDAs). Runoff generated from NDA East [parcel: 2625069029, Lot#24649] sheet flows east and enters the Allen Lake Outlet Channel. The channel flows north, leaving the property from the northeast corner through a culvert under NE 18th St. The channel then flows northwest through a second culvert under 247th PI NE before continuing northwest towards 244th Ave NE. Runoff from NDA West [parcel: 2625069055, Lot#24637] sheet flows east and leaves the Site from the northeast corner. The runoff continues to sheet flow east along the NE 18th St. Right-Of-Way before converging with NDA East in the Allen Lake Outlet Channel.

A review of the SCS soils map for the area (see Figure 4, Soils) indicates Alderwood gravelly sandy loam with 8 to 15 percent slopes (AgC), Everett very gravelly sandy loam with 8 to 15 percent slopes (EvC), and Seattle muck (Sk). Per the Manual, this soil type is classified as "Till", "Outwash", and "Wetland" material. The SCS Soil series descriptions follow Figure 4.

King County IMAP and a field topographic survey were used to evaluate the upstream area of the Site. There is an upstream tributary area draining onto the site in two locations. The first is the existing Allen Lake Outlet Channel flowing from the south through the site. This channel conveys water through the Site in a northerly direction. To the west, a small portion of parcel #2625069042 flows onto the Project Site. This parcel is fully developed with a residential home and landscaping, and generally slopes northeast, towards NE 18th Street and the existing drainage swale. Public right-of-ways and existing conveyance systems are found to the north and south of the Site. To the east, the Allen Lake Outfall Channel collects any possible upstream flows and conveys it to the North, away from the Site. To this effect, this upstream runoff can be considered negligible for the scope of this Project. No foreseen negative impacts are anticipated.

FIGURE 1 TIR WORKSHEET

King County Department of Development and Environmental Services TECHNICAL INFORMATION REPORT (TIR) WORKSHEET

Part 1 PROJECT C PROJECT ENGINEE	OWNER AND Part 2 PROJECT LOCATION AND DESCRIPTION			CATION AND
Project Owner: To Phone: (2 Address: 88 K	oll Bros, Inc. 06) 825-1955 115 122 nd Ave NE, Suite 200 irkland, Washington 98033		Project Name: Leary F Permit#: Location: Township: Range: Section:	Floyd Subdivision 25 North 06 East 26
Project Engineer: M Company: D En	aher A. Joudi, P.E. R. STRONG Consulting ngineers Inc. 25) 827-3063		Site Address:	24637,& 24649 NE 18 th Street, Sammamish, WA 98074
Thone. (+	25/027-5005	I L		
Part 3 TYPE OF PE	Part 3 TYPE OF PERMIT APPLICATION			EWS AND PERMITS
 Landuse (e.g., Subdivision / Short Subd. / UPD Building (e.g., M/F / Commercial / SFR) Clearing and Grading Right-of-Way Use Other: 			 DFW HPA COE 404 DOE Dam Safety FEMA Floodplain COE Wetlands Other: 	 Shoreline Mngmt. Structural /Rockery/Vault ESA Section 7
Part 5 PLAN AND R	EPORT INFORMATION			
Technical	Information Report		Site Improvemen	nt Plan (Engr. Plans)
	🛛 Full		Plan Type (check	🖂 Full
Type of Drainage Rev	view 🗌 Targeted		one):	Modified
(check one):	Simplified			Simplified
	Large Project			
	Directed		Date (include revision	September 9, 2019
Date (include revision dates):	<u>September 9, 2019</u>		Date of Final:	
Date of Final:				

Part 6 ADJUSTMENT APPROVALS

Type (circle one): Standard / Experimental / Blanket Description: (include conditions in TIR Section 2) None required or provided.

Approved Adjustment No._____

Date of Approval:___

Part 7 MONITORING REQUIREMENTS

Monitoring Required:	Yes / No	Describe
•		-
Start Date:		Re: KCSWDM Adjustment No.
Completion Date		

Part 8 SITE COMMUNITY AND DRAINAGE BASIN

Community Plan: East Sammamish

Special District Overlays: None

Drainage Basin: Evans Creek

Stormwater Requirements: Level 3 w/ Basic WQ treatment

Part 9 ONSITE AND ADJACENT SENSITIVE AREAS						
River/ Stream	Steep Slope					
Lake	Erosion Hazard					
🛛 Wetlands	Landslide Hazard					
Closed Depression	Coal Mine Hazard					
🗌 Floodplain	Seismic Hazard					
☐ Other	Habitat Protection					
	_ 🗆					

Part 10 SOILS				
Soil Type EvC AgC Sk	SlopesErosion Potential8-15%Slight-Moderate8-15%Slight-ModerateN/AN/A			
 High Groundwater Table (within 5 feet) Other Additional Sheets Attached Sole Source Aquifer Seeps/Springs 				
Part 11 DRAINAGE DESIGN LIMITATIC	DNS			
REFERENCE LIMITATION / SITE CONSTRAINT Sensitive/ Critical Areas None SEPA LID Infeasibility Other Other Additional Sheet Attached Additional Sheet Attached				
Threshold Discharge Area: <u>The Site</u>	e is comprised of one TDA			
Core Requirements (all 9 apply):				
Discharge at Natural Location	Number of Natural Discharge Locations: 2			
Offsite Analysis	Level: <u>1</u> /2/3 dated: <u>July 31, 2019</u>			
Flow Control (include facility summary sheet) Conveyance System	Level: 1 / 2 / <u>3</u> or Exemption Number Flow Control BMPS: Full Dispersion Spill containment located at: TBD			
Erosion and Sediment Control/ Construction Stormwater Pollution Prevention Maintenance and Operation	CSWPP/CESCL/ESC Site Supervisor: <u>TBD</u> Contact Phone: <u>TBD</u> After Hours Phone: <u>TBD</u> Responsibility (circle one): Private Public			
Einancial Guarantees and Liability	Provided: Yes / No			
Water Quality (include facility summary sheet)	Type: Basic / Sens Lake / Enhanced Basic / Bog or exemption No. Landscape Management Plan: Yes / <u>No</u>			

Special Requirements (as applicable)					
Area Specific Drainage Ty Requirements Na	pe: CDA / SDO / MDP / BP / LMP / Shared Fac./ <u>None</u> me:				
Floodplain/Floodway Delineation Ty 10 Da	be: (circle one): Major / Minor / Exemption None 0-year Base Flood Elevation (or range):				
Flood Protection Facilities De	escribe: None required or provided				
Source Control De (comm. / industrial land use) De pro	Describe Land use: <u>Residential</u> Describe any structural controls: <u>None required or</u> <u>provided</u>				
Oil Control Hig Tre Ma wit	gh-use Site: Yes / <u>No</u> eatment BMP: aintenance Agreement: Yes / <u>No</u> h whom?				
Other Drainage Structures					
Describe: Runoff generated by impervious detention facilities.	ious surfaces will be collected and conveyed to				
Part 13 EROSION AND SEDIMENT CONTR	OL REQUIREMENTS				
MINIMUM ESC REQUIREMENTS DURING CONSTRUCTION	MINIMUM ESC REQUIREMENTS AFTER CONSTRUCTION Stabilize Exposed Surfaces Remove and Restore Temporary ESC Facilities Clean and Remove All Silt and Debris, ensure operation of Permanent Facilities, restore operation of Flow Control BMP Facilities as necessary Flag Limits of SAO and open space Preservation areas Other				

Part 14 STORMWATER FACILITY DESCRIPTIONS (Note: Include Facility Summary and Sketch					
Flow Control	Type/Description	Water Quality	Type/Description		
Detention	Vault	Biofiltration			
 Infiltration Regional Facility 		🖂 Wetpool	<u>Wetvault</u>		
Shared Facility		Media Filtration			
Flow Control BMPs	Full Dispersion	Oil Control Spill Control			
Other		Flow Control BMPs			
		Other			
Part 15 EASEMEN	ITS/TRACTS	Part 16 STRUCTU	RAL ANALYSIS		
□ Drainage Easement □ Cast in Place Vault □ Covenant □ Retaining Wall □ Native Growth Protection Covenant □ Rockery > 4qHigh □ Tract □ Structural on Steep Slope □ Other: □ Other:					

Part 17 SIGNATURE OF PROFESSIONAL ENGINEER
I, or a civil engineer under my supervision, have visited the site. Actual site conditions as observed were incorporated into this worksheet and the attached Technical Information Report. To the best of my knowledge the information provided here is accurate.

10/29/2019
Signed/Date

FIGURE 2 VICINITY MAP

The information included on this map has been compiled by King County staff from a variety of sources and is subject to change without notice. King County makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. King County shall not be liable for any general, special, indirect, incidental, or consequential damages including, but not limited to, lost revenues or lost profits resulting from the use or misuse of the information contained on this map. Any sale of this map or information on this map is prohibited except by written permission of King County.

FIGURE 3 DRAINAGE BASINS, SUBBASINS, AND SITE CHARACTERISTICS MAP

FIGURE 4 SOILS

©2019 D. R. STRONG Consulting Engineers Inc. Technical Information Report

King County Area, Washington

AgC—Alderwood gravelly sandy loam, 8 to 15 percent slopes

Map Unit Setting

- National map unit symbol: 2t626
- Elevation: 50 to 800 feet
- Mean annual precipitation: 20 to 60 inches
- Mean annual air temperature: 46 to 52 degrees F
- Frost-free period: 160 to 240 days
- Farmland classification: Prime farmland if irrigated

Map Unit Composition

- Alderwood and similar soils: 85 percent
- *Minor components:* 15 percent
- Estimates are based on observations, descriptions, and transects of the map unit.

Description of Alderwood Setting

- Landform: Ridges, hills
- Landform position (two-dimensional): Shoulder
- Landform position (three-dimensional): Nose slope, talf
- Down-slope shape: Linear, convex
- Across-slope shape: Convex
- Parent material: Glacial drift and/or glacial outwash over dense glaciomarine deposits

Typical profile

- A 0 to 7 inches: gravelly sandy loam
- Bw1 7 to 21 inches: very gravelly sandy loam
- Bw2 21 to 30 inches: very gravelly sandy loam
- Bg 30 to 35 inches: very gravelly sandy loam
- 2Cd1 35 to 43 inches: very gravelly sandy loam
- 2Cd2 43 to 59 inches: very gravelly sandy loam

Properties and qualities

- Slope: 8 to 15 percent
- Depth to restrictive feature: 20 to 39 inches to densic material
- Natural drainage class: Moderately well drained
- Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
- Depth to water table: About 18 to 37 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Very low (about 2.7 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 4s
- Hydrologic Soil Group: B
- Other vegetative classification: Limited Depth Soils (G002XN301WA), Limited
- Depth Soils (G002XS303WA), Limited Depth Soils (G002XF302WA)

Minor Components

Everett

- Percent of map unit: 5 percent
- Landform: Eskers, kames, moraines
- Landform position (two-dimensional): Shoulder, footslope
- Landform position (three-dimensional): Crest, base slope
- Down-slope shape: Convex
- Across-slope shape: Convex

Indianola

- Percent of map unit: 5 percent
- Landform: Eskers, kames, terraces
- Landform position (three-dimensional): Tread
- Down-slope shape: Linear
- Across-slope shape: Linear

Shalcar

- Percent of map unit: 3 percent
- Landform: Depressions
- Landform position (three-dimensional): Dip
- Down-slope shape: Concave
- Across-slope shape: Concave

Norma

- Percent of map unit: 2 percent
- Landform: Depressions, drainageways
- Landform position (three-dimensional): Dip
- Down-slope shape: Concave, linear
- Across-slope shape: Concave

EvC—Everett very gravelly sandy loam, 8 to 15 percent slopes Map Unit Setting

- National map unit symbol: 2t62b
- Elevation: 30 to 900 feet
- Mean annual precipitation: 35 to 91 inches
- Mean annual air temperature: 48 to 52 degrees F
- Frost-free period: 180 to 240 days
- Farmland classification: Farmland of statewide importance

Map Unit Composition

- Everett and similar soils: 80 percent
- *Minor components:* 20 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Everett

Setting

- Landform: Kames, eskers, moraines
- Landform position (two-dimensional): Shoulder, footslope
- Landform position (three-dimensional): Crest, base slope
- *Down-slope shape:* Convex
- Across-slope shape: Convex
- Parent material: Sandy and gravelly glacial outwash

Typical profile

- Oi 0 to 1 inches: slightly decomposed plant material
- A 1 to 3 inches: very gravelly sandy loam
- Bw 3 to 24 inches: very gravelly sandy loam
- C1 24 to 35 inches: very gravelly loamy sand
- C2 35 to 60 inches: extremely cobbly coarse sand

Properties and qualities

- Slope: 8 to 15 percent
- Depth to restrictive feature: More than 80 inches
- Natural drainage class: Somewhat excessively drained
- Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 3.2 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 4s
- Hydrologic Soil Group: A
- Forage suitability group: Droughty Soils (G002XN401WA), Droughty Soils (G002XS403WA), Droughty Soils (G002XF402WA)
- Hydric soil rating: No

Minor Components

Alderwood

- Percent of map unit: 10 percent
- Landform: Hills, ridges
- Landform position (two-dimensional): Shoulder
- Landform position (three-dimensional): Nose slope, talf
- Down-slope shape: Convex, linear
- Across-slope shape: Convex
- Hydric soil rating: No

Indianola

- Percent of map unit: 10 percent
- Landform: Eskers, kames, terraces
- Landform position (three-dimensional): Riser
- Down-slope shape: Linear
- Across-slope shape: Linear
- Hydric soil rating: No

Sk—Seattle muck

Map Unit Setting

- National map unit symbol: 1hmv4
- *Elevation:* 0 to 1,000 feet
- Mean annual precipitation: 25 to 50 inches
- Mean annual air temperature: 48 to 52 degrees F
- Frost-free period: 150 to 250 days
- Farmland classification: Prime farmland if drained

Map Unit Composition

- Seattle and similar soils: 75 percent
- Minor components: 25 percent
- Estimates are based on observations, descriptions, and transects of the map unit.

Description of Seattle

Setting

- Landform: Depressions
- Parent material: Grassy organic material

Typical profile

- *H1 0 to 11 inches:* muck
- H2 11 to 60 inches: stratified mucky peat to muck

Properties and qualities

- Slope: 0 to 1 percent
- Depth to restrictive feature: More than 80 inches
- Natural drainage class: Very poorly drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 01.98 in/hr)
- Depth to water table: About 0 inches
- Frequency of flooding: None
- Frequency of ponding: Frequent
- Available water storage in profile: Very high (about 23.5 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 5w
- Hydrologic Soil Group: B/D
- Forage suitability group: Wet Soils (G002XN102WA)
- Hydric soil rating: Yes

Minor Components

Shalcar

- Percent of map unit: 10 percent
- Landform: Depressions
- Hydric soil rating: Yes

Tukwila

- Percent of map unit: 10 percent
- Landform: Depressions
- Hydric soil rating: Yes

Bellingham

- Percent of map unit: 3 percent
- Landform: Depressions
- Hydric soil rating: Yes

Norma

- Percent of map unit: 2 percent
- Landform: Depressions
- Hydric soil rating: Yes

SECTION II

CONDITIONS AND REQUIREMENTS SUMMARY

The Project must comply with the following Core and Special Requirements:

- C.R. #1 Discharge at the Natural Location: Existing drainage discharges from the Site in two locations, both of which converge in the Allen Lake Outfall Channel within ¼ mile from the Site. The project is proposing to discharge towards the Allen Lake Outfall Channel, both directly via existing conveyance networks and by full dispersion directly towards the channel and associated sensitive areas. This proposal maintains discharge at the natural location for the Project Site.
- **C.R. #2 Offsite Analysis:** An offsite analysis is included in Section III. The Analysis describes the Site's runoff pattern in detail.
- **C.R. #3 Flow Control:** The Project is located in a Conservation Flow Control Area but discharges towards an area with a Type 3 drainage problem, therefore requiring Level 3 flow control. The Site is required to "match developed discharge durations to predeveloped durations for the range of predeveloped discharge rates from 50% of the two-year peak flow up to the full 50-year peak flow. Also match developed peak discharge rates to predeveloped peak discharge rates for the 2 and 10 year return periods, AND match the developed 100-year peak discharge rate to the predeveloped 100-year peak discharge rate for existing site conditions.
- C.R. #4 Conveyance System: New pipe systems and ditches/channels are required to be designed with sufficient capacity to convey and contain (at minimum) the 25-year peak flow, assuming developed conditions for onsite tributary areas and existing conditions for any offsite tributary areas. Pipe system structures and ditches/channels may overtop for runoff events that exceed the 25-year design capacity, provided the overflow from a 100-year runoff event does not create or aggravate a "severe flooding problem" or "severe erosion problem" as defined in C.R. #2. Any overflow occurring onsite for runoff events up to and including the 100-year event must discharge at the natural location for the project Site. In residential subdivisions, such overflow must be contained within an onsite drainage easement, tract, covenant or public right-of-way. The proposed conveyance system was analyzed using the KCBW program, and is capable of conveying the 100-year peak storm without overtopping any structures or channels. This analysis will be performed at time of construction plan preparation.
- C.R. #5 Erosion and Sediment Control: The Project provides the thirteen minimum ESC measures.
- **C.R. #6 Maintenance and Operations:** Maintenance of the proposed storm drainage facilities will be the responsibility of the County. An Operation and Maintenance Manual will be included in Section X at the time of construction plan preparation.
- C.R. #7 Financial Guarantees and Liability: Prior to commencing construction, the Applicant must post a drainage facilities restoration and Site stabilization

financial guarantee. For any constructed or modified drainage facilities to be maintained and operated by the City, the Applicant must: 1) Post a drainage defect and maintenance financial guarantee for a period of two years, and 2) Maintain the drainage facilities during the two-year period following posting of the drainage defect and maintenance financial guarantee.

- **C.R. #8 Water Quality:** The Project is located in the Basic Water Quality Treatment area. A wetvault is proposed in combination with the detention vault in order to accommodate the Water Quality Treatment requirement.
- C.R. #9 Flow Control BMP's: The Project falls under Small Lot BMP Requirements, as all proposed lots are smaller than 22,000 s.f. Flow control BMP requirements for small lots requires that all impervious surfaces be evaluated for application of full dispersion. Full dispersion is feasible utilizing gravel filled trenches to disperse towards the existing wetlands located on site. The total impervious area to be fully dispersed is 7,231 s.f. and uses all feasible buffer areas meeting the requirements for full dispersion. Per Section 1.2.9.2.1.5, "BMPs must be implemented, at minimum, for an impervious area equal to at least 10% of the site/lot for site/lot sizes up to 11,000 square feet[...]" The sum of the lot areas proposed for this Project is 62,771 s.f. Therefore, full dispersion has been proposed to manage 11.51% of the lot areas, meeting the Flow Control BMP requirement.
- S.R. #1 Other Adopted Area-Specific Requirements: Not applicable for this Project.
- S.R. #2 Floodplain/Floodway Delineation: The Project parcel is not within a 100year floodplain defined by any of FEMA's floodplain insurance rate maps. No other specific data exists establishing the base (100-year) flood elevation through the Site.
- S.R. #3 Flood Protection Facilities: Not applicable for this Project.
- S.R. #4 Source Control: Not applicable for this Project.
- S.R. #5 Oil Control: Not applicable for this Project.

SECTION III

OFF-SITE ANALYSIS

An offsite Level One Downstream Analysis was prepared by D.R. STRONG Consulting Engineers Inc. and is included in this Section.

TASK 1: DEFINE AND MAP THE STUDY AREA

This Offsite Analysis was prepared in accordance with Core Requirement #2, Section 1.2.2 of the 2016 King County Surface Water Design Manual (Manual). The Site is located at 24637 and 24649 NE 18th Street, Sammamish, WA.

See Figures 2 through 11 for maps of the study area.

TASK 2: RESOURCE REVIEW

- Adopted Basin Plans: None at this time.
- Floodplain/Floodway (FEMA) Map: No floodplains exist on site, See Figure 10.
- Other Offsite Analysis Reports: Kensington Enclave, Mystic Lake, Technical Memorandum; Re: Results of an Update to the 2013 Hydrologic and Hydraulic Allen Lake Feasibility Study
- Sensitive Areas Folio Maps: See Figures 4-8 for documentation of the distance downstream from the proposed project to the nearest critical areas. Included, are sections of the King County Sensitive Areas Folio which indicate the following:
 - Figure 5 Streams and 100-Year Floodplains and Floodway: There are no floodplains onsite. A stream is located within 1 mile of the site along the downstream path.
 - Figure 6 Wetlands: King County has not identified any wetlands in the immediate vicinity of the project site, however two wetlands have been found on-site. See "Wetland Delineation Report" by Raedeke Associates, Inc. in Appendix B.
 - Figure 7 Erosion Hazard: There are no mapped Erosion Hazard Areas onsite, however there is one Erosion Hazard Area within one mile of the Site along the downstream path.
 - Figure 8 Landslide Hazard: There are no mapped Erosion Hazard Areas onsite, however there is one area mapped as a Landside Hazard Area within 1 mile of the site along the downstream path.
 - Figure 9 Seismic Hazard: There are no mapped Seismic Hazard Areas on the project site; however the Evans Creek area is identified as a Seismic Hazard Areas within one mile of the Site along the downstream path.
- DNRP Drainage Complaints and Studies: As shown in Figure 11, there are several drainage complaints (10 or more) along the downstream path. All but three complaints are closed and/or were not recorded within the last 10 years.

- Road Drainage Problems: None noted.
- USDA King County Soils Survey: See Figure 4.
- Wetlands Inventory: Vol. 1 East (1990) The wetland inventory revealed no additional wetlands within the downstream path.
- Migrating River Studies: None are applicable to the site.
- Washington State Department of Ecology's latest published Clean Water Act Section 303d list of polluted waters: None listed along the ¼ mile downstream path. Just past ¼ mile, the unnamed tributary to Evans Creek carries a Category 4A – Temperature, listing for water quality,
- King County Designated Water Quality Problems: None at this time.
- Adopted Stormwater Compliance Plans: None applicable to this site.
- Basin Reconnaissance Summary Reports: No reports available for this area.

FIGURE 6 WETLANDS

Leary Floyd Subdivision

Page 22 King County

FIGURE 7 EROSION HAZARD AREAS

FIGURE 8 LANDSLIDE HAZARD AREAS

©2019 D. R. STRONG Consulting Engineers Inc. Technical Information Report

FIGURE 9 SEISMIC HAZARD AREAS

©2019 D. R. STRONG Consulting Engineers Inc. Technical Information Report

FIGURE 10 FEMA – FLOOD INSURANCE RATE MAP

SITE (Approximate location)

FIGURE 11 DRAINAGE COMPLAINTS

TASK 3: FIELD INSPECTION

UPSTREAM TRIBUTARY AREA

The upstream area was evaluated through examining area topography from the King County iMap, a field topographic survey, and by conducting field reconnaissance on July 31st, 2019. There is an upstream tributary area draining onto the site in two locations. The first is the existing Allen Lake Outlet Channel flowing from the south through the east portion of the site. The second source is runoff sheet flowing from the properties to the west, parvel #2625069042. This property is fully developed and generally slopes to the northeast, towards NE 18th Street and the existing drainage swale. To this effect, all upstream runoff the parcel experiences can be considered negligible for the scope of the project.

GENERAL ONSITE AND OFFSITE DRAINAGE DESCRIPTION

The majority of the site is sloped to the east at slopes ranging from 0%-16%. There is a slight ridge that runs north-south along the east property line of parcel 2625069055 (Lot#24637) and the existing gravel road. This causes the site to have two distinct Natural Drainage Areas (NDAs). The two NDAs, defined as NDA East and NDA West, each have one Natural Drainage Location (NDL). These two NDAs converge within ¼ mile, therefore the site in encompassed within a single Threshold Drainage Area (TDA).

The NDL for NDA East is the Allen Lake Outlet Channel, which flows in a northerly direction through the site. Runoff generated from parcel 2625069029 (Lot#24649) sheet flows east and enters the Allen Lake Outlet Channel. The channel flows north, leaving the property from the northeast corner through a culvert under NE 18th St. The channel then flows northwest through a second culvert under 247th PI NE before continuing northwest towards 244th Ave NE.

The NDL for NDA West is located on the northern property line of the site. Runoff generated from parcel 2625069055 (Lot#24637) leaves the site and sheet flows east along the north property line and the side of NE 18^{th} St., converging with NDA East in the Allen Lake Outlet Channel at (±290').

TASK 4: DRAINAGE SYSTEM DESCRIPTION AND PROBLEM DESCRIPTIONS

DRAINAGE SYSTEM DESCRIPTION

The downstream analysis is further illustrated and detailed in Figure 12, the Downstream Map. The drainage area is located within the East Sammamish Drainage Basin. The drainage area was evaluated by reviewing available resources described in Task 2, and by conducting a field reconnaissance; See Task 3 for path details.

DOWNSTREAM PATH NDA East

"A1" is a Natural Discharge Location (NDL) for the Site. It is the Allen Lake Outlet Channel located on the northeast corner of the site (± 0) .

From Point "A1" to Point "B1", runoff flows in a northerly direction as channel flow via the Allen Lake Outlet Channel. The channel dimensions are 4' tall, 6' wide, with 2:1 slide slopes. Ground was damp but no flow was observed (±0'-10').

Point B1 is the inlet of a 6' corrugated metal pipe culvert $(\pm 10')$.

From Point B1 to C1, runoff is conveyed in a northerly direction as pipe flow through 6' corrugated metal pipe culvert. No flow was observed $(\pm 10'-30')$.

Point C1 is the outlet of a 6' corrugated metal pipe culvert (±30').

From Point C1 to D1, runoff is conveyed in a northwesterly direction as channel flow via the Allen Lake Outlet Channel. The channel dimensions are 4' tall, 4'-6' wide, with 2:1 slide slopes. No flow was observed ($\pm 30'-215'$).

Point D1 is the inlet of a 6' corrugated metal pipe culvert (±215').

From Point D1 to E1, runoff is conveyed in a westerly direction as pipe flow through 6' corrugated metal pipe culvert. No flow was observed ($\pm 215'-235'$).

Point E1 is the outlet of a 6' corrugated metal pipe culvert (±235').

From Point E1 to F1, runoff is conveyed in a northwesterly direction as channel flow via the Allen Lake Outlet Channel. The channel dimensions are 4' tall, 4'-6' wide, with 2:1 slide slopes. No flow was observed (±235'-1,365').

Point F1 is the inlet to an approx. 100' wide "meadow" and is the end of the downstream path $(\pm 1,365')$.

DOWNSTREAM PATH NDA West

"A2" is a Natural Discharge Location (NDL) for the Site. It is located on the northern property line of the site $(\pm 0')$.

From Point A2 to B1, runoff is conveyed in an easterly direction as sheet flow along the side of the NE 18^{th} St (±0'-290').

Point B1 is the inlet of a 6' corrugated metal pipe culvert (\pm 290'). Point B1 is the convergence point of NDA West and NDA East. From this location, runoff continues in a northwesterly direction through the Allen Lake Outlet Channel.

TASK 5: MITIGATION OF EXISTING OR POTENTIAL PROBLEMS

A review of the King County Water and Land Resources Division – Drainage Services Section *Documented Drainage Complaints* within one mile of the downstream flow paths revealed one complaint within the last ten years that has since been closed and was with regard to a fee inquiry. There are several older complaints that can be seen in Figure 11.

The project should not create any problems as specified in Section 1.2.2.1 of the Manual and therefore is not required to provide Drainage Problem Impact Mitigation subject to the requirements of Section 1.2.2.2.

The project drains to an unnamed tributary of Evans Creek (Allen Lake Outlet Channel) which has been assessed with a category 4A listing for Temperature (Type 3). However, mitigation is not required due the Project proximity to the assessed water body (greater than ¹/₄ mile).

The complaints shown below are all those that occurred in the last 10 years along the drainage path within 1 mile from site] It should also be noted that according to the residents of Lot#24649, the Allen Lake Outlet Channel floods seasonally and overtops its banks.

Complaint	Parcel Number	Summary	Recurring	Туре	Required Mitigation
1997-1422	2625069055	Flooding due to Allen Lake Outlet Channel obstruction	Yes	R, C, NDA	Complaint was closed 7/15/2019. Level 3 Flow Control.
2018-0952	2625069007	"DDM" Temporary construction easement project from 2000	No	NDA- F	Complaint has been closed. None

FIGURE 12 OFFSITE ANALYSIS DOWNSTREAM MAP

FIGURE 13 OFFSITE ANALYSIS DOWNSTREAM TABLE NDA East

Symbol	Drainage Component Type, Name, and Size	Drainage Component Description	Slope	Distance From site Discharge	Existing Problems	Potential Problems	Observations of field inspector resource reviewer, or resident
See map	Type: sheet flow, swale, Stream, channel, pipe, Pond; Size: diameter Surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1/4 mile = 1,320 feet	Constrictions, unde overtopping, floo organism destructi sloughing, sedimen erosion	r capacity, ponding, ding, habitat or on, scouring, bank tation, incision, other	Tributary area, likelihood of problem, overflow pathways, potential impacts.
A1	Natural discharge location -Channel	Runoff exits site across the northern property line as northerly channel flow.		±0'	None Observed	None Anticipated	No flow observed. Property owner reported seasonal flooding along Allen Lake Outlet Channel
A1-B1	Northerly channel flow	4' tall 6' wide channel 2:1 side slopes			None Observed	None Anticipated	No flow observed
B1	Pipe inlet	6' CMP Culvert		±10	None Observed	None Anticipated	No flow observed
B1-C1	Northerly pipe flow	6' CMP Culvert			None Observed	None Anticipated	No flow observed
C1	Pipe outlet	6' CMP Culvert		±30'	None Observed	None Anticipated	No flow observed
C1-D1	Northwesterly channel flow	4' tall 6' wide channel 2:1 side slopes			None Observed	None Anticipated	No flow observed
D1	Pipe inlet	6' CMP Culvert		±215	None Observed	None Anticipated	No flow observed
D1-E1	Westerly pipe flow	6' CMP Culvert			None Observed	None Anticipated	No flow observed
E1	Pipe outlet	6' CMP Culvert		±235	None Observed	None Anticipated	No flow observed
E1-F1	Northwesterly channel flow	4' tall 6' wide channel 2:1 side slopes			None Observed	None Anticipated	No flow observed
F1	Meadow inlet, end of downstream path	Approx 100' wide, end of downstream path		±1,365	None Observed	None Anticipated	No flow observed

NDA West

Symbol	Drainage Component Type, Name, and Size	Drainage Component Description	Slope	Distance From site Discharge	Existing Problems	Potential Problems	Observations of field inspector resource reviewer, or resident
See map	Type: sheet flow, swale, Stream, channel, pipe, Pond; Size: diameter Surface area	drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	1/4 mile = 1,320 feet	Constrictions, under capacity, ponding, overtopping, flooding, habitat or organism destruction, scouring, bank sloughing, sedimentation, incision, other erosion		Tributary area, likelihood of problem, overflow pathways, potential impacts.
A2	Natural discharge location	Runoff exits site across the northern property line as easterly sheet flow.		±0'	None Observed	None Anticipated	No flow observed.
A2-B1	Easterly sheet flow	Gravel/topsoil			None Observed	None Anticipated	No flow observed
B1	Pipe inlet, convergence point	6' CMP Culvert, convergence point and end of downstream path		±290	None Observed	None Anticipated	No flow observed. This is the convergence point of NDA West and NDA East
SECTION IV

FLOW CONTROL AND WATER QUALITY FACILITY ANALYSIS AND DESIGN

EXISTING SITE HYDROLOGY (PART A)

WWHM was used to model the peak runoff from the Site. Per Figure 4, Soils, the existing Site soil is divided in two parts: Everett very gravelly sandy loam and Alderwood gravelly sandy loam. As observed in the predeveloped area map, the portion of the Site to be developed is primarily contained within the section listed as Alderwood gravelly sandy loam. The portion of the Site within the Everett classification of soils is to be fully dispersed, which excludes these areas from drainage calculations. Per Table 3.2.2.A in the Manual, Alderwood SCS soil type is modeled as a "C" SCS hydrologic soil group. Therefore, the entire predeveloped Site is modeled as "C, Forest, Flat."

The Geotechnical Engineering Report by Associated Earth Sciences, Inc, found evidence of Vashon Recessional Outwash and Vashon Lodgement Till at various locations of the Site, consistent with the results of the USDA Soil Survey shows in Figure 4. Additionally, the test pits dug encountered groundwater and groundwater seepage at shallow depths. These findings indicate that the use of "C" SCS hydrologic group will be the most accurate model for predeveloped conditions.

In order to meet Flood Problem Flow Control Areas requirements, the project is required by Section 1.2.3.1 (C) in the Manual to "match the developed 100-year peak discharge rate to the predeveloped 100-year peak discharge rate. [...] for the purposes of matching 100-year peak discharge rates, *existing site conditions* may be assumed." The existing project area has been modeled using "C, Forest, Flat," "C, Lawn, Flat," "Rooftops, Flat," and "Driveways, Flat" as applicable to find the peak existing site discharge rates. The results of both historic and existing site conditions can be found below.

Historic Site Conditions Input

Basin 1 Predeveloped				-
Subbasin Name: Basin 1				
Surface		Interflow	Groundw	ater
Flows To :				
Area in Basin			Show Only Selecte	d
Available Pervious	Acres		Available Impervious	Acres
A/B, Forest, Flat	0		ROADS/FLAT	0
A/B, Forest, Mod	0		R0ADS/M0D	0
A/B, Forest, Steep	0		ROADS/STEEP	0
A/B, Pasture, Flat	0	~	ROOF TOPS/FLAT	0
A/B, Pasture, Mod	0	~	DRIVEWAYS/FLAT	0
A/B, Pasture, Steep	0		DRIVEWAYS/MOD	0
A/B, Lawn, Flat	0		DRIVEWAYS/STEEP	0
A/B, Lawn, Mod	0	~	SIDEWALKS/FLAT	0
A/B, Lawn, Steep	0		SIDEWALKS/MOD	0
C, Forest, Flat	2.015		SIDEWALKS/STEEP	0
C, Forest, Mod	0		PARKING/FLAT	0
C, Forest, Steep	0		PARKING/MUD	0
C, Pasture, Hat	0		PARKING/STEEP	U
C. Pasture, Mod	0		PUNU	U
C, Pasture, Steep	0		Porous Pavement	U
C, Lawn, Flat	0			
C, Lawn, Mou	0	-		
SAT Forest Flat	0			
SåT Forest Mod	0			
▼ SAT Forest Steen	0			
Pervious Total 2015 Impervious Total 0 Basin Total 2.015	Acres Acres Acres			
Deselect Zero S	elect By:		G0	

Historic Site Conditions Output:

Flow Freq	ue	ncy
Flow(cfs)		Predeveloped
2 Year	=	0.0592
5 Year	=	0.0930
10 Year	=	0.1121
25 Year	=	0.1324
50 Year	=	0.1450
100 Year	=	0.1557

Existing Site Conditions Output:

Flow Freque	ency
Flow(cfs)	Predeveloped
2 Year =	0.2207
5 Year =	0.3359
10 Year =	0.4243
25 Year =	0.5501
50 Year =	0.6544
100 Year =	0.7682

FIGURE 14 PREDEVELOPMENT AREA MAP

DEVELOPED SITE AREA HYDROLOGY (PART B)

WWHM was used to model the developed peak runoff from the Site. The soil types are unchanged from the pre-developed conditions. Results of the WWHM analysis are included in this section. Tract D was excluded from these calculations as it will be designated a Critical Area Tract and will remain undisturbed. Tract C and approximately 9,928 sf of lot area located in the southern portion of the Project Area will be fully dispersed towards the critical areas and will be excluded from drainage calculations.

Due to existing topography, the Project requires two separate detention facilities in order to serve the lower elevation right-of-way and the high elevation main project site developable area. The right-of-way area and a portion of Lots 13-15 will be collected and conveyed to a vault with 2.50 feet of live storage titled "Vault 1."

The remainder of the project area will be collected and conveyed to a detention vault with 6 feet of live storage titled "Vault 2." Although these vaults provide flow control for two separate areas, they share a point of compliance and will therefore be modeled together.

A Section of the project area right-of-way frontage improvements cannot be feasibly collected and routed to the proposed detention facilities. This area has been designated as bypass. See Figure 15.

Lot impervious areas were assumed to be 70% of lot area per King County zoning code.

🔁 · VAULT 1 - LOWER VAULT Mitigated						
Subbasin Name: VAULT 1 - LOWER VAULT Designate as Bypass for POC:						
Surface		Interflow Groundwa		ater		
Flows To : Vault 1		Vault 1				
Area in Basin			Show Only Selecte	d		
Available Pervious	Acres		Available Impervious	Acres		
A/B, Forest, Flat	0		ROADS/FLAT	.173		
A/B, Forest, Mod	0		ROADS/MOD	0		
A/B, Forest, Steep	0		R0ADS/STEEP	0		
A/B, Pasture, Flat	0		ROOF TOPS/FLAT	0		
A/B, Pasture, Mod	0		DRIVEWAYS/FLAT	0		
A/B, Pasture, Steep	0		DRIVEWAYS/MOD	.017		
A/B, Lawn, Flat	0		DRIVEWAYS/STEEP	0		
A/B, Lawn, Mod	0	v	SIDEWALKS/FLAT	.039		
A/B, Lawn, Steep	0		SIDEWALKS/MOD	0		
C, Forest, Flat	0		SIDEWALKS/STEEP	0		
C, Forest, Mod	0		PARKING/FLAT	0		
C, Forest, Steep	0		PARKING/MOD	0		
C, Pasture, Flat	0		PARKING/STEEP	0		
C, Pasture, Mod	0		POND	0		
C, Pasture, Steep	0		Porous Pavement	0		
C, Lawn, Flat	.049	1				
C, Lawn, Mod	0					
C, Lawn, Steep	0	1				
SAT, Forest, Flat	0	1				
SAT, Forest, Mod	0	1				
SAT, Forest, Steep	0	1				
		-				
Pervious Total 0.049	Acres					
Impervious Total 0.229	Acres					
Basin Total 0.278	Acres					
Deselect Zero Se	elect By:		GO			

Vault 1 Developed Site Conditions Input

Surface Flows To : Vault 2 Area in Basin Available Pervious Ac	Interflow Vault 2	Groundwa	ter
Tows To: Vault 2 Area in Basin Available Pervious Ac	Vault 2		
Area in Basin Available Pervious Ac			
Available Pervious Ac		Show Only Selected	
▲ C A/B Enrest Elat	cres	Available Impervious	Acres
	v	ROADS/FLAT	.281
A/B, Forest, Mod 0		ROADS/MOD	0
A/B, Forest, Steep 0		ROADS/STEEP	0
A/B, Pasture, Flat 0	v	ROOF TOPS/FLAT	.73
A/B, Pasture, Mod 0	v	DRIVEWAYS/FLAT	.16
A/B, Pasture, Steep 0	v	DRIVEWAYS/MOD	0
A/B, Lawn, Flat 0		DRIVEWAYS/STEEP	0
A/B, Lawn, Mod 0	v	SIDEWALKS/FLAT	.056
A/B, Lawn, Steep 0		SIDEWALKS/MOD	0
C, Forest, Flat 0		SIDEWALKS/STEEP	0
C, Forest, Mod 0		PARKING/FLAT	0
C, Forest, Steep 0		PARKING/MOD	0
C, Pasture, Flat		PARKING/STEEP	0
C, Pasture, Mod 0		POND	0
C, Pasture, Steep 0		Porous Pavement	0
C, Lawn, Flat .486	6		
C, Lawn, Mod 0			
C, Lawn, Steep 0			
SAT, Forest, Flat			
SAT, Forest, Mod 0			
SAT, Forest, Steep 0			
Pervious Total 0.486 Acre mpervious Total 1.227 Acre Iasin Total 1.713 Acre	es es		

Vault 2 Developed Site Conditions Input

Bypass Developed Site Conditions Input

Vault 1 Developed Site Conditions Output:

Flow Frequency						
Flow(cfs)						
2 Year	=	0.0913				
5 Year	=	0.1165				
10 Year	=	0.1337				
25 Year	=	0.1562				
50 Year	=	0.1735				
100 Year	=	0.1912				

Vault 2 Developed Site Conditions Output:

Flow Frequency Flow(cfs) 2 Year = 0.4989 5 Year = 0.6419 10 Year = 0.7405 25 Year = 0.8698 50 Year = 0.9698 100 Year = 1.0729

Bypass Developed Site Conditions Output:

Flow Frequency Flow(cfs) 2 Year = 0.0065 5 Year = 0.0083 10 Year = 0.0095 25 Year = 0.0111 50 Year = 0.0124 100 Year = 0.0137

FIGURE 15 DEVELOPED AREA MAP

	TOTAL EXISTING SITE AREA:	212,020 S.F. (4.867 AC)
	TOTAL PROJECT AREA:	98,736 S.F. (2.267 AC)
	VAULT 1 COLLECTED	14,270 S.F. (0.328 AC)
	<u>LOT 13–15 FRONTAGE:</u> DRIVEWAYS/MOD: C, LAWN, FLAT:	3,061 S.F. (0.070 AC) 1,560 S.F. (0.036 AC) 1,501 S.F. (0.034 AC)
	<u>ROW_AREA:</u> SIDEWALKS/FLAT: ROADS/FLAT: C, LAWN, FLAT:	11,209 S.F. (0.257 AC) 1,714 S.F. (0.039 AC) 7,523 S.F. (0.173 AC) 1,972 S.S. (0.045 AC)
	VAULT 2 COLLECTED	72,444 S.F. (1.663 AC)
	<u>LOTS 1–15</u> ROOF TOPS/FLAT: DRIVEWAYS/FLAT: C, LAWN, FLAT:	50,300 S.F. (1.155 AC) 30,290 S.F. (0.695 AC) 4,920 S.F. (0.113 AC) 15,090 S.F. (0.346 AC)
E E E E E E	<u>TRACT A STORM DRAINAGE & RECREATION:</u> ROADS/FLAT: C, LAWN, FLAT:	9,904 S.F. (0.227 AC) 4,952 S.F. (0.114 AC) 4,952 S.F. (0.114 AC)
	<u>ROW_AREA:</u> ROADS/MOD: SIDEWALKS/FLAT: C, LAWN, FLAT:	10,186 S.F. (0.234 AC) 7,276 S.F. (0.167 AC) 2,425 S.F. (0.056 AC) 485 S.F. (0.011 AC)
ž	<u>TRACT_B_PRIVATE_ACCESS_TRACT:</u> DRIVEWAYS/FLAT:	2,054 S.F. (0.047 AC) 2,054 S.F. (0.047 AC)
	BYPASS (UNCOLLECTED)	993 S.F. (0.022 AC)
	<u>ROW_AREA:</u> SIDEWALKS/FLAT: ROADS/FLAT: C, LAWN, FLAT:	993 S.F. (0.022 AC) 132 S.F. (0.003 AC) 596 S.F. (0.014 AC) 265 S.F. (0.006 AC)
	LOTS 16–17 AREA: (FULL DISPERSION–TO BE EXCLUDED FROM DRAI	<u>11,029 S.F. (0.253 AC)</u> NAGE CALCULATIONS)
	LOTS 16–17: ROOF TOPS/FLAT: DRIVEWAYS/FLAT: C, LAWN, FLAT:	9,928 S.F. (0.228 AC) 6,130 S.F. (0.141 AC) 820 S.F. (0.019 AC) 2,978 S.F. (0.068 AC)
# <u></u> #	TRACT C JOINT USE DRIVEWAY: DRIVEWAYS/FLAT:	1,101 S.F. (0.025 AC) 1,101 S.F. (0.025 AC)
+ + + + + + + +	UNDISTURBED AREAS:	194,736 S.F. (4.471 AC)

PERFORMANCE STANDARDS (PART C)

The Project is required to adhere to Level 3 Flow Control criteria. The Level 3 performance criteria requires that the developed condition's durations must match the predeveloped durations ranging from 50% of the two-year peak flow up to the full 50-year peak flow and also match developed peak discharge rates to predeveloped peak discharge rates for the 2-year and 10-year return periods. Also match the developed 100-year peak to the existing 100-year peak. (KCSWDM, Sec. 1.2).

The flow frequency comparison below shows that the mitigated peak frequency flows have been reduced from the historic peak frequency flows for the 2-year and 10-year return periods.

Flow Free	ow Frequency			Flow Frequency			
Flow(cfs))	Predeveloped	(Historic)	Flo	ow(cfs))	Mitigated
2 Year	=	0.0592		2 1	lear	=	0.0389
5 Year	=	0.0930		5 1	ſear	=	0.0612
10 Year	=	0.1121		10	Year	=	0.0799
25 Year	=	0.1324		25	Year	=	0.1087
50 Year	=	0.1450		50	Year	=	0.1344
100 Year	=	0.1557		100) Year	=	0.1641

The flow frequency comparison below shows that the mitigated peak frequency flow has been reduced from the existing peak frequency flows for the 100-year return period.

Flow Freq	que	ency		Flow Frequency			
Flow(cfs)		Predeveloped	(Existing)	Flow(cfs))	Mitigated	
2 Year	=	0.2207		2 Year	=	0.0389	
5 Year	=	0.3359		5 Year	=	0.0612	
10 Year	=	0.4243		10 Year	=	0.0799	
25 Year	=	0.5501		25 Year	=	0.1087	
50 Year	=	0.6544		50 Year	=	0.1344	
100 Year	=	0.7682		100 Year	=	0.1641	

The Basic Water Quality Treatment goal is to remove 80% of TSS for flows or volumes up to and including the WQ design flow or volume.

Conveyance criteria for the Project require that all new pipes be designed to convey and contain (at minimum) the 25-year peak flow. The conveyance system design will be analyzed at time of final engineering.

FLOW CONTROL SYSTEM (PART D)

The Site will utilize two detention vaults meeting the Level 3 Flow Control Criteria. The Western Washington Hydrologic Model (WWHM2012) software was used to size the detention facilities. The vault design information is included in this section.

Name : Vault 1 Width : 44.731 ft. 44.731 ft. Length : 3.5 ft. Depth: Discharge Structure Riser Height: 2.5 ft. Riser Diameter: 18 in. Orifice 1 Diameter: 0.345 in. Elevation: 0 ft. Orifice 2 Diameter: 0.5 in. Elevation: 1.5075 ft. Orifice 3 Diameter: 0.72 in. Elevation: 2.222 ft.

Name : Vault 2 Width : 66 ft. Length : 66 ft. 7 ft. Depth: Discharge Structure Riser Height: 6 ft. Riser Diameter: 18 in. Orifice 1 Diameter: 0.73 in. Elevation: 0 ft. Orifice 2 Diameter: 1.1 in. Elevation: 3.72 ft. Orifice 3 Diameter: 0.91 in. Elevation: 4.5 ft.

FLOW CONTROL BMP SELECTION

Subdivision projects are required to mitigate for impervious surfaces per the requirements laid out in Section 1.2.9.2 pf the KCSWDM. The project falls under the "Small Lot BMP Requirements" due to all proposed lots having lot areas less than 22,000 square feet. Available BMPs were evaluated in order of preference as specified in the Manual, and full dispersion was selected to be utilized.

Lots 16 and 17 and the associated joint use driveway's impervious and pervious areas will be fully dispersed utilizing the wetland buffers of the existing wetlands located in Tract D, where feasible. This area results in 8,051 square feet of impervious area, and 2,978 square feet of pervious area being dispersed in the available native growth areas.

Per Section C.2.1.5 of the Manual, the amount of area available to disperse is proportional to the length of gravel filled trench and the corresponding flow path length. Gravel filled dispersion trench 1 is the maximum allowed 50' in length, and has a minimum flowpath of 160 linear feet, resulting in an available 8,000 square feet of impervious area to be dispersed. Gravel filled dispersion trench 2 is 25 feet in length and has the minimum allowed 100 linear foot flow path. This allows a maximum of 3,500 square feet of impervious area to be dispersed. Gravel filled trench 2 will serve the roof and driveway areas of Lot 16, and gravel filled dispersion trench 1 will disperse the joint use driveway and all lot impervious areas resulting from Lot 17, meeting all requirements set forth by the Manual for full dispersion.

The proposed gravel filled trenches utilize all the feasible space to fully disperse stormwater for the project site, meeting the flow control BMP requirement.

FLOW CONTROL FACILITY DESIGN OUTPUT

Below shows the duration curve comparing the predeveloped historic flows to the mitigated, developed flows of the two detention facilities and the associated bypass area.

Analysis							x
	501 POC 1 Predeveloped	The Facil	ity PASS	ED			-
0.15	801 POC 1 Mitigated flow						
° ° • ∞							
		Flow(cfs)	Predev	Mit Pe	rcentage	Pass/Fail	Ĺ
		0.0296	17547	17156	97	Pass	
		0.0308	16168	12151	75	Pass	
		0.0320	14966	9231	61	Pass	
		0.0331	13856	7905	57	Pass	Ξ
0.09		0.0343	12814	7099	55	Pass	
		0.0355	11807	6686	56	Pass	
		0.0366	10900	6303	57	Pass	
		0.0378	10119	5987	59	Pass	
		0.0389	9385	5747	61	Pass	
		0.0401	8731	5523	63	Pass	
		0.0413	8143	5330	65	Pass	
0.03 10E-5 10E-4 10E-3 10E-2 10E-1 1 1	0 100	0.0424	7593	5146	67	Pass	
		0.0436	7060	4990	70	Pass	
Percent Time Exceeding		0.0448	6590	4812	73	Pass	
		0.0459	6147	4605	74	Pass	
Stream Protection Duration LID Duration Flow Frequency Water Qu	ality Hydrograph	0.0471	5775	4413	76	Pass	
Wetland Input Volumes LID Report King2012 Recharge Recharge Predevelop	ed Recharge Mitigated	0.0483	5431	4231	77	Pass	
		0.0494	5097	4036	79	Pass	
Analyze datasets Compact WDM Delete Selected	•	0.0506	4808	3850	80	Pass	
		0.0518	4524	3640	80	Pass	
501 PDC 1 Produceloped flow		0.0529	4252	3493	82	Pass	
801 PDC 1 Mitigated flow		0.0541	4017	3326	82	Pass	
		0.0553	3782	3155	83	Pass	
		0.0564	3548	3014	84	Pass	
		0.0576	3337	2864	85	Pass	
		0.0588	3138	2706	86	Pass	
		0.0599	2952	2473	83	Pass	
		0.0611	2785	2344	84	Pass	
All Datasets Flow Stage Precip Evap POC1		0.0623	2599	2212	85	Pass	
G L og Postoon Turso III 17P		0.0634	2447	2022	82	Pass	
C) (cibul		0.0646	2304	1859	80	Pass	
C Support		0.0658	2160	1692	78	Pass	
C Gimester		0.0669	2024	1555	76	Pass	
o chingoten		0.0681	1898	1465	77	Pass	-
		< III.				-	

WATER QUALITY TREATMENT SYSTEM (PART E)

The Project is located in the Basic Water Quality Treatment area. The treatment goal is 80% removal of total suspend solids for a typical rainfall year, assuming typical pollutant concentrations in urban runoff.

The project site will utilize the available dead storage space in both proposed detention vaults in order to meet the water quality requirements per the requirements set forth in the Manual for wetvaults.

Vault 1, mainly serving the frontage right-of-way, requires a volume of 1,289 cubic feet to meet water quality requirements. Detention vault 1 is proposing 5 feet of water quality depth across the entire vault footprint, resulting in 10,250 cubic feet of water quality storage. This meets the water quality requirement for Vault 1. See below for WWHM Water Quality volume analysis.

100				
	Analysis			83
Ь		Water Quality		
	Run Analysis	On-Line BMP	Off-Line BMP	
		24 hour Volume (ac-ft) 0.0236		
			Standard How Hate (cfs) (U.C.Vo	
		L	J J	
	Stroom Prob	action Duration		
L	Wetland Inpu	Volumes LID Beport King2012 Be	charge Becharge Predeveloped Recharge Mitigated	
	Analyze datasets	Compact WDM Delete Selected	Monthly FF	
	1 PUYALLUP DAILY 2 seatac 15 minute 501 POC 1 Predevel	∕ EVAP W/JENSEN-HAIS		
	701 Inflow to POC 1 801 POC 1 Mitigated 901 COPY Mitigate 1000 Vault 1 ALL 0 1001 Vault 1 STAG	Mitigated Flow d UTLETS Mitigated Witigated	E 	
	All Datasets Flow	Stage Precip Evap POC 1	Flood Frequency Method	
	Water Quality Off-Line BMP Analysis Quality Steaded Flow Rate (cfs) 0.0296 Steaded Flow Rate (cfs) 0.0296 Steaded Flow Rate (cfs) 0.0208 Steam Protection Ducation LID Ducation Flow Frequency Water Quality Wetland Input Volumes LID Ducation Flow Frequency Water Quality Wetland Input Volumes LID Ducation Flow Frequency Water Quality Wetland Input Volumes LID Ducation Flow Frequency Water Quality Monthly FF Imouthly FF PUTVALUEP DAILY EVAP W/ENSEN HAIS Imouthly FF Prove Frequency Method Imouthly FF Datagets Flow Stage Precip Evap POCI			
			C Gringorten	

Vault 2, serving the main project developed site, requires a volume of 7,240 cubic feet to meet water quality requirements. Detention vault 2 is proposing 5 feet of water quality depth across half of the vault footprint. Detention vault 2 will contain two bays, and only one will contain water quality storage. This results in 10,920 cubic feet of water quality storage. This meets the water quality requirement for Vault 2. See below for WWHM Water Quality volume analysis.

Ar	nalysis			x
		Water Quality		
	Run Analysis	On-Line BMP 24 hour Volume (ac-ft) 0.1662	Off-Line BMP	
Analysis Run Analysis Water Quality Qn-Line BMP Qiff-Line BMP 24 hour Volume (ac-R) 0.1662 Standard Flow Rate (cfs) 0.1104 Standard Flow Rate (cfs) 0.1104 Stream Protection Duration LID Duration Flow Frequency Water Quality Wetland Input Volumes LID Duration Flow Frequency Water Quality Wetland Input Volumes LID Report Kng2012 Recharge Recharge Mitigated Analyze datasets Compact WDM Delete Selected Monthly FF IPUYALLUP DAILY EVAP W/JENSEN-HAIS Imon Magated Towe Still COPY Midgated Imon Magated Not Index FUSCI Mingated Imon Magated <t< th=""><th>Standard Flow Rate (cfs) 0.1104</th><th></th></t<>		Standard Flow Rate (cfs) 0.1104		
	Stream Protec	tion Duration LID Duration	Flow Frequency Water Quality Hydrograph	
Anal	Wetland Input \ yze datasets	/olumes LID Report King2012 Re Compact WDM Delete Selected	charge Recharge Predeveloped Recharge Mitigated	
1 Pl 2 se 501 701 801 901 100	JYALLUP DAILY E eatac 15 minute POC 1 Predevelop Inflow to POC 1 M POC 1 Mitigated fl COPY Mitigated 0 Vault 1 ALL OU 1 Vault 1 STAGE	VAP W/JENSEN-HAIS / https://www.ingend.com/ ow/ LLET's Milgated Milgated		
AIIC	Patasets Flow	Stage Precip Evap POC1	→ Flood Frequency Method ← Log Pearson Type III 178 ← Weibull ← Curnane ← Gringotten	

FIGURE 16 DETENTION & WATER QUALITY FACILITY DETAILS

Detention facility details will be provided at final engineering.

©2019 D. R. STRONG Consulting Engineers Inc. Technical Information Report

SECTION V

CONVEYANCE SYSTEM ANALYSIS AND DESIGN

Per C.R. #4 of the KCSWDM, the conveyance system must be analyzed and designed for existing tributary and developed onsite runoff from the proposed project. Pipe systems shall be designed to convey the 100-year design storm. The Rational Method will be used to calculate the Q-Ratio for each pipe node.

Analysis will be performed at final engineering.

BACKWATER ANALYSIS

A backwater analysis will be provided at time of final engineering.

SECTION VI

SPECIAL REPORTS AND STUDIES

The following report and studies have been provided with this submittal.

- 1. Wetland Delineation Report Raedeke Associates, Inc. April 18, 2019
- 2. Traffic Impact Analysis TENW, September 9, 2019
- 3. Preliminary Geotechnical Engineering Report Associated Earth Sciences, Inc., June 25, 2019

SECTION VII

OTHER PERMITS, VARIANCES AND ADJUSTMENTS

None at this time.

SECTION VIII

ESC PLAN ANALYSIS AND DESIGN (PART A)

The Erosion and Sedimentation Control Design will meet the 13 minimum King County requirements:

- 1. **Clearing Limits:** Areas to remain undisturbed shall be delineated with a high visibility plastic fence prior to any site clearing or grading.
- 2. **Cover Measures:** Site disturbed areas shall be covered with mulch and seeded, as appropriate, for temporary or permanent measures.
- 3. Perimeter Protection: Silt fences will be provided downslope of all disturbed areas.
- 4. **Traffic Area Stabilization**: A stabilized construction entrance will be located at the point of ingress/egress (i.e. onsite access road).
- 5. **Sediment Retention:** The permanent detention facilities (detention vaults) will act as temporary sediment traps once bottom and walls are constructed.
- 6. **Surface Water Collection:** Surface water from disturbed areas will sheet flow to or be collected by interceptor swales and conveyed to the sediment trap.
- 7. Dewatering Control: Not applicable for this site.
- 8. **Dust Control:** Dust control shall be provided by spraying exposed soils with water until wet. This is required when exposed soils are dry to the point that wind transport is possible, which would impact roadways, drainage ways, surface waters, or neighboring residences.
- 9. Flow Control: Runoff collected in the sediment traps will discharge to the permanent outfall systems once the floors and walls have been constructed.
- 10. Control Pollutants: All pollutants, including waste materials and demolitions debris that occur on-site, shall be handled and disposed of in a manner that does not cause contamination of stormwater. Woody debris may be chopped and spread on site. Cover, containment, and protection from vandalism shall be provided for all chemicals, liquid products, and non-inert wastes present on the Site (see chapter 173-304 WAS for the definition of inert waste). On-site fueling tanks shall include secondary containment.
- 11. Protect Existing and Proposed Flow Control BMPs: All existing, temporary, and permanent flow control BMPs shall be protected from disturbance during construction. There are no existing BMPs to remain on site.
- 12. **Maintain BMPs:** All BMPs shall be inspected, maintained, and repaired as needed to assure continued performance of their intended function. The SWPPP shall be modified whenever there is a significant change in the design, construction, operation, or maintenance at the construction site that has, or could have, a significant effect on the discharge of pollutants to waters of the state
- 13. **Manage the Project:** The construction project is being phased to the maximum extent practicable to prevent soil erosion, and to the maximum extent possible, the transport of sediment from the site during construction. The SWPPP shall be retained on-site at all times. Make any changes or additions necessary per the city inspector or CSWPP supervisor to ensure accordance with all 13 King County requirements.

SWPPS PLAN DESIGN (PART B)

Construction activities that could contribute pollutants to surface and storm water include the following, with applicable BMP's listed for each item:

- 1. Storage and use of chemicals: Utilize source control, and soil erosion and sedimentation control practices, such as using only recommended amounts of chemical materials applied in the proper manner; neutralizing concrete wash water, and disposing of excess concrete material only in areas prepared for concrete placement, or return to batch plant; disposing of wash-up waters from water-based paints in sanitary sewer; disposing of wastes from oil-based paints, solvents, thinners, and mineral spirits only through a licensed waste management firm, or treatment, storage, and disposal (TSD) facility.
- 2. Material delivery and storage: Locate temporary storage areas away from vehicular traffic, near the construction entrance, and away from storm drains. Material Safety Data Sheets (MSDS) should be supplied for all materials stored, and chemicals kept in their original labeled containers. Maintenance, fueling, and repair of heavy equipment and vehicles shall be conducted using spill prevention and control measures. Contaminated surfaces shall be cleaned immediately following any spill incident. Provide cover, containment, and protection from vandalism for all chemicals, liquid products, petroleum products, and other potentially hazardous materials.
- **3. Sawcutting:** Slurry and cuttings shall be vacuumed during the activity to prevent migration offsite and must not remain on permanent concrete or asphalt paving overnight. Collected slurry and cuttings shall be disposed of in a manner that does not violate ground water or surface water quality standards.
- 4. Demolition: Protect stormwater drainage system from sediment-laden runoff and loose particles. To the extent possible, use dikes, berms, or other methods to protect overland discharge paths from runoff. Street gutter, sidewalks, driveways, and other paved surfaces in the immediate area of demolition must be swept daily to collect and properly dispose of loose debris and garbage. Spray the minimum amount of water to help control windblown fine particles such as concrete, dust, and paint chips. Avoid excessive spraying so that runoff from the site does not occur, yet dust control is achieved. Oils must never be used for dust control.

The complete CSWPPP will be submitted at the time of final engineering.

SECTION IX

BOND QUANTITIES, FACILITY SUMMARIES, AND DECLARATION OF COVENANT

- 1. Bond Quantity Worksheet to be submitted at final engineering.
- 2. The Stormwater Facility Summary Sheet submitted at final engineering.
- 3. Declaration of Covenant will be provided prior to final engineering approval.

SECTION X

OPERATIONS AND MAINTENANCE MANUAL

Excerpts from the 2016 KCSWDM will be provided at final engineering.

APPENDICES

APPENDIX A WWHM OUTPUT

WWHM2012 PROJECT REPORT

General Model Information

Project Name:	Floyd Leary - Vault
Site Name:	Floyd Leary
Site Address:	24615 & 24637 NE 18th St
City:	Redmond
Report Date:	9/4/2019
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2018/07/12
Version:	4.2.15

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Flat	acre 2.015
Pervious Total	2.015
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.015
Element Flows To: Surface	Interflow

Mitigated Land Use

BYPASS

Bypass:	Yes
GroundWater:	No
Pervious Land Use A B, Lawn, Flat	acre 0.006
Pervious Total	0.006
Impervious Land Use ROADS FLAT SIDEWALKS FLAT	acre 0.014 0.003
Impervious Total	0.017
Basin Total	0.023
Element Flows To: Surface	Interflow

VAULT 1 - LOWEF Bypass:	R VAULT No
GroundWater:	No
Pervious Land Use C, Lawn, Flat	acre 0.049
Pervious Total	0.049
Impervious Land Use ROADS FLAT DRIVEWAYS MOD SIDEWALKS FLAT	acre 0.173 0.017 0.039
Impervious Total	0.229
Basin Total	0.278
Element Flows To: Surface Vault 1	Interflow Vault 1

VAULT 2 - UPPER Bypass:	VAULT No
GroundWater:	No
Pervious Land Use C, Lawn, Flat	acre 0.486
Pervious Total	0.486
Impervious Land Use ROADS FLAT ROOF TOPS FLAT DRIVEWAYS FLAT SIDEWALKS FLAT	acre 0.281 0.73 0.16 0.056
Impervious Total	1.227
Basin Total	1.713
Element Flows To: Surface Vault 2	Interflow Vault 2

Routing Elements Predeveloped Routing

Mitigated Routing

Vault 1	
Width:	44.731 ft.
Length:	44.731 ft.
Depth:	3.5 ft.
Discharge Structure	
Riser Height:	2.5 ft.
Riser Diameter:	18 in.
Orifice 1 Diameter:	0.345 in. Elevation:0 ft.
Orifice 2 Diameter:	0.5 in. Elevation:1.5075 ft.
Orifice 3 Diameter:	0.72 in. Elevation:2.222 ft.
Element Flows To:	
Outlet 1	Outlet 2

Vault Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.045 (0.000	0.000	0.000 (
0.0389	0.045	0.001	0.000	0.000
0.0778	0.045	0.003	0.000	0.000
0.1167	0.045	0.005	0.001	0.000
0.1556	0.045	0.007	0.001	0.000
0.1944	0.045	0.008	0.001	0.000
0.2333	0.045	0.010	0.001	0.000
0.2722	0.045	0.012	0.001	0.000
0.3111	0.045	0.014	0.001	0.000
0.3500	0.045	0.016	0.001	0.000
0.3889	0.045	0.017	0.002	0.000
0.4278	0.045	0.019	0.002	0.000
0.4667	0.045	0.021	0.002	0.000
0.5056	0.045	0.023	0.002	0.000
0.5444	0.045	0.025	0.002	0.000
0.5833	0.045	0.026	0.002	0.000
0.6222	0.045	0.028	0.002	0.000
0.6611	0.045	0.030	0.002	0.000
0.7000	0.045	0.032	0.002	0.000
0.7389	0.045	0.033	0.002	0.000
0.7778	0.045	0.035	0.002	0.000
0.8167	0.045	0.037	0.002	0.000
0.8556	0.045	0.039	0.003	0.000
0.8944	0.045	0.041	0.003	0.000
0.9333	0.045	0.042	0.003	0.000
0.9722	0.045	0.044	0.003	0.000
1.0111	0.045	0.046	0.003	0.000
1.0500	0.045	0.048	0.003	0.000
1.0889	0.045	0.050	0.003	0.000
1.1278	0.045	0.051	0.003	0.000
1.1667	0.045	0.053	0.003	0.000
1.2056	0.045	0.055	0.003	0.000
1.2444	0.045	0.057	0.003	0.000
1.2833	0.045	0.058	0.003	0.000
1.3222	0.045	0.060	0.003	0.000
1.3611	0.045	0.062	0.003	0.000
1.4000	0.045	0.064	0.003	0.000
1.4389	0.045	0.066	0.003	0.000

0.045 0.045	0.067 0.069	0.003 0.004	0.000 0.000
0.045 0.045 0.045	0.071 0.073	0.005 0.006	0.000 0.000
0.045	0.075	0.006	0.000
0.045	0.078	0.007	0.000
0.045	0.082	0.007 0.008	0.000
0.045 0.045	0.085 0.087	0.008 0.008	0.000 0.000
0.045 0.045	0.089 0.091	0.009 0.009	0.000 0.000
0.045 0.045	0.092 0.094	0.009 0.009	$0.000 \\ 0.000$
0.045 0.045	0.096 0.098	0.009 0.010	$0.000 \\ 0.000$
0.045	0.100	0.010	0.000
0.045	0.103	0.013	0.000
0.045	0.107	0.015	0.000
0.045	0.110	0.017	0.000
0.045	0.112	0.019	0.000
0.045	0.117	0.294	0.000
0.045	0.121	0.890	0.000
0.045	0.125	1.659	0.000
0.045	0.126	2.085	0.000
0.045 0.045	0.130 0.132	2.970 3.411	0.000
0.045 0.045	0.134 0.135	3.837 4.241	$0.000 \\ 0.000$
0.045 0.045	0.137 0.139	4.615 4.950	$0.000 \\ 0.000$
0.045 0.045	0.141 0.142	5.245 5.495	0.000 0.000
0.045 0.045	0.144 0.146	5.704 5.877	$0.000 \\ 0.000$
0.045 0.045	0.148 0.150	6.023 6.234	$0.000 \\ 0.000$
0.045 0.045	0.151 0.153	6.390 6.542	$0.000 \\ 0.000$
0.045 0.045	0.155 0.157	6.690 6.836	0.000 0.000
0.045	0.159	6.978 7.118	0.000
0.045	0.162	7.255 7.389	0.000
	0.045 0.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Vault 2

Width:	66 ft.	
Length:	66 ft.	
Depth:	7 ft.	
Discharge Structure		
Riser Height:	6 ft.	
Riser Diameter:	18 in.	
Orifice 1 Diameter:	0.73 in.	Elevation:0 ft.
Orifice 2 Diameter:	1.1 in.	Elevation:3.72 ft.
Orifice 3 Diameter:	0.91 in.	Elevation:4.5 ft.
Element Flows To:		
Outlet 1	Outlet 2	

Vault Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.100	0.000	0.000	0.000
0.0778	0.100	0.007	0.004	0.000
0.1556	0.100	0.015	0.005	0.000
0.2333	0.100	0.023	0.007	0.000
0.3111	0.100	0.031	0.008	0.000
0.3889	0.100	0.038	0.009	0.000
0.4667	0.100	0.046	0.009	0.000
0.5444	0.100	0.054	0.010	0.000
0.6222	0.100	0.062	0.011	0.000
0.7000	0.100	0.070	0.012	0.000
0.7778	0.100	0.077	0.012	0.000
0.8556	0.100	0.085	0.013	0.000
0.9333	0.100	0.093	0.014	0.000
1.0111	0.100	0.101	0.014	0.000
1.0889	0.100	0.108	0.015	0.000
1.1667	0.100	0.116	0.015	0.000
1.2444	0.100	0.124	0.016	0.000
1.3222	0.100	0.132	0.016	0.000
1.4000	0.100	0.140	0.017	0.000
1.4778	0.100	0.147	0.017	0.000
1.5556	0.100	0.155	0.018	0.000
1.6333	0.100	0.163	0.018	0.000
1./111	0.100	0.171	0.018	0.000
1.7889	0.100	0.178	0.019	0.000
1.8667	0.100	0.186	0.019	0.000
1.9444	0.100	0.194	0.020	0.000
2.0222	0.100	0.202	0.020	0.000
2.1000	0.100	0.210	0.021	0.000
2.1778	0.100	0.217	0.021	0.000
2.2550	0.100	0.225	0.021	0.000
2.3333	0.100	0.233	0.022	0.000
2.4111	0.100	0.241	0.022	0.000
2.4889	0.100	0.248	0.022	0.000
2.5007	0.100	0.200	0.023	0.000
2.0444	0.100	0.204	0.023	0.000
2.1222	0.100	0.272	0.023	0.000
∠.0000 2 0770	0.100	0.200	0.024	0.000
2.0110	0.100	0.201	0.024	0.000
2.9000	0.100	0.290	0.024	0.000
3.0333	0.100	0.303	0.025	0.000

3.1111	0.100	0.311	0.025	0.000
3.1889	0.100	0.318	0.025	0.000
3.2007	0.100	0.320	0.020	0.000
3.4222	0.100	0.342	0.026	0.000
3.5000	0.100	0.350	0.027	0.000
3.5778	0.100	0.357	0.027	0.000
3.6556	0.100	0.365	0.027	0.000
3.7333	0.100	0.373	0.031	0.000
3.8111	0.100	0.381	0.038	0.000
3.8889	0.100	0.388	0.042	0.000
3.9667	0.100	0.396	0.045	0.000
4.0444	0.100	0.404	0.047	0.000
4.1222	0.100	0.412	0.050	0.000
4.2000	0.100	0.420	0.052	0.000
4.2770	0.100	0.427	0.054	0.000
4 4333	0.100	0.400	0.058	0.000
4.5111	0.100	0.451	0.062	0.000
4.5889	0.100	0.458	0.068	0.000
4.6667	0.100	0.466	0.072	0.000
4.7444	0.100	0.474	0.075	0.000
4.8222	0.100	0.482	0.079	0.000
4.9000	0.100	0.490	0.081	0.000
4.9778	0.100	0.497	0.084	0.000
5.0550	0.100	0.505	0.087	0.000
5.1000 5.2111	0.100	0.513	0.069	0.000
5 2889	0.100	0.521	0.092	0.000
5 3667	0.100	0.536	0.094	0.000
5.4444	0.100	0.544	0.098	0.000
5.5222	0.100	0.552	0.100	0.000
5.6000	0.100	0.560	0.102	0.000
5.6778	0.100	0.567	0.104	0.000
5.7556	0.100	0.575	0.106	0.000
5.8333	0.100	0.583	0.108	0.000
5.9111	0.100	0.591	0.110	0.000
5.9889	0.100	0.598	0.112	0.000
6 1 1 1 1	0.100	0.600	0.307	0.000
6 2222	0.100	0.674	0.904	0.000
6 3000	0.100	0.630	2 620	0.000
6.3778	0.100	0.637	3.507	0.000
6.4556	0.100	0.645	4.338	0.000
6.5333	0.100	0.653	5.048	0.000
6.6111	0.100	0.661	5.594	0.000
6.6889	0.100	0.668	5.976	0.000
6.7667	0.100	0.676	6.333	0.000
b.8444	0.100	0.684	6.642	0.000
0.9222	0.100	0.092	0.937 7.210	0.000
7.0000	0.100	0.700	7.∠19 7⊿01	0.000
7.1556	0.000	0.000	7,754	0.000
	0.000	0.000		5.000

Analysis Results

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	2.015
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.541 Total Impervious Area: 1.473

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0592435 year0.09304310 year0.11219825 year0.13249150 year0.145049100 year0.15573

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.038905
5 year	0.061221
10 year	0.07994
25 year	0.108759
50 year	0.134441
100 year	0.164145

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Predeveloped	wiiligate
1949	0.058	0.027
1950	0.073	0.034
1951	0.130	0.109
1952	0.041	0.025
1953	0.033	0.032
1954	0.051	0.029
1955	0.081	0.029
1956	0.065	0.061
1957	0.052	0.029
1958	0.059	0.032

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	0.051 0.088 0.050 0.031 0.043 0.056 0.040 0.039 0.081 0.050 0.049 0.041 0.043 0.097 0.044 0.043 0.097 0.044 0.048 0.065 0.047 0.006	0.028 0.087 0.043 0.024 0.031 0.035 0.056 0.029 0.033 0.030 0.029 0.031 0.032 0.031 0.031 0.031 0.030 0.029 0.029 0.031
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994	0.000 0.041 0.025 0.092 0.037 0.071 0.063 0.023 0.023 0.023 0.091 0.036 0.023 0.023 0.190 0.114 0.044 0.046 0.015 0.066	$\begin{array}{c} 0.027\\ 0.033\\ 0.023\\ 0.091\\ 0.030\\ 0.066\\ 0.031\\ 0.026\\ 0.027\\ 0.036\\ 0.077\\ 0.029\\ 0.027\\ 0.029\\ 0.027\\ 0.089\\ 0.081\\ 0.033\\ 0.025\\ 0.023\\ 0.023\\ 0.040\end{array}$
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	0.139 0.116 0.026 0.109 0.046 0.008 0.050 0.064 0.083 0.059 0.070 0.141 0.182 0.089	0.102 0.103 0.028 0.085 0.032 0.025 0.049 0.029 0.106 0.030 0.060 0.132 0.099 0.055

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.18990.1324

1	0.1899	0.1324		
2	0.1818	0.1086		
3	0.1410	0.1056		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 9 10 11 23 14 15 16 7 8 9 10 11 23 24 26 27 28 9 31 23 34 35 6 7 8 9 21 22 24 25 27 28 9 31 23 34 35 36 7 8 9 31 23 34 35 36 37 8 9 31 23 34 35 36 37 8 9 31 23 34 35 36 37 8 9 31 23 34 35 36 37 8 9 31 23 34 35 36 37 8 9 31 23 34 35 36 37 8 9 31 22 34 35 36 37 8 9 31 22 34 35 36 37 8 9 31 22 33 45 36 37 8 9 31 22 33 34 35 36 37 8 9 31 23 34 35 36 37 8 9 31 23 34 35 36 37 8 9 31 23 34 35 36 37 8 9 31 32 33 34 35 36 37 8 9 31 32 33 34 35 36 37 8 9 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 38 9 31 32 33 34 35 36 37 38 9 31 32 33 34 35 36 37 33 33 34 35 36 37 38 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	0.1388 0.1305 0.1160 0.1143 0.1027 0.0972 0.0921 0.0908 0.0893 0.0829 0.0829 0.0829 0.0842 0.0706 0.0708 0.0701 0.0659 0.0649 0.0649 0.0649 0.0640 0.0640 0.0634 0.0595 0.0589 0.0589 0.0589 0.0582 0.0589 0.0582 0.0582 0.0560 0.0523 0.0511 0.0502 0.0502 0.0502 0.0502 0.0498 0.0492 0.0459	0.1030 0.1023 0.0991 0.0912 0.0894 0.0870 0.0870 0.0870 0.0847 0.0770 0.0658 0.0612 0.0599 0.0555 0.0549 0.0549 0.0514 0.0491 0.0432 0.0349 0.0342 0.0342 0.0342 0.0342 0.0342 0.0342 0.0342 0.0342 0.0315 0.0315 0.0315 0.0305 0.0305 0.0305 0.0303 0.0299 0.0299
--	--	--	--	--
	460.04110.0289470.04050.0289480.04010.0287490.03920.0285500.03850.0278510.03680.0274520.03580.0273530.03320.0271540.03100.0269550.02620.0263	37 38 39 40 41 42 43 44 45	$\begin{array}{c} 0.0479\\ 0.0469\\ 0.0459\\ 0.0458\\ 0.0441\\ 0.0441\\ 0.0434\\ 0.0425\\ 0.0412\end{array}$	$\begin{array}{c} 0.0303\\ 0.0299\\ 0.0299\\ 0.0296\\ 0.0294\\ 0.0293\\ 0.0293\\ 0.0293\\ 0.0292\\ 0.0290\end{array}$

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0296	17547	17156	97	Pass
0.0308	16168	12151	75	Pass
0.0320	14966	9231	61	Pass
0.0331	13856	7905	57	Pass
0.0343	12814	7099	55	Pass
0.0355	11807	6686	56	Pass
0.0366	10900	6303	57	Pass
0.0378	10119	5987	59	Pass
0.0389	9385	5747	61	Pass
0.0401	8731	5523	63	Pass
0.0413	8143	5330	65	Pass
0.0424	7593	5146	67	Pass
0.0436	7060	4990	70	Pass
0.0448	6590	4812	73	Pass
0.0459	6147	4605	74	Pass
0.0471	5775	4413	76	Pass
0.0483	5431	4231	77	Pass
0.0494	5097	4036	79	Pass
0.0506	4808	3850	80	Pass
0.0518	4524	3640	80	Pass
0.0529	4252	3493	82	Pass
0.0541	4017	3326	82	Pass
0.0553	3782	3155	83	Pass
0.0564	3548	3014	84	Pass
0.0576	3337	2864	85	Pass
0.0588	3138	2706	86	Pass
0.0599	2952	2473	83	Pass
0.0611	2785	2344	84	Pass
0.0623	2599	2212	85	Pass
0.0634	2447	2022	82	Pass
0.0646	2304	1859	80	Pass
0.0658	2160	1692	78	Pass
0.0669	2024	1555	76	Pass
0.0681	1898	1465	77	Pass
0.0693	1790	1402	78	Pass
0.0704	1688	1332	78	Pass
0.0716	1585	1271	80	Pass
0.0728	1483	1225	82	Pass
0.0739	1380	1193	86	Pass
0.0751	1292	1155	89	Pass
0.0763	1219	1113	91	Pass
0.0774	1154	1072	92	Pass
0.0786	1098	1026	93	Pass
0.0798	1048	966	92	Pass
0.0809	997	909	91	Pass
0.0821	930	870	93	Pass
0.0833	883	824	93	Pass
0.0044	031 790	(1) 700	92 02	rass Door
0.0000	109 712	120	92 00	rass Doce
0.0000	743	601	00 87	r ass Dass
0.0079	668	540	04 80	r ass Dass
0.0091	630	478	75	i ass Pass
0.0000	000	- 1 / U	10	1 433

0.0914	595	444	74	Pass
0.0926	565	414	73	Pass
0.0937	539	374	69	Pass
0.0949	496	348	70	Pass
0.0961	473	320	67	Pass
0.0972	434	293	67	Pass
0.0984	399	267	66	Pass
0.0996	366	238	65	Pass
0.1007	348	210	60	Pass
0.1019	323	184	56	Pass
0.1031	297	159	53	Pass
0.1042	273	149	54	Pass
0.1054	256	137	53	Pass
0.1066	235	128	54	Pass
0.1077	217	121	55	Pass
0.1089	195	111	56	Pass
0.1101	181	110	60	Pass
0.1112	158	106	67	Pass
0.1124	145	104	/1	Pass
0.1136	130	99	76	Pass
0.1147	119	90	75 77	Pass
0.1159	109	84	//	Pass
0.1171	97	80	82 70	Pass
0.1102	91	65	70	Pass
0.1194	02 76	00 61	80	Pass
0.1200	69	58	84	Pass Dass
0.1217	62	54	87	Pass
0.1223	55	50	90	Pass
0.1241	48	45	93	Pass
0.1262	40	40	97	Pass
0.1276	38	37	97	Pass
0.1287	33	34	103	Pass
0.1299	27	26	96	Pass
0.1311	22	17	77	Pass
0.1322	21	2	9	Pass
0.1334	20	0	0	Pass
0.1346	19	0	0	Pass
0.1357	17	0	0	Pass
0.1369	14	0	0	Pass
0.1381	12	0	0	Pass
0.1392	9	0	0	Pass
0.1404	4	0	0	Pass
0.1416	3	0	0	Pass
0.1427	3	0	0	Pass
0.1439	3	0	0	Pass
0.1450	3	0	0	Pass

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.O cfs.0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Vault 1 POC		36.32				0.00			
Vault 2 POC		210.54				0.00			
Total Volume Infiltrated		246.86	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result – Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	帰	Basin 2.02ac	1			

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation START19481001ENDRUN INTERP OUTPUT LEVEL30 2009 09 30 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** *** <-ID-> WDM 26 Floyd Leary - Vault.wdm MESSU 25 PreFloyd Leary - Vault.MES PreFloyd Leary - Vault.L61 PreFloyd Leary - Vault.L62 27 28 POCFloyd Leary - Vault1.dat 30 END FILES OPN SEOUENCE INGRP 10 INDELT 00:15 PERLND 501 COPY 1 DISPLY END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1

 # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND

 1
 Basin 1

 MAX
 1
 2
 30
 9

 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1)1 1 1 501 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out *** 27 1 1 0 10 C, Forest, Flat 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SEDPSTPWGPQAL MSTLPESTNITRPHOSTRAC***100010000000 END ACTIVITY PRINT-INFO

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC

 10
 0
 0
 0
 0
 0
 0
 1

 9
 9
 1
 9
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
- # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
10 0 0 0 0 0 0 0 0 0 0 0 0 END PWAT-PARM1 PWAT-PARM2 <PLS > PWATER input info: Part 2 ***
- # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC
.0 0 4.5 0.08 400 0.05 0.5 0.996 <PLS > 10 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILD100022 BASETP AGWETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 ***
 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 10
 0.2
 0.5
 0.35
 6
 0.5
 0.7
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPSSURSUZSIFWSLZSAGWSGWVS00002.510 # -10 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** **444** in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLĪ *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 ***
- # *** LSUR SLSUR NSUR RETSC END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PĒTMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation
- # *** RETS SURS END IWAT-STATE1

SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 2.015 COPY 501 12 2.015 COPY 501 13 PERLND 10 PERLND 10 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # _ <Name> # #<-factor->strg <Name> # # _ <Name> # # *** COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer *** # - #<----- User T-series Engl Metr LKFG * * * in out * * * END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 *** <----><----><----><----><----> *** END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * <----> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # ***
WDM 2 PREC ENGL 1 PERLND 1 999 EXTNL PREC
WDM 2 PREC ENGL 1 IMPLND 1 999 EXTNL PREC

END IMPLND

WDM WDM	1 1	EVAP EVAP	ENGL ENGL	C C	.76		PERLND IMPLND	1 1	999 999	EXTNL EXTNL	· PE'	TINP TINP	
END EXT	SOU	RCES											
EXT TARG <-Volume <name> COPY 5 END EXT</name>	ETS -> # 01 TAR	<-Grp> OUTPUT GETS	<-Member <name> # MEAN 1</name>	->< #< 1	Mu -fac	ult>Tran stor->strg 48.4	<-Volur <name> WDM</name>	ne-> # 501	<mer <nar FLOI</nar </mer 	nber> ne> W	Tsys tem ENGL	Tgap strg	Amd *** strg*** REPL
MASS-LIN <volume> <name> MASS-L PERLND</name></volume>	K INK	<-Grp>	<-Member <name> # 12 SURO</name>	->< #<	Mu -fac 0.08	llt> tor->	<target <name> COPY</name></target 	2>		<-Grp	9> <-1 <na 1 ME</na 	Membei ame> ‡ AN	>*** + #***
MASS-L PERLND END MA	INK SS-	PWATER LINK	13 IFWO 13		0.08	3333	СОРҮ			INPUI	E ME	AN	

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation STRAT19481001END20090930RUN INTERP OUTPUT LEVEL30 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** *** <-ID-> 26 WDM Floyd Leary - Vault.wdm MESSU 25 MitFloyd Leary - Vault.MES MitFloyd Leary - Vault.L61 MitFloyd Leary - Vault.L62 POCFloyd Leary - Vault1.dat 27 28 30 END FILES OPN SEOUENCE EQUENCE NGRP PERLND 7 IMPLND 1 IMPLND 8 PERLND 16 IMPLND 6 IMPLND 4 INGRP INDELT 00:15 5 1 IMPLND 1COPY1COPY501COPY601DISPLY RCHRES 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Vault 1 MAX 1 2 30 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 ī 601 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM # # K *** END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** # - # User t-series Engl Metr *** in out *** 7 A/B, Lawn, Flat 16 C, Lawn, Flat 0 0 0 END GEN-INFO *** Section PWATER***

ACTIVITY					_								
<pls> # - # 7 16 END ACTI</pls>	***** ATMP 0 0 VITY	***** SNOW 0 0	*** A PWAT 1 1	ctive. SED 0 0	Sect PST 0 0	ions PWG 0 0	**** PQAL 0 0	***** MSTL 0 0	PEST 0 0	****** NITR 0 0	***** PHOS 0 0	***** TRAC 0 0	* * *
PRINT-IN <pls> # - # 7 16 END PRIN</pls>	FO ATMP 0 0 T-INF(****** SNOW 0 0	-***** PWAT 4 4	** Pr SED 0 0	int-f PST 0 0	lags PWG 0 0	**** PQAL 0 0	****** MSTL 0 0	PEST 0 0	***** NITR 0 0	***** PHOS 0 0	***** TRAC 0 0	PIVL PYR ********* 1 9 1 9
PWAT-PAR <pls> # - # 7 16 END PWAT</pls>	M1 PWA CSNO 0 - PARM	TER va RTOP 0 0	uriabl UZFG 0 0	e mon VCS 0 0	thly VUZ 0 0	param VNN 0 0	neter VIFW 0 0	value VIRC 0 0	e flag VLE 0 0	gs * INFC 0 0	** HWT 0 0	***	
PWAT-PAR <pls> # - # 7 16 END PWAT</pls>	M2 ***F(- PARM2	PWATE DREST 0 0 2	IR inp	ut in LZSN 5 4.5	fo: E IN	Part 2 NFILT 0.8 0.03	2	* LSUR 400 400	· * *	SLSUR 0.05 0.05		KVARY 0.3 0.5	AGWRC 0.996 0.996
PWAT-PAR <pls> # - # 7 16 END PWAT PWAT-PAR</pls>	M3 ***PI - PARM3 M4	PWATE ETMAX 0 0 3	R inp PE	ut in TMIN 0 0	fo: I IN	Part 3 NFEXP 2 2	, Il	* NFILD 2 2	·** Di	EEPFR 0 0	B.	ASETP 0 0	AGWETP 0 0
<pre></pre>	- PARM4	PWATEF CEPSC 0.1 0.1 4	१ inpu	t inf UZSN 0.5 0.25	o: Pa	art 4 NSUR 0.25 0.25		INTFW 0 6		IRC 0.7 0.5		LZETP 0.25 0.25	***
PWAT-STA <pls> # - # 7 16 END PWAT</pls>	TE1 *** ra ***	Initia an fro CEPS 0 0 21	al con om 199	ditio 0 to SURS 0 0	ns at end c	star of 199 UZS 0 0	rt of 2 (pa	simul at 1-1 IFWS 0 0	ation 1-95	n) RUN LZS 3 2.5	21 *	** AGWS 1 1	GWVS 0 0
END PERLND													
IMPLND GEN-INFO <pls> # - #</pls>	<	Nan	1e	>	Uni User	t-sys t-se	stems eries	Pri Engl	nter Metr	* * * * * *			
1 8 6 4 5 END GEN- *** Sect	ROADS SIDEW DRIVH ROOF DRIVH INFO ion IV	S/FLAT NALKS/ EWAYS/ TOPS/ EWAYS/ NATER*	ÝFLAT ÝMOD ÝFLAT ÝFLAT		1 1 1 1	1 1 1 1 1	1 1 1 1	27 27 27 27 27 27	0 0 0 0				
ACTIVITY <pls> # - # 1 8 6</pls>	**** ATMP 0 0 0	***** SNOW 0 0 0	*** A IWAT 1 1	ctive SLD 0 0 0	Sect IWG 0 0	ions IQAL 0 0 0	****	* * * * * *	****	* * * * *	* * * * *	* * * * *	

4 5 END ACTIVITY	0 0	1 1	0 0	0 0	0 0					
PRINT-INFO <ils> **** # - # ATM 1 8 6 4 5 END PRINT-IN</ils>	**** Pr P SNOW I 0 0 0 0 0 0 0 0 0 0 FO	int-f WAT 4 4 4 4 4	Elags SLD 0 0 0 0 0	**** IWG 0 0 0 0	IQAL 0 0 0 0 0 0	PIVL 1 1 1 1 1 1	PYR 9 9 9 9 9 9	* *		
IWAT-PARM1 <pls> IW # - # CSN 1 8 6 4 5 END IWAT-PAR</pls>	ATER var O RTOP O 0 O 0 O 0 O 0 M1	iable VRS 0 0 0 0 0	e mon VNN 1 0 0 0 0 0	thly RTLI 0 0 0 0 0	parame **	eter v **	value	flaq	gs ***	7
IWAT-PARM2 <pls> # - # *** 1 8 6 4 5 END IWAT-PAR</pls>	IWATER LSUR 400 400 400 400 400 400 M2	inpu SI (((((ut in: LSUR).01).01).05).01).01).01	fo: E	Part 2 NSUR 0.1 0.1 0.1 0.1 0.1	RI (** 0.1 0.1 0.08 0.1 0.1	* *		
IWAT-PARM3 <pls> # - # *** 1 8 6 4 5 END IWAT-PAR</pls>	IWATER PETMAX 0 0 0 0 0 M3	inpı PEJ	nt in: CMIN 0 0 0 0 0 0	fo: E	Part 3		* :	* *		
IWAT-STATE1 <pls> *** # - # *** 1 8 6 4 5 END IWAT-STA</pls>	Initial RETS 0 0 0 0 0 TE1	cond	dition SURS 0 0 0 0 0 0	ns at	: start	c of s	simula	ation	n	
END IMPLND										
SCHEMATIC <-Source-> <name> # VAULT 1 - LOWE PERLND 16 PERLND 16 IMPLND 1 IMPLND 6 IMPLND 8</name>	R VAULT*	* *	<1 <-f	Area- actor 0.0 0.0 0.1 0.0	2-> 2-> 049 049 049 017 039	<-Ta <nar RCHI RCHI RCHI RCHI RCHI</nar 	arget ne> RES RES RES RES RES RES	-> # 1 1 1 1	MBLK Tbl# 2 3 5 5 5 5	* * *
VAULI 2 - UPPE PERLND 16 PERLND 16 IMPLND 1 IMPLND 4	K VAULT*	<u>к</u> Т		0.4 0.4 0.2 0.	86 86 81 73	RCHI RCHI RCHI RCHI	RES RES RES RES	2 2 2 2	2 3 5 5	

IMPLND 5 IMPLND 8					0. 0.0	16 56	RC RC	HRES HRES	2 2		5 5					
PERLND7PERLND7PERLND7IMPLND1IMPLND1IMPLND8IMPLND8					$\begin{array}{c} 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \end{array}$	06 06 06 14 14 03 03)PY)PY)PY)PY)PY)PY)PY)PY	501 501 601 501 601 501 601		12 12 13 15 15 15 15					
*****Rout PERLND 16 IMPLND 1 IMPLND 6 IMPLND 8 PERLND 16 PERLND 16 IMPLND 1 IMPLND 4 IMPLND 4 IMPLND 5 IMPLND 8 PERLND 16 RCHRES 1 RCHRES 2 END SCHEMA	ing****	***			0.0 0.1 0.0 0.0 0.4 0.2 0. 0.0 0.0 0.4	49 73 17 39 49 86 81 73 16 56 81 1		9PY 9PY 9PY 9PY 9PY 9PY 9PY 9PY 9PY 9PY	1 1 1 1 1 1 1 501 501		12 15 15 12 15 15 15 15 13 16 16					
NETWORK <-Volume-> <name> # COPY 501</name>	<-Grp> OUTPUI	> <-Me <nam MEAN</nam 	mber-> e> # # 1 1	<mu <-fac 48</mu 	ult- ctor 8.4	->Tra ->stı	an <- cg <n DI</n 	Targ Iame> SPLY	et v # 1	ols> #	<-0	frp> PUT	<-Me <nam TIMS</nam 	mbeı e> ‡ ER 1	2-> ‡ # 1	***
<-Volume-> <name> # END NETWOR</name>	<-Grp> K	<-Me <nam< td=""><td>mber-> e> # #</td><td><mi <-fac</mi </td><td>ult- ctor</td><td>->Tra ->stı</td><td>an <- 19 <n< td=""><td>Targe Iame></td><td>et v #</td><td>ols> #</td><td><-0</td><td>3rp></td><td><-Me <nam< td=""><td>mbeı e> ‡</td><td>∑-> ‡ #</td><td>* * *</td></nam<></td></n<></td></nam<>	mber-> e> # #	<mi <-fac</mi 	ult- ctor	->Tra ->stı	an <- 19 <n< td=""><td>Targe Iame></td><td>et v #</td><td>ols> #</td><td><-0</td><td>3rp></td><td><-Me <nam< td=""><td>mbeı e> ‡</td><td>∑-> ‡ #</td><td>* * *</td></nam<></td></n<>	Targe Iame>	et v #	ols> #	<-0	3rp>	<-Me <nam< td=""><td>mbeı e> ‡</td><td>∑-> ‡ #</td><td>* * *</td></nam<>	mbeı e> ‡	∑-> ‡ #	* * *
RCHRES GEN-INFO RCHRES # - # 1 2 END GEN- *** Sect	< Vault Vault INFO ion RCF	Name 1 2 IRES**	*	Nex: -><-	its > 1 1	Un: User 1 1	it Sy T-se in 1	stem ries ou	s En t 1	Prin gl M 28 28	ter etr 0 0	LKF(1 1	; L L			* * * * * * * * *
ACTIVITY <pls> # - # 1 2 END ACTI</pls>	****** HYFG <i>I</i> 1 VITY	ADFG C 0 0	** Act NFG HT 0 0	ive S FG SI 0 0	Sect DFG 0 0	ions GQFG 0 0	**** OXFC C C	**** { NUF()	**** G PK 0 0	**** FG P 0 0	**** HFG 0 0	* * * *	* * * *	*		
PRINT-IN <pls> # - # 1 2 END PRIN</pls>	FO ****** HYDR 4 4 T-INFO	ADCA C 0 0	****** ONS HE 0 0	Prin AT S O O	nt-f SED 0 0	lags GQL 0 0	**** OXRX (**** [NUT])	**** R PL: 0 0	**** NK P 0 0	*** HCB 0 0	PIVI PIVI 1	PY PY L	R R * 9 9	* * * *	·***
HYDR-PAR RCHRES # - #	M1 Flags VC A1 FG FC	s for L A2 A G FG F	each H 3 ODF G pos	YDR S VFG : sible	Sect for e e	ion each xit	* * *	ODGT: poss	FG f	or e ex	ach it		FUNC poss	T i ible	for e e	*** each exit
1 2	* * 0 1 0 1	* * _ 0 _ 0	* * 0 4 0 4	* 0 0	* 0 0	* * 0 0 0 0		* 0 0	* 0 0	* * 0 0 0 0	* 0 0		2 2	*** 2 2	2 2	2 2 2 2

	HYI	DR - PAI	RM2																					
	‡	ŧ - ŧ	#	FΤΖ	ABNO		LE	IN		DELT	TH		ST	COR			KS	5		DB5	0		***	*
	1 2 ENI	- 2 0 HYDI	R - PZ	ARM2	1 2		0.0 0.0)1)1		0. 0.	000			0.0			0.5			0. 0.	0			
	F F	CHRES t - t	11 5 1 ***	Init: ** * ac-	ial c VOL -ft	ondi f	tion Init or e	is f ial each	or v po	each alue ssib	n H e ole	YDR of ex	se COL it	ctio IND	on	Ir for	niti Sea	al ich	va pos	alue ssib	le	of OU exit	**: JTDG:	* Г
EN	2 2 ENI ID F	2 2 2 2 3 3 4 4 4 4 4 5 4 7 4 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	>< R-II S	NIT	00		4 . 4 . 4 .	0 0	0.0	0. 0.	0	0. 0.	><- 0 0	0.0	~ ~ ^	^ < -	0.0	,	><).0).0	0.0.	><- 0 0	0.0	0.(> 0 0
SE EN FT	PEC- ID S ABI FTZ 92	-ACTI(SPEC-Z LES ABLE 2 Depth (ft)	ONS ACT: 4 n	IONS 1 (aci	Area	V (acr	olum	ie	Out	flow fs)	1	Vel	oci [.]	ty	Tra	avel (Mir	. Ti	.me	* * *					
		2 Depth (ft) 00000(038889 077778 16665 25555(29444 23333 272222 31111 350000 88888 27778 466665 55555 54444 23333 22222 56111 70000(73888 277778 316655 33333 22222 55555 31111 55555 33333 277778 316655 33333 27778 316655 33333 277778 3166556 334444 33333 277778 3166556 334444 33333 277778 3165555 55555 31111 32222 311111 3255556 33333 277778 3166556 33333 277778 3166556 33333 277778 3166556 33333 277778 3166556 33333 277778 3166556 33333 277778 31665555 33333 277778 3166556 33333 322222 311111 33555556 33333 322222 311111 3555556 33333 322222 3111111 3555556 33333 322222 3111111 3555556 33333 322222 3111111 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 355556 33333 322222 3555556 33333 322222 3555556 33333 322222 3555556 34444 33333 322222 3555556 33333 3222222 3555556 34444 33333 322222 3555556 34444 33333 322222 3555556 34444 33333 322222 3555556 355566 355556 355556 355556 355556 355566 355556 355556 3555566 3555566 355556 355556 355556 355566 3555566 3555566 3555566 3555566 3555566 3555566 3555566 3555566 3555566 3555566 3555566 3555666 3555566 3555566 35556667566 3555566676667666766676676666766	4 1 0	a a <td< td=""><td>Ares) 333333333333333333333333333333333333</td><td>V(acrossore) 0.00000000000000000000000000000000000</td><td>oe000000111111222222333333412444455555556666666711</td><td></td><td></td><td>flow fs) 0300900172 00069001142680101000000000000000000000000000000000</td><td></td><td>Vel (ft</td><td>oci/se</td><td>ty c)</td><td>Tra</td><td>avel (Mir</td><td>. Ti</td><td>me s);</td><td>* * *</td><td></td><td></td><td></td><td></td><td></td></td<>	Ares) 333333333333333333333333333333333333	V(acrossore) 0.00000000000000000000000000000000000	oe000000111111222222333333412444455555556666666711			flow fs) 0300900172 00069001142680101000000000000000000000000000000000		Vel (ft	oci/se	ty c)	Tra	avel (Mir	. Ti	me s);	* * *					
	1.6 1.6 1.7	533333 572222 71111	3 (2 (1 (0.049 0.049 0.049	5933 5933 5933	0.0 0.0 0.0	7502 7681 7859	25 1 97	0.0 0.0 0.0	0653 0693 0728	5 0 86													

1.7500 1.7888 1.8277 1.8666 1.9055 1.9444 1.9833 2.0222 2.0611 2.1000 2.1388 2.2554 2.2554 2.2554 2.2554 2.2554 2.2554 2.3333 2.3722 2.4111 2.4500 2.4888 2.5277 2.5666 2.6055 2.6444 2.6833 2.7222 2.6655 2.6444 2.6833 2.7222 2.6655 2.6444 2.6833 2.7222 2.7611 2.8000 2.8388 2.8777 2.9954 3.0322 3.1111 3.1500 3.1888 3.2277 3.2666 3.3055 3.3444 3.3833 3.4222 3.4611 3.5008 END FI FTABLE	00 0.045933 89 0.045933 78 0.045933 67 0.045933 67 0.045933 56 0.045933 33 0.045933 32 0.045933 33 0.045933 10 0.045933 11 0.045933 00 0.045933 67 0.045933 67 0.045933 67 0.045933 30 0.045933 31 0.045933 32 0.045933 33 0.045933 34 0.045933 30 0.045933 31 0.045933 32 0.045933 33 0.045933 34 0.045933 356 0.045933 367 0.045933 378 0.045933 389 0.045933 378 0.045933 367 0.045933 378 0.045933 378 0.045933	0.080384 0.082170 0.083956 0.085742 0.087529 0.087529 0.089315 0.091101 0.092888 0.094674 0.096460 0.098247 0.100033 0.101819 0.103606 0.105392 0.107178 0.108964 0.10751 0.112537 0.114323 0.10751 0.12257 0.12469 0.123255 0.125041 0.126827 0.128614 0.132186 0.133973 0.135759 0.137545 0.139332 0.141118 0.142904 0.146477 0.148263 0.153622 0.155408 0.153622 0.155408 0.157195 0.158981 0.160767 0.162553	0.007614 0.007919 0.008206 0.008479 0.008739 0.008929 0.009460 0.009460 0.009460 0.009685 0.009903 0.010115 0.010321 0.010522 0.013296 0.014697 0.015793 0.016736 0.017582 0.018359 0.018359 0.019084 0.093457 0.294111 0.565482 0.890621 1.258510 1.258510 1.258510 1.659701 2.085007 2.525074 2.970325 3.411096 3.837914 4.241857 4.614991 4.950874 5.245087 5.704771 5.877192 6.023299 6.234265 6.390092 6.542204 6.690855 6.836272 6.978656 7.118190 7.255039		
Dep (f 0.0000 0.0777 0.1555 0.2333 0.3111 0.3888 0.4666 0.5444 0.6222 0.7000 0.7777 0.8555 0.9333 1.0111 1.0888 1.1666 1.2444 1.3222	Area(acres)000.100000780.100000780.100000330.100000330.100000670.100000670.100000220.100000780.100000780.100000330.100000330.100000670.100000670.100000670.100000670.100000620.100000630.100000640.100000220.100000	Volume (acre-ft) 0.000000 0.007778 0.015556 0.023333 0.031111 0.038889 0.046667 0.054444 0.062222 0.070000 0.077778 0.085556 0.093333 0.101111 0.108889 0.116667 0.124444 0.132222	Outflow1 (cfs) 0.000000 0.004033 0.005704 0.006985 0.008066 0.009018 0.009879 0.010670 0.011407 0.012099 0.012754 0.013376 0.013376 0.013971 0.014541 0.015090 0.015620 0.016132 0.016629	Velocity (ft/sec)	Travel Time*** (Minutes)***

1.400000 1.477778 1.555556 1.633333 1.711111 1.788889 1.866667 1.944444 2.022222 2.100000 2.177778 2.255556 2.333333 2.411111 2.488889 2.5666674 2.644442 2.722220 2.877778 2.955556 3.033333 111111 188889 2.266667 3.344444 3.422222 3.00000 5.77778 3.655556 3.733333 3.111111 3.888889 3.966667 4.044444 4.122222 4.200000 4.277778 4.355556 3.733333 3.811111 3.888889 3.966667 4.044444 4.522222 4.0044444 4.522222 4.0044444 4.522222 5.055556 5.133333 5.211111 5.288889 5.66667 5.444444 4.522222 5.600000 5.77778 5.755556 5.33333 5.911111 5.988889 6.066674 6.144444 6.222222 5.600000 5.77778 5.755556 5.833333 5.911111 5.988889 6.0666776 5.444444 6.222222 5.600000 5.775756 5.33333 5.911111 5.988889 6.0666776 5.444444 4.222222 5.600000 5.775778 5.755556 5.833333 5.911111 5.988889 6.0666776 5.755556 5.833333 5.911111 5.988889 6.0666776 5.755556 5.833333 5.911111 5.988889 6.0666776 5.755556 5.833333 5.911111 5.988889 6.0666776 5.755556 5.833333 5.911111 5.988889 6.0666776 5.755556 5.833333 5.911111 5.988889 5.7555556 5.833333 5.911111 5.988889 5.755556 5.833333 5.911111 5.988889 5.755556 5.833333 5.911111 5.988889 5.755556 5.833333 5.911111 5.988889 6.066677 6.144444 6.222222 6.3007078 6.377778 6.144444 6.222222 6.30070778 5.755556 5.833333 5.911111 5.98889 6.066677 6.144444 6.2222222 6.3007078 6.377778 6.377778 6.377778 6.377778 6.377778 7.555556 5.833333 5.911111 5.98889 6.06667 6.144444 6.2222222 6.3007078 6.377778 7.555556 5.833333 5.911111 5.98889 6.144444 6.2222222 6.30070000 6.377778 6.377778 7.555556 7.555556 7.5755556	0.100000 0.1000000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.1000000 0.1000000 0.1000000 0.000000 0.000000 0.0000000	0.140000 0.147778 0.155556 0.163333 0.171111 0.178899 0.186667 0.194444 0.202222 0.210000 0.217778 0.225556 0.233333 0.241111 0.248889 0.2564644 0.272222 0.280000 0.287778 0.264444 0.272222 0.280000 0.287778 0.2644444 0.32222 0.303333 0.311111 0.318889 0.326667 0.334444 0.32222 0.350000 0.357778 0.365556 0.373333 0.381111 0.388889 0.396667 0.404444 0.412222 0.420000 0.427778 0.435556 0.443333 0.451111 0.458889 0.46667 0.4443333 0.521111 0.528889 0.55556 0.513333 0.521111 0.528889 0.56667 0.544444 0.552222 0.560000 0.567778 0.575556 0.583333 0.591111 0.598889 0.606667 0.544444 0.552222 0.560000 0.567778 0.575556 0.583333 0.591111 0.598889 0.606667 0.6377778 0.575556 0.583333 0.591111 0.598889 0.606667 0.6377778 0.575556 0.583333 0.591111 0.598889 0.606667 0.544444 0.622222 0.560000 0.567778 0.575556 0.583333 0.591111 0.598889 0.606667 0.614444 0.622222 0.630007 0.6377778 0.575556 0.575556 0.583333 0.591111 0.59889 0.606667 0.6377778 0.637778 0.637778 0.575556 0.583333 0.591111 0.59889 0.606667 0.6377778 0.637778 0.637778 0.637778 0.575556 0.583333 0.591111 0.59889 0.606667 0.6377778 0.637778 0.6	0.017111 0.017580 0.018036 0.018482 0.018917 0.019342 0.019758 0.020165 0.020565 0.020956 0.021341 0.021719 0.022090 0.022455 0.023168 0.023168 0.023168 0.023516 0.024532 0.024532 0.024532 0.024532 0.024532 0.025507 0.025824 0.025507 0.025507 0.026446 0.025507 0.026752 0.027054 0.027054 0.027054 0.027054 0.027054 0.027054 0.027054 0.027054 0.027054 0.027054 0.027054 0.027353 0.027649 0.031733 0.038143 0.042012 0.045110 0.047786 0.050186 0.052386 0.054433 0.056358 0.058181 0.062289 0.068286 0.072362 0.075844 0.072362 0.075844 0.072362 0.075844 0.092058 0.094345 0.094345 0.094345 0.096557 0.098701 0.100784 0.102812 0.096557 0.098701 0.100784 0.102812 0.096557 0.098701 0.100784 0.102812 0.096557 0.098701 0.104790 0.106721 0.10458 0.102812 0.094345 0.094
6.30000	$\begin{array}{c} 0.100000\\ 0.100000\\ 0.100000\\ 0.100000\\ 0.100000\\ 0.100000\\ 0.100000\\ 0.100000\end{array}$	0.630000	2.620450
6.377778		0.637778	3.507129
6.455556		0.645556	4.338567
6.533333		0.653333	5.048279
6.611111		0.661111	5.594007
6.688889		0.668889	5.976020
6.766667		0.676667	6.333815

6.844444 0.100000 0.684444 6.642480 6.922222 0.100000 0.692222 6.937277 7.000000 0.100000 0.700000 7.219927 7.077778 0.100000 0.707778 7.491821 END FTABLE 2 END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> * * * <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # *** 2 PREC 1 999 EXTNL WDM ENGL PERLND PREC 1 WDM 2 PREC ENGL IMPLND 1 999 EXTNL PREC 1 0.76 1 999 EXTNL PETINP WDM 1 EVAP ENGL PERLND WDM 1 EVAP ENGL 0.76 IMPLND 1 999 EXTNL PETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tqap Amd *** <-Volume-> <-Grp> <-Member-><-Member-><rematic-->strg <Name> # <Name> tem strg strg***
COPY 1 OUTPUT MEAN 1 1 48.4 WDM 701 FLOW ENGL REPL 501 OUTPUT MEAN 1 1 ENGL COPY 48.4 WDM 801 FLOW REPL

 501
 OUTPOT MEAN
 1
 1

 601
 OUTPUT MEAN
 1
 1

 1
 HYDR
 RO
 1
 1

 1
 HYDR
 STAGE
 1
 1

 2
 HYDR
 RO
 1
 1

 2
 HYDR
 STAGE
 1
 1

 2
 HYDR
 STAGE
 1
 1

 COPY WDM 901 FLOW ENGL REPL RCHRES WDM 1000 FLOW ENGL REPL 1001 STAG RCHRES WDM ENGL REPL WDM 1002 FLOW ENGL RCHRES REPL RCHRES WDM 1003 STAG ENGL REPL END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> <-Grp> <-Member->*** <Target> <Name> # #<-factor-> <Name> <Name> <Name> # #*** MASS-LINK 2 PERLND PWATER SURO 0.083333 RCHRES INFLOW IVOL END MASS-LINK 2 MASS-LINK 3 PERLND PWATER IFWO 0.083333 RCHRES INFLOW IVOL END MASS-LINK 3 MASS-LINK 5 IMPLND IWATER SURO 0.083333 RCHRES INFLOW IVOL END MASS-LINK 5 MASS-LINK 12 PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15 MASS-LINK 16 RCHRES ROFLOW COPY INPUT MEAN END MASS-LINK 16 END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1999/ 9/30 24: 0 RCHRES : 1 RELERR STORS STOR MATIN MATDIF -7.834E-03 0.00000 0.0000E+00 0.00000 -6.399E-09 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 2002/ 8/31 24: 0 RCHRES : 1 RELERR STORS STOR MATIN MATDIF -7.804E-02 0.00000 0.0000E+00 0.00000 -5.977E-10 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high.

Did you specify any "special actions"? If so, they could account for it.

Relevant data are:

DATE/TIME: 2006/ 7/31 24: 0 RCHRES : 1 RELERR STORS STOR MATIN MATDIF -8.911E-02 0.00000 0.0000E+00 0.00000 -5.173E-10 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). STOR is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATDIF is the net inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2019; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com