Terrestrial Ecological Evaluation Ellisport Creek Greenspace Project Site Vashon Island, Washington

November 27, 2007

Prepared For:

King County Solid Waste Division King Street Center 201 South Jackson Street, Suite 701 Seattle, Washington 98104-3855

Prepared By:

A 11811 NE 1st Street, Suite 201 Bellevue, Washington 98005

CDM Project No. 19897.57600

A Report Prepared For :

King County Solid Waste Division King Street Center 201 South Jackson Street, Suite 701 Seattle, Washington 98104-3855

TERRESTRIAL ECOLOGICAL EVALUATION ELLISPORT CREEK GREENSPACE PROJECT SITE VASHON ISLAND, WASHINGTON

November 27, 2007

Lance Peterson, LHG Senior Hydrogeologist

Tony Gendusa, Ph.D. Ecological Risk Assessor/Ecotoxicologist

A 11811 N.E. 1st Street, Suite 201 Bellevue, Washington 98005 425/453-8383

CDM Project No. 19897.57600

Contents

Abbreviation	is and Acronyms	V
Executive Su	mmary	vi
Section 1 Int	roduction	
1.1	Background	1-2
1.2	Project Area Description	1-2
1.3	Data Collection	1-3
Section 2 Pro	blem Formulation	
2.1	Chemicals of Potential Concern	2-1
	2.1.1 Chemicals Detected in Surface Water	2-1
	2.1.2 Chemical Detected in Freshwater Sediment	2-1
	2.1.3 Chemicals Detected in Marine Sediment	2-2
	2.1.4 Chemicals Detected in Soil	
	2.1.5 COPC Screening	
	2.1.5.1 Surface Water ESLs	2-3
	2.1.5.2 Freshwater Sediment ESLS	
	2.1.5.3 Marine Sediment ESLs	2-3
	2.1.5.4 Soil ESLs	2-3
	2.1.5.5 Final COPCs	
	2.1.5.6 Bioaccumulation Potential of Final COPCs	
2.2	Site Conceptual Exposure Model (SCEM)	2-12
	2.2.1 Complete and Significant Exposure Pathways	
2.3	Assessment and Measurement Endpoints	
	2.3.1 Assessment Endpoints	
	2.3.2 Measurement Endpoints	2-15
Section 3 Tox	cicity Assessment	
3.1	Toxicity Profiles	3-1
Section 4 Ris	k Characterization	
4.1	Risks Based on Direct Exposure	
4.2	Risks Associated with Bunker C - Laboratory Tests	
	4.2.1 Summary of Test Methods	
	4.2.2 Summary of Test Results	
	4.2.2.1 Earthworm	
	4.2.2.2 Lettuce	
4.3	Conclusions and Recommendations	
Section 5 Ref	erences	5-1
Distribution		

Appendix A: Soil Toxicity Evaluation

Tables

Table 1	Surface Water Contaminants	2-4
Table 2a	Marine Sediment Contaminants (2006)	2-5
Table 2b	Sediment Contaminants (2005)	2-6
Table 2c	Freshwater Sediment Contaminants (2006)	2-7
Table 3a	Soil Contaminants (Soil Core Data)	2-8
Table 3b	Soil Contaminants (Surface Soil 2006)	2-9
Table 3c	Soil Contaminants (Surface Soil 2005)	2-10
Table 4	Media-Specific Toxicity Data for Final COPCs	3-2
Table 5	Hazard Quotients for Media-Specific COPCs	
	(Excluding Bunker C)	4-2
Site Conce	ptual Model (SCEM)	2-13

Abbreviations and Acronyms

As	Arsenic
AET	Apparent Effects Threshold
AST	Aboveground Storage Tank
BCF	Bioconcentration Factor
CDM	Camp Dresser & McKee Inc.
COC	Chemical of Concern
COPC	Chemicals of Potential Concern
Ecology	Washington State Department of Ecology
EPC	Exposure Point Concentration
ESA	Environmental Site Assessment
ESL	Ecological Screening Level
HQ	Hazard Quotient
LCV	Lowest Chronic Value
LOEC	Low Effect Concentration
mg	Milligram
MTCA	Model Toxics Control Act
NOEC	No Effect Concentration
PAH	Polycyclic Aromatic Hydrocarbons
Pb	Lead
PCB	Polychlorinated Biphenyls
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
SCEM	Site Conceptual Exposure Model
TEE	Terrestrial Ecological Evaluation
TOC	Total Organic Carbon
TV	Toxicity Value
µg/L	Micrograms per liter

Executive Summary

This report presents a site-specific Terrestrial Ecological Evaluation (TEE) performed by Camp Dresser & McKee, Inc. on behalf of King County at the Ellisport Creek Greenspace Project site on Vashon Island, Washington. Site assessment work has identified elevated concentrations of Bunker C-range petroleum hydrocarbons from former industrial use of the property. The Model Toxics Control Act (MTCA) specifies that sites located in an area where management or land use plans will maintain or restore native or semi-native vegetation (e.g., greenbelts and protected wetlands) require a site-specific TEE under WAC 173-340-7493. The goal of this site-specific TEE is protection of plants and animals from exposure to environmental contamination at levels likely to cause significant adverse or toxic effects. Because the contamination includes Bunker C oil, for which ecotoxicity data are not available, sitespecific toxicity testing in the form of biological assays (bioassays) was selected in consultation with the Washington State Department of Ecology (Ecology) as most effective means of determining risks to selected ecological receptors.

The primary components of the TEE are Problem Formulation, Toxicity Assessment, and Risk Characterization (which integrates exposure and toxicity information). The Problem Formulation portion of the TEE compared detected chemicals in surface water, freshwater and marine sediment, and soil to ecological screening levels (ESLs) established for those chemicals. The ESLs, along with the bioassay results, are used to assess potential toxicity. ESLs represent the threshold exposure to a chemical beyond which adverse effects are likely; chemicals exceeding established ESLs are identified as chemicals of potential concern (COPCs). A hazard quotient is then established for each COPC by dividing the maximum detected concentration of each contaminant by its ESL, and those chemicals with a resulting hazard quotient greater than 1.0 are identified as COPCs warranting further evaluation in the TEE. Final COPCs included Pyrene in surface water and arsenic, lead, Bunker C and several Polycyclic Aromatic Hydrocarbon (PAH) compounds in soil. A site conceptual exposure model (SCEM) was developed as the primary output of the Problem Formulation. The SCEM identifies the major relevant exposure scenarios, or ways in which indigenous plants and animals come into contact with the contaminants identified at the site. The SCEM also determines the assessment end points, or ecological values, to be protected (for this TEE, the establishment and maintenance of healthy and diverse terrestrial, aquatic and semi-aquatic/wetland ecosystems within the project area); and the measurement end points, which establish the amounts of contamination that can remain resident at the site and still permit attainment of the assessment endpoint.

The Toxicity Assessment identified the concentrations of Bunker C oil and other contaminants that represent a potential for significant adverse impact to plants and animals at the site. This TEE determined that all COPCs were linked to soil exposure, making terrestrial plants and terrestrial invertebrates (represented by earthworms) the two groups at most risk from the soil contamination caused by Bunker C oil and other COPCs. Soil toxicity values and the potential effects linked to such values were obtained from existing studies for all identified COPCs except Bunker C oil and used

with the hazard quotient approach previously described. Of all COPCs identified, only arsenic, lead and naphthalene produced hazard quotients over 1.0, and none of those three were considered indicative of significant site-related risk because they either are not highly bioavailable in soil or were found at a depth beyond the likely area of significant ecological exposure.

For Bunker C, the absence of ecotoxicity data led to the use of bioassay testing to determine potential impacts to ecological receptors. Earthworms and lettuce were used to represent indigenous soil invertebrates and terrestrial plants in laboratory bioassay tests that measured toxic effects from exposure to samples of contaminated soil collected at the site. In those tests, exposure of lettuce to even the highest concentrations of Bunker C contamination produced some reduction of biomass in surviving seedlings, but no demonstrable toxicity. Earthworm exposure to soil samples containing the highest concentrations of Bunker C (18,000 mg/kg) produced a mean survival rate of 26.7%, but exposures at all other test levels produced survival rates of 80% or higher, and no significant effect at exposures of 6,700 mg/kg or less. After consulting with Ecology it was agreed that the soil cleanup value for Bunker C be based on protection of apparently more sensitive soil invertebrates (represented by earthworm) instead of protection of terrestrial plants. The no effect level of 6,700 mg Bunker C/kg soil is a conservative threshold at which adverse effects may begin to be observed in resident soil invertebrates and, as such, would be adequately protective of soil organisms at the site.

The recommended soil cleanup value for Bunker C is 6,700 mg/kg, based on the results of the soil toxicity tests with earthworms.

Section 1 Introduction

This report presents a Terrestrial Ecological Evaluation (TEE) performed by Camp Dresser & McKee Inc. (CDM) on behalf of King County (the County) at the Ellisport Creek Greenspace Project site (the site) located on Vashon Island, Washington.

The Model Toxics Control Act (MTCA) specifies that sites located in an area where management or land use plans will maintain or restore native or semi-native vegetation (e.g., greenbelts and protected wetlands) require a site-specific TEE under WAC 173-340-7493. The scope of a site-specific TEE requires consultation with the Washington State Department of Ecology (Ecology). The goal of the TEE process is the protection of terrestrial ecological receptors (plants and animals) from exposure to contaminated soil with the potential to cause significant adverse effects.

CDM initiated a site-specific TEE for the site in 2006 under Work Order No. 20 to Contract No. E23023E. The scope of the TEE consisted of conducting a literature survey and evaluation of available site data. TEEs typically do not go beyond the literature review phase if the level of contamination is unlikely to cause measurable adverse ecological effects, therefore, a more intensive TEE was not proposed initially. A more detailed TEE could include site-specific toxicity testing through bioassays, collection of additional chemical and possibly biological data, and more intensive site surveys. The preliminary site-specific TEE used information obtained from relevant literature sources and from information gathered during data evaluation tasks to begin to determine site-specific concentrations of contaminants in soil that would be protective of the ecological resources within or associated with the site. For the purposes of the TEE, ecological resources are defined as the habitats and plant and animal communities and populations occurring onsite or utilizing the site.

After consultation with Ecology and drafting of the literature review, it became apparent that a soil cleanup level for Bunker C oil would need to be supported by either a detailed site survey or bioassay study. A site visit with representative of Ecology was conducted on January 4, 2007. During the site visit guidance was received from Ecology indicating bioassay testing as the recommended course of action since a site survey would be expensive and time consuming. Bioassay is shorthand commonly used for biological assay and involves use of a biological organism to test for chemical toxicity. Bioassays replicate the impact of a substance (in this case Bunker C) on organisms through implementation of a laboratory experiment. For the Ellisport Creek TEE, Ecology recommended earthworms be used to replicate the impact on soil-dwelling organisms and lettuce be used to replicate the impact on plants. The bioassay study and finalization of the site-specific TEE were performed in accordance CDM's January 22, 2007 proposal, Work Order No. 1, Contract No. E00025E and the Ecology-approved Quality Assurance Project Plan (QAPP) dated May 7, 2007. Since the site contains habitat characteristic of wetlands, the TEE scope also included evaluation of identified aquatic issues such as habitat impairment and potential effects on aquatic and other water-dependent receptors such as amphibians.

The primary components of the TEE are Problem Formulation (Section 2, which includes contaminant exposure information), Toxicity Assessment (Section 3), Risk Characterization (Section 4), and References (Section 5).

1.1 Background

CDM conducted a Phase II environmental site assessment (ESA) at the site in September 2005 that included collecting soil samples from the near surface and from test pits for analytical testing. In addition, one sediment sample was analyzed. The investigation is presented in a report titled *Phase II Site Assessment, Ellisport Creek Greenspace Project Site, Vashon Island, Washington* dated December 23, 2005.

The results of the investigation indicate Bunker C-range petroleum hydrocarbons are present in soil at concentrations exceeding human health-based cleanup levels (MTCA Method A and Method B). Assessment results suggest that the residual Bunker C is not an immediate threat to the environment although no site specific TEE or comprehensive sediment studies were performed. Based on proposed future site use, the receptor category for the residual Bunker C is sediment/aquatic life. Contaminant pathways include surface water to sediment and groundwater to sediment, with the potential for both sediment and surface water exposures to human and ecological receptors. The report concluded that a site-specific TEE would likely be required to define risk to the environment from the site.

After consultation with Ecology and stakeholders, a scope for a Supplemental Phase II ESA was developed that included sediment sampling within Ellisport Creek as well as in the intertidal zone near the Ellisport Creek discharge point to Tramp Harbor (Puget Sound), additional soil sampling, and surface water and groundwater sampling. It was also agreed that a site specific TEE would assist in determining an appropriate Bunker C cleanup level for the upland portion of the site. The supplemental investigation was performed in July 2006 and is presented in a report *titled Supplemental Phase II Environmental Site Assessment, Ellisport Creek Greenspace Project Site, Vashon Island, Washington* dated December 21, 2006. The supplemental investigation results confirm earlier estimates concerning the distribution of Bunker C contamination in soil at the site. The investigation results also indicate that marine sediments in Puget Sound adjacent to the upland portion of the site and freshwater sediments in Ellisport Creek are not adversely impacted by the Bunker C release.

1.2 Project Area Description

The site is mostly naturally restored wetland, and consists of four privately owned contiguous parcels totaling 8.66 acres of which 5.65 acres are tide land at the northwest head of Tramp Harbor on the east coast of Vashon Island. The remaining 3.01 acres are mostly wetland bisected by Ellisport Creek. A paved road, Chautauqua

Beach Road SW, crosses the lower end of the upland property at just above the beach. Ellisport Creek currently flows under Chautauqua Beach Road through a pair of culverts approximately 3 foot in diameter.

In the past (between 1920 and 1940) the site housed a lumber mill, a millpond, and a vegetable greenhouse. Three aboveground storage tanks (ASTs) were on the property, as were concrete blocks and foundations for the ASTs. The ASTs were removed in the 1960s.

Also important from a soil contamination viewpoint, ASARCO operated a smelter at Ruston, directly south of Vashon Island, from 1887 to 1985. This was the only tidewater smelter in the United States and the last to close in Washington. Originally a lead smelter, the plant was enlarged to handle copper in 1903 and by 1910 lead smelting had ceased. ASARCO handled ores from Washington, Montana, Oregon, Alaska, and the Coeur d'Alene mining district in Idaho, as well as from multiple locations in Latin America and Asia. High silica flux was brought in to aid in the smelting process. These fluxes were ores of gold, silver, and copper and contained small amounts of pyrite, calcium-magnesium carbonates, and wall rock such as feldspars, clays, and micas. In 1902 slag pots were used to remove slag from the lead/copper furnaces and used to create a synthetic bedrock peninsula around the site. Later slags were then poured molten over the older slag. Some of the slag has been exposed to groundwater, saltwater, and oxygen for more than a century. The site is now undergoing cleanup and closure. It is likely that past emissions from this facility contribute to elevated concentrations of metals in soil on Vashon Island.

1.3 Data Collection

The data set used in this TEE to characterize current site conditions include surface water, freshwater sediment, marine sediment, and a variety of soil samples collected during the 2005 and 2006 investigations. These samples were analyzed for a variety of chemical constituents, with the list of analytes differing somewhat with the media sampled and the specific data collection objective. Media quality data collected and analyzed in 2005 included samples from soil test pits, surface soil, and sediment (CDM, 2005). The portions of these data relevant to the TEE are summarized in this document. CDM also collected additional media quality data from the site in summer 2006 (CDM, 2006). These samples included those taken from surface water, freshwater sediment, marine sediment, surface soil, soil cores, and groundwater. With the exception of groundwater, these data are summarized and used in this TEE. Soil utilized for bioassay testing was collected from the site in June 2007 in accordance with the project QAPP. The bioassays were performed by Nautilus Environmental, LLC of Tacoma, Washington with the test results delivered to CDM in mid-August 2007.

Section 2 Problem Formulation

The Problem Formulation section of the TEE provides the basis for the evaluation, and can be viewed as the planning and/or descriptive phase of the process. Exposure-related information, such as contaminant concentrations in various media, is also presented in the Problem Formulation section. Therefore, this section identifies contaminants or chemicals of concern, ecological resources potentially at risk, and exposure pathways that may be important. An important outcome of Problem Formulation is the site conceptual exposure model (SCEM), which describes potential exposure scenarios or pathways, including contaminant sources, transport mechanisms, exposure media, exposure routes, and receptors. The SCEM provides descriptions of the relationships between contaminants and ecological receptors, and further describes how receptors may come into contact with chemical contaminants.

2.1 Chemicals of Potential Concern

Surface water, freshwater sediment, marine sediment, and soil samples were collected in 2005 and 2006 and analyzed for a wide variety of chemical constituents. Chemicals detected in these media are further evaluated for additional assessment by comparing maximum detected concentrations to conservative ecological screening levels (ESLs). Potentially toxic chemicals for which maximum detected concentrations exceed ESLs are identified as chemicals of potential concern (COPCs). COPCs warrant full evaluation in the TEE and are critical components used to derive risk estimates for ecological resources.

The TEE is used to determine concentrations of major COPCs which would be protective of ecological resources. More specifically, if these concentrations are not exceeded then key ecological receptors would be unlikely to suffer adverse effects related to survival, growth, or reproduction.

2.1.1 Chemicals Detected in Surface Water

A single surface water sample (denoted SW-1) was collected onsite in July 2006. This wetland water sample was analyzed for polycyclic aromatic hydrocarbons (PAHs) and Oil as Bunker C, the primary COPCs associated with the source area soils. Of these, eight individual PAHs and Bunker C were measured at concentrations exceeding the laboratory detection limits. These detected chemicals are considered COPCs warranting further evaluation.

2.1.2 Chemicals Detected in Freshwater Sediment

Freshwater sediment samples (denoted FWS-1 and FWS-5) were collected from two locations onsite in July 2006. These samples were analyzed for total metals, PAHs, ten miscellaneous organic chemicals (including phthalates), tributyl tin, organochlorine pesticides, polychlorinated biphenyls (PCBs), conventionals (sulfide and total solids), and total organic carbon (TOC). Of these, five metals, 13 individual PAHs,

dibenzofuran, and sulfides were measured at concentrations exceeding the laboratory detection limits. These detected chemicals are considered COPCs warranting further evaluation.

2.1.3 Chemicals Detected in Marine Sediment

Marine sediments were collected in July 2006 and analyzed for a variety of chemicals. Data from this sampling event was used to characterize the chemical constituents in marine sediments. Marine sediment samples were collected from three locations onsite (denoted MS-1, MS-2, and MS-3). These samples were analyzed for total metals, PAHs, 14 miscellaneous organic chemicals (including phthalates), total PCB, and TOC. Of these, three metals and six individual PAHs were measured at concentrations exceeding the laboratory detection limits. These detected chemicals are considered COPCs warranting further evaluation.

2.1.4 Chemicals Detected in Soil

Two soil cores were obtained in July 2006 and analyzed for Bunker C, PAHs, and TOC. These samples could also be considered sediment as they are intended to help characterize material that could erode into Puget Sound under a "worst case" condition after installation of a proposed box culvert to replace the existing culverts below Chautauqua Beach Drive S.W. Eight individual PAHs and Bunker C were measured above detection limits. These detected chemicals are considered COPCs warranting further evaluation.

Surface soil samples were collected in September 2005 and July 2006. Both sets of samples were analyzed for a wide variety of inorganic and organic chemicals. The results of the September 2005 surface soil analyses resulted in Bunker C, 16 PAHs, 1-methylnaphthalene and 2-methylnaphthalene being present at concentrations exceeding detection limits. These detected chemicals are considered COPCs warranting further evaluation. In 2006, analytes included numerous organochlorine and organophosphorus pesticides, Bunker C, and arsenic, cadmium, and lead. The analyses of the three surface soil samples (S19, S20, and S21) in the July 2006 investigation revealed that lead was detected in all three samples and arsenic and cadmium were also detected in one of the three samples. These detected chemicals are considered COPCs warranting further evaluation. No pesticides were detected and none are COPCs warranting further evaluation.

2.1.5 COPC Screening

All chemicals measured at concentrations exceeding laboratory detection limits are subjected to a screening based on comparisons of detected concentrations to conservative ESLs. ESLs are described below, by media.

2.1.5.1 Surface Water ESLs

Two ESLs are used for surface water. These are listed in order of preference:

- Lowest of the Lowest Chronic Value (LCV) for fish, daphnids, and aquatic plants (Suter and Tsao, 1996)
- Interim Guideline, Canadian Water Quality Guideline for the Protection of Aquatic Life (CCME, 2002)

2.1.5.2 Freshwater Sediment ESLs

The single source of freshwater sediment ESLs is Table 3-3, Apparent Effects Threshold (AET) produced by Avocet Consulting (2003) and recommended for use by Ecology.

2.1.5.3 Marine Sediment ESLs

The single source of freshwater sediment ESLs is Table 1, WAC Chapter 173-204, Sediment Management Standards, as recommended by Ecology.

2.1.5.4 Soil ESLs

Three ESLs are used for soil, listed in order of preference:

- Table 749-3, MTCA, Chapter 173-340-WAC
- EPA Region 5 ESL, RCRA Program
 - This source is preferred over other EPA regional sources because the database for soil contaminants is much more extensive than other EPA sources.
- Soil Cleanup Criterion for Oil and Grease for Decommissioning Industrial Sites in Ontario, Canada (Richardson, 1987 in USFWS, 1990)
 - This source is used because toxicity-based data are lacking for Bunker C and related petroleum mixtures for soil

Tables 1 through **Table 3** present the maximum detected concentrations of contaminants, the selected ESLs, and the resulting screening level hazard quotients or HQs. As used in this TEE, HQs are the maximum detected exposure concentrations of a contaminant divided by the selected chemical-specific ecological screening concentration or ESL.

Hazard Quotient (HQ) = exposure concentration / screening level concentration

These data are used to derive a list of COPCs that warrant further evaluation, based on chemicals detected at concentrations resulting in screening level HQs greater than 1.0.

Tables 1 through Table 3 present the results of the screening of the chemicals detected in surface water (Table 1), marine sediment (Tables 2a and 2b), freshwater sediment (Table 2c), soil cores (Table 3a), surface soil (2006, Table 3b; 2005, Table 3c).

Table 1. Surface Water Contaminants

Surface Water	Max Det	ESL	ESL	HQ	ECO
Analyte ^a	µg/L	µg/L	Source	max/ESL	COC?
Oil as Bunker C	5,600	NV	NA	NA	Unknown
Benzo(a)anthracene	0.11	0.65	1	0.17	NO
Benzo(a)pyrene	0.16	0.30	1	0.53	NO
Benzo(b) fluoranthene	0.054	NV	NA	NA	Unknown
Benzo(g,h,i)perylene	0.13	NV	NA	NA	Unknown
Chrysene	0.17	NV	NA	NA	Unknown
Dibenz(a,h)anthracene	0.02	NV	NA	NA	Unknown
Indeno(1,2,3-cd)pyrene	0.036	NV	NA	NA	Unknown
Pyrene	0.4	0.025	2	16.0	YES

(Sample SW-1 collected on 7/26/06)

Notes:

a) All other analytes (PAHs) measured at less than detection limit (0.094 $\mu g/L).$

ESL - Ecological Screening Level.

HQ - Hazard Quotient (max det / ESL), HQ>1 indicates risk.

NV - No Value (no value available from any source consulted (e.g., EPA, WA DOE, CCME, ORNL, etc.).

µg/L – Micrograms per liter.

ESL Source:

1) Lowest of lowest chronic value (LCV) for fish, daphnids, and aquatic plants (Suter and Tsao 1996).

2) Interim guideline, Canadian Water Quality Guideline for Protection of Aquatic Life (CCME 2002).

Table 2a. Marine Sediment Contaminants (2006)

Marine Sediment	Max Det	Fraction	Max Det	ESL ^c	HQ	ECO
Analyte ^a	mg/kg dw	тос ь	mg/kg OC	mg/kg dw	max/ESL	COC?
Chromium	26	NA	NA	260	0.10	NO
Copper	8.9	NA	NA	390	0.023	NO
Zinc	27	NA	NA	410	0.066	NO
	Max Det mg/kg	Fraction	Max Det mg/kg	ESL ^c mg/kg	HQ	ECO
	dw	TOC ^b	ŏc	ŏc	max/ESL	COC?
Benzo(a)anthracene	0.0086	0.00982	0.88	110	0.000078	NO
Benzo(a)pyrene	0.010	0.00982	1.02	99	0.00010	NO
Chrysene	0.022	0.00982	2.24	110	0.00020	NO
Fluoranthene	0.031	0.00982	3.16	160	0.00019	NO
Pyrene Total	0.025	0.00982	2.55	1000	0.000025	NO
Benzofluoranthenes	0.021	0.00982	2.14	230	0.000091	NO
Total HPAH	0.118	0.00982	12.02	960	0.00012	NO

(Samples MS-1 through MS-3 collected on 7/25/06)

Notes:

a) All other analytes measured at less than detection limit.

b) Fraction TOC = mg/kg/106 (value associated with location of max. detect).

c) From WAC Chapter 173-204, Sediment Management Standards, Table 1.

ESL – Ecological Screening Level.

HQ – Hazard Quotient (max. cet. / ESL), HQ>1 indicates risk.

mg/kg – Milligrams per kilogram.

Table 2b. Sediment Contaminants (2005)

(Sample EC-SS collected on 9/21/06)

Marine Sediment	Max Det	Fraction	Max Det	ESL ^c	HQ	ECO
Analyte ^a	mg/kg dw	тос ^ь	mg/kg OC	mg/kg OC	max/ESL	COC?
Acenaphthylene	0.058	0.145	0.40	66	0.0061	NO
Anthracene	0.053	0.145	0.37	220	0.0017	NO
Benzo(a)anthracene	0.70	0.145	4.83	110	0.044	NO
Benzo(a)pyrene	2.8	0.145	19.31	99	0.20	NO
Benzo(b) fluoranthene	0.76	0.145	5.24	230	0.023	NO
Benzo(g,h,i)perylene	3.1	0.145	21.38	31	0.69	NO
Benzo(k)fluoranthene	0.079	0.145	0.54	230	0.0024	NO
Chrysene	1.3	0.145	8.97	110	0.082	NO
Dibenz(a,h)anthracene	0.56	0.145	3.86	12	0.32	NO
Fluoranthene	0.098	0.145	0.68	160	0.0042	NO
Indeno(1,2,3-cd)pyrene	0.8	0.145	5.52	34	0.16	NO
Phenanthrene	0.048	0.145	0.33	100	0.0033	NO
Pyrene	1.3	0.145	8.97	1000	0.0090	NO
Total LPAH	0.159	0.145	1.10	370	0.0030	NO
Total HPAH	11.5	0.145	79.31	960	0.083	NO

Notes:

a) All other analytes measured at less than detection limit.

b) Fraction TOC = mg/kg / 106 (value associated with location of max detect).

c) From WAC Chapter 173-204, Sediment Management Standards, Table 1 (ESL for

benzo(b,k)fluoranthene based on total benzofluoranthenes).

ESL - Ecological Screening Level.

HQ - Hazard Quotient (max det / ESL), HQ>1 indicates risk.

mg/kg - Milligrams per kilogram.

Table 2c. Freshwater Sediment Contaminants (2006)

Freshwater Sediment	Max Det	Fraction	Max Det mg/kg	ESL ^c mg/kg	HQ	ECO
Analyte ^a	mg/kg dw	TOC ^b	OC	dw	max/ESL	COC?
Chromium	31	NA	NA	95	0.326	NO
Copper	14	NA	NA	619	0.023	NO
Lead	11	NA	NA	335	0.033	NO
Nickel	33	NA	NA	53.1	0.621	NO
Zinc	45	NA	NA	683	0.066	NO
Acenaphthene	0.150	0.00458	32.75	1.06	0.142	NO
Anthracene	0.110	0.00458	24.02	0.47	0.234	NO
Benzo(a)anthracene	0.180	0.00458	39.30	4.26	0.042	NO
Benzo(a)pyrene	0.043	0.00458	9.39	3.3	0.013	NO
Benzo(b)fluoranthene	0.096	0.00458	20.96	11	0.009	NO
Benzo(g,h,i)perylene	0.013	0.00458	2.84	4.02	0.003	NO
Benzo(k)fluoranthene	0.026	0.00458	5.68	11	0.002	NO
Chrysene	0.150	0.00458	32.75	5.94	0.025	NO
Dibenzofuran	0.120	0.00458	26.20	0.399	0.301	NO
Fluoranthene	1.2	0.00458	262.01	11.1	0.108	NO
Fluorene	0.240	0.00458	52.40	1.07	0.224	NO
Indeno(1,2,3-cd)pyrene	0.013	0.00458	2.84	4.12	0.003	NO
Phenanthrene	1.0	0.00458	218.34	6.1	0.164	NO
Pyrene	0.64	0.00458	139.74	8.79	0.073	NO
Sulfide	3.29	0.00753	436.92	702	0.0047	NO
Total HPAH	2.361	0.00458	515.50	NA	NA	NA
Total LPAH	1.5	0.00458	327.51	NA	NA	NA

(Samples FWS-1 and FWS-2 collected on 7/25/06)

Notes:

a) All other analytes measured at less than detection limit.

b) Fraction TOC = mg/kg / 106 (value associated with location of max detect).

c) From Avocet Consulting, 2003 (Table 3-3, Apparent Effects Threshold).

ESL - Ecological Screening Level.

HQ - Hazard Quotient (max detect / ESL), HQ>1 indicates risk.

mg/kg - Milligrams per kilogram.

Table 3a. Soil Contaminants (Soil Core Data)

Soil Core	Max Det	Lowest ESL	ESL	HQ	ECO
Analyte ^a	mg/kg dw	mg/kg dw	Source	max/ESL	COC?
Oil as Bunker C	580	10,000	3	0.058	NO
Benzo(a)anthracene	0.023	5.21	2	0.0044	NO
Benzo(a)pyrene	0.13	12	1	0.011	NO
Benzo(b)fluoranthene	0.038	59.8	2	0.00064	NO
Benzo(g,h,i)perylene	0.22	119	2	0.0018	NO
Chrysene	0.049	4.73	2	0.010	NO
Dibenz(a,h)anthracene	0.022	18.4	2	0.0012	NO
Indeno(1,2,3-cd)pyrene	0.051	109	2	0.00047	NO
Pyrene	0.052	78.5	2	0.00066	NO
Total HPAH	0.563	NA	NA	NA	NA

(Samples FWS-3 and FWS-4 collected on 7/25/06)

Notes:

a) All other analytes measured at less than detection limit.

ESL - Ecological Screening Level.

HQ - Hazard Quotient (max det / ESL), HQ>1 indicates risk.

mg/kg - milligrams per kilogram.

ESL Source:

1. Lowest of Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants, Soil Biota, or Wildlife (Table 749-3, Chapter 173-340WAC).

2. EPA Region 5 ESL, RCRA program, August 2003.

3. Soil cleanup criterion for oil and grease for decommissioning industrial sites in Ontario, Canada (Richardson 1987 in USFWS 1990).

3b. Soil Contaminants (Surface Soil 2006)

(Samples S14 through S21 collected on 7/26/06)

Surface Soil	Max Det	Lowest ESL	ESL	HQ	ECO
Analyte ^a	mg/kg dw	mg/kg dw	Source	max/ESL	COC?
Arsenic	22	7	1	3.1	YES
Cadmium	0.73	4	1	0.18	NO
Lead	120	50	1	2.4	YES
Oil as Bunker C	830	10,000	3	0.083	NO

Notes:

a) All other analytes measured at less than detection limit.

ESL - Ecological Screening Level.

HQ - Hazard Quotient (max det / ESL), HQ>1 indicates risk.

mg/kg - Milligrams per kilogram.

ESL Source:

1. Lowest of Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants, Soil Biota, or Wildlife (Table 749-3, Chapter 173-340WAC). ESL for As based on As III per guidance.

2. EPA Region 5 ESL, RCRA program, August 2003.

3. Soil cleanup criterion for oil and grease for decommissioning industrial sites in Ontario, Canada (Richardson 1987 in USFWS 1990).

3c. Soil Contaminants (Surface Soil 2005)

(Samples EC-S1 through EC-S13 and TP-7 through TP-14 collected on 9/21/05 and 9/22/05)

Surface Soil ^a	Max Det	Lowest ESL	ESL	HQ	ECO
Analyte ^b	mg/kg dw	mg/kg dw	Source	max/ESL	COC?
Oil as Bunker C	44,000	10,000	3	4.4	YES
1-Methylnaphthalene	40	3.24*	2	12.3	YES
2-Methylnaphthalene	60	3.24	2	18.5	YES
Acenaphthylene	1.1	682	2	0.0016	NO
Acenaphthene	6.4	20	1	0.32	NO
Anthracene	13.0	1,480	2	0.0088	NO
Benzo(a)anthracene	11	5.21	2	2.1	YES
Benzo(a)pyrene	7.0	12	1	0.58	NO
Benzo(b)fluoranthene	2.8	59.8	2	0.047	NO
Benzo(g,h,i)perylene	4.6	119	2	0.039	NO
Benzo(k)fluoranthene	0.025	148	2	0.00017	NO
Chrysene	15	4.73	2	3.2	YES
Dibenz(a,h)anthracene	0.027	18.4	2	0.0015	NO
Fluoranthene	6.2	122	2	0.051	NO
Fluorene	12	30	1	0.40	NO
Indeno(1,2,3-cd)pyrene	1.3	109	2	0.012	NO
Naphthalene	7.4	0.0994	2	74.4	YES
Phenanthrene	63	45.7	2	1.4	YES
Pyrene	50	78.5	2	0.64	NO

Notes:

a) Includes surface samples and test pit samples (0-6 feet bgs). Deeper test pit data (>6 feet bgs) not included (limited ecological exposure potential).

b) All other analytes measured at less than detection limit.

ESL - Ecological Screening Level.

HQ - Hazard Quotient (max det / ESL), HQ>1 indicates risk.

ESL Source:

1. Lowest of Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants, Soil Biota, or Wildlife (Table 749-3, Chapter 173-340WAC).

2. EPA Region 5 ESL, RCRA program, August 2003. ESL for 1-methylnaphthalene based on ESL for 2-methylnaphthalene.

3. Soil cleanup criterion for oil and grease for decommissioning industrial sites in Ontario, Canada (Richardson 1987 in USFWS 1990).

2.1.5.5 Final COPCs

The final COPCs that warrant further evaluation in this TEE are presented below, by media type.

	Final COPCs						
Surface	Freshwater /	Soil					
Water	Marine Sediment						
Pyrene	(none)	Arsenic, lead, Bunker C, 1-methylnapthalene, 2-methylnapthalene, benzo(a)anthracene, chrysene, naphthalene, phenanthrene					

2.1.5.6 Bioaccumulation Potential of Final COPCs

Risks to upper trophic level receptors (e.g., birds or mammals) are considered indirect, because the primary exposure is via ingestion of contaminated prey (and, to a lesser degree, ingestion of contaminated surface water and solid media). The risks associated with dietary exposure are discussed below, based on evaluation of bioaccumulation potential of contaminants. Quantitative food web modeling was not warranted in this TEE.

None of the organic COPCs identified above are expected to accumulate in upper trophic level animals because the bioaccumulation potential of all is low. PAHs are not accumulated in many types of animals and microorganisms because PAHs are often metabolized to degradation products. Most studied vertebrates and crustaceans have the enzymes necessary for metabolic activation (Statham et al., 1976; Varansi et al., 1980; Fabacher and Baumann, 1985; all in Eisler, 1987). In addition, the bioaccumulation potential of PAHs that are not well-studied, such as 1- and 2methylnaphthalene, is predicted to be low, based on log Kow (Kow is known as the octanol/water partition coefficient). The log Kow of both of these methylnaphthalenes is 3.72 (ECOSAR, 2006) and the equation of Veith and Kosian (1982) predicts bioconcentration factor or BCF from log Kow, as follows:

Log BCF = 0.79 log Kow - 0.40 (Veith and Kosian, 1982) Log BCF - 0.79 (3.72) - 0.40 = 2.54BCF = 346

EPA (1991) generally considers BCFs less than 1,000 to be low and bioaccumulation in aquatic biota is not expected. Although aquatic BCFs cannot be used to estimate bioaccumulation in soil biota (both methylnaphthalenes are soil COPCs only), they can be used to generally describe the potential for chemicals to be accumulated by biota. There is no evidence that methylnaphthalenes are accumulated to any significant degree by upper trophic level biota.

Arsenic and lead, both soil COPCs, can accumulate in plants, soil invertebrates, and to some degree in upper trophic level biota. Both arsenic and lead are not highly bioavailable in soil, and therefore neither is expected to accumulate to a significant

degree in most biota. More specifically for this TEE, both arsenic and lead have been detected at concentrations in soil that are similar to background concentrations. Although soils in the western U.S. often contain elevated As concentrations relative to the eastern U.S., it may be more important that ASARCO once operated a smelter just south of Vashon Island and this historical condition probably contributes to the relatively higher As and Pb (and possibly other metals) concentrations in soil samples (Public Health – Seattle & King County, 2000). Finally, it is expected that remediation of the primary source area soils for Bunker C will result in remediation of the relatively more minor soil COPCs (e.g., methylnaphthalenes). For these reasons, this TEE does not further evaluate risks related to bioaccumulation of COPCs and instead focuses on the potential effects of direct contact exposures for terrestrial plants, soil invertebrates, and aquatic biota that may be exposed to contaminants transported from the source area.

2.2 Site Conceptual Exposure Model (SCEM)

The site conceptual exposure model (SCEM) is the primary output of the Problem Formulation. The SCEM presents the major exposure scenarios relevant to ecological receptors for this site. The SCEM (shown on the following page) focuses on the complete and significant exposure scenarios relevant to this TEE (shown with bold type), and these are used to help develop a series of testable null hypotheses for the site. Null hypotheses are used to test assumptions regarding relationships between contaminants and receptors. The null hypotheses for this site are presented below.

- 1. The levels of site-related contaminants in onsite surface soils are not sufficient to adversely affect the survival, growth, or reproduction of *terrestrial plants* within the site boundaries
- 2. The levels of site-related contaminants in onsite surface soils are not sufficient to adversely affect the survival, growth, or reproduction of *terrestrial invertebrates* within the site boundaries
- 3. The levels of site-related contaminants in onsite surface waters and/or sediments are not sufficient to adversely affect the survival, growth, or reproduction of *aquatic invertebrates*
- 4. The levels of site-related contaminants in onsite surface waters and/or sediments are not sufficient to adversely affect the survival, growth, or reproduction of *fish*

Primary Source	Primary Release Mechanism	Secondary Source	Secondary Release Mechanism	Exposure Medium	Exposure Route	Potential Receptor
	Wind Erosion	Dust	Fugitive Dust Generation	Particulates in Air	Inhalation	Terrestrial Animals
Contaminants in Soil	Direct Release / Spills	Soil	-	Soil	Direct Contact / Ingestion	Terrestrial Plants, Soil- associated Animals
	Infiltration / Leaching	Groundwater	Seepage / Recharge / Discharge	Surface Water / Sediment	Direct Contact / Ingestion	Benthic and Water Column Invertebrates, Larval Amphibians, Fish
	Surface Runoff / Erosion	Surface Water / Sediment	-	Surface Water / Sediment	Direct Contact / Ingestion	Benthic and Water Column Invertebrates, Larval Amphibians, Fish
	Biotic Uptake	Biota	Uptake by Plants / Animals	Plants, Prey	Ingestion	Herbivorous, Insectivorous, Piscivorous, and Carnivorous Birds and Mammals

Site Conceptual Exposure Model (SCEM)

Significant and complete pathways and components shown in bold type Receptors shown in bold type indicate adequate data exist for assessment

The SCEM presents the most important terrestrial and aquatic exposure pathways for representative ecological receptors exposed to site-related COPCs. These pathways indicate how the ecological resources can co-occur or come in contact with COPCs, and include contaminant sources, fate and transport processes, and exposure routes. Some exposure pathways considered relatively minor (e.g., inhalation) are not evaluated in this TEE, but are shown in recognition of the completeness of this pathway.

This TEE is focused primarily on assessing community- and population-level risks in representative receptors associated with site-related contamination in the following media:

- Surface soil (terrestrial biota, especially plants and soil invertebrates),
- Sediment (bottom-dwelling aquatic biota, especially benthic invertebrates), and
- Surface water (aquatic biota, especially water-column biota such as salmonid fish).

The risks associated with these exposure media (i.e., soil, sediment, and surface water) can be direct or indirect. Direct risks include those based on exposures to contaminated abiotic media. Direct risks can include, for example, direct contact with and uptake of soil contaminants by terrestrial plants; direct contact with and ingestion of soil or sediment or pore water contaminants by terrestrial or aquatic invertebrates; and direct contact and ingestion of surface water by fish.

2.2.1 Complete and Significant Exposure Pathways

Complete and significant exposure pathways warranting assessment in this TEE are identified below:

- Risks to terrestrial plants due to direct contact with and uptake of soil COPCs
- Risks to terrestrial soil-dwelling invertebrates, represented by earthworms, due to direct contact with and ingestion of soil COPCs
- Risks to benthic aquatic biota, represented by benthic macroinvertebrates, due to direct contact with and ingestion of sediment COPCs
- Risks to water-column animals, represented by fish, due to direct contact with and ingestion of surface water COPCs

2.3 Assessment and Measurement Endpoints

This section introduces, defines, and discusses appropriate assessment and measurement endpoints for evaluating potential ecological effects associated with exposures to identified COPCs.

2.3.1 Assessment Endpoints

Assessment endpoints identify the ecological values to be protected (e.g., abundance and diversity of soil-dwelling invertebrates in onsite surface soils). Assessment endpoints are directly related to remedial action goals and objectives determined for the site. Appropriate assessment endpoints are developed by risk assessors and often consider guidance from relevant regulatory agencies.

TEE-related remedial action goals and objectives for the site that have been generally determined by Ecology include:

- The establishment and maintenance of a healthy and diverse terrestrial ecosystem within the project area.
- The establishment and maintenance of a healthy and diverse aquatic and semiaquatic/wetland ecosystem within the project area.

The TEE is designed to support decisions related to these preliminarily identified general remedial action goals and objectives. This support consists of selecting appropriate assessment endpoints and evaluating risks related to these endpoints. Assessment endpoints are described as explicit expressions of the environmental variable(s) that are to be protected. For the purpose of expressing assessment

endpoints, "onsite" refers to the area within the site boundaries. Also of concern, but considered "offsite" are areas adjacent to the site that may be impacted by site-related activities or conditions. The characteristics of the COPCs, toxic mechanisms, exposure pathways, and relevant receptors were used to select the following *assessment endpoints*:

- Sufficient rates of survival, growth, and reproduction to sustain populations of native *terrestrial plants* with the potential to occur onsite
- Sufficient rates of survival, growth, and reproduction to sustain populations of soil-dwelling invertebrates with the potential to occur onsite
- Sufficient rates of survival, growth, and reproduction to sustain populations of *aquatic macroinvertebrates* in the surface waters onsite
- Sufficient rates of survival, growth, and reproduction to sustain populations of *fish* in the surface waters onsite

It is assumed that the protection of the aforementioned receptors would be associated with the protection of other sensitive organisms or receptors for which toxicity data are lacking. For example, terrestrial plants are assumed to be among the most important receptors for this site because they provide important cover and in some cases foraging for a wide variety of wildlife not assessed directly in this TEE. The selected receptors or receptor groups include those that are components of all the major routes of exposure relative to this assessment.

2.3.2 Measurement Endpoints

Assessment endpoints are often difficult to measure or evaluate directly. For example, we cannot predict with certainty the critical concentration of lead in site surface soil that allows survival and successful reproduction of earthworms and wildlife that consume earthworms. Such critical concentrations are site-specific and depend on innumerable factors. Some of these factors include soil chemical and physical characteristics (which affects bioavailability), foraging behavior and dietary requirements of both prey species and consumer species, and chemical interactions (i.e., synergistic, antagonistic, or additive).

Measurement endpoints are quantitative expressions of observed or measured biological responses to stressors relevant to selected assessment endpoints. For example, earthworm survival, growth, and reproduction (assessment endpoints) can be evaluated using toxicity data based on appropriate measurement endpoints, such as the concentration of lead in surface soil that reduced earthworm survival, growth, or reproduction in laboratory toxicity tests. In this example, concentrations of lead in site surface soil would serve as the measurement endpoint.

This example expresses the relationship between a relevant measurement endpoint (concentration of lead in surface soil) that is directly related to the assessment endpoints of earthworm survival, growth, and reproduction. Measurement endpoints selected for this TEE are based on information from appropriate literature sources

and, where data allow, site-specific abiotic and biological data. Toxicity data that serve as measurement endpoints in this TEE are described in Section 3, Toxicity Assessment. Toxicity information for Bunker C is presented in Section 4.

Ecologically significant effects are defined here as those affecting survival, growth, or reproduction of important receptors. Other endpoints such as effects on behavior or histopathological effects are not considered as useful because these cannot be easily or confidently linked to ecologically significant endpoints that can impair populations or communities. Protection of populations and communities is a major goal of the TEE, while protection of individual organisms is warranted for species of special concern (e.g., threatened or endangered species).

Section 3 Toxicity Assessment

This section identifies contaminant concentrations that may cause significant adverse impacts in the receptors of concern that may result from exposure to Bunker C and other COPCs. The assessment is based on a review of State and Federal soil and sediment regulatory levels, including applicable standards, criteria, and benchmark concentrations. In addition, the assessment considers a review of contaminant concentrations associated with toxic effects in terrestrial plants and soil-dwelling animals.

Finally, it is noted that relevant ecotoxicity data for some of the primary COPCs identified for this site, especially Bunker C, are non-existent or sparse. The potential adverse effects of Bunker C on ecological receptors are addressed using site-specific toxicity data. Some degree of qualitative assessment is necessary for Bunker C and other similar contaminant mixtures due to the scarcity of ecotoxicity data.

3.1 Toxicity Profiles

Toxicity profiles are derived for the final COPCs, based on media type and selected receptor group applicable to this TEE. For surface water, the single COPC is pyrene, and the selected receptor group for this exposure scenario is freshwater fish. Little aquatic toxicity data are available for pyrene, so the single toxicity value presented is based on the predicted 30 day chronic value, derived by EPA ECOSAR software which uses chemical structure and other characteristics to estimate toxicity. The chronic value is generally defined as the geometric mean of the No Effect and Low Effect levels. As such, the chronic value represents a chemical concentration that is greater than that associated with no observed adverse effect but less than one associated with an observed effect.

All other COPCs are linked to soil exposures; therefore, terrestrial plants and earthworms are the receptor groups of choice. Earthworms represent soil dwelling invertebrates, and phytotoxicity data for terrestrial plants are commonly based on laboratory studies using crop species.

Where available, the preferred soil toxicity values are from earthworm and plant studies resulting in chronic toxicity endpoints. Endpoints include those associated with survival and growth or growth-related endpoints such as seed emergence. **Table 4** presents the available toxicity data for the identified COPCs for this TEE.

These toxicity values or effects concentrations are used in the Risk Characterization section of the TEE to derive quantitative risk estimates, where applicable. An important exception to this approach is Bunker C. No suitable ecotoxicity data are available for Bunker C, and therefore quantitative risk estimates are not derived for Bunker C. An alternative approach is used to estimate the impacts of exposure to

Bunker C in soil by terrestrial plants and soil dwelling invertebrates. This alternative approach is discussed in Section 4, Risk Characterization that follows.

Medium	СОРС	Toxicity Data	Source	Comment	
Surface Water	Pyrene	55 µg/L	EPA ECOSAR	Predicted 30-d chronic value, fish	
Soil	Arsenic	60 mg/kg	Efroymson, Will, and Suter 1997	Soil benchmark for earthworm toxicity, from multiple studies	
		10 mg/kg	Efroymson, Will, Suter, and Wooten 1997	Soil benchmark for phytotoxicity, from multiple studies	
	Lead	500 mg/kg	Efroymson, Will, and Suter 1997	Soil benchmark for earthworm toxicity, from multiple studies	
		50 mg/kg	Efroymson, Will, Suter, and Wooten 1997	Soil benchmark for phytotoxicity, from multiple studies	
	Oil as Bunker C	-	-	No terrestrial ecotoxicity data	
	1-methylnaphthalene	258 mg/kg	EPA ECOSAR	Predicted 14-d LC50, earthworm	
		-	Eisler 1987 (summary of multiple studies)	No Data on Phytotoxicity (PAH- induced phytotoxic effects are rare)	
	2-methylnaphthalene	258 mg/kg	EPA ECOSAR	Predicted 14-d LC50, earthworm	
		-	Eisler 1987 (summary of multiple studies)	No Data on Phytotoxicity (PAH- induced phytotoxic effects are rare)	
	Benzo(a)anthracene	116 mg/kg	EPA ECOSAR	Predicted 14-d LC50, earthworm	
		-	Eisler 1987 (summary of multiple studies)	No Data on Phytotoxicity (PAH- induced phytotoxic effects are rare)	
	Chrysene	116 mg/kg	EPA ECOSAR	Predicted 14-d LC50, earthworm	
		-	Eisler 1987 (summary of multiple studies)	No Data on Phytotoxicity (PAH- induced phytotoxic effects are rare)	
	Naphthalene	54 mg/kg	Environment Canada 1995 in CCME 2002	LC25, earthworm	
		3 mg/kg	Environment Canada 1995 in CCME 2002	25% reduction in seedling emergence, lettuce	
	Phenanthrene	207 mg/kg	EPA ECOSAR	Predicted 14-d LC50, earthworm	
		-	Eisler 1987 (summary of multiple studies)	No Data on Phytotoxicity (PAH- induced phytotoxic effects are rare)	

Table 4. Media-Specific Toxicity Data for Final COPCs

Section 4 Risk Characterization

Risk characterization integrates exposure and toxicity or effects information to estimate risks to representative ecological receptors. Several approaches can be used to integrate exposure and effects data, with selected approaches often dependent on the availability of specific types of data. For example, because ecotoxicity data are lacking for Bunker C in soil, the results of site-specific surveys or bioassays were determined to be useful for evaluating the potential impacts of exposure to Bunker C. For all other COPCs, the primary method of risk estimation used in this TEE is based on the hazard quotient approach, which is described below.

4.1 Risks Based on Direct Exposure

Risks based on direct exposure (direct contact and ingestion) to COPC-contaminated media are assessed using the hazard quotient (HQ) approach. This method of assessing risks is based on the ratio of an exposure concentration to an effects or toxicity-based concentration. The general equation follows:

HQ = <u>Exposure Concentration of COC</u> Effects Concentration of COC

For example, the maximum concentration of a COPC detected in surface soil (EPC) is compared to a COPC concentration in soil that is associated with low but significant likelihood of adverse effects (represented by a selected toxicity value, from **Table 4**). The latter is most appropriately a threshold concentration at which adverse effects begin to be observed, but also may be a higher concentration at which adverse effects are usually or always observed in more sensitive life stages.

HQs greater than 1.0 (i.e., where the exposure concentration exceeds the effects concentration) indicate significant potential for adverse effects. HQs less than 1.0 are considered insignificant and adverse effects are unexpected. Higher HQs are not necessarily indicative of more severe effects. Instead, where confidence in toxicity values is equal, higher HQs suggest a greater likelihood of adverse effects.

HQs are presented for all COPCs except Bunker C on **Table 5**. An alternative approach based on laboratory toxicity testing with a representative soil invertebrate (earthworm) and a representative terrestrial plant (lettuce) is used to assess the potential ecological impacts of exposure to Bunker C. A summary of the design and results of these tests, which were conducted in accordance with the project QAPP, is presented in Section 4.2. **Appendix A** (Soil Toxicity Evaluation) presents the detailed laboratory data and results associated with these tests.

А

Medium	COPC	EPC	Receptor	TV	HQ
SW	Pyrene	0.4	Fish	55	0.0073
	Arsenic	22	Earthworm	60	0.37
	Arsenic		Plant	10	2.2
	Lead	120	Earthworm	500	0.24
	Leau		Plant	50	2.4
	1-Methylnaphthalene	40	Earthworm	258	0.16
SOIL	2-Methylnaphthalene	60	Earthworm	259	0.23
	Benzo(a)anthracene	11	Earthworm	116	0.095
	Chrysene	15	Earthworm	116	0.13
	Naphthalene	7.4	Earthworm	54	0.14
	Naphulalelle	7.4	Plant	3	2.5
	Phenanthrene	63	Earthworm	207	0.30

Table 5. Hazard Quotients for Media-Specific COPCs (Excluding Bunker C)

Notes:

EPC - exposure point concentration (max detect), $\mu g/L$ SW, mg/kg soil. Receptor - only those for which TVs are available are shown.

TV - toxicity value (from Table 4, μ g/L SW, mg/kg soil).

HQ - hazard quotient (EPC/TV).

As shown on **Table 5**, ecological risks due to exposure to pyrene (the single surface water COPC) in surface water are insignificant, with the HQ being much lower than the 1.0 threshold (HQ=0.0073).

For soil COPCs other than Bunker C, HQs range from less than 1.0 (8 scenarios) to 2.5 (3 scenarios). The three scenarios associated with HQs greater than 1.0 are

- Terrestrial plants exposed to arsenic in soil (HQ=2.2)
- Terrestrial plants exposed to lead in soil (HQ=2.4)
- Terrestrial plants exposed to naphthalene in soil (HQ=2.5)

None of these HQs are considered indicative of significant site-related risks based on the following:

- The historical ASARCO smelter that operated at Ruston south of Vashon Island probably contributed to elevated concentrations of arsenic and lead in soil throughout the area. It is unlikely that the slightly elevated concentrations observed onsite are limited to the project area.
- As discussed previously, both arsenic and lead are not highly bioavailable in soil. The risk estimates calculated here are based on (1) toxicity data from laboratory (not natural or field) studies and, (2) maximum detected concentrations. It is likely that risk estimates based on site-wide average concentrations of arsenic and lead in soil would be much lower.
- The risk estimate for naphthalene in soil is based on the maximum detected concentration of naphthalene. Average concentrations would result in lower risk

А

estimates. Also, the soil sample from which this maximum detected concentration was measured (TP-7) was collected within the concentrated Bunker C area, at six feet below the ground surface. This depth is beyond the likely area of significant ecological exposure, and remediation of the concentrated Bunker C area would likely result in substantial reductions of associated COPCs above the six foot depth interval.

In summary, none of the conservative (based on maximum detected concentrations) risk estimates (HQs) for surface water or soil COPCs are expected to pose significant hazards to potentially exposed ecological receptors. This is not the case for Bunker C, where ecologically significant adverse effects can be expected where this mixture of contaminants is concentrated. Because ecotoxicity data are lacking for Bunker C, an alternative approach to the HQ method is required. The selected alternative approach is discussed below.

4.2 Risks Associated with Bunker C—Laboratory Tests

The approach used to evaluate potential impacts to ecological receptors from exposure to Bunker C in soil is based on laboratory toxicity tests in which earthworms (a representative soil invertebrate) and lettuce (a representative terrestrial plant) are exposed to various mixtures of contaminated and non-contaminated (background) soils collected from the site.

The purpose of these tests is to determine the toxicity of soils contaminated with Bunker C to soil-associated organisms, primarily soil invertebrates and terrestrial plants. The earthworm *Eisenia fetida* and lettuce (*Lactuca sativa*) are standard laboratory test species used for this purpose. **Appendix A** provides the details of the methods, results, and quality assurance (QA)/quality control (QC) data associated with these tests. A summary of the test methods and results follows.

4.2.1 Summary of Test Methods

Soil samples were collected from a highly contaminated (source) area of the site (Bunker C concentration 51,000 mg/kg) and from a background, non-contaminated area of the site. Exposure concentrations used in the tests included background soil (undiluted) along with dilutions of source area (contaminated) soil mixed with background soil. The diluted soils resulted in measured Bunker C concentrations of 18,000, 6,700, 2,800, 1,700, and 930 mg/kg. In addition, exposures included laboratory control soil.

Exposure duration was 14 days for both species, and test endpoints for the earthworm tests included 14 day survival. For lettuce, 14 day test endpoints included mean percent survival (based on seed germination and seedling survival) and mean biomass (mg) per surviving seedling. No effect concentrations (NOEC), low effect concentrations (LOEC), and median lethal concentrations to 50 percent of test organisms (LC50) were derived for earthworm survival and lettuce survival. NOEC,

LOEC, and inhibitory concentration to 50 percent of test organisms (IC50) were derived for the lettuce biomass endpoint.

In all cases, the results of the tests at various Bunker C concentrations are compared directly to those of background (uncontaminated site) soil. Results are not compared directly to control soil results, but control soil results are instead used to confirm that the test organisms are healthy and suitable for testing. Reference toxicity tests were also conducted to confirm the health of test organisms and their responses to known concentrations of previously tested toxic chemicals.

4.2.2 Summary of Test Results

4.2.2.1 Earthworm

Statistically significant results, based on comparisons to tests with exposures to background soils, were found only for earthworm survival at the highest exposure concentration of Bunker C (18,000 mg/kg). Mean percent survival at this exposure concentration was 26.7, while all other exposures resulted in mean percent survival values of 80.0 to 93.3. Laboratory control survival was 100 percent.

The highest exposure concentration associated with no significant effects was 6,700 mg/kg Bunker C, and this values serves as the NOEC. The lowest exposure concentration associated with significant adverse effects was 18,000 mg/kg Bunker C, and this value serves as the LOEC. From these results the LC50 (median lethal concentration to 50% of test organisms) was estimated to be 13,700 mg/kg. Worms appeared to be avoiding the soils at 6,700 and 18,000 mg/kg exposures, but the degree and ecological significance of these observations was not determined.

4.2.2.2 Lettuce

Based on seed germination and seedling survival endpoints, no toxicity was observed in lettuce tests during the 14 test duration. Mean percent survival ranged from 80.0 in the background soil to 98.3 in the 930 mg/kg Bunker C exposure. The NOEC was set at the highest test concentration, 18,000 mg/kg. The LOEC and estimated LC50 were both greater than 18,000 mg/kg Bunker C.

Mean biomass in surviving seedlings (based on weight, mg) was significantly reduced in exposure concentrations of 1,700 mg/kg Bunker C and higher. However, in all cases the mean biomass was within 20 percent of the biomass associated with background exposures. Mean biomass (mg) was 1.78 in the laboratory control exposure, 1.11 in the background soil exposure, and ranged from 0.87 to 0.96 in the test exposures with Bunker C. No clear pattern was observed between test concentration of Bunker C and mean biomass—the two highest biomass values for exposures with Bunker C were the 930 mg/kg and the 6,700 mg/kg exposures. Similar, but slightly lower biomass was associated with Bunker C exposures of 1,700, 2,800, and 18,000 mg/kg Bunker C.

4.3 Conclusions and Recommendations

The data summarized above and presented in detail in **Appendix A** indicate the following:

- Bunker C in soil is toxic to earthworms (based on survival endpoints) at 18,000 mg/kg (LOEC) but not at 6,700 mg/kg (NOEC)
- The estimated LC50 for earthworm survival in soil is estimated at 13,700 mg/kg

These data suggest that an appropriate soil cleanup value for Bunker C would be higher than 6,700 mg/kg but lower than 13,700 mg/kg. This conclusion is based on the assumption that 50 percent mortality is unacceptable (based on the earthworm LC50 of 13,700 mg/kg). Available data do not provide sufficient information to compute a clear threshold Bunker C concentration that would be associated with sublethal or chronic effects.

Ecology reviewed the toxicity testing results and requested calculation of LC05 and LC10 concentrations for both earthworms and lettuce. These calculations are presented in **Appendix B**.

Toxicity test results for lettuce reveal the following:

- At the highest Bunker C concentrations tested, seed germination and seedling survival were not affected.
- Mean seedling biomass was slightly reduced at all test concentrations (930 to 18,000 mg/kg), but in all cases the reduction in biomass was small (less than 20 percent) relative to the background soil tests.
- No clear pattern is noted between percent reduction in biomass and Bunker C concentration, suggesting that other confounding factors may be present.

These data suggest that exposures of terrestrial plants (with sensitivities similar to lettuce) to Bunker C concentrations of up to 18,000 mg/kg are unlikely to result in ecologically significant effects to terrestrial plants.

After consulting with Ecology it was agreed that the soil cleanup value for Bunker C be based on protection of apparently more sensitive soil invertebrates (represented by earthworm) instead of protection of terrestrial plants and the earthworm NOEC value of 6,700 mg/kg would be protective of soil organisms at the site.

The recommended soil cleanup value for Bunker C is 6,700 mg/kg, based on the results of the soil toxicity tests with earthworms.

Section 5 References

Avocet Consulting. 2003. Development of Freshwater Sediment Quality Values for Use in Washington State. Phase II Report: Development and Recommendation of SQVs for Freshwater Sediments in Washington State. Publication Number 03-09-088. September 2003.

CCME (Canadian Council of Ministers of the Environment). 2002. *Canadian Environmental Quality Criteria for Contaminated Sites.* Environmental Quality Guidelines Division. Water Quality Branch. Environment Canada. Ottawa, Canada.

CDM. 2005. *Phase II Site Assessment, Ellisport Creek Greenspace Project Site, Vashon Island, Washington.* December 23, 2005.

CDM. 2006. Supplemental Phase II Environmental Site Assessment, Ellisport Creek Greenspace Project Site, Vashon Island, Washington. December 21, 2006.

Washington State Department of Ecology. 1995. *Sediment Management Standards, Chapter 173-204 WAC*. Olympia, Washington. Amended December 1995.

Ecology. 2001a. *Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC* Washington State Department of Ecology Toxics Cleanup Program. Publication No. 94-06. Amended February 12, 2001.

ECOSAR (Ecological Structure Activity Relationships). 2006. U.S. EPA online program. Office of Pollution Prevention and Toxics (OPPT).

Efroymson, R.A., M.E. Will, and G.W. Suter II. 1997. *Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision.* Oak Ridge National Laboratory. Oak Ridge, Tennessee.

Eisler, R. 1987. "Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: a synoptic review." U.S. Fish Wildl. Serv. Biol. Rep. 85(1.11). 81 pp.

EPA (U.S. Environmental Protection Agency). 1991c. *Assessment and Control of Bioconcentratable Contaminants in Surface Waters*. Draft Document. EPA-600-XX-XX-XXX. Office of Water Enforcement and Permits. Washington, D.C. 20460.

EPA (U.S. Environmental Protection Agency). 2003. Region 5 Ecological Screening Levels, RCRA. August 22.

Fabacher, D.L. and P.C. Baumann. 1985. *Enlarged livers and hepatic microsomal mixed-function oxidase components in tumor-bearing brown bullheads from a chemically contaminated river.* Environ. Toxicol. Chem. 4:703-710.

Public Health – Seattle & King County, Environmental Health Division and Gregory L. Glass. 2000. *Vashon/Maury Island Soil Study, 1999-2000, Final Report.* July 2000.

Richardson, G.M. 1987. "Inventory of cleanup criteria and methods to select criteria." Unpublished report, Committee on Industrial Site Decommissioning, Industrial Programs Branch, Environment Canada, Ottawa, Ontario K1A 1G2. 46pp.

Stathham, C.N., M.J. Melancon, Jr., and J.J. Lech. 1976. "Bioconcentration of xenobiotics in trout bile: a proposed monitoring aid for some waterborne chemicals." Science 193:680-681.

Suter, G.W. II and C.L. Tsao. 1996. *Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision*. Oak Ridge, Tennessee: Oak Ridge National Laboratory.

USFWS (U.S. Fish and Wildlife Service). 1990. "Evaluating Soil Contamination." Biological Report 90(2). July.

Varanasi, U., and D.J. Gmur. 1980. *Metabolic activation and covalent binding of benzo(a)pyrene to deoxyribonucleic acid catalyzed by liver enzymes of marine fish.* Biochem. Pharmacol. 29:753-762.

Veith, G.D. and P. Kosian. 1982. *Estimating Bioconcentration Potential from Octonal/Water Partition Coefficients.* In: Physical Behavior of PCBs in the Great Lakes (MacKay, Paterson, Eisenreich, and Simmons, eds.). Ann Arbor, Michigan: Ann Arbor Science.

Distribution

4 Copies	King County Solid Waste Division Department of Natural Resources and Parks King Street Center 201 South Jackson Street, Suite 701 Seattle, Washington 98104-3855 Attention: Mr. James Neely
1 Сору	Department of Ecology Toxics Cleanup Program Policy and Technical Assistance Unit PO Box 47600 Olympia, Washington 98504-7600 Attention: Mr. Dave Sternberg
1 Сору	Department of Ecology Northwest Regional Office Toxics Cleanup Program 3190 160 th Avenue SE Bellevue, Washington 98008-5452 Attention: Ms. Jing Liu
1 Сору	ECOSS 8201 10 th Avenue South Seattle, Washington 98108-4449 Attention: Ms. Emery Bayley

Appendix A Soil Toxicity Evaluation

Appendix B Additional Statistical Evaluation of Terrestrial Toxicity Tests

Appendix A Soil Toxicity Evaluation

n

Soil Toxicity Evaluation

King County Ellisport Creek Greenspace Project Site, Vashon Island, WA

Final Report: September 6, 2007

Submitted to:

CDM

Bellevue, WA

Washington Laboratory 5009 Pacific Hwy East Suite 2 Tacoma, WA 98424

.

TABLE OF CONTENTS

Page

TAB	LEO	F CONTENTS	ii
SIGN	JATL	JRE PAGE i	v
1.0	INT	RODUCTION	1
2.0	Metl	nods	1
	2.1	Samples	
	2.2	Soil preparation	1
	2.3	Earthworm (Eisenia fetida) 14-day survival test	
	2.4	Early seedling (Lactuca sativa) 14-day survival and growth test	
3.0	Resu	lts	5
	3.1	Eisenia fetida	
	3.2	Lactuca sativa	5
4.0	QA/	QC	3
5.0	Refe	rences)

LIST OF TABLES

Table 1.	Summary of test conditions for the 14-day Eisenia fetida test.	3
Table 2.	Summary of test conditions for the 14-day germination test with Lactuca sativa	5
Table 3.	Survival data for the Eisenia fetida test	 6
Table 4.	Survival data for the Lactuca sativa test	0
Table 5.	Biomass data for the Lactuca sativa test	<i>7</i>
Table 6.	Reference toxicant test results	<i>י</i> 9

LIST OF APPENDICES

APPENDIX A - Summary of Results

APPENDIX B - Statistical Analyses and Laboratory Bench Sheets

APPENDIX C - Reference Toxicant Test Results

APPENDIX D - Analytical Results

APPENDIX E - Chain-of-Custody Form

SIGNATURE PAGE

obia

Project Manager

This report has been prepared based on data and or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

1.0 INTRODUCTION

Laboratory toxicity testing was conducted on a soil sample collected from a site on Vashon Island, Washington as part of a site-specific terrestrial ecological evaluation (TEE) under The Model Toxics Control Act (MTCA). The specific contaminant of concern for the bioassay component of the TEE was Bunker C oil. A soil sample was collected from an area with concentrated Bunker C and diluted with background soil in the laboratory to obtain a dilution series of Bunker C. Two soil toxicity tests were conducted: a 14-day earthworm survival test with the lumbricid earthworm *Eisenia fetida* and a 14-day early seedling growth test using the butter crunch lettuce seed *Lactuca sativa*. Testing was conducted between June 27 and July 11, 2007 at the Washington Laboratory of Nautilus Environmental located in Tacoma, Washington. Test procedures followed methods published by Washington State Department of Ecology for the Toxics Cleanup Program

2.0 METHODS

2.1 Samples

Soil sampling was conducted by CDM personnel on June 19, 2007. Samples were collected into 5-gallon buckets, labeled, packed in ice chests containing cubed ice, and delivered to the laboratory the day of collection.

Upon receipt at the Nautilus laboratory, the containers were opened and the contents verified against information provided on the chain-of-custody forms (COC). Sample temperatures were measured and recorded on the COC. Samples were stored at $4 \pm 1^{\circ}$ C in the dark during holding time.

2.2 Soil preparation

In order to confirm the concentration of Bunker C in the source soil, a subsample was collected from the sample container and sent to OnSite Environmental for analysis. The sample was thoroughly homogenized prior to subsampling. The results are provided in Appendix D (Analytical Results).

The plant and earthworm bioassays were conducted using a dilution series of contaminated soil mixed with background soil. The dilution series was based on analytical results of 51,000 mg/kg of Bunker C in the source soil. Soil dilutions were prepared by serially diluting the source soil with background soil following a 0.5x dilution series and consisted of 50, 25, 12.5, 6.25, and 3.13% source soil. A subsample of each concentration was collected and sent to On-Site Environmental for analysis of Bunker C. Analytical results are provided in Appendix D.

2.3 Earthworm (Eisenai fetida) 14-day survival test

Eisenia fetida (earthworms) were exposed to test soils for 14 days to determine the effects of site soil on survival. The tests were conducted according to methods presented in Washington State Department of Ecology (WDOE) Publication No. 96-327 (1996), and are summarized in Table 1.

E. fetida were obtained from BRR Worm Farm (Yelm, Washington). The organisms were transported in a box containing a plastic container with the earthworms in a mesh bag containing soil as substrate. Upon arrival at the laboratory, observations of animal condition were made. Upon receipt, the worms were placed in 30-L glass aquaria and kept moist. The tanks were held at $22\pm2^{\circ}$ C and monitored daily.

Test chambers consisted of one-liter glass jars with perforated lids to allow air exchange. The test chambers were randomized and placed in an environmental chamber maintained at 22 $\pm 2^{\circ}$ C under constant light. Three replicates were included per site with one additional replicate used for soil quality parameter measurements at points during the test period.

Each test chamber received 200 g dry weight of soil. The percent moisture of each test soil was calculated and used to determine the wet weight of sample to add to provide 200 g dry weight per test chamber. Sufficient volumes of DI water were added to hydrate the soils to an appropriate moisture level. Due to the differences in soil composition (texture, structure, and organic content), hydrating soils to a standard level can be problematic. One soil may appear very wet and even have standing water on the surface, while another may appear considerably drier after both being hydrated to the recommended hydration level of 35 to 45 percent of its dry weight. To address such differences, an alternative method is to use the artificial control soil hydrated to 45 percent of its dry weight as a standard. All sites were then hydrated to a level approximating the texture and visual appearance of the hydrated artificial soil control. A summary of hydration levels achieved in the test soils is provided in Appendix B with the laborataory bench sheets.

Washington Laboratory Nautilus Environmental Soils were allowed to equilibrate for 24 hours prior to addition of the test organisms. Ten worms were randomly added to each test chamber after confirmation that the correct number of test organisms was segregated and in healthy condition. The worms were not fed during the test period.

The temperature of the test chambers was monitored daily. Abnormal conditions or unusual animal behavior, if observed, were also noted at this time. At test termination, each replicate was emptied into a glass dish and gently sorted. Surviving worms were counted and recorded on a data sheet.

A soil control (negative control) and a 2-chloroacetamide reference toxicant test (positive control) were conducted in conjunction with the test soils to ensure that organisms were not impacted by stresses other than contamination in the test material.

	the in any Bischin Jetimi lest.
Test start date	6/27/2007
Test end date	7/11/2007
Test organism	Eisenia fetida
Test organism source	BRR Worm Farm, Yelm, WA
Organism age at test initiation	>2 months, fully clitillated
Feeding	No feeding during test
Test chamber	1 liter glass jar
Soil volume	200 g dry weight
Water source for soiil hydration	Deionized water (DI)
Target soil moisture content	35 to 45%
Control soil	70% sand, 20% Kaolin clay, 10% peat, 0.4%CaCO3 mixed 1:1
	with clean garden soil
Number of organisms/replicate	10
Number of replicates/concentration	3
Test temperature	22 ± 2°C
Illumination	Continuous
Test acceptability criterion for	
laboratory control (negative control)	≥90% survival organisms
Reference toxicant (positive control)	2-Chloroacetamide

Table 1. Summary of test conditions for the 14-day Eisenia fetida test.

2.4 Early seedling (Lactuca sativa) 14-day survival and growth test

Butter crunch lettuce seeds (*Lactuca sativa*) were used to determine plant viability in the test soils. The seedling germination and growth test was conducted in accordance with WDOE Publication No. 96-324 (1996). A summary of test conditions is outlined in Table 2.

L. sativa seeds were obtained from Territorial Seed Company (Cottage Grove, Oregon). The seeds were sorted by size and stored in a dry container at $4 \pm 1^{\circ}$ C until used for testing. Tests were conducted in an environmental chamber maintained at $22\pm 2^{\circ}$ C under a 16 hour light/8 hour dark lighting schedule. Samples were prepared as described in Section 2.2 above.

Test chambers consisted of 36-cell (6x6) seedling starter trays with drainage holes. Each individual pot in the tray was 9 centimeters (cm) by 2.5 cm wide and 6 cm deep. Clear plastic dome lids were used to cover the trays during the duration of the test to maintain adequate soil moisture and at least 50 percent relative humidity. Five replicates were included for each concentration with one additional replicate used for soil quality parameter measurements at points ruing the test period. Each replicate was randomized within a block so that replicates were evenly spaced throughout the trays under the light banks.

Each concentration of test soil was homogenized and 300 g was distributed to each test chamber according to the randomization scheme. Initial measurements of soil pH and conductivity were measured by mixing a subsample of the soils with an equal amount of DI, shaken thoroughly, and allowed to sit for 30 minutes. The pH and conductivity was then measured in the overlying water after the soil had settled. Twelve seeds were distributed into each test chamber and covered with a light layer of the soil. The seeds were then gently watered to field capacity using DI water in a spray bottle.

Air temperature and plant observations were recorded daily and light intensity was measured at the beginning, middle and end of the test. Soils were watered daily to maintain constant moisture. No nutrient amendments were added t the soils. Test chambers were rotatied during the test to ensure that all portions of each tray received similar amounts of light.

The test was terminated on day 14, by first counting the number of seedlings germinated in each test chamber. The above-ground portion of the seedlings from each replicate were then collected using a sharp blade and placed in tared weigh boats. Wet weights were recorded for each replicate before placing the pans in an oven for drying at 70°C for 24 hours. After 24 hours, the dried plants were placed in a desiccator, allowed to cool, and then weighed.

A soil control (negative control) and a boric acid reference toxicant test (positive control) were conducted in conjunction with the test soils to ensure that *L. sativa* was not impacted by stresses other than contamination in the test material.

6/27/2007
7/11/2007
Lactuca sativa (butter crunch lettuce)
Territorial Seed Company, Cottage Grove, OR
36-cell seedling trays with domed cover
200 g dry weight
Deionized water (DI)
70% sand, 20% Kaolin clay, 10% peat, 0.4% CaCO3 mixed 1:1
with clean garden soil
12
5
20 to 30°C
16 hourslight/8 hours dark
Mean control germination $\geq 75\%$
Boric acid

Table 2. Summary of test conditions for the 14-day germination test with Lactuca sativa

3.0 RESULTS

3.1 Eisenia fetida

Results of the toxicity test conducted using *E. fetida* are provided in Table 3. The table shows mean percent survival as well as results of the statistical analyses comparing response in the background soil and the concentrations of diluted source soil. Detailed results of the soil toxicity test, soil quality measurements recorded during the test, and the reference toxicant test results are provided in Appendices A, B, and C, respectively. Copies of the chain-of-custody form are in Appendix E.

Mean survival in 50 percent source soil, measuring 18,000 mg/kg Bunker C, was 26.7 percent and was the only concentration exhibiting toxicity relative to background soil results. The concentration of Bunker C estimated to be lethal to 50 percent of the organisms was 13,700 mg/kg Bunker C.

Observations during the test indicated that the earthworms were avoiding the soil at concentrations of 6700 and 18,000 mg/kg Bunker C.

Concentration of Source Soil (%)	Measured concentration of Bunker C (mg/kg)	Mean Percent Survival	Standard Deviation	NOEC	LOEC	LC50
0 /7 1				(m	g/kg Bunkei	: C)
0 (Laboratory Soil)	810 ¹	100	0.0	6700	18,000	13,700
0 (Background Soil)	ND	93.3	10.0	[10,700
3.13	930	90.0	11.5			
6.25	1700	80.0	17.3			
12.5	2800	86.7	15.3			
25	6700	80.0	17.3			
50	18,000	26.7	17.3 28.9			

 Table 3.
 Survival data for the Eisenia fetida test

¹ See the QA/QC section for a discussion of the investigation on the detectable level of Bunker C in the laboratory control soil.

3.2 Lactuca sativa

No toxicity was observed to germination and survival of *L. sativa* seedlings by any of the test soil concentrations during the 14-day exposure period. Results are shown in Table 4 and are also provided in Appendix A.

Results for growth are provided in Table 5 and show that biomass was reduced in all site soil concentrations compared to laboratory control data. The background soil used to dilute the source soil was high in gravel, and although not hindering germination it may not have provided as much nutrition for the growing seedlings as the laboratory control soil. The background soil was, therefore used for statistical comparisons. Biomass was significantly reduced (with 95% confidence) in concentrations of Bunker C at 1700 mg/kg and above. Biomass for all concentrations, however, was within 20 percent of biomass for the background

soil and the concentration estimated to inhibit growth in 50 percent of the organisms (IC50) was greater than the highest concentration tested.

Concentration of Source Soil (%)	Measured concentration of Bunker C (mg/kg)	Mean Percent Survival	Standard Deviation	NOEC	LOEC	LC50
••••				(m	g/kg Bunke	r C)
0 (Laboratory Soil)	810 ¹	98.3	3.7	18,000	>18,000	>18,000
0 (Background Soil)	ND	80.0	19.2			-0,000
3.13	930	98.3	3.7			
6.25	1700	93.3	3.7			
12.5	2800	88.3	12.6			
25	6700	90.0	10.9			
50	18,000	88.3	12.6			

Table 4. Survival data for the Lactuca sativa test

¹ See the QA/QC section for a discussion of the investigation on the detectable level of Bunker C in the laboratory control soil.

Table 5. Biomass data for the Lactuca sativa test

Concentration of Source Soil (%)	Measured concentration of Bunker C (mg/kg)	Mean Biomass per Surviving Seedling (mg)	Standard Deviation	NOEC	LOEC	IC50
	(6/8)			(mg	g/kg Bunke	r C)
0 (Laboratory Soil)	810 ¹	1.78	0.11	930	1700	>18,000
0 (Background Soil)	ND	1.11	0.07			
3.13	930	0.96	0.13			
6.25	1700	0.89	0.14			
12.5	2800	0.88	0.11			
25	6700	0.90	0.10			
50	18,000	0.87	0.09			

¹ See the QA/QC section for a discussion of the investigation on the detectable level of Bunker C in the laboratory control soil.

4.0 QA/QC

The *E. fetida* and *L. sativa* tests met acceptability criterion for control performance with greater than 90 percent mean control survival in both tests. The temperature in the lettuce seed test was below the established range of 20 to 30 °C for the method. The temperature, however, was within one degree of the required range and because all test chambers experienced the same temperatures it is unlikely that the test results were impacted by this deviation. A temperature chart for continuous monitoring of air temperature inside the test chamber is included in Appendix B with the laboratory bench sheets for the test. All other soil quality parameters remained within the specified ranges throughout the test period.

Analytical results for Bunker C in subsamples from the test soils submitted to OnSite Environmental reported 810 mg/kg Bunker C in the laboratory control soil. This value is higher than expected and an investigation was conducted. The laboratory control soil was comprised of a 50:50 mixture of artificial soil (70% sand, 20% Kaolin clay, 10% peat, 0.4% Calcium Carbonate) and garden soil purchased from a local garden store (Earthgro, packaged by Hyponex Corporation; regionally formulated from compost, forest products, and manure). Subsamples of the artificial soil and garden soil were sent to OnSite Environmental for analysis. Results (provided in Appendix D) indicated no Bunker C was detected in the artificial soil. However, 2200 mg/kg Bunker C was reported in the subsample of garden soil, which is clearly the source of contamination. Interpretation of the test results were not affected by the detectable levels of Bunker C in the garden soil because survival in the laboratory control was good and the background soil results were used for all statistical comparisons.

Results of reference toxicant tests conducted with the test organisms are provided in Table 6. Results for the tests conducted with *Eisenia fetida* fell within the acceptable range of mean \pm two standard deviations for historical data generated by this laboratory. Thus, these data indicate that the test organisms appeared to have been of an appropriate degree of sensitivity. Historical data is not available for the lettuce seed reference toxicant test.

						the second se
Species	Date Initiated			EC50	95% Confidence	Historical range (mean ± 2
	Inntated	Endpoint	Toxicant		-	(mean ± 2
E. fetida	6/27/2007	14d Survival	0.11		Interval	SD)
		14u Survival	2-chloroacetamide	28.0 mg/kg	24.8 - 31.6	01.0 00.1
L. sativa	6/27/2007	14d Survial	The second seco	- 0	24.0 - 31.0	21.0 - 39.4
1.0			Boric acid	>2000 mg/L	NA	NA
L. sativa	6/27/2007	14d Growth	Boric acid	φ.		INA
	the state of the s		bonc actu	>2000 mg/L	NA	NA
				the second s		1

Table 6. Reference toxicant test results.

5.0 **REFERENCES**

- American Society of Testing and Materials (ASTM). 1999. Standard guide for conducting terrestrial plant toxicity tests. ASTM designation E1963-98.
- American Society of Testing and Materials (ASTM). 1997. Standard guide for conducting laboratory soil toxicity or bioaccumulation tests with the lumbricid earthworm *Eisenia* fetida. ASTM designation E1676-97.
- American Society of Testing and Materials (ASTM). 1994. Standard practice for conducting early seedling growth tests. ASTM designation E1598-94.
- Tidepool Scientific Software. 2000-2003. CETIS Comprehensive Environmental Toxicity Information System Software, Version 1.6.3revE.
- Washington State Department of Ecology (WDOE). 1996. Earthworm bioassay protocol for soil toxicity screening. WDOE Environmental Investigations and Laboratory Services Program Publication No. 96-327.
- Washington State Department of Ecology (WDOE). 1996. Early seedling growth protocol for soil toxicity screening. WDOE Environmental Investigations and Laboratory Services Program Publication No. 96-324.

APPENDIX A – Summary of Results

.

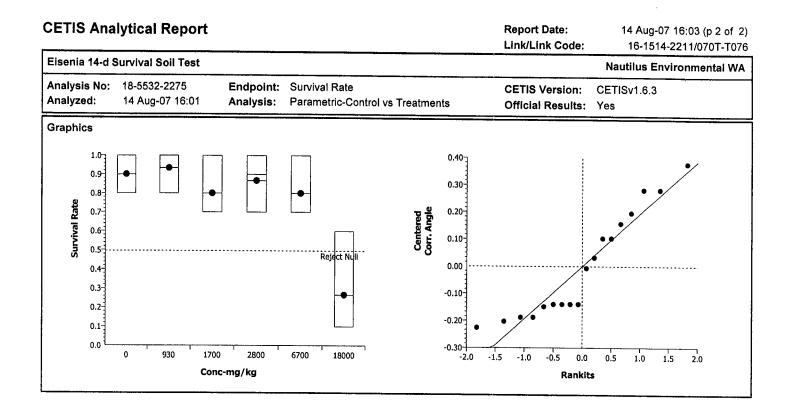
Site	Rep	# Alive	% Survival	Mean % Survival	St. Dev.
Laboratory	1	10	100		
Control	2	10	100	100	0.0
Control	3	10	100		
	1	9	90		
Background Soil	2	8	80	90.0	10.0
	3	10	100		10.0
3.13% - 930	1	8	80		
	2	10	100	93.3	11.5
mg/kb Bunker C 6.25% - 1700 mg/kg Bunker C	3	10	100		
6 25% 1700	1	10	100		
	2	7	70	80.0	17.3
mg/kg Bunker C	3	7	70		,,,,,
12.5% - 2800	1	7	70		
	2	10	100	86.7	15.3
ing/kg bunker c	3	9	90	00 93.3 00 00 80.0 0 0 86.7 0 86.7 0 0 86.7 0 0 86.7	
25% _ 6700 ma/ka	1	7	70		
	2	7	70	80.0	17.3
mg/kg bunker C 25% - 6700 mg/kg Bunker C	3	10	100		
50% - 18,000	1	6	60		
•	2	1	10	26.7	28.9
mg/kg Bunker C	3	1	10		20.0

Appendix Table A-1. *Eisenia. fetida* 14-Day Survival King County Ellisport Creek Project Test Initiated June 27, 2007

Appendix Table A-2: *Lactuca sativa* 14-day Survival and Growth King County Ellisport Creek Project Test Initiated June 27, 2007

			Sun	Survival				Growth			ſ
								17400			
Concontration		* A15.00	0/ C.T.F.		ર	Tare Weight	Total Weight	Total Seedling	Growth per	Mean Growth	St
		* Alive			uev.	(mg)	(mg)	Weight (mg)	Seedling (mg)	per Org (mg)	Dev.
	- (23	00L			1599.06	1620.95	21.89	1.82		
I aboratori Cantan	~	= :	1.18			1642.72	1663.35	20.63	1.88		
Lavualuity Control		12	100.0	98.3	3.7	1525.30	1547.84	22.54	1.88	1.78	0.11
	4 1	12	100.0			1588.83	1608.97	20.14	1.68		
	ç	12	100.0	a construction of the second		1603.87	1623.56	19.69	1.64		
	-	б	75.0			1653.39	1663.40	10.01	1 11		Τ
	2	φ :	66.7		-	1708.42	1717.10	8.68	1.08		
Dackground Soll	m ·	12	100.0	80.0	19.2	1559.79	1574.51	14.72	1.23		0.07
	4	12	100.0			1588.23	1601.40	13.17	1 10		
	<u>,</u>	<u> </u>	58.3			1614.29	1621.61	7.32	1.05		
	- 0	2	100.0			1621.52	1631.75	10.23	0.85		Γ
3.13% - 930 mg/kg	2 0	ч t	100.0		1 0	1645.88	1656.41	10.53	0.88		
Bunker C		⊻ t	0.001	40.3	3.7	1573.89	1587.32	13.43	1.12	0.96	0.12
	t v	75	0.001 7 7			1687.83	1700.77	12.94	1.08		
	, -		31.1			1680.18	1690.01	9.83	0.89		
	- (4	100.0			1603.32	1612.36	9.04	0.75		Γ
6.25% - 1700	40	= ;	- LB	د د د		1717.31	1729.38	12.07	1.10		
mg/kg Bunker C	° .	= ;	1.19	57.7 7	3.7	1620.72	1629.05	8.33	0.76	0.89	0.14
	t rc	- +	21.7 2			1666.79	1676.90	10.11	0.92		
	Ţ	- ;	31.7	Strategiese .		1661.96	1672.00	10.04	0.91		
	- ~	⊻ c	100.0			1719.95	1730.72	10.77	0.90		Γ
12.5% - 2800	10	n Ç	1.0.0			1577.11	1584.20	7.09	0.79		
mg/kg bunker C	<u>-</u> د	<u>v</u> ;	0.00		9.7	1580.67	1589.46	8.79	0.73	0.88	0.11
	t vo	- თ	75.0			1579.63	1590.53	10.90	0.99		
	F	11	017		T	12.0501	1030.30	8. <i>1</i> .2	0.97		
	. ~	: 6	1000			1000.90	1609.60	8.70	0.79		
52% - p/nn mg/kg		ić	0.00	, , ,		1000.24	1660.49	10.25	0.85		
Bunker C	<u>-</u> ر	2 c	00.00		8.01	1674.28	1684.19	9.91	0.99	06:0	0.10
	t u	υ (/5.0			1612.99	1620.55	7.56	0.84		
	, ,	7	0.001	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1671.06	1683.33	12.27	1.02		
	- ‹	= \$	91.7			1644.95	1655.16	10.21	0.93		Γ
50% - 18000 mg/kg	40	4	0.001	e di N		1698.47	1708.55	10.08	0.84		
Bunker C	. .	= ;		00.3	12.6	1779.34	1790.11	10.77	0.98	0.87	0.09
	t u	<u> </u>	21.7 20.7			1686.23	1695.53	9.30	0.85		
	,	。	00.7			1792.58	1798.53	5.95	0.74		

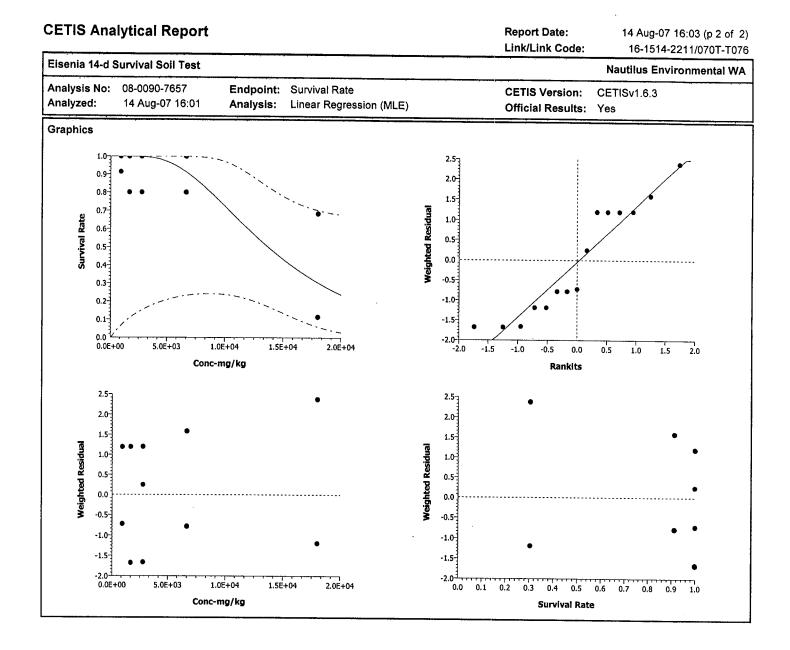
APPENDIX B – Statistical Analyses and Laboratory Bench Sheets


Eisenia fetida (earthworm)

CETIS Su	mmary Rep	ort						port Date:			:03 (p 1 of
Eisenia 14-d	Survival Soil To	est	· · · · · · · · · · · · · · · · · · ·				Lin	k/Link Co			11/070T-T07
Start Date:	: 07-5416-1662 27 Jun-07 16: : 11 Jul-07 13:0 13d 21h	00	Test Type: Protocol: Species: Source:	Survival WDOE 96-32 Eisenia fetida	7			uent: ne:	aren Tobiaso		nmental W
	04-2064-9698 : 19 Jun-07 10:: : 19 Jun-07 15: 8d 5h	30	Code: Material: Source: Station:	420649698 Bunker C CDM	· · · · · · · · · · · · · · · · · · ·				amper Dress ing County E		ek
Comparison	Summary	<u></u>									
Analysis No	Endpoint			NOEL	LOEL	TOEL	PMSD	Method			
18-5532-2275	Survival Rate			6700	18000	11000	44.9%		s Multiple Co	mnarison T	oct
Point Estima	te Summarv		·····								
Analysis No	Endpoint			Effect-%	Conc-mg/ł	< 95% LCL	95% UCL	Method			
08-0090-7657	Survival Rate			25 50	9620 13700	3740 8960	12700 18100	Linear R	egression (M	LE)	
Survival Rate	Summary										
Conc-mg/kg	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Ctal Davi	01/0/	
0	Backgtround S	3	0.9	0.863	0.937	0.8	1	0.0183	O.1	CV%	Diff%
930		3	0.933	0.89	0.976	0.8	1	0.0211	0.1	11.1% 12.4%	0.0%
1700		3	0.8	0.735	0.865	0.7	1	0.0211	0.113	21.7%	-3.7%
2800		3	0.867	0.81	0.924	0.7	1	0.0279	0.173	17.6%	11.1%
6700		3	0.8	0.735	0.865	0.7	1	0.0275	0.173	21.7%	3.7%
18000		3	0.267	0.159	0.374	0.1	0.6	0.0510	0.289	21.7% 108.0%	11.1% 70.4%
Survival Rate	Detail				<u></u>				0.200	100.078	70.476
Conc-mg/kg	Control Type	Rep 1	Rep 2	Rep 3							
0	Backgtround S	0.9	0.8	1		- u.					
930		0.8	1	1							
1700		1	0.7	0.7							
2800		0.7	1	0.9							
6700		0.7	0.7	1							
		0.6		0.1							

Analyst: ICT QA: KT

CETIS And	alytical	Repo	ort						port Date: hk/Link Code			6:03 (p 1 of 2
Eisenia 14-d	Survival	Soll Te	st			····					· · · · · · · · · · · · · · · · · · ·	nmental WA
Analysis No: Analyzed:		2-2275 -07 16:0	01	•	rvival Rate rametric-Co	ontrol vs Tre	atments		TIS Version	: CETIS		
Data Transfo			Zeta	Alt Hyp	Monte Ca	rio	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corr	ected)			C > T	Not Run		6700	18000	11000	0.0149	44.9%	
Dunnett's Mu	Itiple Co	mpariso	on Tes	1								
Control	vs C	onc-mg	j/kg	Test Stat	Critical	MSD	P-Value	Decision	n(5%)			
Backgtround S	Soil 9	30		-0.287	2.5	0.474	0.9030		nificant Effect		······································	
	1	700		0.657	2.5	0.474	0.5790		nificant Effect			
	28	300		0.204	2.5	0.474	0.7670		nificant Effect			
	6	700		0.657	2.5	0.474	0.5790		ificant Effect			
	18	3000*		3.94	2.5	0.474	0.0040	Significa				
ANOVA Table)											
Source	S	um Squ	ares	Mean Square	DF	F Stat	P-Value	Decisior	n(5%)			
Between	1.	297011		0.2594023	5	4.81	0.0121	Significa				<u> </u>
Error	0.	647045	1	0.0539204	12			oigiinioai	IL ENGOL			
Total	1.	944057		0.3133227	17							
ANOVA Assu	mptions										<u></u>	
Attribute	Те	est			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	B	artlett Ed	quality	of Variance	1.2	15.1	0.9450	Equal Va				
Distribution		hapiro-V			0.886		0.0332		istribution			
Survival Rate	Summar	у										
Conc-mg/kg	Control	Туре	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Backgtro	und S	3	0.9	0.862	0.938	0.8	1	0.0186	0.1	11.1%	0.0%
930			3	0.933	0.889	0.977	0.8	1	0.0214	0.115	12.4%	-3.7%
1700			3	0.8	0.734	0.866	0.7	1	0.0322	0.173	21.7%	
2800			3	0.867	0.809	0.925	0.7	1	0.0284	0.173		11.1%
6700			3	0.8	0.734	0.866	0.7	1	0.0204		17.6%	3.7%
18000			3	0.267	0.157	0.376	0.1	' 0.6	0.0536	0.173 0.289	21.7% 108.0%	11.1% 70.4%
Angular (Corr	ected) Tr	ansform	ned S	ummarv			<u> </u>					7 07 /0
Conc-mg/kg	-			•	95% LCL	95% UCL	Min	Max	Ctol Eur		0	-
0	Backgtro			1.26	1.2	1.31	1.11	1.41	Std Err 0.0283	Std Dev	CV%	Diff%
930	0		3	1.31	1.24	1.38	1.11	1.41		0.153	12.1%	0.0%
1700			3	1.13	1.04	1.38			0.0327	0.176	13.4%	-4.32%
2800			3	1.22	1.14		0.991	1.41	0.0451	0.243	21.5%	9.92%
6700			3	1.13	1.14	1.3	0.991	1.41	0.0394	0.212	17.4%	3.08%
18000			3	0.51		1.22	0.991	1.41	0.0451	0.243	21.5%	9.92%
			J	0.01	0.386	0.634	0.322	0.886	0.0605	0.326	63.9%	59.4%


Analyst:_____ QA:__KT

Analyst: CI QA: CI

	nalytical Repo	ert						rt Date: Link Code:		Aug-07 16:0 3-1514-2211	
Eisenia 14-	d Survival Soil Tes	t							Nautil	us Environ	mental W/
Analysis No				vival Rate			CETI	S Version:	CETISv	1.6.3	
Analyzed:	14 Aug-07 16:0	1 Anal	ysis: Line	ear Regress	ion (MLE)	x	Offic	ial Results:	Yes		
Linear Regi	ression Options					_					
Model Fund	tion		Threshold	d Option	Threshold	Optimized	d Pooled	Het Corr	Weighte	d	
Log-Normal	[NED=A+B*log(X)]		Control Th	reshold	0.1	Yes	No	No	Yes		
Regression	Summary										
lters Ll	. AICc	Mu	Sigma	G Stat	Chi-Sq	Critical	P-Value	Decision(5%)		
10 -3	2.7 70.4	-2.99	0.23	0.42	19	22.4	0.1220	Non-Signi		erogeneity	
Point Estim	ates										
Effect-%	Conc-mg/k 95%	LCL 95%	UCL								
25	9620 3740	1270	0								
50	13700 8960	1810	0								
Regression	Parameters	<u></u>		<u> </u>							
Parameter	Estimate	Std Error	95% LCL	95% UCL	t Stat	P-Value	Decision(5%)			
Threshold	0.125	0.0305	0.0647	0.184	4.08	0.0013		Parameter			
Slope	4.35	1.44	1.53	7.18	3.03	0.0097	-	Parameter			
Intercept	-13	6.01	-24.8	-1.25	-2.17	0.0493	-	Parameter			
Residual A	nalvsis										 .
Attribute	Method			Test Stat	Critical	P-Value	Decision(5%)			
Variances		uality of Va	iance	0.716	9.49	0.9490	Equal Var			•••••••••••••••••••••••••••••••••••••••	
Distribution		ilk Normalit		0.883		0.0521	Normal Di				
Survival Ra	te Summary			····	Calcu	lated Varia	te(A/B)				<u></u>
	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	- A	в
0	Backgtround Soil	3	0.9	0.8	1	0.0183	0.1	11.1%	0.0%	27	30
930		3	0.933	0.8	1	0.0211	0.115	12.4%	-3.7%	28	30
1700		3	0.8	0.7	1	0.0316	0.173	21.7%	11.1%	24	30
2800		3	0.867	0.7	1	0.0279	0.153	17.6%	3.7%	26	30
6700		3	0.8	0.7	1	0.0316	0.173	21.7%	11.1%	24	30
18000		3	0.267	0.1	0.6	0.0527	0.289	108.0%	70.4%	8	30
Survival Ra	ate Detail										
Conc-mg/k	Control Type	Rep 1	Rep 2	Rep 3							
0	Backgtround Soil	0.9	0.8	1							
930	-	0.8	1	1							
1700		1	0.7	0.7							
2800		0.7	1	0.9							
6700		0.7	0.7	1							
		0.6	0.1	0.1							
18000											

Analyst: KT QA: KT

Analyst:_____ QA:__KT

e Projertin. CDM e Starr Bate Time. E Starri A St				Enviro	nmental Ç Nautih	Environmental Quality Results - 14-Day Soil Nautilus Environmental	- 14-Day Soi) Ital				
End Date/Time: E ⁻⁴ 7/(4/67) End Date/Time: E ⁻⁴ 7/(4/67) and bate/Time: E ⁻⁴ 7/(4/67) Solution initial initinitial inininitial ininitial initial initial initial initial init	Client' Project ID: <u>CDN</u> Site ID: <u>Sburce Soi</u>	5						Organism Start Date	Tested: <u>Z</u> ¢S. Time: 6-27-	enia fe	Fida
TerryTetrTetrMaturePH (arits)Conductive (thrm - arits) $C(C)$ Initial $minits$ $minits$ $minits$ minits $2D, 6$ wu $2D, 6$ wu wu $\gamma 1, 5$ wu 2 $ 1, 8$ $minits$ minits $\gamma 1, 5$ wu 2 $ 1, 6$ $ 1, 6$ $ 1, 6$ $\psi 1, 5$ wu 2 2 $ 1, 6$ $ 1, 6$ $\psi 1, 6$ 2 2 2 2 2 $\psi 1, 6$ 2 2 2 2 2 $\psi 1, 2$ $ 6$ 2 2 2 2 $2D, 4$ 10 2 2 $2D, 4$ 10 2 2 $2D, 4$ 10 2 $2D, 4$ 2 2 $2D, 4$ 2 2 $2D, 4$ 2 </td <td>Test #: 0706-70</td> <td>910</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>End Date/</td> <td>lime: 6^w 7</td> <td>2</td> <td>Zou</td>	Test #: 0706-70	910						End Date/	lime: 6 ^w 7	2	Zou
Z0: 6 WT CON-LL 1 18 $\psi 9.5$ wur 2 19 2 $\psi 9.5$ Wur 2 19 2 $\psi 9.5$ Wur 2 10 2 10 $\psi 9.5$ Wr CON-R 1 15 2 $\psi 9.5$ $\psi 9.5$ 3 10 9 9 $\psi 9.7$ $\psi 9.7$ 3 3 3 16 $\psi 9.7$ $\psi 9.7$ $z = 1.5$ $z = 1.6$ $\psi 9.7$ $\psi 9.7$ $\psi 9.7$ $\psi 9.7$ $z = 2.5$ $z = 2.6$ $\psi 9.7$ $\psi 9.7$ $\psi 9.7$ $z = 2.64$ M_M M_M M_M M_M M_M M_M $z = 2.64$ M_M <t< td=""><td>Temp (°C)</td><td>Tech nitials</td><td>Message and the second second</td><td></td><td>Container</td><td>% Moist initial</td><td>ini fa</td><td>(units) final</td><td>Conductivity (u initial</td><td></td><td>INWA</td></t<>	Temp (°C)	Tech nitials	Message and the second		Container	% Moist initial	ini fa	(units) final	Conductivity (u initial		INWA
$*13.5$ wr $*19.5$ W $*19.5$ V $*19.5$ V $*19.5$ V $*19.5$ V $*19.5$ V $*19.5$ V $*19.2$ V 20.4 K_5 20.5 K_5 20.5 K_5 20.5 K_5 K_5 K_5	20.6	27			8						
#I9.5 MM = 10 #19.6 R - 10 #19.6 R - - 15 #19.6 R - - 15 #19.5 R - - 15 #19.5 R - - - - #19.5 R - - - - #19.2 R - - - - #19.2 R - - - - - 20.4 MM - - - - - - - 20.4 MM - - - - - - - 20.4 MM - - - - - - -	419.5	5		7	6						
* 19.6 \mathfrak{R} $\mathfrak{CoN-R}$ 1 15 * 13.3 \mathfrak{L} $\mathfrak{CoN-R}$ 1 15 * 13.3 \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} * 13.3 \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} * 13.2 \mathfrak{L}	* 19.5	W		3	0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*19.6	ಕ	CON-R		15						
$*$ (9.1 lec 3.13 1 8 $*$ (9.3 \mathcal{C} 3.13 1 8 $*$ (9.3 \mathcal{C} 3.13 1 8 $*$ (9.2 \mathcal{C} 3.13 1 8 $*$ (9.2 \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} 20.4 \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} <td>*/9.3</td> <td>4</td> <td></td> <td>2</td> <td>ഗ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	* /9.3	4		2	ഗ						
* [9,5] 15 15 3.13 1 8 * [9,2] 16 20;4 $\pi 5$ 44 20.4 $\pi 5$ 44 * [9,2] 16 3 3 3 3 3 3 3 20;4 $\pi 5$ $(e/25)$ 1 1 10 10 10 20;4 $\pi 5$ $(e/25)$ 1 1 10 10 10 20;4 $\pi 5$ $(e/25)$ 1 9 10 10 10 20;4 $\pi 5$ 12 2 2 2 2 2 2 2 20;4 $\pi 5$ 12 2	* [9. [ຽ		3	9(Þ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* 19,5	5	3.13	1	8		/				
$*(1.2 \ 1c)$ $1c)$ 3 <td>* 19.2</td> <td>4</td> <td></td> <td>2</td> <td>Ч</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td>	* 19.2	4		2	Ч		2				
20.4 res (e.75 1 1 20.6 res 2 2 20.4 MM 3 7 20.4 MM 3 7 20.4 MM 3 7 20.1 (tb) 1 9 20.1 (tb) 1 20.1 1 9 20.2 1 9 20.3 10 2	× 19.2	~		3	З						
20.6 1cs 20.4 MM 12.5 1 9 20.0 KS 20.0	20.4	5	(°,25	1	1						$\left \right $
Zo 4 MM 3 7 3 Io.1 (15) 12.5 1 9 Io.1 (15) 1 9	20.6	25		5	2	000					
W.V. (15) 1 9 2 20.0 105 1 9 1 20.0 105 2 1 20.0 105 2 1	20.4	1M		3	-	λ					
20.0 its 20.	1.01	5	12.5	1	6		1. 		;		W.An
1,18,7 http://www.com/com/com/com/com/com/com/com/com/com/	20.0	\$		2	17						
	14 520.7 m	~		m m	20						

.∽£j

* Improture for low- is corrective action \$ 07-012

P 10f 2

Hewerms are avoiding 50% soil, climbing up on Sides of jaus Jer/ 2 foz d
 Image: Machington Laboratory - 5009 Pacific Hwy. E., Suite 2. Tacoma, WA 98424.
 final 5 ତ୍ର ى Γ Survival Organism Tested: EISENIG Fefida initial Start Date/Time: (v - 7) - b T (b c DEnd Date/Time: $7/t_1/u_7 / 3d O$ 10 10 10 10 2 2 10 2 2 2 10 10 10 10 Conductivity (ahom-cm final initial pH (units) initial final Environmental Quality Results - 14-Day Soil final Nautilus Environmental Ċ, 0 % Maisture initial Container 7 C \sim 7 5 Rep. 2 ŝ 3 2 2 ~ 2 m angleg/ J Conc. ø 25 200 Source Soil Tech Initials Test #: 0706 - To76 Client/ Project ID: CDN Temp (°C) 2 J.C. * Final Review/Date:____ QA Review/Date: Site ID: Test Day 0 2 10 Ť ĉ 4 ŝ 9 ø 6 11 14 5 2 13

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424

Client: <u>CDM</u> Sample ID. <u>Source Soil</u> Test No: <u>070(0-T07(0</u>) Log-In#:

Soil Weights

Raw Data Sheet Soil Data 14-Day Soil Toxicity Test

Start Date & Time: Stop Date & Time: Test Species:

Final

1600 Sisenia

Site	Pan woight	Initial (wet)	Time I (down)		7
Control-L	1.61509	26,10300	Final (dry) 16,256 ≯	$\frac{MF}{(1)^2}$	*16.3512515
Con-R	1.64600	26.95047	24,12969	66.2	
3,13	1.62885	27.27804	24.7994		1824.80341
6.25	1.56073	26.37226	24.37080	8.8	1
12.5	1.56631	26.64721	23.70238	(3.3	
25	1.59514	26.06972	22,84595	15.2	
50	1. 61614	27,60060	24.74877	12.3]
Tech Initials:	me	mi	AS]

MF = (I-F)/[A-(I-F)]*100

MF= Moisture fraction of bulk soil (in %) I= Initial wet weight of sample + crucible (in grams) F=Final dry weight of sample + crucible (in grams) A= Initial aliquot weight (in grams)

pH/ Conductivity

Site	pH (5 min)	Cond (5min)	pH (30 min)	Cond (30 min
Control-L	7.22	37/	710	299
Control-R	6.25	168	6.28	180
3,13	6.39	101	6.32	106
6.25	6.54	77	6.52	80
12:5	4.30	127	6.23	133
25	6.17	50	6.14	150
50	5.99	39	5,97	132
Tech Initials:		m		

To measure pH/Conductivity make a slurry of soil and DI in a 1:1 ratio. Put on stir plate for 5 minutes and record reading. Allow slurry to settle for 30 minutes and record reading

Nautilus Environmental Soil Hydration Calculation

6/27/07 Day 0

Soil Weights

CDM Test # 0706-TOT6

Ļ.

%	Pan wt.	Initial (wet)	Initial minus Pan wt	Final (dry)	Final minus Pan wt.	% Hydration
Con-Rokg	0		25	0	21.6	15.74074074
3.13	0		25	0	23.0	8.695652174
6.25	0		25	0	22.2	12.61261261
12.5	0		25	0	22	13.63636364
25	0		25	0	21.5	
50	0		25	0	21.6	15.74074074
_7	· 0		0	0	0	0
8	0		0	0	0	0
8	0		0	0	0	0
10	0		0	0	0	0

Control soil hydration = 35%

() adjust soils to 25-45 % Hydration bkg - add 230g to each jar 3.13 - add 216 g 6.25 add 2249 12.5 add 2269 25 add 2329 50 add 230'g

(anaot bring soils above the % hydration they are already at. Soils are at their water holding Capacity already.

CDM Final % moisture

Nautilus Environmental

Soil Hydration Calculation

%	Pan wt.	Initial (wet)	Initial minus Pan wt	Final (dry)	Final minus Pan wt.	% Hydration
con-L	1.61509	26.103	24.48791	16.35125	14.73616	66.17565227
con-R	1.646	26.95047	25.30447	24.62969	22.98369	10.09750828
3.13	1.62885	27.27804	25.64919	24.80341	23.17456	10.67821784
6.25	1.56073	26.37226	24.81153	24.3708	22.81007	8.774457948
12.5	1.56631	26.64721	25.0809	23.70238	22.13607	13.30330994
25	1.59514	26.06972	24.47458	22.84595	21.25081	15.1701041
50	1.61614	27.6006	25.98446	24.74877	23.13263	12.32817021
0	0		0	0	0	0
0	0		0	0	0	0
0	0		0	0	0	0

Soil Weights

14-Day Soil Observations Nautilus Environmental

Client:	CDM		
Project ID:	Kins	Com	Ellisport CK
Test Date:	6/27/07	1	/
Test Org: Ei	senia fetida		

Date	Cont. #	Observations	Tech.
07/02/07	Surcon-L	counted 10 animals	NH
07/02/07	Sur 12.5 Sur 50	consted & animale	SH
07/02/07	Sur 12.5	counted 7 animals	St.
07/02/07	Sur 50	counted 8 animals - 5 possibly dead.	M
07/02/07		Con- L soils all looked very dry - watered w/ DI. Client soils very wat - not watered No worms climbing out - most at bottom of	NH
		w/ D.I. Client soils very wat - not water	
		No worms climbing out - most at bottom of	
		dead worm do windowing (might be nove than one, an't to	
1/3/07	9-14	dead worm, do composing (might be nore than one, an the	105 I
	11,12,7	dead worm, do win posing (might be now than one, can't the) dead + decomposing worm visible the totom of container	125
¥	13.71	Sweral dead + decomposiona Worms Visible Mirorigh	ies .
		bottom - sides of confairler	
7607	8, Sur 50	had worth vinkle Hirangle side a far he worth crawling on top of substrak	1.05
7/7/01	8	Weborn crawling on the top surface of substrak Survey ded dead + decomparing worms visible through	105
		Several ded dead + decomposing worms visible Mideigh	120
		bittom + cides	
7/10/07	9,14	Queral dead + decomposing worms visible through sides Dead room visible through bottom	res
	CONR 20	Dead soorm visible through 60ttom	
		<u> </u>	
	+		
			1
	1		1
			1
			1
		1	- <u></u>

QA: 4

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424

Client:	CDM
Sample ID.	Se Source Soil
Test No:	0704-7076
Log-In#:	

Raw Data Sheet Soil Data 14-Day Soil Toxicity Test

Start Date & Time: Stop Date & Time: Test Species:

Initial

		Soil Weights	;	LY
		(ب)		
Site	Pan weight	Initial (wet)	Final (dry)	MF
CON-L		25	21.6	35%
CON-R		25	m 23.021.6	15.7%
3.13		25	~ 22.2 230	8.69%
6.25		25	~ 22.2.2.2	12.61%
12.5		25	~ 2+.5 22.0	13.63%
25		25	21.5	16.28%
50		25	21.6	15.74%
Tech Initials:		ML		

MF = (I-F)/[A-(I-F)]*100

MF= Moisture fraction of bulk soil (in %) I= Initial wet weight of sample + crucible (in grams) F=Final dry weight of sample + crucible (in grams) A= Initial aliquot weight (in grams)

pH/ Conductivity

Site	pH (5 min)	Cond (5min)	pH (30 min)	Cond (30 min
CON-L	6.98	8- 504	6.94	585
CON-R	6.95	34.8	7,09	13.3
3.13	7.28	20,9	7.06	42.8
6.25	7.11	19.2	6.97	33.6
12.5	7.12	23.5	6.91	25.7
25	6.92	18.6	6.91	19.1
50	6.61	56.2	6.55	54.1
Tech Initials:		<u> </u>		

To measure pH/Conductivity make a slurry of soil and DI in a 1:1 ratio. Put on stir plate for 5 minutes and record reading. Allow slurry to settle for 30 minutes and record reading

Lactuca sativa (butter crunch lettuce)

CETIS Sur	nmary Repo	ort						eport Date: nk/Link Cod			5:53 (p 1 of 2 98/0706-T075
Early Seedlin	g Growth										nmental WA
Start Date:	09-1073-7649 27 Jun-07 16:4 11 Jul-07 16:4 14d Oh		Test Type: Protocol: Species: Source:	Survival-Grow WDOE 96-324 Lactuca sativa Carolina Biolo	4 1	,	Di Bi	nalyst: Ká iluent: rine: ge:	aren Tobiaso	n	
•	04-2064-9698 19 Jun-07 10:3 : 19 Jun-07 15:1 8d 6h		Code: Material: Source: Station:	420649698 Bunker C CDM					amper Dress ng County E		ek
Comparison	Summary				<u> </u>	<u> </u>					
Analysis No 04-7612-5129 10-5129-2786 12-0231-8126	Endpoint Mean Dry Bion Mean Dry Wei Survival Rate	-	9	930	LOEL > 18000 1700 > 18000	TOEL N/A 1260 N/A	PMSD 27.5% 14.6% 24.4%	Dunnett's	s Multiple Co s Multiple Co s Multiple Co	mparison 1	ſest
Point Estimat	e Summary				-						
Analysis No 17-6844-1402	Endpoint Mean Dry Wei	ght-mg			Conc-mg/l > 18000 > 18000	<mark>k 95% LCL</mark> N/A N/A	95% UC N/A N/A		terpolation (I	CPIN)	
Mean Dry Bio	mass-mg Sumr	nary		<u></u>	·····						
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	Diff%
0	Backgtround S	5	0.898	0.802	0.995	0.61	1.23	0.047	0.258	28.7%	0.0%
930		5	0.949	0.898	1	0.819	1.12	0.0253	0.139	14.6%	-5.68%
1700		5	0.827	0.783	0.87	0.694	1.01	0.0215	0.118	14.2%	8.0%
2800		5	0.771	0.721	0.821	0.591	0.908	0.0243	0.133	17.2%	14.2%
6700 18000		5	0.811	0.756	0.867	0.63	1.02	0.0269	0.147	18.2%	9.67%
	alht an a Commun	5	0.772	0.712	0.832	0.496	0.898	0.0293	0.16	20.8%	14.1%
	ght-mg Summa Control Type	ry Count	Mean	95% LCL	05% 1101	85 1					
0	Backgtround S	5	1.11	1.09	95% UCL	Min 1.05	Max	Std Err	Std Dev	CV%	Diff%
930	Duongtiouna O	5	0.964	0.918	1.01	0.852	1.23 1.12	0.0124 0.0227	0.068	6.1%	0.0%
1700		5	0.888	0.835	0.941	0.753	1.12	0.0227	0.125 0.142	12.9% 16.0%	13.4%
2800		5	0.876	0.833	0.918	0.732	0.991	0.0205	0.142	10.0% 12.9%	20.3%
6700		5	0.9	0.862	0.937	0.791	1.02	0.0205	0.101	12.9%	21.4% 19.2%
18000		5	0.867	0.834	0.901	0.744	0.979	0.0165	0.0904	10.4%	22.1%
Survival Rate	Summary									10.170	22.170
Conc-mg/kg	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	Diff%
0	Backgtround S	5	0.8	0.728	0.872	0.583	1	0.035	0.192	24.0%	0.0%
930		5	0.983	0.969	0.997	0.917	1	0.0068	0.0373	3.79%	-22.9%
1700		5	0.933	0.919	0.947	0.917	1	0.0068	0.0373	3.99%	-16.7%
2800		5	0.883	0.836	0.931	0.75	1	0.0231	0.126	14.3%	-10.4%
6700		5	0.9	0.859	0.941	0.75	1	0.0198	0.109	12.1%	-12.5%
18000		5	0.883	0.836	0.931	0.667	1	0.0231	0.126	14.3%	-10.4%

Analyst: ICT QA: KT

CETIS Summary Report

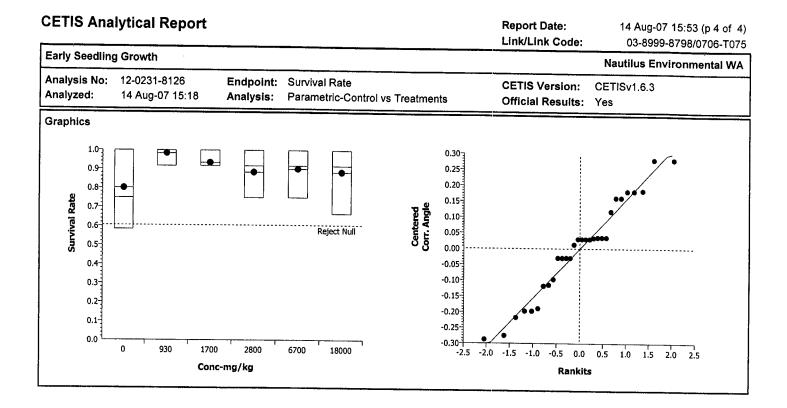
r

Report Date: Link/Link Code:

								00-0000-07 00/07 00-1075
Early Seedlin	ng Growth							Nautilus Environmental WA
Mean Dry Bio	omass-mg Detai	1						
Conc-mg/kg	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Backgtround S	0.834	0.723	1.23	1.1	0.61		
930		0.852	0.878	1.12	1.08	0.819		
1700		0.753	1.01	0.694	0.842	0.837		
2800		0.898	0.591	0.732	0.908	0.727		
6700		0.725	0.854	0.826	0.63	1.02		
18000		0.851	0.84	0.898	0.775	0.496		
Mean Dry We	ight-mg Detail	• • • • • • • • • • • • • • • • • • • •						
Conc-mg/kg	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Backgtround S	1.11	1.08	1.23	1.1	1.05		
930		0.852	0.878	1.12	1.08	0.894		
1700		0.753	1.1	0.757	0.919	0.913		
2800		0.898	0.788	0.732	0.991	0.969		
6700		0.791	0.854	0.991	0.84	1.02		
18000		0.928	0.84	0.979	0.845	0.744		
Survival Rate	Detail					•	······································	
Conc-mg/kg	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
0	Backgtround S	0.75	0.667	1	1	0.583		
930		1	1	1	1	0.917		
1700		1	0.917	0.917	0.917	0.917		
2800		1	0.75	1	0.917	0.75		
6700		0.917	1	0.833	0.75	1		
18000		0.917	1	0.917	0.917	0.667		

Analyst:__KT__QA:__KT__

CETIS Analy	tical Report						port Date: k/Link Code:			53 (p 1 of 4 8/0706-T07
Early Seedling (Growth									nmental WA
	4 Aug-07 15:52		ean Dry We arametric-Co		atments		TIS Version: icial Results:	CETIS		<u> </u>
Data Transform	Ze		Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransformed		C > T	Not Run		930	1700	1260	0.108	14.6%	
Dunnett's Multip	ole Comparison 1	lest								
Control	vs Conc-mg/kg	Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Backgtround Soil		2.16	2.36	0.163	0.0735		ificant Effect			
	1700*	3.27	2.36	0.163	0.0069	Significar				
	2800*	3.45	2.36	0.163	0.0045	Significar				
	6700*	3.1	2.36	0.163	0.0102	Significar				
	18000*	3.57	2.36	0.163	0.0034	Significar				
ANOVA Table		······								
Source	Sum Square	s Mean Square	DF	F Stat	P-Value	Decision	(5%)			
Between	0.221339	0.0442678	5	3.72	0.0123	Significan	the second se			
Error	0.2853279	0.0118887	24							
Total	0.5066668	0.0561565	29							
ANOVA Assump	tions					يصحافن وجمعاتهم				
Attribute	Test		Test Stat	Critical	P-Value	Decision	(1%)			
Variances Bartlett Equality of Variance			2.24	15.1	0.8150					
Distribution	Shapiro-Wilk		0.946		0.1350	• • • • • • • • • • • • • • • • • • • •				
Mean Dry Weigh	t-mg Summary		*****							
		unt Mean	95% LCL	95% UCL	Min	Max	Ctal Can	04-1 5	-	
	ckgtround S 5	1.11	1.09	1.14	1.05	1.23		Std Dev	<u>CV%</u>	Diff%
930	5	0.964	0.917	1.01	0.852	1.23		0.068	6.1%	0.0%
1700	5	0.888	0.834	0.942	0.753	1.1		0.125	12.9%	13.4%
2800	5	0.876	0.833	0.918	0.732	0.991		0.142	16.0%	20.3%
6700	5	0.9	0.861	0.938	0.791	1.02		0.113	12.9%	21.4%
18000	5	0.867	0.833	0.902	0.744	0.979		0.101 0.0904	11.2% 10.4%	19.2%
Granhiag						0.070	0.0100		10.4%	22.1%
Graphics 1.5 1.5 1.0 0.5 0.0 0.0	930 17			- -	0.25 0.20 0.15 0.15 0.10 0.05 0.00 -0.05 -0.05 -0.10			**** ***	••	
		nc-mg/kg	0 18000		-2.5	5 -2.0 -1.5	-1.0 -0.5 0.0 Rankit	0.5 1.0 s	1.5 2.0	2.5


Analyst:__KT__QA:__KT__

CETIS Ana	lytical Rep	ort						port Date: hk/Link Code:			53 (p 2 of 98/0706-T07
Early Seedling	Growth								······		nmental W
Analysis No: Analyzed:	04-7612-5129 14 Aug-07 15:	52		Mean Dry Bio Parametric-Co		atments		TIS Version: ficial Results	CETISV		
Data Transform		Zeta	Alt Hyp		rio	NOEL	LOEL	TOEL	τυ	PMSD	
Untransformed			C > T	Not Run		18000	>18000	N/A	0.00556	27.5%	
Dunnett's Mult	tiple Comparis	on Tes	t								
Control	vs Conc-m	g/kg	Test Sta	at Critical	MSD	P-Value	Decisior	VE9/)			
Backgtround So		<u> </u>	-0.487	2.36	0.247	0.9380		nificant Effect			
	1700		0.686	2.36	0.247	0.5640		nificant Effect			
	2800		1.21	2.36	0.247	0.3290		ificant Effect			
	6700		0.829	2.36	0.247	0.4980		ificant Effect			
· · · ·	18000		1.21	2.36	0.247	0.3310		ificant Effect			
ANOVA Table											
Source	Sum Sqi		Mean Square	e DF	F Stat	P-Value	Decision	(5%)			
Between	0.128567	2	0.0257134	5	0.937	0.4750		ificant Effect	······	······	
Error	0.658302		0.0274293	24			Ū				
Total	0.786869	9	0.0531427	29							
ANOVA Assum	ptions						<u></u>			<u></u>	
Attribute	Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances	Bartlett E	quality	of Variance	3.25	15.1	0.6620	Equal Va				
Distribution Shapiro-Wilk Normality		rmality	0.984		0.9210		istribution				
Mean Dry Biom	nass-mg Summ	nary					·····				
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
	Backgtround S	5	0.898	0.8	0.996	0.61	1.23	0.0478	0.258	28.7%	0.0%
930		5	0.949	0.897	1	0.819	1.12	0.0258	0.139	14.6%	-5.68%
1700		5	0.827	0.782	0.871	0.694	1.01	0.0219	0.118	14.2%	8.0%
2800		5	0.771	0.721	0.822	0.591	0.908	0.0247	0.133	17.2%	14.2%
6700		5	0.811	0.755	0.868	0.63	1.02	0.0274	0.147	18.2%	9.67%
18000		5	0.772	0.711	0.833	0.496	0.898	0.0298	0.16	20.8%	14.1%
Graphics											
1.5						0.40 _'		;			
on l						0.30				•	
Mean Dry Biomass-mg											
and and			_			B E 0.20					
6 1.0-	●-					a log				1	
<u>ک</u>				•		Centered Untransformed					
				•		5			A CONTRACTOR		
N N				Reject Null	•	- 0.00		2			
- 0.5-						-0.10-					
1						0.10		*			
1						-0.20-	•	* •			
						1					
0.0	0 930	1700	2800 6	700 18000		-0.30 1 -2.9	5 -2.0 -1.5	-10 -05 -00	0.5		
			ng/kg			-2.3	5 -2.0 -1.5	-1.0 -0.5 0.0	0.5 1.0	1.5 2.0	2.5
								Rankit			

Analyst:_____ QA:____

CETIS An	alytic	al Rep	ort						port Date: k/Link Code			5:53 (p 3 of 4 98/0706-T07
Early Seedlin	ng Gro	wth _										nmental WA
Analysis No: Analyzed:		231-8126 .ug-07 15:		•	rvival Rate rametric-Co	ontrol vs Tre	atments		TiS Version: icial Results	CETISv		
Data Transfo			Zeta	Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corrected) C > T			C > T	Not Run		18000	>18000	N/A	0.00556	24.4%		
Dunnett's Mu	ultiple (Comparis	on Tes	t								
Control	vs	Conc-m	g/kg	Test Stat	Critical	MSD	P-Value	Decision	(5%)			
Backgtround	Soil	930		-2.34	2.36	0.254	1.0000		ificant Effect			
		1700		-1.52	2.36	0.254	0.9960		ificant Effect			
		2800		-0.933	2.36	0.254	0.9800	-	ificant Effect			
		6700		-1.12	2.36	0.254	0.9880	-	ificant Effect			
		18000		-0.916	2.36	0.254	0.9790	_	ificant Effect			
ANOVA Table	e											
Source		Sum Sq	uares	Mean Square	DF	F Stat	P-Value	Decision	(5%)			
Between		0.171998	35	0.0343997	5	1.19	0.3420		ificant Effect			
Error		0.691873	34	0.0288281	24			non olgi				
Total		0.863871	19	0.0632278	29							
ANOVA Assu	mptior	ns										
Attribute		Test			Test Stat	Critical	P-Value	Decision	(1%)			
Variances		Bartlett E	quality	of Variance	9.62	15.1	0.0866	Equal Va				
Distribution		Shapiro-	Wilk No	rmality	0.959		0.2840	Normal D				
Survival Rate	Sumn	nary										
Conc-mg/kg	Contr	ol Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Backg	tround S	5	0.8	0.727	0.873	0.583	1	0.0356	0.192	24.0%	0.0%
930			5	0.983	0.969	0.998	0.917	1	0.00692	0.0373	3.79%	-22.9%
1700			5	0.933	0.919	0.948	0.917	1	0.00692	0.0373	3.99%	-22.3%
2800			5	0.883	0.835	0.931	0.75	1	0.0235	0.126	14.3%	-10.7%
6700			5	0.9	0.859	0.941	0.75	1	0.0202	0.120	14.3%	-10.4% -12.5%
18000			5	0.883	0.835	0.931	0.667	1	0.0235	0.126	12.1%	-12.5% -10.4%
Angular (Cori	rected)	Transfor	med S	ummary								
Conc-mg/kg	Contr	ol Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff0/
0		tround S		1.14	1.04	1.25	0.869	1.43	0.0491	0.264		Diff%
930	-		5	1.4	1.37	1.42	1.28	1.43	0.0123	0.264	23.1%	0.0%
1700			5	1.31	1.28	1.33	1.28	1.43	0.0123	0.0662	4.74%	-22.0%
2800			5	1.24	1.17	1.32	1.05	1.43	0.0353		5.06%	-14.2%
6700			5	1.27	1.2	1.33	1.05	1.43		0.19	15.3%	-8.75%
18000			5	1.24	1.18	1.31	0.955		0.0312	0.168	13.3%	-10.5%
			-	1,47		1.91	0.800	1.43	0.0321	0.173	13.9%	-8.59%

Analyst: KT QA: KT

Analyst:______ QA:_____

	Analytical I	Repo	rt						ort Date: :/Link Code:	14 Aug-07 15:53 (p 1 of 1) 03-8999-8798/0706-T075	
Early See	dling Growth								······	Nautilus Environmental WA	
Analysis Analyzed				lpoint: lysis:	Mean Dry Wei Linear Interpol		N)		IS Version: cial Results:	CETISv1.6.3 Yes	
Linear Int	terpolation Opt	lions					······				
X Transfo		sform	See	d	Resamples	Exp 95	% CL Met	hod			
Linear	Linear		579	5186	280	Yes		-Point Interp	olation		
Point Est	imates										
Effect-%	Conc-mg/k	95% L	.CL 95%	UCL							
25	> 18000	N/A	N/A					•• ••• •••			
50	> 18000	N/A	N/A	_							
Mean Dry	Weight-mg Su	ımmar	y			Ci	alculated Va	riate			
Conc-mg/	k Control Typ		Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	
0	Backgtround	l Soil		1.11	1.05	1.23	0.0124	0.068	6.1%	0.0%	
930			5	0.964	0.852	1.12	0.0227	0.125	12.9%	13.4%	
1700			5	0.888	0.753	1.1	0.0259	0.142	16.0%	20.3%	
2800			5	0.876	0.732	0.991	0.0205	0.113	12.9%	21.4%	
6700			5	0.9	0.791	1.02	0.0185	0.101	11.2%	19.2%	
18000			5	0.867	0.744	0.979	0.0165	0.0904	10.4%	22.1%	
Mean Dry	Weight-mg De	tail									
	k Control Typ		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5				
0	Backgtround	Soil	1.11	1.08	1.23	1.1	1.05		······		
930			0.852	0.878	1.12	1.08	0.894				
1700			0.753	1.1	0.757	0.919	0.913				
2800			0.898	0.788	0.732	0.991	0.969				
6700			0.791	0.854	0.991	0.84	1.02				
18000			0.928	0.84	0.979	0.845	0.744				
Mean Dry Weight-mg	1.4 1.2 1.0 0.8 0.6 0.4 0.4 0.2 0.0 0.0E+00 5.0E+		1.0E+04	1.5E+(• 04 2.0E+04						
		Co	onc-mg/kg				<u></u>				

Analyst:______ QA:_____

plof C

Raw Data Sheet Shoot and Root Weight Data 14-Day Soil Toxicity Test

Start Date & Tim <u>e</u> :	6-27-07 1645
Stop Date & Time:	7-11-07 1600
Test Species: <u>La</u>	tuca sativa (Butter Crunch Lettuce)

Conc.	Cont.	Rep.	No. Seedlings	Shoot Pan	Pan + Wet Shoot	Pan + Dry Shoot	1	
		Kep.	Emerged	Tare Wt. (g)	Wt. (g)	Wt. (g)		
Cov-lab	23	1	12	1,59906	2.15 330	1.683332095	sß	
	16	2	1\	1.64272	at. 2,11330	1.66335		
	17	3	12	1.52530	2.02217	1.54784	1	
	31	4	12	1. 58883	2.10744	1.60897		
	26	5	12	1,60387	2.09885	1.62356		
CON-ref	21	1	9	1.65339	1.92217	1.66340		
	12	2	4	1.70842	1.79376-6	1.71710		
	8	3	12	1.55979	1.79376	1.57451		
	18	4		1.58823	1.85985	1.60140		
	24	5		1.61429	1.78013	1.62161		
3.13	34	1	12	1.62152	1.80510	1-62865-	1.63175 K	-Τ
	11	2	120	1.64588	1.84752	1.65641		
	33	3	12	1.57389	1.68561	1.58T32		
	30	4	12	1.68783	1.94659	1.70077		
	20	5		1.68018	1.83292	1.69001		
6.25	5	1	12	1.60332	1.74930	1.61236		
	32.	2		1.7/731	1.84 846	1.72938		
	35	3		1.62 0g 0*	1.67712	1.62.905		
	14	4		1.66679	1.86160	1.67690		
	13	5	CC+0 11	1.66196	1.84837	1.67200		
12.5	15	1	12	1.71995	1,90263	1.73072		
	6	2	Q	1.57711	1,15338	1.5862.2-	1.584.20	КT
	25	3	12	1.58067	1.74374	1.58946		
	2	4		1.57963	1.77803	1.59053		
	9	5	9	1.59021	1.77832	1.59893		
25	3	1		1.60090	1.78192	1.60960		
	10	2	た	1.65024	1.80907	1.66049		
	27	3	1,0	1.67428	1.88315	1.68419		
	٦	4	q	1,61299	1.7(0/017	1.62055		
	1	5	12	1.67106	1.91845	1.68333		
Tech In:	itials:		(P	m	33	SB	l	
					(2)1,88850	310	l	
Comme	nts:	Initial r	number of seeds a	dded to each re		Date/Time in:	71107 1	730
						Oven Temp (°C):	60	
		₩	1.62075		· · · · · · · · · · · · · · · · · · ·	Date/Time out:	7/12/17 12	10
	(DSeo.	note on daily	germinati	en countr	Oven Temp (°C):	 [0D	
QC Che	ck:		T		┉┈┈┈╘┶┶┶┶┶╱┿┸╌┦┈╏╌╌╌╌╌╍	r (C).		

Tacoma, WA 98424 Client: CDMSample ID. Source. Soi) Test No: O TO[6 - TOT5]Log-In#: NA

prot 2

Sample ID. <u>Source</u> Soi] Test No: 070(0-T075

Client: CDM

Log-In#: Nク

Raw Data Sheet Shoot and Root Weight Data 14-Day Soil Toxicity Test

Start Date & Tin	ne:	6-27	-07	1645	
Stop Date & Tin	ne:	7111	n	1600	
Test Species:	Læt	uca sativ	a (But	ter Crunch Let	tuce)

Cont	Comt	Rep.	No. Seedlings	Shoot Pan	Pan + Wet Shoot	Pan + Dry Shoot	
Conc.	Cont.	Kep.	Emerged	Tare Wt. (g)	Wt. (g)	Wt. (g)	
50	19	1	11	1,64495	1.82140	1.65516	
	28 22	2	12	1,69847	1.90010	1.70 855	
	22	3		1.61.77934	1.99052	1.79011	
	29	4		1.68623	1.87221	1.69553	
	4	5	4	1.79258	1.91030	1.79 853	
		1					
		2				/	
		3					
		4					
	1	5			l		
		1				1	
	1	2					
·· ·	1	3					
		4					
		5					
		1			1		
	-	2					
	-	3					
		4					
		5		1			
		1					
		2					
		3					
		4	/				
		5					
		1					
	17	2					
	1	3					
\square		4					
17	-	5					
Tech	Initials:		(C	mi	CC	5B	
Comn	,	Initia	l number of seeds	added to each	replicate = 12	Date/Time in: Oven Temp (°C):	
		<u> </u>	<u> </u>	264.0		Date/Time out:	
			See	parx		Oven Temp (°C):	<i>r</i>
QC C	hook	<u> </u>	VI	·	<u> </u>	/ /	
	HECK:		<u> </u>				

				ï		
7	sur SUR	31 CON-L	32 6.25	1.85 1333	134 14	35 6.25
9	SUR 275	26 CON-L	27 25	50 50	¥29 809	3.13 3.13
5	SUB 1	21 CON-R	22 50	23 CON-L	24 CON-R	25
4	SUR 6.23	16 CON-L	17 cont	- 18 (CON-R	119 50	3.13
3	sur 3.10	11 3.13	12 CON-R	13 6.25	-11 6-25	15
2	CON-R	- 9 5:2 0	7 7 25	(8 (0N-R	667	10%
~	sur con-L		10,00			
•	surrogate	حـــــــــــــــــــــــــــــــــــــ	ß	с С	۵	ш

PLANTING MAP (Client)

Soil Toxicity Test

Lettuce Seed Daily Germination Counts

Soil Toxicity Test		Lettuce Seed Daily Germination Counts	iination Counts
Client/Project ID: CDM	Test No: 0706 - 7075	Start Date/Time: 6/27/07 1645	
Tray #: T	Test Species: Lachua Safiya	147	1601
Day 3 Row 1 2 3 4 5 6 7 7	Day $\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 TT Day K Column	u 224
G & O 0 0	- 71 -	21 Surrosate	
		e 2 6 e	σ.
			1 10 10 10 10
5 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 9 11 11 1	1 0 8 d 1	5 WAR
8 2 8	Ambred 105	E 13 19 13	1 13 13 14
-	1	Autority of the second	
Column	Dav 80 Row Column		a l
			4 5 6 7
Serriogate 0 0 11 0 0 0 0 A 12 9 2 11 9 12 9		Surrogate 12 17 17 & 17 0 PG	
10 10 10	B 12 9 8	1((B 12 0 4	
	C 11 11 12		2
			1 1 12
		Analyst 105	
		1	tement of a term with a tay now hair - th in O Cati helows gove, just shem helt in one seedling
olumn	Column Set Set Set Set Set Set Set Set Set Set	Day 13 Row	
12 a 2	2 ~	1 2 2 2 2 2	
	17 9 2 17	C 12 8 11 11	
10 9 11 11 12 12		12 12 c 11 12 11	21 21
	4 HO4 II	12 D S A 11	11
Analver 102	Amotreet 18 10 12 14 12	E 12 12 12	x=1112 12 11
+		CA Isálana	
Dav 6 Row Column	Dorr 1 all Dorr		
1:	of fer		4 5 6 .:
	1		
*	A (2 9 3 11 9 b 17 0 6 17 11		
12 2 12 11 21 21 21		- H E 17	1-
Analyst /(CS	Analyst //		
Comments: E-7 all red large all aler (par 8) @ Sadis	Britz-comman Bradiixas cohyledars caught under dome - plant injuke		
QC Check:		Final Review:	
Nautilus Environmental 5009 Parific Hum F Suite 2 Taronma W4 98424	the test of P = A		
	3.13% W. T.+.		
		ut.	

Raw Data Sheet Sublethal Data 14-Day Soil Toxicity Test

Client: COM	
Sample ID. Source Sei/	
Test No: 0701- 7075	
Log-In#: NA	

Start Date & Time: $\frac{b}{27}$ $\frac{b}{07}$ $\frac{1645}{1660}$ Stop Date & Time: $\frac{7}{11}$ $\frac{1660}{167}$ Test Species: Letuca sativa (Butter Crunch Letter)

pzof3

Conc.	Cont.	Rep.	Comments
6.25	5	1	4 te ^c
	32		Ivery small w/ brown leaves - all with small leaves
	35	3	all thin w/small leaves
	14	4	1small + curly, 1 brown spot
	13	5	1 with hair-thin stem
12.5	15	1	1 smaller
	$ \varphi $	2	
	25	3	In brown hair-like stem
	2	4	
	9	5	
25	3	1	1 stem just hair - thin brown storing
	10	2	1w/small leaves, I whilted
	27	3	
	1	4	1w/small, dark leaves
	1	5	
Tech	Initial	s:	ce
000	heck:		1

Plof3

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424

Client: CDM Sample ID.Source Soil Test No: 07010-7075 Log-In#: NA Raw Data Sheet Sublethal Data 14-Day Soil Toxicity Test

Start Date & Time:	6-27-0	7 1645
Stop Date & Time:	7/11/07	1600
Test Species: <u>I</u>	tuca sativa	Butter Crunch Lett

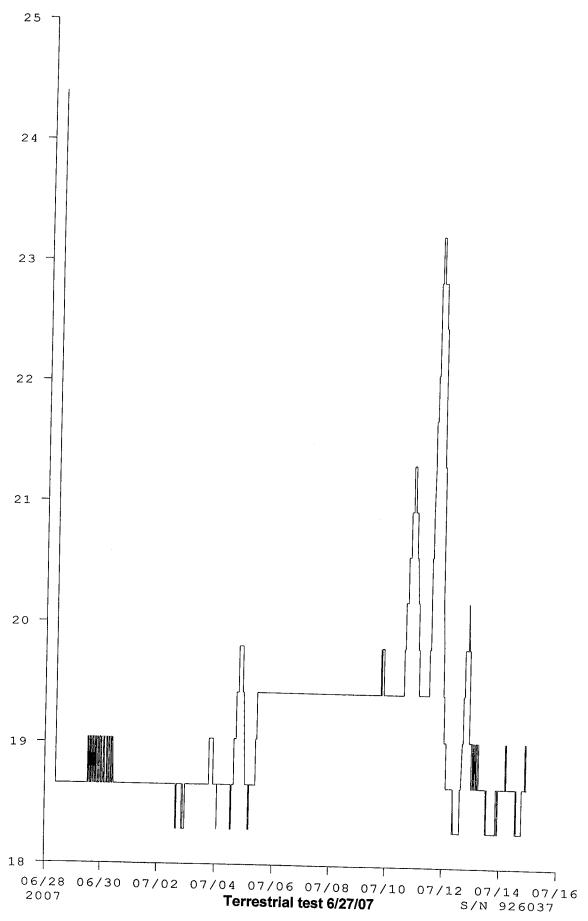
Conc.	Cont.	Rep.	Comments
CON	23	1	
lab	16	2	
	17	3	Ismaller than the rest
	31	4	
<u> </u>	26	5	llost its leaves
CON	21	1	
	12	2	Isignificantly smaller
	8	3	2 small + whilted, 1 thin, hair-like stem
	18	4	
	24	5	
3.13	34	1	all small thin w/ small leaves
	11	2	10:0 Sucollar Maria Allera
	33	3	all very small, 2 without leaves
	30	4	
_	20	5	Ismaller
Tech Iı	nitials:	CC.	L
QC Ch	eck:	Ķ1	

Client: CDM Sample ID. Source Soil Test No: 0706 - To75 Log-In#: NA Raw Data Sheet Sublethal Data 14-Day Soil Toxicity Test

Start Date & Tin	ne: 6/27/07 1645
Stop Date & Tin	
Test Species:	Latuca sativa (Butter Crunch Lett

P 30F3

Conc.	Cont.	Rep.	Comments
50	19	1	
	28	2	
	22	3	some leaves nisformed D. Ivery small w/ brown leaves
	29		Ismall w/ brown corly leaves
	4	5	I smaller leaves. Inuch shorter w/no leaves
		1	
		2	
		3	
		4	·
		5	
		1	
		2	
		3	
		4	
		5	
Tech	Initials	6:	CC
000	'heck:	V	1

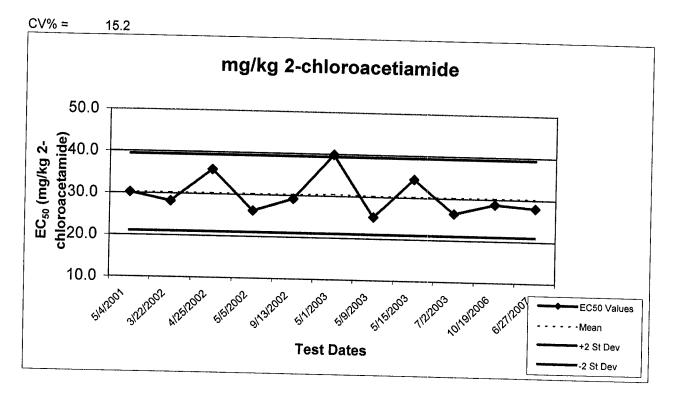

Soil Toxicity Test

,

Soil Quality Measurments

Test Species: Lactuca sativa (butter crunch lettuce) Start Date/Time: $\frac{b/27/b7}{7/4}$ $\frac{b}{7}$ $\frac{b}{60}$ End Date/Time: $7/4$ $\frac{b}{7}$ $\frac{b}{60}$	Cons Or Soil Sturry pH Soil Supernatent pH (units) (units) (units)	6.91 709 6	7.28 7.00 7.06	7.11 6.75	6.47 6.91	6.92 6.21 6.91	6.61 6.13 6.55	}								Trailed B and 13 m		· action #07-012	ack bythe light pulles were replaced.
	/ Tech / Initials	ß	141	MM	मि	ęt,	100	123	2	\$21	5	165	MM	105	165	3		enrichin	have by the
<u> </u>	Light Intensity (tux)	2950							2030	010C						2400	2780	V- AUC	is burne
15	Were Plants Watered? (YN)	7	2	7	2		7	>	7	7	7	1	>	\checkmark	~			The for low-	is light bull
client: <u>CDM</u> Sample ID: <u>Source, Soil</u> Test #: <u>0706 - 7075</u>	Temperature (°C)	22.2	+ 19,4	419.3	* 19.5	\$19.3	¥9.5	* 19, 3	¥ 19. 1	* 19.2	20.5	20.5	20.5	20.3	20.4	1-020	20.5	* Timperature	7/5 One of the leaf the lass burned a ONow (1990 which the seading after the) V of
Client: Sample ID: Test #:	Test Day	0	-	7	3	4	5	9	7	8	6	10	1	12	13	14		Comments:	C Check:

Nautilus Environmental. 5009 Pacific Hwy. E., Ste. 2. Tacoma, WA. 98424



ſ

APPENDIX C – Reference Toxicant Tests

Eisenia fetida (earthworm)

Reference Toxicant Test Control Chart *Eisenia Fetida* 14-day Survival

Date	EC50 %	Mean	StDev	-2 SD	+2 SD
5/4/2001 3/22/2002 4/25/2002 5/5/2002 9/13/2002 5/1/2003 5/9/2003 5/15/2003 7/2/2003 10/19/2006 6/27/2007	30.2 28.2 35.9 26.2 29.2 39.9 25.2 34.4 26.4 28.8 28.0	30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2	4.6 4.6 4.6 4.6 5.6 4.6 4.6 4.6 4.6 4.6 4.6	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	39.4 39.4 39.4 39.4 39.4 39.4 39.4 39.4

	nmary Rep	ort					•	ort Date: k/Link Co		Aug-07 20: 0311-5351/	••
Eisenia 14-d	Survival Soil Te	est				, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,			Nauti	lus Enviror	nmental W
Test Run No: Start Date: Ending Date: Duration:	06-7533-6922 27 Jun-07 18:(11 Jul-07 15:1 13d 21h	00	Test Type: Protocol: Species: Source:	Survival WDOE 96-327 Eisenia fetida	7						- 14 - 1
Sample No: Sample Date: Receive Date Sample Age:	:/ , (0	phiast	Code: Material: Source: Station:	275489544 2-chloroacetar Reference Tox			Clie Proj		teference Tox ling County E		k
Comparison \$	Summary						<u></u>				
Analysis No	Endpoint			NOEL	LOEL	TOEL	PMSD	Method			
11-8855-6432	Survival Rate			20	40	28.3	23.1%	Dunnett	's Multiple Co	mparison To	est
13-6127-6576	Endpoint Survival Rate			Effect-%	Conc-mg/k 28	24.8	95% UCL 31.6		d Spearman-ł	Kärbe r	
13-6127-6576	Survival Rate									<ärber	
Survival Rate Conc-mg/kg	Survival Rate Summary Control Type	Count	Mean		28						Diff%
13-6127-6576 Survival Rate Conc-mg/kg 0	Survival Rate	3	0.933	50 95% LCL 0.912	28	24.8	31.6	Trimmed	d Spearman-ł	<ärber 	Diff% 0.0%
13-6127-6576 Survival Rate Conc-mg/kg 0 10	Survival Rate Summary Control Type	3 3	0.933 0.867	50 95% LCL 0.912 0.824	28 95% UCL 0.955 0.91	24.8 Min 0.9 0.8	31.6 Max	Trimmed Std Err	d Spearman-H Std Dev	CV%	
13-6127-6576 Survival Rate Conc-mg/kg 0 10 20	Survival Rate Summary Control Type	3 3 3	0.933 0.867 0.833	50 95% LCL 0.912 0.824 0.812	28 95% UCL 0.955 0.91 0.855	24.8 Min 0.9 0.8 0.8	31.6 <u>Max</u> 1 1 0.9	Trimmed Std Err 0.0105	d Spearman-P Std Dev 0.0577	CV% 6.19%	0.0%
13-6127-6576 Survival Rate Conc-mg/kg 0 10 20 40	Survival Rate Summary Control Type	3 3 3 3	0.933 0.867 0.833 0.1	50 95% LCL 0.912 0.824 0.812 0.0353	28 95% UCL 0.955 0.91 0.855 0.165	24.8 Min 0.9 0.8 0.8 0	31.6 Max 1 1 0.9 0.3	Std Err 0.0105 0.0211 0.0105 0.0105	Std Dev 0.0577 0.115 0.0577 0.173	CV% 6.19% 13.3%	0.0% 7.14%
13-6127-6576 Survival Rate Conc-mg/kg 0 10 20 40 80	Survival Rate Summary Control Type Control Sed	3 3 3	0.933 0.867 0.833	50 95% LCL 0.912 0.824 0.812	28 95% UCL 0.955 0.91 0.855	24.8 Min 0.9 0.8 0.8	31.6 <u>Max</u> 1 1 0.9	Std Err 0.0105 0.0211 0.0105	d Spearman-F Std Dev 0.0577 0.115 0.0577	CV% 6.19% 13.3% 6.93%	0.0% 7.14% 10.7% 89.3%
13-6127-6576 Survival Rate Conc-mg/kg 0 10 20 40 80 Survival Rate	Survival Rate Summary Control Type Control Sed Detail	3 3 3 3 3	0.933 0.867 0.833 0.1 0	50 95% LCL 0.912 0.824 0.812 0.0353 0	28 95% UCL 0.955 0.91 0.855 0.165	24.8 Min 0.9 0.8 0.8 0	31.6 Max 1 1 0.9 0.3	Std Err 0.0105 0.0211 0.0105 0.0105	Std Dev 0.0577 0.115 0.0577 0.173	CV% 6.19% 13.3% 6.93%	0.0% 7.14% 10.7% 89.3%
13-6127-6576 Survival Rate Conc-mg/kg 0 10 20 40 80 Survival Rate Conc-mg/kg	Survival Rate Summary Control Type Control Sed Detail Control Type	3 3 3 3 3 8 Rep 1	0.933 0.867 0.833 0.1 0 Rep 2	50 95% LCL 0.912 0.824 0.812 0.0353 0 Rep 3	28 95% UCL 0.955 0.91 0.855 0.165	24.8 Min 0.9 0.8 0.8 0	31.6 Max 1 1 0.9 0.3	Std Err 0.0105 0.0211 0.0105 0.0105	Std Dev 0.0577 0.115 0.0577 0.173	CV% 6.19% 13.3% 6.93%	0.0% 7.14% 10.7%
13-6127-6576 Survival Rate Conc-mg/kg 0 10 20 40 80 Survival Rate Conc-mg/kg 0	Survival Rate Summary Control Type Control Sed Detail	3 3 3 3 3 Rep 1 0.9	0.933 0.867 0.833 0.1 0 Rep 2 1	50 95% LCL 0.912 0.824 0.812 0.0353 0 Rep 3 0.9	28 95% UCL 0.955 0.91 0.855 0.165	24.8 Min 0.9 0.8 0.8 0	31.6 Max 1 1 0.9 0.3	Std Err 0.0105 0.0211 0.0105 0.0105	Std Dev 0.0577 0.115 0.0577 0.173	CV% 6.19% 13.3% 6.93%	0.0% 7.14% 10.7% 89.3%
13-6127-6576 Survival Rate	Survival Rate Summary Control Type Control Sed Detail Control Type	3 3 3 3 3 Rep 1 0.9 0.8	0.933 0.867 0.833 0.1 0 Rep 2 1 1	50 95% LCL 0.912 0.824 0.812 0.0353 0 Rep 3 0.9 0.8	28 95% UCL 0.955 0.91 0.855 0.165	24.8 Min 0.9 0.8 0.8 0	31.6 Max 1 1 0.9 0.3	Std Err 0.0105 0.0211 0.0105 0.0105	Std Dev 0.0577 0.115 0.0577 0.173	CV% 6.19% 13.3% 6.93%	0.0% 7.14% 10.7% 89.3%
13-6127-6576 Survival Rate Conc-mg/kg 0 10 20 40 80 Survival Rate Conc-mg/kg 0 10	Survival Rate Summary Control Type Control Sed Detail Control Type	3 3 3 3 3 Rep 1 0.9	0.933 0.867 0.833 0.1 0 Rep 2 1	50 95% LCL 0.912 0.824 0.812 0.0353 0 Rep 3 0.9	28 95% UCL 0.955 0.91 0.855 0.165	24.8 Min 0.9 0.8 0.8 0	31.6 Max 1 1 0.9 0.3	Std Err 0.0105 0.0211 0.0105 0.0105	Std Dev 0.0577 0.115 0.0577 0.173	CV% 6.19% 13.3% 6.93%	0.0% 7.14% 10.7% 89.3%

CETIS™ v1.6.3revE

Analyst:_KT_QA:_K

0 Control Sed 3 0.933 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.0 20 3 0.867 0.823 0.911 0.8 1 0.0214 0.115 13.3% 7.1 20 3 0.833 0.811 0.8623 0.911 0.8 1 0.0214 0.115 13.3% 7.1 40 3 0.1 0.0341 0.166 0 0.3 0.0322 0.173 173.0% 89. 80 3 0	CETIS An	.							Report Date: .ink/Link Code		4 Aug-07 20 -0311-5351	/RT062707
Analyzet: 14 Aug-07 20:16 Analysis: Parametric-Control ve Treatments CETTS v1 6.3 Data Transform Zota Alt Hyp Monte Carlo NOEL LOEL TOEL TU PMSD Angular (Corrected) C> T No Run ZO 40 26.3 5 23.1% Donnetts Multiple Comparison Test Stat Critical MSD P-Value Decision(5%) Control Sed 10 0.797 2.47 0.283 0.2600 Significant Effect A0-3000 Significant Effect		·····				<u> </u>				Naut	ilus Enviro	onmental V
Angular (Corrected) Desc NUTP Not Run 20 40 28.3 5 23.1% Dunnetts Multiple Comparison Test Control vs Conc-mg/Kg Test Stat Critical MSD Pr/value Decision(6%) Control Sed 10 0.737 2.47 0.283 0.2300 Non-Significant Effect	-						eatments				v1.6.3	
Angular (Corrected) C > T Not Run 20 40 28.3 6 23.1% Dunnett's Multiple Comparison Test Control vs Concreg/kg Test Stat Critical MSD P-Value Decision(5%)			Zeta		Monte Ca	ario	NOEL	LOEL	TOEL	TU	PMSD	
Control vs Con-mg/kg Test Stat Critical MSD P-Value Decision(5%) Control Sed 10 0.797 2.47 0.293 0.2400 Non-Significant Effect 40° 8.46 2.47 0.293 0.2000 Significant Effect 80° 9.65 2.47 0.293 0.0000 Significant Effect Source Sum Squares Mean Square DF P Stat P-Value Decision(5%) Between 3.615223 0.9039308 4 42.8 0.0000 Significant Effect Strinor 0.211174 0.0211174 10 Decision(1%) MOVA Assumptions Test Test Stat Critical P-Value Decision(1%) Attribute Test Test Stat Critical P-Value Decision(1%) Struvial Rate Summary 0.891 0.0700 Normal Distribution Statu Survival Rate Summary Control Type Control Mean 95% LCL 95% UCL Min Max					Not Run		20	40	28.3	5		<u> </u>
Control Sed 10 1010 might provide of the product of	Dunnett's Mu	Itiple Compari	ison Tes	it								
Control Sed 10 0.797 2.47 0.283 0.4740 Non-Significant Effect 20 1.26 2.47 0.283 0.2000 Non-Significant Effect 80* 9.65 2.47 0.293 0.0000 Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(%%) Between 3.615323 0.9039308 4 42.8 0.0000 Significant Effect Source Sum Squares Mod Levene Equality of Variance 1.38 5.99 0.3080 Equality land Advision Attribute Test Test Stat Critical P-Value Decision(1%) Control Sed 3 0.931 0.0107 0.0577 6.19% 0.0000 Survival Rate Summary O.833 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.0 0 3 0.823 0.911 0.8 0.9 0.0107 0.0577 6.39% 0.0			ng/kg	the second s	Critical	MSD	P-Value	Decisio	on(5%)			
40* 8.46 2.47 0.283 0.0900 Non-significant Effect 80* 9.65 2.47 0.283 0.0000 Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(5%) Between 3.61523 0.9038308 4 42.8 0.0000 Significant Effect ANOVA Assumptions 3.828497 0.0211174 10 Decision(1%) Value Decision(1%) Variances Mod Levene Equality of Varianc 1.33 5.99 0.3060 Equal Variances Survival Rate Summary 0.933 0.911 0.955 0.9 1 0.0107 0.6577 6.19% 0.0 00 Control Sed 3 0.933 0.911 0.855 0.8 0.9 0.0107 0.6577 6.19% 10.0 00 3 0.837 0.911 0.855 0.8 0.9 0.0107 0.6577 6.19% 0.0 0 0 0 0 <td>Control Sed</td> <td></td>	Control Sed											
B0* 9.65 2.47 0.283 0.0000 Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(5%) Between 3.615323 0.9038008 4 42.8 0.0000 Significant Effect Total 3.829497 0.9249482 14 ANAVA Assumptions Equal Variances Mod Levene Equality of Varianc 1.38 5.99 0.3080 Equal Variances MAOVA Assumptions Shapino-Wilk Normality 0.891 0.0700 Normal Distribution Survival Rate Summary Control Sed 3 0.633 0.911 0.855 0.9 1 0.0107 0.0577 6.19% 0.0 20 Control Sed 3 0.633 0.911 0.855 0.8 0.9 0.0107 0.0577 6.19% 0.0 20 Control Sed 3 0.833 0.911 0.85 0.9 1 0.0107 0.0577 6.19% 0.0 20 Control Sed <td></td> <td></td> <td></td> <td>. –</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				. –								
ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(5%) Between 3.615523 0.9038308 4 42.8 0.0000 Significant Effect Total 3.826497 0.9249482 14 Decision(5%) Significant Effect ANOVA Assumptions Attribute Test Test Stat Critical P-Value Decision(1%) Variances Mod Levene Equality of Variance 3.6599 0.3080 Equal Variances Survival Rate Summary O.891 0.0700 Normal Distribution Survival Rate Summary 200-Control Sed 3 0.867 0.823 0.911 0.81 0.0107 0.6577 6.19% 0.115 200 Control Sed 3 0.867 0.823 0.911 0.8 1 0.0107 0.0577 6.19% 0.115 13.3% 7.1 201 3 0.833 0.811 0.855 0.9 1 0.0107 0.0577 6.93% 100												
Source Sum Squares Mean Square DF F Stat P-Value Decision(5%) Between 3.615323 0.9038308 4 42.8 0.0000 Significant Effect Total 3.422447 0.9249482 14 Significant Effect ANOVA Assumptions Test Stat Critical P-Value Decision(5%) Annova Assumptions Test Stat Critical P-Value Decision(1%) Variances Mod Levene Equality of Varianc 1.38 5.99 0.3080 Equal Variances Normal Distribution Survival Rate Summary Control Sed 3 0.891 0.955 0.9 1 0.0107 0.0577 6.19% 0.0 0 Control Sed 3 0.810 0.823 0.911 0.86 1 0.0107 0.0577 6.19% 0.0 0 3 0.817 0.823 0.911 0.8 1 0.0107 0.0577 6.19% 0.0 0	ANOVA Table							Significa				
Between 3.615323 0.9038306 4 42.8 0.000 Significant Effect irror 0.211174 0.0211174 10 0 Significant Effect ANOVA Assumptions Test Stat Critical P-Value Decision(1%) Arrinous Shapiro-Wilk Normality 0.891 0.0000 Reject Null Normal Distribution Survival Rate Summary Control Sed 3 0.893 0.811 0.955 0.9 1 0.0107 0.0577 6.19% 0.000 Survival Rate Summary Control Sed 3 0.893 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.0 O Control Sed 3 0.893 0.911 0.85 0.9 0.0107 0.0577 6.19% 0.0 O 3 0.833 0.811 0.823 0.9 0.0107 0.0577 6.93% 0.0 O 3 0.10 0.0341 0.860 0.3 0.0322 0.173 <t< td=""><td></td><td></td><td>quares</td><td>Mean Square</td><td>DF</td><td>E Stat</td><td>B Volue</td><td>Desists</td><td></td><td></td><td></td><td></td></t<>			quares	Mean Square	DF	E Stat	B Volue	Desists				
Error 0.211174 0.0211174 10 Interview Order Orgeniticality Order Order <thorder< th=""> <thorder< th=""> <thorder< t<="" td=""><td>Between</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thorder<></thorder<></thorder<>	Between											
Total 3.826497 0.9249482 14 ANOVA Assumptions Attribute Test Test Stat Critical P-Value Decision(1%) Attribute Test Test Stat Critical P-Value Decision(1%) Variances Mod Levene Equality of Variance 0.691 0.03080 Equal Variances Survival Rate Summary Conc-mg/kg Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff 0 Control Sed 3 0.933 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.0 20 Control Sed 3 0.867 0.823 0.911 0.855 0.8 0.9 0.0107 0.0577 6.19% 0.0 30 0 <td< td=""><td></td><td>0.21117</td><td>74</td><td></td><td></td><td>74,0</td><td>0.0000</td><td>Signinica</td><td></td><td></td><td></td><td></td></td<>		0.21117	74			74,0	0.0000	Signinica				
Attribute Test Test Stat Critical P-Value Decision(1%) Variances Mod Levene Equality of Varianc 1.38 5.99 0.3080 Equal Variances Normal Distribution Survival Rate Summary Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff. 20ne-mg/kg Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff. 0 Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff. 0.0 Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff. 10.00107 0.0577 6.19% 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total	3.82649	97									
Variances Mod Levene Equality of Varianci 1.38 5.99 0.3000 Equality in the equality of Varianci 1.38 5.99 0.3000 Equal Variances Starbibution Shapiro-Wilk Normality 0.891 0.0700 Normal Distribution Survival Rate Summary Control Sed 3 0.933 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 10 00 Control Sed 3 0.867 0.823 0.911 0.8 1 0.0107 0.0577 6.19% 10 100 3 0.867 0.823 0.911 0.8 1 0.0107 0.0577 6.39% 10 100 3 0.867 0.823 0.91 0.8 0.99 0.0107 0.0577 6.39% 10 100 3 0.811 0.855 0.8 0.9 0.0107 0.0577 6.39% 100 Angular (Corrected) Transformed Summary Control Sed 3 1.21 1.95% UCL Min<	ANOVA Assu	mptions										
Variances Mod Levene Equality of Variance 1.38 5.99 0.3080 Equal Variances Distribution Shapiro-Wilk Normality 0.891 0.0700 Normal Distribution Survival Rate Summary Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff 0 Control Sed 3 0.933 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.000 10 3 0.867 0.823 0.911 0.8 1 0.0107 0.0577 6.39% 10. 20 3 0.833 0.811 0.855 0.8 0.9 0.0107 0.0577 6.93% 10. 300 0 0 0 0 0 0 0 0 0 17.3 17.3 % 89. 0 Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV%					Test Stat	Critical	P-Value	Decisio	n(1%)			
Distribution Shapiro-Wilk Normality 0.891 0.0700 Normal Distribution Survival Rate Summary Conc-mg/kg Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff 0 Control Sed 3 0.933 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.0 100 3 0.867 0.823 0.911 0.855 0.8 0.9 0.0107 0.0577 6.93% 10 100 3 0.867 0.823 0.911 0.855 0.8 0.9 0.0107 0.0577 6.93% 10 100 3 0.1 0.0341 0.166 0 0.3 0.0322 0.173 173.0% 89 200 3 1.21 1.34 1.25 1.41 0.0175 0.0941 7.22% 0.0 0 3 1.21 1.14 1.25 1.41 0.0175 0.						5.99	0.3080				·	
Conc-mg/kg Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff 0 Control Sed 3 0.933 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.157 6.19% 0.0107 0.0577 6.19% 0.115 13.3% 7.1 00 3 0.867 0.823 0.911 0.8 1 0.0214 0.115 13.3% 7.1 00 3 0.1 0.0341 0.166 0 0.3 0.0322 0.173 173.0% 89. 00 0			-Wilk No	rmality	0.891		0.0700					
Control Sed 3 0.933 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.0 0 3 0.867 0.823 0.911 0.8 1 0.0107 0.0577 6.19% 0.0 0 3 0.833 0.811 0.855 0.8 0.9 0.0107 0.0577 6.93% 10 0 3 0.1 0.0341 0.166 0 0.3 0.0322 0.173 173.0% 89. 0 3 0		-										
Control Sed 3 0.933 0.911 0.955 0.9 1 0.0107 0.0577 6.19% 0.0 3 0.867 0.823 0.911 0.8 1 0.0214 0.115 13.3% 7.1 00 3 0.11 0.855 0.8 0.9 0.0107 0.0577 6.93% 10 00 3 0.1 0.0341 0.865 0.8 0.9 0.0107 0.0577 6.93% 10 0 3 0.1 0.0341 0.865 0.8 0.9 0.0107 0.0577 6.93% 10 0 3 0.1 0.0341 0.166 0.3 0.0322 0.173 173.0% 89 control Sed 3 1.27 1.34 1.25 1.41 0.0175 0.0941 7.22% 0.0 0 3 1.21 1.14 1.28 1.11 1.41 0.0152 0.0819 7.1% 14. 0 3 </td <td></td> <td></td> <td></td> <td></td> <td>95% LCL</td> <td>95% UCL</td> <td>Min</td> <td>Max</td> <td>Std Err</td> <td>Std Dev</td> <td>CV%</td> <td>Diff%</td>					95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
10 3 0.867 0.823 0.911 0.8 1 0.0214 0.115 13.3% 7.1 20 3 0.833 0.811 0.855 0.8 0.9 0.0107 0.0577 6.93% 10. 30 3 0.1 0.0341 0.166 0 0.3 0.0322 0.173 173.0% 89. 30 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 Angular (Corrected) Transformed Summary Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff 10 3 1.21 1.14 1.26 1.41 0.0175 0.0941 7.22% 0.010 10 3 1.15 1.12 1.19 1.11 1.41 0.0327 0.176 14.6% 7.24 100 3 0.299 0.207 0.391 0.159 0.58 0.0451 0.243 81.2% 77.1	-	Control Sed					0.9	1	0.0107	0.0577		0.0%
20 3 0.833 0.811 0.855 0.8 0.9 0.0107 0.0577 6,93% 10. 40 3 0.1 0.0341 0.166 0 0.3 0.0322 0.173 173.0% 89. 30 0 0 0 0 0 0 0 0 0 0 0 100 Angular (Corrected) Transformed Summary Control Sed 3 1.3 1.27 1.34 1.25 1.41 0.0175 0.0941 7.22% 0.0 0 3 1.21 1.14 1.28 1.11 1.41 0.0327 0.176 14.6% 7.21 00 3 1.21 1.14 1.28 1.11 1.41 0.0327 0.176 14.6% 7.22 00 3 0.299 0.207 0.391 0.159 0.58 0.0451 0.243 81.2% 77. 00 3 0.159 0.159 0.159 0.159 0 0.0% 87.4 0.99 0.07 0.99 0.159 0.15						0.911	0.8	1	0.0214	0.115		7.14%
No. 3 0.1 0.0341 0.166 0 0.3 0.0322 0.173 173.0% 89. 30 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 Angular (Corrected) Transformed Summary Count-mg/kg Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff Concord/0 3 1.21 1.14 1.25 1.41 0.0175 0.0941 7.22% 0.0 3 1.21 1.14 1.28 1.11 1.41 0.0327 0.176 14.6% 7.21 10 3 0.299 0.207 0.391 0.159 0.68 0.0451 0.243 81.2% 77. 10 3 0.159 0.159 0.159 0.159 0.159 0.00 0.00% 0.00% 900 0.0159 0.159 0.159 0.10 0.00 0.00%						0.855	0.8	0.9	0.0107	0.0577		10.7%
S 0						0.166	0	0.3	0.0322	0.173	173.0%	89.3%
Conc-mg/kg Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Diff 0 Control Sed 3 1.3 1.27 1.34 1.25 1.41 0.0175 0.0941 7.22% 0.0 10 3 1.21 1.14 1.28 1.11 1.41 0.0327 0.176 14.6% 7.22% 0.0 20 3 1.15 1.12 1.19 1.11 1.25 0.0152 0.0819 7.1% 11.4 20 3 0.159 0.299 0.207 0.391 0.159 0.58 0.0451 0.243 81.2% 77. 300 3 0.159 0.159 0.159 0.159 0 0 0 0.0% 87.4 300 0.05 0.059 0.159 0.159 0 0 0 0.0% 87.4 9 0.6 0.159 0.159 0.159 0.05 <td></td> <td></td> <td>_</td> <td>_</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>100.0%</td>			_	_	0	0	0	0	0	0		100.0%
Do Control Sed 3 1.3 1.27 1.34 1.25 1.41 0.0175 0.0941 7.22% 0.00 0 3 1.21 1.14 1.28 1.11 1.41 0.0327 0.176 14.6% 7.22% 0.00 3 1.15 1.12 1.19 1.11 1.41 0.0327 0.176 14.6% 7.22% 10 3 0.299 0.207 0.391 0.159 0.0152 0.0819 7.1% 11. 10 3 0.159 0.159 0.159 0.159 0.0451 0.243 81.2% 77. 3 0.159 0.159 0.159 0.159 0 0 0.0% 87.4 Std Eerr Std Eerr Std Eerr Std Eerr 81.2% 77. 11.4 0.0327 0.0451 0.243 81.2% 77. Std Eerr Std Eerr Std Eerr Std Eerr 81.2% 77. Std Eerr			rmed S	ummary								<u> </u>
0 3 1.3 1.27 1.34 1.25 1.41 0.0175 0.0941 7.22% 0.0 10 3 1.21 1.14 1.28 1.11 1.41 0.0327 0.176 14.6% 7.22 20 3 1.15 1.12 1.19 1.11 1.25 0.0152 0.0819 7.1% 11.4 10 3 0.299 0.207 0.391 0.159 0.58 0.0451 0.243 81.2% 77.3 3 0.159 0.159 0.159 0.159 0.159 0 0.0% 87.4 Reject Null						95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
10 3 1.21 1.14 1.28 1.11 1.41 0.0327 0.176 14.6% 7.20 20 3 1.15 1.12 1.19 1.11 1.25 0.0152 0.0819 7.1% 11.4 30 0.299 0.207 0.391 0.159 0.58 0.0451 0.243 81.2% 77.4 30 3 0.159 0.159 0.159 0.159 0 0.0% 87.4 Reject Null Reject Null 0.30 9 0.159 0.159 0.159 0 0.0% 87.4 0.10 0.30 0.30 0.25 0.20 9 0.6 0.55 0.10 0.05 0.10 0.05 0.10 0.05 0.00 0.05 0.00 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05		Control Sed	-				1.25	1.41	0.0175	0.0941		0.0%
3 1.15 1.12 1.19 1.11 1.25 0.0152 0.0819 7.1% 11.4 30 3 0.299 0.207 0.391 0.159 0.58 0.0451 0.243 81.2% 77.3 30 3 0.159 0.159 0.159 0.159 0.159 0.00% 87.4 Reject Null 90 000 0.03 0.05 0.00 0.00% 87.4 0.03 0.03 0.25 0.00 0.00% 87.4 Reject Null 0.30 0.15 0.05 0.00 0.05 0.00 0.05 0.10 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.11 0.10 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05								1.41				7.26%
30 3 0.299 0.207 0.391 0.159 0.58 0.0451 0.243 81.2% 77.1 30 3 0.159 0.159 0.159 0.159 0.159 0.00% 87.4 Graphics								1.25	0.0152	0.0819		11.4%
Sraphics 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.00 87.4 Sraphics 0.09 0.00 0.00 0.00 0.00 0.00 0.00 By 0.7 0.66 0.5 0.15 0.15 0.15 0.15 0.15 0.15 Straphics 0.66 0.05 0.15 0.00 0.05 0.15 0.00 0.64 0.33 0.05 0.10 0.05 0.10 0.05 0.10 0.11 0.00 0.05 0.10 0.05 0.10 0.05 0.11 0.00 0.05 0.10 0.05 0.10 0.11 0.10 0.05 0.10 0.05 0.10								0.58	0.0451	0.243	81.2%	77.1%
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.30 0.25 0.20 9 0.20 0.15 0.10 0.05 0.4 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.05 0.00 0.15 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00			3	0.159	0.159	0.159	0.159	0.159	0	0	0.0%	87.8%
0 10 20 40 80 -0.15 -0.0 -0.5 0.0 0.5 1.0 1.5 2.0 Conc-mg/kg	1.0 0.9 0.8 0.7 0.7 0.6 0.6 0.5 0.4 0.3	0 10				-	0.25 0.20 0.15 0.10 0.05 0.00 -0.05 -0.10	• • • • • • • • • • • • • • • • • • •	9•• 1 .0 -0.5 0.0	0.5 1.	•	2.0

Analyst:__KT___QA:__KT___

CETIS An	alytical Re	port						ort Date: :/Link Code:			0:17 (p 1 of 1 1/RT062707E
Eisenia 14-c	d Survival Soil	Test					· · · · · · · · · · · · · · · · · · ·				onmental WA
Analysis No Analyzed:	: 13-6127-657 14 Aug-07 2		-	Survival Rate Trimmed Spe	arman-Kärbe	ər		IS Version: cial Results	ÇETISv	—, <u> </u>	
Spearman-	(ärber Estimate	es.									
Threshold C	Option	Threshold	Trim	Mu	Sigma		EC/LC50	95% LCL	95% (10)		
Control Thre	shold	0.0667	7.14%	1.45	0.0264		28	24.8	31.6		
Survival Rat	te Summary				Calc	ulated Varia	ate(A/B)				
Conc-mg/k	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	- A	р
0	Control Sed	3	0.933	0.9	1	0.0105	0.0577	6.19%	0.0%		B 30
10		3	0.867	0.8	1	0.0211	0.115	13.3%	0.0 <i>%</i> 7.14%	20 26	30 30
20		3	0.833	0.8	0.9	0.0105	0.0577	6.93%	10.7%	20 25	30
40		3	0.1	0	0.3	0.0316	0.173	173.0%	89.3%	3	30 30
80		3	0	0	0	0	0	110.070	100.0%	0	30
Survival Rat	e Detail										
Conc-mg/k	Control Type	Rep 1	Rep 2	Rep 3							
0	Control Sed	0.9	1	0.9		· · · · · · · · · · · · · · · · · · ·					
10		0.8	1	0.8							
20		0.8	0.9	0.8							
40		0	0.3	0							
80		0	0	0 0							
Graphics											······································
1.0- 0.9- 0.8- 0.6- 0.6- 0.5- 0.4- 0.3- 0.2- 0.1- 0.0		40		• • •							

Environmental Quality Results - 14-Day Soil Nautilus Environmental

Client Project ID: Roference TO Kilan t

Site ID:

1800 2 1 Start Date/Time: 6 7 Organism Tested: 5 End Date/Time:__

- 25

		6	5	0	00	0/	8	v.	6	60	0	M	0	0	0	0	WA 98424.
	Survival	10	0	01	01	10	10	10	10	10	10	10	10	10	10	10	Washington Laboratory - 5009 Pacific Hwy. E., Suite 2. Tacoma, WA 98424.
1	(uhom-cm final	X															c Hwy. E., Sui
~	Conductivity (uhom-cna initial final																y - 5009 Pacifi
							X										gton Laborator
	pH (units) initial fin								7	Ŵ							Washing
	store final											5	\sim				
	% Moisture initial fin												30	$\overline{\mathbf{X}}$			
	Container	7	r	J	14	-	لم	رح	6	7	9	12	\$	5)	/0	4	
	Rep. (2	3		2	m		2	3		2	3	1	2	3	
	Conc. mg/kg	NO			10			20			40			80			
	Tech Initials	MC	MC	MR	3	te	<u>ر</u> د د	50	27	(25	50	Mm	ts.	,rc	160	MJ	
	Fenp (°C) I	21.0	6.61	19.5			1			1.6			20.4 1]	26.2 6	20.9 W	KÍ
	Lest Day	0		7	۳ ۳		2	6	۲ ۱	8	9 20.1	10	11		13	14 2	QA Review/Date:
																	QA R(

Final Review/Date:

Client:	Regeneration Toxi	cant
Sample ID.		
Test No:	RT 062707	F.E.
Log-In#:	N/A	

Soil Weights

In, Fing

Site	Pan weight	Initial (wet)	Final (dry)	MF

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$\neg \bigtriangleup$				
h Initials:				······································

MF = (I-F)/[A-(I-F)]*100

MF= Moisture fraction of bulk soil (in %) I= Initial wet weight of sample + crucible (in grams) F=Final dry weight of sample + crucible (in grams) A= Initial aliquot weight (in grams)

pH/ Conductivity

Site	pH (5 min)	Cond (5min)	pH (30 min)	Cond (30 min)
LON	6.98	0.504_5	56.946.2	
conL	7.42	D.655m5	7.30	Q.659
10	6.97	0.560	6.90	512-63-0.63
20	7.03	D. 540	50 2 6.99	0.697
40	7.02	0.623	6.98	0.662
<u>ರಿ</u> ೧	6.98	0.534	6,91.	0.599
Tech Initials:		SB		

To measure pH/Conductivity make a slurry of soil and DI in a 1:1 ratio. Put on stir plate for 5 minutes and record reading. Allow slurry to settle for 30 minutes and record reading

Raw Data Sheet Soil Data 14-Day Soil Toxicity Test

Start Date & Time: Stop Date & Time: Test Species:

6/27/07 1800 Eisenia fietida

Soil (Reftox) hydrated to 35% by adding 70 ml DI water to 200 mg Artificial /garden Soil

Client: <u>Reference Toxicant</u> Sample ID. <u>BOmall 2- Chloro ace</u>tamide Test No: <u>RT Die 2707 EF</u> Log-In#: <u>NA</u>

Soil Weights

Raw Data Sheet Soil Data 14-Day Soil Toxicity Test

Start Date & Time: Stop Date & Time: Test Species:

6-27-0	7 1800
7/11/07	1600
Eisenia	Fetida

100

Site	Pan weight	Initial (wet)	Final (dry)	MF
No (on	1.65055	7666779	19.658	38.9
Cont	1.64850	126.43671	19.876	40.8 40.8
(0	1. 57550	126.89701	19.231	38.6386 - 40.8 %
20	1.67886	26.29300	19.876	5/1+51-38.6 % 4 -51.1 %
40	1.61709	125.78870	17,969	4 - 51.1 %
80	1.75655	V I	18.535	- 43.2%
Tech Initials:	m	m	Æ	

MF = (I-F)/[A-(I-F)]*100

MF= Moisture fraction of bulk soil (in %) I= Initial wet weight of sample + crucible (in grams) F=Final dry weight of sample + crucible (in grams) A= Initial aliquot weight (in grams)

pH/ Conductivity

Site	pH (5 min)	Cond (5mir	n) pH (30 min)	Cond (30 min
RT (on	6.79	499	6.61	510
10	6.77	522	6.62	526
20	6.74	598	6.60	1019
40	6.76	met 601	6.60	630
80	6.72	595	6.59	590
Tech Initials:	m	m		

To measure pH/Conductivity make a slurry of soil and DI in a 1:1 ratio. Put on stir plate for 5 minutes and record reading. Allow slurry to settle for 30 minutes and record reading

Lactuca sativa (butter crunch lettuce)

Lactuca sativa 14-day Survival and Growth Reference Toxicant Test Results Test Initiated June 27, 2007

			Survival	ival				Growth			
Concentration (ma/L				Mean %	St.	Tare Weight	Total Weight	Total Seedling	Growth per	Mean Growth	St
Boric acid)	Rep	# Alive	% Survival	Survival	Dev.	(mg)	(bu)	Weight (mg)	Seedling (mg)	per Org (mg)	Dev.
	-	1	91.7			1630.50	1644.73	14.23	1.29		
	2	12	100.0			1665.44	1690.02	24.58	2.05		
Laboratory Control	e	12	100.0	98.3	3.7	1689.68	1706.41	16.73	1.39	1.58	0.30
	4	12	100.0			1655.54	1675.54	20.00	1.67		
	S	12	100.0			1671.89	1689.92	18.03	1.50		
		12	100.0			1637.18	1654.10	16.92	1.41		
	2	12	100.0			1648.72	1665.41	16.69	1.39		
125	ę	12	100.0	98.3	3.7	1544.16	1560.64	16.48	1.37	1.41	0.12
	4	12	100.0			1571.40	1590.77	19.37	1.61		_
	5	11	91.7			1550.06	1564.08	14.02	1.27		
	-	12	100.0			1704.22	1721.42	17.20	1.43		
	2	12	100.0			1699.93	1709.48	9.55	0.80		
250	ო	12	100.0	100.0	0.0	1675.58	1694.78	19.20	1.60	1.29	0.34
	4	12	100.0			1704.55	1717.76	13.21	1.10		
	5	12	100.0	- KOREW		1698.50	1716.91	18.41	1.53		
	.	10	83.3			1686.72	1699.78	13.06	1.31	Book and Barrier	
	2	12	100.0			1691.07	1707.88	16.81	1.40		
200	e	12	100.0	96.7	7.5	1708.82	1727.12	18.30	1.53	1.41	0.08
	4	12	100.0			1644.29	1661.25	16.96	1.41		
	5	12	100.0			1624 97	1642.03	17.06	1.42	at the constant of the	
	+-	12	100.0			1574.22	1590.02	15.80	1.32		
	5	12	100.0			1605.55	1622.43	16.88	1.41		
1000	ო	12	100.0	100.0	0.0	1538.53	1558.05	19.52	1.63	1.42	0.18
	4	12	100.0			1567.50	1581.64	14.14	1.18		
	5	12	100.0			1557.20	1576.12	18.92	1.58		
	-	12	100.0			1520.82	1538.00	17.18	1.43		
	7	12	100.0			1553.57	1569.27	15.70	1.31		
2000	ო	£	91.7	98.3	3.7	1647.07	1666.36	19.29	1.75	1.40	0.24
	4	12	100.0			1763.91	1781.25	17.34	1.44		
	5	12	100.0			1647.14	1660.17	13.03	1.09		

Soil Toxicity Test

clerence Tadicat	
Client/Project ID: K	

RT062707LS

Test No:

Tray #:

Dav 3 Row		Surrogate 3	A S	B S 1	c 3 (D 3 7	E / .
	2	S	S	t	4	3	ഷ പ
Colt	3	3	7	പ	+	ę	0
Column	4	0	_	S	5	ત	-
	10	9		ہ	e	4	.
		0	ပ		<u>L</u>	S	0

Dav 4	Row	i		Col	Column		
		T.	3	£	4	'n	9
Sarrog	cate	S	10	S	0	0	6
	Α	З	8	1a	7	2	2
	B	الك	8	۲đ	6	σ	4
	ပ	11	و	11	<u>ر</u>		10
	D	Å	II	_	0)		5
	E	8	Ś	n	3	ര	n
Analyst	5						

Dav 5	Row			Col	Column		
2			2	3	+	10	9
Surrogate	gate	12	21	11	1	1	
	Y	12	12	121	5	1	2
	B	11	14	121	2	=	=
	ပ	5	5	=	17	12	5
	Q	1	4 ₁₉		5	5	
	E	2	17	6	=	و	r
Analyst	105						
Dav 6	Row			Col	Column		
,		F	ы	÷	4.5	5	9
Surrogate	ate	21	2	3	4	1	1
	A	12	12	12	1	=	5
	B	12	12	121	12	=	7
	ပ	12	12	12	12	1	5
	Q	2	2	5	121	1	2
	E	10	2	11	5	9	11
-							

jva	ပြီ	3	<u>ه</u>	Ć	ھ	6	Č	
		2	6	6	6	હ	હ	
lachuca		ł	6	6	6	(ع ا	6	
Lac	D 2 2	MUM	ute	A	B	C	D.	
Test Species:	Dav 7	Day /	Surrog					
		9	Q	6		5	ഗ	
		5	G		ہ	n	4	
	umn	4	0		S	5	હ	
	Colum	3	~	Ζ			<u>(</u>	,

¢

5

4 l હ

3

Column

ł

١

್ 5 6

র্

ک દ

					ľ		
	D	<u>ا</u> ا	હ	ૡ	¢	٢	<u>ر</u>
	E	0	હા	11	Ø	10	-
Analyst	Ľ						
Day 8	Down			C	Column		
u ay o	MON	I.	6	m		5	9
Surrogate	ate	21	12	7	١	l	1'
	A	12	12	2	[2]	14	2
	B	2	5	12	21	=	N
	U U	2	1	4	12.	2	È

2

2

5 ρ

Д E)

5

Analyst

2

Day 0	vay /	Surrogate						Analyst	
Dow	1 × × ×	ate	¥	B	U	Q	E	103	
		21	21	12	12	2	5		
	2	14	17	12	12	12	2		
Co		2	21	71	12	12	11		Column 1
Column	4	1	12	12	7	2	5		
	2	(12	11	12	2	17		
	9	(2	2	12	12	17		

Ν

Ы

2

17

2

V

N И

Day 10 Row E Column Surrogate 12 12 - - Surrogate 12 12 12 12 12 B 12 12 12 12 12 12 C 12 12 12 12 12 12 12 D 12 12 12 12 12 12 12 Analyst 1 1 1 1 1 1 1								
Image I 2 3 4 Image I I 1 2 3 A I I I 1 1 B I I 1 1 1 C I 1 1 1 1 D I 1 1 1 1 F I 1 1 1 1	Day 10	Row			Col	umn		
Progente 12 12 12 12 12 12 12 12 12 12 12 12 12	or fraz			2	3	4	n	
A [2 12 12 12 B 12 12 12 12 C 12 12 12 12 D 12 12 12 12 E [0 12 1] 12	Surrog	ate	15	12	12	1	1	
B 12 12 12 C 12 12 12 D 12 12 12 12 E 10 12 12 12		A	2	12	12	1	2	L
C 12 12 12 12 12 12 12 12 12 12 12 12 12		В	12	12	12	11	=	
D E (c	12	12	2	11	12	1
E		D	12	12	12	11	9	
Analyst 1, K		E	0	12	11	11	=	
	Analyst	١۴						

End Date/Time:	e/Time		-11-01		1300		
Dav 11	Row			ຶ່	Column		
		Ĩ	2	•	4	\$	ور
Surr	Surrogate	2	:2	12	- 2to	1	(
	A	12	ġ,	2	12	2	2
	B	2	2	12	2	=	5
	ပ	12	3	12	2	2)	4
	٩	2	5	2	12	12	2
	E	0)	12	lí	12	1	21
Analyst	କ୍ଷ						
Day 17	Dow			Col	Column		
24) 14	HONT	I	2	•	*	S	9
Surr	Surrogate	12	2	5	١	1	١
	A	5	5	2	2	Ľ	2)
	B	2	5	11	12	1	12
	ပ	9	21	12	12	21	12
	۵	3	12	12	12	2	2
	E	0	11	[[21	11	121
Analyst	\$						
Day 12	Dow			Colt	Column	-	
Lay Lo	MONT	I.	2	3	*	vi	9
Surro	Surrogate	2	17	17	1	1	1
				ľ		Ī	T

						1	1
	B	12	21	12	12	1	12
	С	17	21	21	12	12	2
	Q	12	12	12	2	ī	2
	E	0	2	11	12	=	12
Analyst	521						
Dav 14	Row			Col	Column		
the fact			2	3	4	6	9
Surr	Surrogate	12	12	12	{	۱	
	¥	7	2	12	12	12	4
	B	2	12	17	12	117	4
	ပ	2	<u>5</u>	12	2)	5	Ş
	Q	12	2	12	2)	2	12
	E	0	2	=	4	11	4

Nautilus Environmental 5009 Pacific Hwy. E., Suite 2. Tacoma, WA 98424.

J

seeds

Analyst 115 Comments: QC Check:

Some surrigates innormicated w

Final Review:

5

Analyst

Raw Data Sheet Shoot and Root Weight Data 14-Day Soil Toxicity Test

Client:	RT
Sample II	D. 2000 mg/L Boric Acid
Test No:	RTOUZTOTLS
Log-In#:	NA

Start Date & Tin	<u>ne: 6-27-07</u>	1645
Stop Date & Tin	ne: 7-11-07	1300
Test Species:	Letuca sativa (But	ter Crunch Lettuce)

Conc.	Cont.	Rep.	No. Seedlings	Shoot Pan	Pan + Wet Shoot	Pan + Dry Shoot	1
			Emerged	Tare Wt. (g)	Wt. (g)	Wt. (g)	
Coh	15	1	<u>_</u>	1.63050	1.95458	1.64473	
	24	2	x + 12	1.66544	2,22528	1.69002	1
	29	3	12	1.68968	2.12.624	1.70641	1
	18	4	12	1.65554	2,160319	1.67554	
	7	5	12	1.67189	2.12556	1.68992	
125	19	1	12	1.63718	2.08490	1.65410	
	21	2	12	1.64872	2.10930	1.66541	
	14	3	12	1.54416	2,00325	1,56064	
	27	4	12	1.57140	2.05437	1.59077	
	25	5	11	1, 55006	1.87302	1.56408	
250	8	1	12	1.70427	2.16562	1.72142	
	3	2	12 ,	1.700 *	2.01277	1.70948	
		3	12	1.67558	2.12227	1.69478	
	10	4	12	1.7455	2.0 45	1.71776	
	20	5	12	1.69850	2.10903	1.71691	
500	5	1	10	1.68672	2.05110	1.69978	
	24	2	12	1.69107	2.15347	1.709 \$	\$1.70788
·	17	3	12	1.70882	2.16505	1.72712	
L	13	4	12	1.64429	2.06218	1.66125	
	12	5	12	1.62497	2.07284	1.64203	
1000	4	1	12	1.57422	2.01197	1.59002	
	9	2	12	1.60555	2.07808	1.62243	
	23	3	12	1.53853	2,10237	1.55805	
	1	4	12	1.56750	1.96170	1.58164	
	28	5	12	1,55720	2.14736	1.57612	
2000	16	1	12	1.52082	2.01811	1.53 800	
	6	2	12	1.55357	1.98 465	1.56927	
	22	3		1.64707	2.16419	1.66636	
	30	4	12	1.76391	2.23329	1.7810.5	
	2	5	12	1.64714	1,99863	1.66017	
Tech Ini	itials:		22	ML	- 56	RS .	

Comments:	Initial number of seeds added to each replicate = 12	Date/Time in: <u>1-11-07</u> 1536
	* 169992	Oven Temp (°C):
QC Check:		$\underline{\qquad Date/Time out: 70 7/1 4/17 1600}$ $\underline{\qquad Oven Temp (°C): 10}$
QC CHEEK.		

PLOTZ

Raw Data Sheet Sublethal Data 14-Day Soil Toxicity Test

Client: <u>Reference Toxicant</u> Start Sample ID. 2000 ppm Boric Acial Stop Test No: <u>RTO60707LS</u> Test Log-In#: <u>NA</u>

Start Date & Time: 1,27-07 1645 Stop Date & Time: 7-11-07 1300 Test Species: Latuca sativa (Butter Crunch Letter

Conc.	Cont.	Rep.	Comments
CON	15	1	
	26	2	
	29	3	
	18	4	Ismaller stem and long 1° leaves (bit between the caudaliednts")
	7	5	
125	Ŋ	1	
	21	2	Iw/smaller leaves
	14	3	
	27	4	
	25	5	
250	8	1	
	3	2	I seedling yellow bran brown in color
	11	3	
	10	4	
	20	5	
Tech I	nitials		
QC CI	neck:	ŢĶ	<u></u>

PZOFZ

Log-In#: -

Client: <u>Reference</u> Toxicant Sample ID. 2000 ppm Boric Acid Test No: <u>RT662707 LS</u> Raw Data Sheet Sublethal Data 14-Day Soil Toxicity Test

Start Date & Time	b/27/07	1645
Stop Date & Time	7/11/07	1300
Test Species: \underline{L}	g tuca sativa	(Butter Crunch Lett

Conc.	Cont.	Rep.	Comments
500	б	1	geedti stems seem weaker than others
	24	2	
	17	3	
	13	4	
	12	5	
1000	4	1	I smaller seedling
	9	2	
	23	3	
)	4	
	28	5	
2000	16	1	
	Q	2	
	22	3	
	30	4	
	2	5	
Tech	Initials	:	
QC C	heck:		E

Soil Toxicity Test

Soil Quality Measurments

Lactuca sativa (butter crunch lettuce)

Test Species:

Reprence Toxicant

Client:

1		Soil Supernatent ph (units) initial finai	9	7.00 6.76	6.95 6.79	7.02 6.72	6.95	6.8°									βŝ
		Soil Super (un initial	6.86	2007	56:9	7.02	7.23	7,21									es
15	1300	Soil Sturry pH (units) nitial final	6.91	6,42	6.90	6.9	7.03	6.41	-								5ß
6/22/07 1645		······································	CON 7.03	212	6.99	7.15	800 7.3 1	7.27									Sß
	LO-11-L	Conc. Or	CON	+ <u>195</u>	£€	oogt	30000	2000									Tech. Init. 50
Start Date/Time:	End Date/Time:																,
		<u>e</u> 2															
	S	Tech Initials	105	JM	MM	5	t,	ICS 1	5	Ct.	105	165	15	MM	521	125	પ્ર
	57101290	Light Tec Intensity Initia (lux)	2-130 165	n c	MM	\mathbf{b}	Ct L	I ILS	(2)	A 0181	02650 125	165	165	WM/	31	125	2800 00
Borie Reid	1715 RT 06 27 07 25				MM		1 Ct	ZAI - IES				1 165	571	MM /	21	12	
Sample ID: 2000 pour Porie field	6715	Light Intensity (tux)		#19.6 V mu	*19.3 V MI	¥19.5 V 5	+13 / St	14-10 1 V	*19.2 V 105			2	20.4 20.4	7	20.4 1		

QC Check:

comments: * fenguature top (on) - See, concept ve action * 07-012 The bulks burned out, both builds replaced Others high interestic reading, at to build change 13.47 4 1/5 bulles

Nautilus Environmental. 5009 Pacific Hwy. E., Ste. 2. Tacoma, WA. 98424

9	SUR 2002	26	27	28	29	30	
5	SUR	21	22	23	24	25	
4	SUR	16	17	18	000	20	
3	sur 2 <i>5</i> 0	11	12	13	14	15	
2	sur 125	ဖ	~	ω	ത	10	-
4	sur All	-	7	m	4	4 4 6	
	surrogate	A	<u>س</u>	<u></u> о	I	ш	

PLANTING MAP (RT)

APPENDIX D – Analytical Results

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 21, 2007

Lance Peterson CDM P.O. Box 3885 Bellevue, WA 98009

Re: Analytical Data for Project 19897-52181 Laboratory Reference No. 0706-192

Dear Lance:

Enclosed are the analytical results and associated quality control data for samples submitted on June 20, 2007.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 21, 2007 Samples Submitted: June 20, 2007 Laboratory Reference: 0706-192 Project: 19897-52181

Case Narrative

Samples were collected on June 19, 2007 and received by the laboratory on June 20, 2007. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: June 21, 2007 Samples Submitted: June 20, 2007 Laboratory Reference: 0706-192 Project: 19897-52181

NWTPH-Dx

Date Extracted:	6-20-07
Date Analyzed:	6-20-07

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	Source Soil
Lab ID:	06-192-01

Diesel Range:	51000
PQL:	1600
lele u tili e e ti e u i	Dumfrom O

Identification:	Bunker C

Lube Oil Range: PQL:	ND 3200
Identification:	
Surrogate Recovery o-Terphenyl:	
Flags:	Y,S

Date of Report: June 21, 2007 Samples Submitted: June 20, 2007 Laboratory Reference: 0706-192 Project: 19897-52181

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	6-20-07
Date Analyzed:	6-20-07

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0620S2
Diesel Range: PQL:	ND 25
Identification:	
Lube Oil Range: PQL: Identification:	ND 50
Surrogate Recovery o-Terphenyl:	122%
Flags:	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	6-20-07 6-20-07	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	06-192-01	06-192-01 DUP
Diesel Range: PQL:	39300 1300	33100 1300
RPD:	17	
Surrogate Recovery o-Terphenyl:		
Flags:	Y,S	Y,S

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 6-20-07

Client ID	Lab ID	% Moisture
Source Soil	06-192-01	23

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

 ${\sf K}$ - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody	Turnaround Request Laboratory Number: 06 – 192	1 Day 3 Day	Standard (7 working days) Standard (7 working days) Dy 8270C Dy 9270C <	Samuel Sance Sance Cate Number Sance Sance Cate Number Sance Sance Sance Number Sance Sance Sance Number Sance Sance Sance Number Sance	1/19/10-30 So.1 1 K .					Company Date Time Commants/Special Instructions: $\left \Lambda / h_{11} $	28	Source soil Sanghe, Cullected	Ex COM "/19/67			
1 DuSite	ž _e	201-52/8/	inde / Elligert CK	Backur Sackur	Source Soil		•			Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Received by	

DISTRIBUTION I FGFND White - OnSite Carv Yellow - Report Coov Pink - Client Coov

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 12, 2007

Lance Peterson CDM P.O. Box 3885 Bellevue, WA 98009

Re: Analytical Data for Project 19897-52181 Laboratory Reference No. 0707-025

Dear Lance:

Enclosed are the analytical results and associated quality control data for samples submitted on July 3, 2005.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

ł

Case Narrative

Samples were collected on June 27 & 29, 2007 and received by the laboratory on July 3, 2007. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx

Date Extracted:	7-10-07
Date Analyzed:	7-10-07

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	Background Soil 07-025-01	Control Lab 07-025-02	3.13% CS 07-025-03
Diesel Range: PQL: Identification:	ND 30 	ND 26	ND 29
Bunker C Range: PQL: Identification:	ND 60 	810 52	930 59
Surrogate Recovery o-Terphenyl: Flags:	84% Y	69% T,Y	87% Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	7-10-07
Date Analyzed:	7-10-07

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID: Lab ID:	6.25% CS 07-025-04	12.5% CS 07-025-05	25% CS 07-025-06
Diesel Range: PQL:	ND 29	ND 150	ND 150
Identification:			
Bunker C Range: PQL: Identification:	1700 58	2800 290	6700 290
Surrogate Recovery o-Terphenyl:	81%	89%	104%
Flags:	Υ	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	7-10-07
Date Analyzed:	7-10-07

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	50% CS
Lab ID:	07-025-07

Diesel Range:	ND
PQL:	310

Identification: ---

Bunker C Range:	18000
PQL:	610
Identification:	

Surrogate Recovery	
o-Terphenyl:	

Flags: Y,S

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	7-10-07
Date Analyzed:	7-10-07

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0710S1
Diesel Range: PQL:	ND 25
Identification:	
Bunker C Range: PQL: Identification:	ND 50
Surrogate Recovery o-Terphenyl:	105%
Flags:	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted: Date Analyzed:	7-10-07 7-10-07	
Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	07-025-02	07-025-02 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery o-Terphenyl:	69%	83%
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 7-10-07

Client ID	Lab ID	% Moisture
Background Soil	07-025-01	16
Control-Lab	07-025-02	3
3.13% CS	07-025-03	15
6.25% CS	07-025-04	14
12.5% CS	07-025-05	14
25% CS	07-025-06	14
50% CS	07-025-07	18

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

sis	% Moisture PH Billion		omments/special instructions: Please quantify as Bunker C Consize Can Tet: Consize Can Tepor
0.7 - 0.2 5 Requested Analysis	Bs by 8082 sticides by 8081A sticides by 81518 tal ACRA Metals (8) CLP Metals		Comments/Special Instructions Please quan hfy Con 12 A CT #: Con 12 A CT #: Con 12 A CT #:
Laboratory Number:	Hs by 8270C / SIM TPH-Gx/BTEX (TPH analysis 5 working days) TPH-Gx/BTEX (Other) (other)	21/11 - 2 - 2 - 1 21/12 - 2 - 2 - 2 - 2 - 1 21/12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Company Company Adu X/12/07 10:45 207 1000 Reviewed by/Date
Environmental Inc.	40	Lab 10 sample Identification sample Identification b_{01} backgrownd Soil b_{12} by b_{12} $3 \cdot 13^{0}/6$ LS b_{12} b	Relinquished by Signature Relinquished by Received by Received by Received by Received by Relinquished by Received

and the second second

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 5, 2007

Lance Peterson CDM P.O. Box 3885 Bellevue, WA 98009

Re: Analytical Data for Project 19897-52181; Ellisport Laboratory Reference No. 0708-262

Dear Lance:

Enclosed are the analytical results and associated quality control data for samples submitted on August 29, 2007.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 28, 2007 and received by the laboratory on August 29, 2007. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx Analysis

The chromatogram for sample Garden Soil is not similar to a typical Bunker C chromatogram.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

Date Extracted:	8-30-07
Date Analyzed:	9-4-07

Matrix: Soil Units: mg/kg (ppm)

Client ID:	Artificial Soil	Garden Soil
Lab ID:	08-262-01	08-262-02
Diesel Range:	ND	ND
PQL:	26	27
Identification:		
Bunker C Range: PQL: Identification:	ND 51 	2200 54
Surrogate Recovery o-Terphenyl: Flags:	94% Y	99% Y,T

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	8-30-07
Date Analyzed:	8-30-07

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0830S1
Diesel Range: PQL: Identification:	ND 25
Bunker C Range: PQL:	ND 50
Identification: Surrogate Recovery o-Terphenyl:	 105%
Flags:	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8-30-07

8-30-07

Date Extracted:

Date Analyzed:

Flags:

NWTPH-Dx DUPLICATE QUALITY CONTROL

Matrix: Units:	Soil mg/kg (ppm)	
Lab ID:	08-268-14	08-268-14 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	
Surrogate Recovery o-Terphenyl:	91%	91%

Y

Y

% MOISTURE

Date Analyzed:	8-30-07		
Client ID		Lab ID	% Moisture
Artificial Soil		08-262-01	2
Garden Soil		08-262-02	8

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

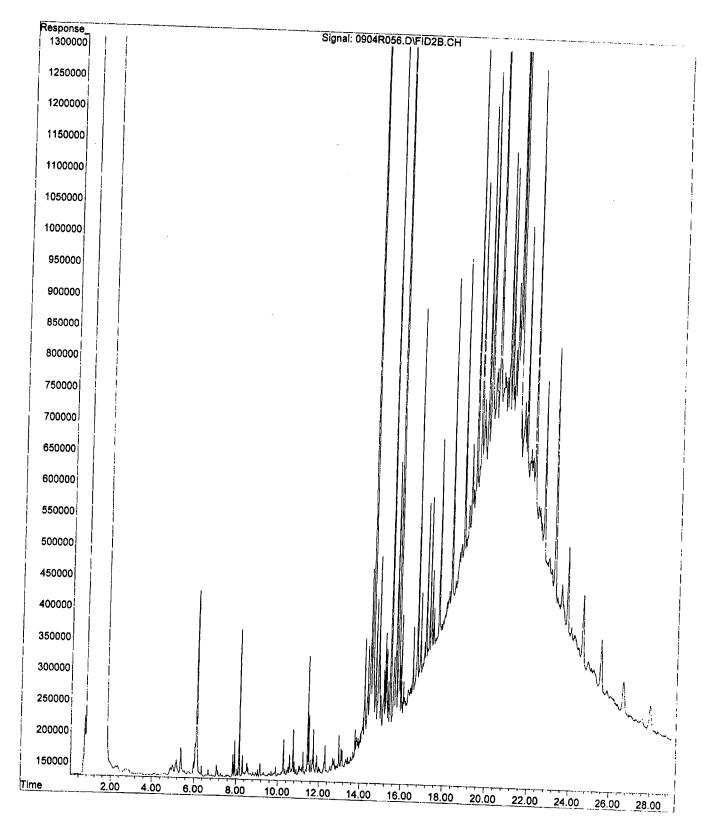
Y - Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference


O-Dia		Chain of Uustouy	Stod	-						Page	-	0	
Environmental lac.	Turnaround Request (in working days)		borator	Laboratory Number:	08		262	2					
Prover (225) 963-3691 + Fac: (225) 965-4613	(Check One)				Ree	quest	ed Ar	Requested Analysis	G				
UM	Same Day	[] 1 Day			·····								
19897-52181		🗍 3 Day		82606									
King County Ellisont Creek	K Standard (7 working days)	days) inn davs)		SLOC	••••								
Project Managoer Porter SON				e /d \$		808 YG	IsteM /						
Sampad by (NUSAA) MCCCAIND,	(other)	0H-H	XQ-H	etana elitalo	08 44			BI VA BI VA	<u></u>			-,	ojanisja
	Bale Time Same ac Samplad Matri	a of	ЧТ₩И	vime2	6834			члот МЭН	НЫЛ	наэ			W %
Lab ID School Sc	104 F	N	X										\boldsymbol{X}
1 Ander Sol	101	N	×				ļ						
-+													
													
											<u> </u>	┽	
					-	+							
		+				+					 	-	<u> </u>
												<u> </u>	ļ
						+	 						
							ļ						
Signature	Company		Date	Time	Сот	nerts:S	Jeciai 1	Comments:Special Instructions	SUC				
Reinquished by (JULA) (MACA) (MOULA	- Nauthus		La/82/8		Ã	900	d lu	uth	fu a	S B B B B B B B B B B B B B B B B B B B	Place quantify as Bunker C	Ś	_
Peccived by (M.C. Daw	188		Werk	1 1030			2		7				
Reinquished by)												
Received by													
Reimquished by													
Received by										•			
Reviewed by/Date	Reviewed by/Dale				Chie	matog	rams (Chromatograms with final report	ai repo	Ŕ			

08/28/2007 09:54 4258854503

ONSITE ENVIRONMENTA

PAGE 02

File :X:\DIESELS\TERI\DATA\T070904.SEC\0904R056.D Operator : DY Acquired : 04 Sep 2007 14:22 using AcqMethod F070904.M Instrument : Teri Sample Name: 08-262-02 RR DBLAC Misc Info : 2 Vial Number: 56

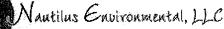
きょうしょう たいた

and the second

APPENDIX E - Chain-of-Custody Form

$\mathbf{>}$

 CHAIN-OF-CUSTODY


 %/07
 Page

Date 6/19/07

PROJECT INFORMATION	Laboratory Number	er:						
ance feterson			ANA	ANALYSIS REQUESI	DUEST			
Project Name: King County/Ellisport CK PET Deviced Mumber: (3847-62151	PETROLEUM HYDROCARBONS	ORGANIC COMPOUNDS	8	PESTS/PCBs	METALS	LEACHING	OTHER	
nt.Vostus 35, Jub DISPOSAL INFOR ab Disposal (return if not in ethod:	TPH Special Instructions 8015M Fuel Hydrocarbon TPH-418.1 State: TPH-D	8310 PAHs 8270 GC/MS Semivolatiles 8240 GC/MS Volatiles 8020M - BETX only 8020 Aromatic VOCs 8010 Halogenated VOCs	8080 OC Pest/PCBs DWS - Volatiles and Semivolatiles 8040 Phenols	DWS - Herb/Pest 8150 OC Herbicides 8140 OP Pesticides 8080M PCBs only	DWS - Metals Priority Poll. Metals (13) TCL Metals (23) Organic Lead (Ca) Selected Metals: list	TCLP - Metals TCLP - Pesticides TCLP - Semivolatiles TCLP - Volatiles (ZHE) MFSP - Metals (Wa)	Blonssay testing per 5/7/07 QAPP	NUMBER OF CONTAINERS
Source Soil 6/19/07 1030 Sail 17-052							×	
1,100 1200 1200 500							8	
AB INFORMATION	RE	REEINQUISHED BY: 1.	BY: 1.	RELINQUI	RELINQUISHED BY: 2	630,000	RELINQUISHED BY: 3.	. 3.
Nout i /us		Manuel 9/10	N N N	Signature:	Time:	ie: Signature:		Time:
Lab Address: SOCA Kac. Kuy E. Chain-of-Custody Seals: Y/N/NA		Printed Namo	Date:	Printed Name: Printed Name:	Date:	te: Printed Name:		Date:
Via: hand delivery Received in Good Condition/Cold:	ß	company:		Company:		Company:		
Turn Around Time: Standard 24 hr. 48 hr. 72 hr.	wk.	RECEVED BY:	Ţ.	RECEIVED BY:		2. RECEIVED	id BY:	ň
PRIOR AUTHORIZATION IS REQUIRED FOR RUSH DATA	Signatu	and Nobe -	Time:	Signature:	Time:	e: Signature:		Time:
Special Instructions:	Print	Printed Name: Laken L-John	- Jebin In One	Printed Name:	Date:	e: Printed Name:		Date:
	Com	company: / au h lu	ĵ.	Company:		Company:		
CDM UFFICES: Bellevue: (206) 453-8383 rev. 202 Portland: (503) 232-1800	DISTRIBUTI	DISTRIBUTIÓN: White, Canary to Analytical Laboratory; Pink to CDM Project Files; Gold to CDM Disposal Files formshed/chainofcustody.p65	to Analytic	al Laboratory; ł	Pink to CDM Pro	iject Files; Gold t to	to CDM Disposal Files forms/field/chain of custody.p65	al Files tody.p65

Appendix B Additional Statistical Evaluation of Terrestrial Toxicity Tests

Memo:	Additional statistical evaluation of terrestrial toxicity tests for King County
Ellisport C	reek Greenspace Project

То	Lance Peterson	From Karen Tobiason
Company	CDM	Tel 253-922-4296
Phone	425-453-8383	Fax 253-922-5814
e-mail	petersonle@cdm.com	e-mail karen@nautilusenvironmental.com

As requested, we have evaluated the dataset of the Eisenia fetida (earthworm) and Lactuca sativa (lettuce seed) terrestrial toxicity tests for LC05 and LC10 values. Table 1 provides a summary of those values as well as the previously reported LC25 and LC50 values. Data are presented in mg/kg of measured concentrations of Bunker C with associated 95% confidence intervals. The statistical analyses were conducted using the CETIS software package.

Table 1. Su	mmary of statistical a	maryses			
End-point	Statistical	LC05/IC05	LC10/IC10	LC25/IC25	LC50/IC50
	method				
E. fetida	Linear regression	5760	6980	9620	13,700
14d	Linear regression				•
survival	(LC values)	(914 - 8870)	(1560 – 10,100)	(3740 – 12,700)	(8960 – 18,100)
L. sativa	Linear				
14d	interpolation	>18,000	>18,000	>18,000	>18,000
survival	(IC values) ^a				
L. Sativa	Linear	1200	1660	N10 000	N10 000
14d	interpolation	1300		>18,000	>18,000
growth	(IC values)	(NA)	(NA)	(NA)	(NA)

Table 1. Summary of statistical analyses

NA- 95% confidence intervals not available; a Statistical assumptions are not met to run linear regression or spearman karber analyses. Linear interpolation values are presented in the table.

It should be noted that the survival dataset for L. sativa failed to meet the assumptions of the Linear Regression analysis and LC values using this method were not calculable. Analysis using Linear Interpolation estimates have been presented here and indicate that no effect on seedling survival occurred in any concentration.

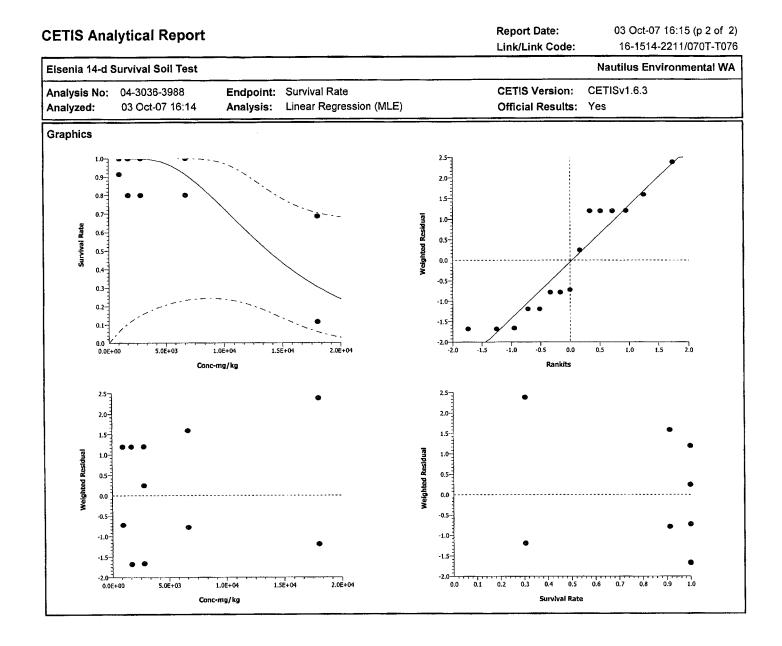
Please feel free to contact me should you have any questions regarding these analyses.

Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Tel 253-922-4296 Fax 253-922-5814

KT

CETIS Sum	nmary Repo	rt					-	ort Date: /Link Code		Oct-07 08: 6-1514-221		
Eisenia 14-d S	urvival Soil Tes	it							Nautil	us Environ	mental W	
Start Date:	07-5416-1662 27 Jun-07 16:00 11 Jul-07 13:00 13d 21h) (Test Type: Protocol: Species: Source:	Survival WDOE 96-327 Eisenia fetida			Anal Dilu Brin Age:	e:	ren Tobiasor	1		
•	04-2064-9698 19 Jun-07 10:30 19 Jun-07 15:11 8d 5h	5	Code: Material: Source: Station:	420649698 Bunker C CDM			Clier Proj		mper Dresse ng County El		k	
Comparison S	Summary						<u> </u>				<u></u>	
Analysis No	Endpoint			NOEL	LOEL	TOEL	PMSD	Method				
18-5532-2275	Survival Rate			6700	18000	11000	44.9%	Dunnett's	Multiple Cor	nparison Te	est	
Point Estimat	e Summary											
Analysis No	Endpoint			Effect-%	Conc-mg/k	95% LCL	95% UCL	Method				
04-3036-3988	Survival Rate			5	5760	914	8870		Linear Regression (MLE)			
				10	6980	1560	10100		•			
08-0090-7657	Survival Rate			25	9620	3740	12700	Linear Re	gression (M	_E)		
·····				50	13700	8960	18100					
Survival Rate	Summary										<u>, </u>	
Conc-mg/kg	Control Type	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	Diff%	
0	Backgtround S	3	0.9	0.863	0.937	0.8	1	0.0183	0.1	11.1%	0.0%	
930		3	0.933	0.89	0.976	0.8	1	0.0211	0.115	12.4%	-3.7%	
1700		3	0.8	0.735	0.865	0.7	1	0.0316	0.173	21.7%	11.1%	
2800		3	0.867	0.81	0.924	0.7	1	0.0279	0.153	17.6%	3.7%	
6700		3	0.8	0.735	0.865	0.7	1	0.0316	0.173	21.7%	11.1%	
18000	·	3	0.267	0.159	0.374	0.1	0.6	0.0527	0.289	108.0%	70.4%	
Survival Rate	Detail									<u></u>		
Conc-mg/kg	Control Type	Rep 1	Rep 2	Rep 3								
0	Backgtround So	0.9	0.8	1								
930		0.8	1	1								
1700		1	0.7	0.7								
2800		0.7	1	0.9								
6700		0.7	0.7	1								

.


Analyst: KT QA: KT

CETIS Sum	nmary Repo	ort					•	ort Date: /Link Code			15 (p 1 of 1) 1/070T-T076
Eisenia 14-d S	Survival Soil Te	st							Nautil	us Enviror	mental WA
Start Date:	07-5416-1662 27 Jun-07 16:0 11 Jul-07 13:00 13d 21h	0	Test Type: Protocol: Species: Source:	Survival WDOE 96-327 Eisenia fetida	,		Anal Dilu Brin Age	ent: e:	ren Tobiaso	1	
•	04-2064-9698 19 Jun-07 10:3 19 Jun-07 15:1 8d 5h	0 5	Code: Material: Source: Station:	420649698 Bunker C CDM			Clie Proj		imper Dresse ng County El		k
Point Estimat	e Summary		<u>, 1998</u>								
Analysis No	Endpoint			Effect-%	Conc-mg/k	4 95% LCL	95% UCL	Method			
04-3036-3988	Survival Rate			5	5760	914	8870	Linear Re	gression (M	LE)	
				10	6980	1560	10100				
Survival Rate	Summary										
Conc-mg/kg	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Backgtround S	3	0.9	0.863	0.937	0.8	1	0.0183	0.1	11.1%	0.0%
930		3	0.933	0.89	0.976	0.8	1	0.0211	0.115	12.4%	-3.7%
1700		3	0.8	0.735	0.865	0.7	1	0.0316	0.173	21.7%	11.1%
2800		3	0.867	0.81	0.924	0.7	1	0.0279	0.153	17.6%	3.7%
6700		3	0.8	0.735	0.865	0.7	1	0.0316	0.173	21.7%	11.1%
18000		3	0.267	0.159	0.374	0.1	0.6	0.0527	0.289	108.0%	70.4%
Survival Rate	Detail										
Conc-mg/kg	Control Type	Rep 1	Rep 2	Rep 3							
0	Backgtround So	0.9	0.8	1							
930		0.8	1	1							
1700		1	0.7	0.7							
2800		0.7	1	0.9							
6700		0.7	0.7	1							
18000		0.6	0.1	0.1							

Analyst: KI QA: KI

CETIS Ar	nalytical Repo	ort						ort Date: 'Link Code:		Oct-07 16: 6-1514-221	
Eisenia 14-	d Survival Soil Tes	st						Link Gode.		lus Environ	
Analysis No	o: 04-3036-3988	End	point: Sur	vival Rate	<u> </u>		CETI	S Version:	CETISv	1.6.3	
Analyzed:	03 Oct-07 16:14	4 Ana	ysis: Line	ear Regress	ion (MLE)		Offic	ial Results:	Yes		
Linear Reg	ression Options										
Model Fund	ction		Threshold	d Option	Threshold	Optimized	Pooled	Het Corr	Weighte	d	
Log-Normal	[NED=A+B*log(X)]		Control Th	reshold	0.1	Yes	No	No	Yes		
Regression	Summary										··········
iters Li	L AICc	Mu	Sigma	G Stat	Chi-Sq	Critical	P-Value	Decision	(5%)		
10 -3	2.7 70.4	-2.99	0.23	0.42	19	22.4	0.1220		<u> </u>	erogeneity	
Point Estim	nates										
Effect-%	Conc-mg/kg 95%	LCL 95%	UCL								
5	5760 914	8870)								
10	6980 1560	1010	0								
Regression	Parameters										
Parameter	Estimate	Std Error	95% LCL	95% UCL	t Stat	P-Value	Decision(5%)			
Threshold	0.125	0.0305	0.0647	0.184	4.08	0.0013	Significan	t Parameter			
Slope	4.35	1.44	1.53	7.18	3.03	0.0097	Significant	t Parameter			
Intercept	-13	6.01	-24.8	-1.25	-2.17	0.0493	Significan	t Parameter			
Residual A	nalysis									<u> </u>	
Attribute	Method			Test Stat	Critical	P-Value	Decision(5%)			
Variances	Bartlett Ec	uality of Va	riance	0.716	9.49	0.9490	Equal Var	iances			
Distribution	Shapiro-W	/ilk Normalit	y	0.883		0.0521	Normal Di	stribution			
Survival Ra	ate Summary				Calcu	lated Variat	te(A/B)				
Conc-mg/k	g Control Type	Count	Mean	Min	Мах	Std Err	Std Dev	CV%	Diff%	Α	В
0	Backgtround Soil	3	0.9	0.8	1	0.0183	0.1	11.1%	0.0%	27	30
930		3	0.933	0.8	1	0.0211	0.115	12.4%	-3.7%	28	30
1700		3	0.8	0.7	1	0.0316	0.173	21.7%	11.1%	24	30
2800		3	0.867	0.7	1	0.0279	0.153	17.6%	3.7%	26	30
6700		3	0.8	0.7	1	0.0316	0.173	21.7%	11.1%	24	30
18000		3	0.267	0.1	0.6	0.0527	0.289	108.0%	70.4%	8	30
Survival Ra	ate Detail										
	g Control Type	Rep 1	Rep 2	Rep 3							
	Backgtround Soil		0.8	1							
-		0.8	1	1							
930		0.0									
930		1	0.7	0.7							
930 1700			0.7 1	0.7 0.9							
0 930 1700 2800 6700		1									

Analyst: K QA: K

000-089-163-1

CETIS™ v1.6.3revG

Analyst: KT QA: KT

CETIS Summary Report							•	ort Date: /Link Code		03 Oct-07 16:20 (p 1 of 1) 03-8999-8798/0706-T075			
Early Seedling	Growth	_							Nautilu	us Environ	mental WA		
Test Run No: Start Date: Ending Date: Duration:				Survival-Growth WDOE 96-324 Lactuca sativa Carolina Biological Supply			Analyst: Karen Tobiason Diluent: Brine: Age:						
•	04-2064-9698 Code: 19 Jun-07 10:30 Material: 19 Jun-07 15:15 Source: 8d 6h Station:			420649698 Bunker C CDM		Client: Camper Dresser McKee Project: King County Ellisport Creek							
Point Estimate	e Summary												
Analysis No 05-7541-8717				Effect-% 5 10 25 50	Conc-mg/k 1300 1660 > 18000 > 18000	8 95% LCL N/A N/A N/A N/A	N/A Linear Interpolation (ICPIN) N/A N/A						
12-1215-4789	Survival Rate			50 5 10 25 50	> 18000 > 18000 > 18000 > 18000 > 18000	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	Linear Inte	Linear Interpolation (ICPIN)				
Mean Dry Bio	mass-mg Summ	nary											
	Control Type	Count		95% LCL			Max	Std Err	Std Dev	CV%	Diff% 0.0%		
	Backgtround S	5	0.898	0.802	0.995	0.61	1.23 1.12	0.047 0.0253	0.258 0.139	28.7% 14.6%	0.0% -5.68%		
930		5	0.949	0.898	1	0.819 0.694	1.12	0.0255	0.139	14.0%	-5.08 <i>%</i> 8.0%		
1700		5	0.827	0.783 0.721	0.87 0.821	0.694	0.908	0.0213	0.133	14.2 %	14.2%		
2800		5	0.771				1.02	0.0243	0.133	17.2 %	9.67%		
6700		5 5	0.811 0.772	0.756 0.712	0.867 0.832	0.63 0.496	0.898	0.0289	0.147	20.8%	9.07 % 14.1%		
18000		<u> </u>	0.772	0.712	0.002	0.400							
Survival Rate	-	_						044 5	04-1 Dave	0)/0/	D:60/		
Conc-mg/kg	Control Type	Coun				Min	Max	Std Err	Std Dev	<u>CV%</u>	Diff% 0.0%		
0	Backgtround S	5	0.8	0.728	0.872	0.583	1	0.035	0.192	24.0%	-22.9%		
930		5	0.983		0.997	0.917	1	0.0068	0.0373	3.79%			
1700		5	0.933		0.947	0.917	1	0.0068	0.0373	3.99%	-16.7%		
2800		5	0.883		0.931	0.75	1	0.0231	0.126	14.3%	-10.4%		
6700		5	0.9	0.859	0.941	0.75	1	0.0198	0.109	12.1%	-12.5% -10.4%		
18000		5	0.883	0.836	0.931	0.667	1	0.0231	0.126	14.3%	-10.478		
-	mass-mg Detai												
	Control Type				Rep 4	Rep 5							
0	Backgtround So				1.1	0.61							
930		0.852			1.08	0.819							
1700		0.753		0.694	0.842	0.837							
2800		0.898			0.908	0.727							
6700		0.725		0.826	0.63 0.775	1.02 0.496							
18000		0.851	0.84	0.090	0.775	0.490							
Survival Rate		_			_ .								
h	Control Type	Rep /			Rep 4	Rep 5					· · · · · · · · · · · · · · · · · · ·		
0	Backgtround S		0.667		1	0.583							
930		1	1	1	1	0.917							
1700		1	0.917		0.917	0.917							
2800		1	0.75	1	0.917	0.75 1							
6700		0.917		0.833 0.917	0.75 0.917	1 0.667							
18000		0.917	<u> </u>	0.917	0.917	100.0							

Analyst:__KT___QA:__KT___

nalyzed: inear Interpola Transform inear oint Estimates iffect-% Con 130 0 166 5 > 180 0 > 180 0 > 180 0 > 180 0 > 180 0 Ba 30 700 8000 8000	05-7541-8717 03 Oct-07 16:19 ation Options Y Transform Linear s nc-mg/kg 95% L 00 N/A 60 N/A 000 N/A 000 N/A	Seed 7055 _CL 95% N/A N/A N/A N/A ary Count 5	ysis: Li 475 2 UCL Mean	lean Dry Bior inear Interpol esamples 80	lation (ICPIN Exp 95% Yes	6 CL. Meth	Offic	S Version: ial Results: plation	CETISv1.6.3	nvironmental WA
nalyzed: inear Interpola Transform inear oint Estimates iffect-% Con 130 0 166 5 > 180 0 > 180 0 > 180 0 > 180 0 > 180 0 Ba 30 700 8000 8000	03 Oct-07 16:19 ation Options Y Transform Linear s nc-mg/kg 95% L 00 N/A 00 N/A 000 N/A 000 N/A 000 N/A 000 N/A 000 N/A	Seed 7055 _CL 95% N/A N/A N/A N/A ary Count 5	ysis: Li 475 2 UCL Mean	inear Interpol	lation (ICPIN Exp 95% Yes	6 CL Meth Two-	Offic	ial Results:		
Transform inear oint Estimates iffect-% Coi 130 0 166 5 > 180 0 > 180 dean Dry Biom Coi conc-mg/kg Coi Ba 30 700 8000 5000	Y Transform Linear s nc-mg/kg 95% L 200 N/A 200 N/A 2000 N/A 2000 N/A 2000 N/A 2000 N/A	7055 _CL 95% N/A N/A N/A ary Count 5	UCL Mean	80	Yes	Two-		plation		
Transform inear oint Estimates iffect-% Coi 130 0 166 5 > 180 0 > 180 dean Dry Biom Coi conc-mg/kg Coi Ba 30 700 8000 5000	Y Transform Linear s nc-mg/kg 95% L 200 N/A 200 N/A 2000 N/A 2000 N/A 2000 N/A 2000 N/A	7055 _CL 95% N/A N/A N/A ary Count 5	UCL Mean	80	Yes	Two-		blation		
oint Estimates iffect-% Col 130 0 166 5 > 180 0 > 180 Mean Dry Biom conc-mg/kg Co Ba 30 700 8000 5700 8000	s nc-mg/kg 95% L 20 N/A 30 N/A 200 N/A 200 N/A 200 N/A 200 N/A 200 N/A	<u>CL 95%</u> N/A N/A N/A ary <u>Count</u> 5	UCL				Point Interpo	Diation		
iffect-% Con 130 166 5 > 180 0 > 180 Mean Dry Biom Sonc-mg/kg Cc 6 Ba 30 700 8000 S000	nc-mg/kg 95% L 200 N/A 50 N/A 2000 N/A 2000 N/A 2000 N/A 2000 N/A 2000 N/A	N/A N/A N/A N/A ary Count 5	Mean	AAlio	Ca					
130 0 166 5 > 180 0 > 180 Iean Dry Biom conc-mg/kg Cc Ba 30 700 8000 5700 8000	00 N/A 60 N/A 000 N/A 000 N/A nass-mg Summ ontrol Type	N/A N/A N/A N/A ary Count 5	Mean	Adin	Ca					
0 166 5 > 180 0 > 180 Mean Dry Biom conc-mg/kg Co Ba 30 700 800 5700 8000	60 N/A 000 N/A 000 N/A nass-mg Summ ontrol Type	N/A N/A N/A ary Count 5		Alin	Ca					
5 > 180 0 > 180 Iean Dry Biom conc-mg/kg Co Ba 30 700 8000 5700 8000	000 N/A 000 N/A mass-mg Summ ontrol Type	N/A N/A ary Count 5		Min	Ca					
0 > 180 lean Dry Biom conc-mg/kg Co Ba 30 700 800 5700 8000	000 N/A nass-mg Summ ontrol Type	N/A ary Count 5		Min	Ci				- 4	
lean Dry Biom conc-mg/kg Co Ba 30 700 800 5700 8000	nass-mg Summ ontrol Type	ary Count 5			Ca					·
conc-mg/kg Co Ba 30 700 800 5700 8000	ontrol Type	Count 5			Ca	alautatad Va				
Ba 30 700 800 700 8000		5		8.41						
30 700 8800 7700 8000	ackgtround Soil			Min	Max	Std Err	Std Dev	CV%	Diff%	
700 800 5700 8000			0.898	0.61	1.23	0.047	0.258	28.7%	0.0%	
800 700 8000		5	0.949	0.819	1.12	0.0253	0.139	14.6%	-5.68%	
8000		5	0.827	0.694	1.01	0.0215	0.118	14.2%	8.0%	
8000		5	0.771	0.591	0.908	0.0243	0.133	17.2%	14.2%	
		5 5	0.811 0.772	0.63 0.496	1. 02 0.898	0.0269 0.0293	0.147 0.16	18.2% 20.8%	9.67% 14.1%	
	nass-mg Detail									
Conc-mg/kg Co	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5				
) Ba	ackgtround Soil	0.834	0.723	1.23	1.1	0.61				
930		0.852	0.878	1.12	1.08	0.819				
1700		0.753	1.01	0.694	0.842	0.837				
2800		0.898	0.591	0.732	0.908	0.727				
3700		0.725	0.854	0.826	0.63	1.02				
18000		0.851	0.84	0.898	0.775	0.496				
1.0 0.8 0.6 0.6 0.6 0.6				••••••••••••••••••••••••••••••••••••••						

Analyst: <u>FI</u> QA: <u>KI</u>

CETIS Analytical Report								ort Date: Link Code:	03 Oct-07 16:20 (p 2 of 2 03-8999-8798/0706-T07			
Early See	dling Growth								Nautil	us Enviro	onmental WA	
Analysis No: 12-1215-4789 Analyzed: 03 Oct-07 16:19			Endpoint: Survival Rate Analysis: Linear Interpolation (ICPIN)			N)	CETI Offic	CETISv1.6.3 Yes				
Linear Int	erpolation Options											
X Transfo				Resamples	Exp 95%							
Linear	Linear	7055	475 2	280	Yes	Two-	Point Interp	olation				
Point Est	imates										-	
Effect-%	Conc-mg/kg 95% l		UCL									
5	> 18000 N/A	N/A										
10 25	> 18000 N/A > 18000 N/A	N/A N/A										
25 50	> 18000 N/A	N/A N/A										
	Rate Summary		<u> </u>		Calc	ulated Varia	te(A/B)		<u></u>			
	/kg Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	A	в	
0	Backgtround Soil	5	0.8	0.583	1	0.035	0.192	24.0%	0.0%	48	60	
930		5	0.983	0.917	1	0.0068	0.0373	3.79%	-22.9%	59	60	
1700		5	0.933	0.917	1	0.0068	0.0373	3.99%	-16.7%	56	60	
2800		5	0.883	0.75	1	0.0231	0.126	14.3%	-10.4%	53	60	
6700		5 5	0.9 0.883	0.75 0.667	1 1	0.0198	0.109	12.1%	-12.5%	54 52	60 60	
18000		5	0.883	0.007	۱ ــــــــــــــــــــــــــــــــــــ	0.0231	0.126	14.3%	-10.4%	53	60	
Survival I	Rate Detail											
	/kg Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	Backgtround Soil	0.75	0.667	1	1	0.583						
930		1	1	1	1	0.917						
1700		1	0.917	0.917	0.917	0.917						
2800		1	0.75	1	0.917	0.75						
6700 18000		0.917 0.917	1 1	0.833 0.917	0.75 0.917	1 0.667						
18000		0.917		0.917	0.917	0.007			·····			
Graphics Survival Rate	1.0 0.9 7 0.8 0.7 0.8 0.7 0.6 0.5 0.6 0.5 0.4 0.4 0.2 0.2 0.2 0.1			•								
				, , , , , , , , , , , , , , , , , , , 								
	0.0E+00 5.0E+03	1.0E+04	1.5E+	04 2.0E+04								

Analyst: KI QA: KI

.

· •