CLIENT			
PROJECT			

BY	DATE	REV

JO	B NO	SHEET OF
BIN WAR / FOOTING DESIGN (CONT'O)		
CHEEK UPLIFT		
Pu = 42 K		
WHIGHT OF WAY = 7.4 1/FT		
LENGTH HEAD = 421 X1.5 /7.4 4/1	= 8.5 FT < H	OK By INSTELLION
CHECK SLIDING (20' TRIB SECTION)		
PSLIDE = 34 Kuf x 20 = 68 KM	05	
WEIGHT OF WALL = 7.4 x 20' =	148 48	
Cown REACTION = 10 KIPS (1	MIN. COLUMN DEAD LOA	10)
PRESIST = (10 + 148 +) x 0,5 = 7	19 KIPS > PSHOE	24/
T FARETION	- ALIVE	
		SHEET B150

F.S. OF OVERTURNING =

ENGINEERS, INC.

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN

BY: BS

DATE: 8/17/2018

JOB#: 18-183B SHEET OF

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

1.5

OK

SHEET B151

ENGINEERS, INC.

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN

BY: BS DATE: 8/17/2018

JOB #: 18-183B SHEET

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING: LOADING PARAMETERS:

ALLOWABLE SOIL BEARING =

SOIL WEIGHT =

REQD. O.T. SAFETY FACTOR =

STR.INCR.FOR HORIZ, LOADS =

VERTICAL DEAD LOAD = VERTICAL LIVE LOAD =

HORIZONTAL LOAD =

MOMENT @ TOP OF FOOTING = (517.00) FT-KIPS

1.5

3,000 PSF

120 PCF

20.00 KIPS 0.00 KIPS 74.00 KIPS

FOOTING DIMENSIONS:

FTG. LENGTH (L) = FTG. WIDTH (W) =

9.0 FT (PAR.TO LOAD) 20.0 FT (PERP.TO LOAD)

FTG. THICKNESS (FT) = 1.50 FT FOOTING DEPTH (D) =

0.0 FT 3.0 FT

PIER LENGTH (PL) = PIER WIDTH (PW) = 20.0 FT

PIER HEIGHT (PH) = 12.0 FT

CONCRETE WEIGHT = 148.5 KIPS SOIL WEIGHT = 0.0 KIPS

> TOTAL WEIGHT = 148.5 KIPS

Superance + Wind

NEGLECTS STOCKPILE RESISTING, CONSERVATIVE

DESIGN METHOD 1

OVERTURNING MOM. = SOIL PR. FROM DL = 482.0 FT-KIPS 936.1 PSF

SOIL PR. FROM MOM. = (1,785.2) PSF

MIN. PRESSURE = (849.1) PSF MAX. PRESSURE = 2,721,3 PSF

DOES NOT APPLY AS UPLIFT AT BACK OF FOOTING

DESIGN METHOD 2

0 = 2.88 FT

PrL= 4.92 FT

MAX. PR = 3.425.9 PSF <--- GOVERNS

ALLOWABLE ACTUAL LL + DL BEARING = 936 PSF 3.000 PSF OK DL + HORIZ, BEARING = 3,426 PSF 4,000 PSF OK F.S. OF OVERTURNING = 1.57 1.5 OK

OLIENI			
PROJECT			
BY	DATE	REV	

JOB NO.		SHEET OF
* PROVIDE SUPPLEMENTAL CALCULATIONS TO	Increase Bin ware	Street TO 14 FT
TAULA WALL ONLY OCCURS & BU LOADING FROM 12 FT WALL CALLULA	nows #2 Assum	t Warst CASE
MAXIMUM DEMAND (PER MODEL)		
FOOTING (LC #1 Conmous)		
Mu = 21.8 k- FT/FT < & Mn = 7	18 KAT/H OK	
Vu = 11.5 1/FT < d Vn =	6 HT OW	
WALL (LC#3 Companis, W/ Weller		E0)
Mu = 31.8 + 1/4 / C/mn = 6	4 th ow	
Vu = 4/8+ < 6/4 = 3	57 × / 10 0×1	
DEIGINAL REINFORCEMENT IS	Subsceient for Ext	ended Hellott
Max Beaum Pen Moder 22 700th	(6"x6") - Z8	00 PSF < 3000 PSF Arrangera, OX/
* VPLIET & SLIDING CONONING BY S	House Worn	Aronard, OK
		SHEET B153

Loads: BLC 1, SELF WEIGHT

Results for LC 1, DL + MAX COLUMN LOAD

SMG ENGINEERS		SK - 1
BS	AGG STORAGE FOUNDATION	Apr 9, 2019 at 5:48 PM
18-183B		AGG BUILDING FOUNDATION 15ft Rev1.r3d
		SHEET B155

Loads: BLC 1, SELF WEIGHT Results for LC 1, DL + MAX COLUMN LOAD

SMG ENGINEERS		SK -
BS	AGG STORAGE FOUNDATION	Apr 9, 2019 at 5:48 PM
18-183B		AGG BUILDING FOUNDATION 15ft Rev1.r3d
·		SHEET B156

PROJECT		
BY	DATE	REV.

	JOB NO.	SHEET	OF
14th WAR OVERTURNING			
SURCHARGE + WIND			
Wino Corumn Rxa = 10 K	C 20 H OL (LATERAL)	
SURLHARER FORCE = 105 PCF	· 0.4515. 14FT.	14FT/2 = 4630	»#/FT
WALL DEMAND @ 20 FT St	ETION		
Pwino = 10 k			
PSWMMARK = 4630 \$ 1/47 . 20	'= 92600#=	92.6 ×	E
Min. Cown LOAD = 0	LAS		
MOVER @ FOOTING = 10K.	15.5+ 92.6 k. (14/3+	15') = 726	K-FT
ASPHALT WT RESISTANCE			
WT = 105 PG. 14'.3'.	20'= 88.2 K		
Ecc = 3 FT			
Mr = 3ft, 88.2 = 26	14 K-FT		
NET MOVER = 726	-264 = 462 K-FT		
		SHI	EET B159

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN

BY: BS DATE: 4/9/2019 JOB #: 18-183B SHEET OF

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING = 3,000 PSF
SOIL WEIGHT = 105 PCF
REQD. O.T. SAFETY FACTOR = 1.5
STR.INCR.FOR HORIZ. LOADS = 1.33

VERTICAL DEAD LOAD = 0.00 KIPS
VERTICAL LIVE LOAD = 0.00 KIPS
HORIZONTAL LOAD = 102.60 KIPS
MOMENT @ TOP OF FOOTING = FT-KIPS

FOOTING DIMENSIONS:

FTG. LENGTH (L) = 9.0 FT (PAR.TO LOAD)

FTG. WIDTH (W) = 20.0 FT (PERP.TO LOAD)

FTG. THICKNESS (FT) = 1.50 FT FOOTING DEPTH (D) = 0.0 FT PIER LENGTH (PL) = 3.0 FT PIER WIDTH (PW) = 20.0 FT PIER HEIGHT (PH) = 14.0 FT CONCRETE WEIGHT = 166.5 KIPS SOIL WEIGHT = 0.0 KIPS TOTAL WEIGHT = 166.5 KIPS

DESIGN METHOD 1

OVERTURNING MOM. = 462.0 FT-KIPS SOIL PR. FROM DL = 925.0 PSF SOIL PR. FROM MOM. = (1,711.1) PSF MIN. PRESSURE = (786.1) PSF MAX. PRESSURE = 2,636.1 PSF

DOES NOT APPLY AS UPLIFT AT BACK OF FOOTING

F.S. OF OVERTURNING =

DESIGN METHOD 2

e = 2.77 FT Pr L = 5.18 FT

MAX. PR = 3,217.0 PSF <--- GOVERNS

OK

	ACTUAL		ALLOW	ABLE	
LL + DL BEARING =	925	PSF	3,000	PSF	OK
DL + HORIZ. BEARING =	3,217	PSF	4,000	PSF	OK

1.62

PROJECT		

JOB NO	SHEET OF
RAP CRUSHER & STOMER BUILDING #3)	
* SIMILAR IN DESIGN TO AGGREGATE STORAGE BUILDING PETERENCE SHT. FOR INFO NOT SHERM HERE	,
* NO INSTANCE BINS/ WALLS, CENTER OF BUILDING A MOMENT FRAME FOR TRANSVERSE STRBILITY	r uses
* SEE MODER OUTPUT FOR MEMBER DEMANOS	
* FOUNDATION DESIGN SIMILAR TO AGG BUILDING COLUMN PEACTIONS < AGG BUILDING OK BY IN	SPLETÓN
USE ISLAND FOUNDATION TO SUPPORT SINGLE COLUMN DEMAND PMAX = 13 PK (LAFD)	IN C OPEN FACE
PH = 10 KIPS	
POL = 70 KIBS (BULDING ONLY, NO FOOTING) * SLIDING OK BY INSPECTED	v
SEE SPREADSHEET	
USE 14" X9 SQ FTG W/#6'S @ 1200	
STABILITY (ASD) Rows	
MAX. TENSION = 12 KIPS LCZ6	
VLONG = Z4 KIPS LC37	SHEET B161

ENGINEERS, INC.

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN

BY: BS

SHEET: ____ OF ____

DATE: 11/2/2018

SINGLE REINFORCED RECTANGULAR CONCRETE FOOTING ANALYSIS

FOOTING COITS	DIA-		ADDI	IED LOAD.			
FOOTING CRITE	9.00	ET	APPL	JED LOAD:		v	
L: W:	9.00		104	P: D FACTOR:		K	
	14.00		LUA	P _u :		v	
	3.00			Pu-	131		
COVER	3.00	iiv	DE	INFORCEM	SENT IN 9 OO	FOOT DIRECTIO	IN-
CONCRETE DESIGN	CRITERIA		155	BAR SIZE:		FOOT DIRECTIC	nv.
CONC f'c:	4000	PSI		QUANTITY:			
REINF F _v :				gordini.			
β ₁ =		1.01	DE	INFORCEN	ENT IN 9 OO I	FOOT DIRECTIO	M.
H1 -	0.03		K	BAR SIZE:		FOOT DIRECTIC	nv.
COLUMN BEAR	RING AREA			QUANTITY:			
L:	52.00		`	AVAINTI I	10		
W:	36.00		ALLOWABLE S	OIL BEARIN	G PRESSURE:	3.00	KSF
SOIL BEARING:							
FTG DL=	14.18	K	f _p =	1.79	KSF (P+DL)	DEMAND=	0.60
P+DL=	145.18	K	f _p =	1.62	KSF (P _u ONLY	")	
PUNCHING SHEAR:					-11-1		
	99.12	K	ΦV _n =	403.77	К	DEMAND=	0.25
			* "	(333,00	0.75		Section 1
CONCRETE DESIGN I	FOR 9.00 F	OOT DIRE	CTION:				
A _s =	4.40	IN ²			a=	0.72	N
A _{s,min} =	2.07	IN ²			c= β ₁ *a =	0.85	N
d=	10.625	IN		$\varepsilon_1 = [(d -$	c)/c]*0.003 =	0.0347	> 0.005, OK
ULTIMATE FOR	CES:		NOMINAL STREET	NGTH:		DEMAND RAT	1OS:
	CES: 39.62	FT-K		NGTH: 203.26	FT-K	DEMAND RAT	105: 0.19
M _u =			φM _n =		00411000		
M _u = V _u =	39.62 21.08	К	$\phi M_n = \phi V_n =$	203.26	00411000	Mu/φMn=	0.19
M _u = V _u =	39.62 21.08	K OOT DIRE	$\phi M_n = \phi V_n =$	203.26	00411000	Mu/φMn= Vu/φVn=	0.19 0.19
M _u = V _u = CONCRETE DESIGN I A _s =	39.62 21.08 FOR 9.00 F	K OOT DIRE	$\phi M_n = \phi V_n =$	203.26	К	Mu/φMn= Vu/φVn= 0.72	0.19 0.19
M_u = V_u = CONCRETE DESIGN I A_s = $A_{s,min}$ =	39.62 21.08 FOR 9.00 F 4.40 1.92	K OOT DIRE IN ² IN ²	$\phi M_n = \phi V_n =$	203.26 108.86	κ a= c= a/β ₁ =	Mu/φMn= Vu/φVn= 0.72 I 0.85 I	0.19 0.19 N
M _u = V _u = CONCRETE DESIGN I A _s =	39.62 21.08 FOR 9.00 F	K OOT DIRE IN ² IN ²	$\phi M_n = \phi V_n =$	203.26 108.86	K a=	Mu/φMn= Vu/φVn= 0.72 I 0.85 I	0.19 0.19 N
M_u = V_u = CONCRETE DESIGN I A_g = $A_{s,min}$ =	39.62 21.08 FOR 9.00 F 4.40 1.92 9.875	K OOT DIRE IN ² IN ²	$\phi M_n = \phi V_n =$	203.26 108.86 ε, = [(d-	κ a= c= a/β ₁ =	Mu/φMn= Vu/φVn= 0.72 I 0.85 I	0.19 0.19 N N > 0.005, OK
M_u = V_u = CONCRETE DESIGN I A_g = $A_{s,min}$ = d =	39.62 21.08 FOR 9.00 F 4.40 1.92 9.875	K OOT DIRE IN ² IN ²	$\phi M_n = \phi V_n = 0$	203.26 108.86 ε, = [(d-	c= a/β ₁ = c)/c]*0.003 =	Mu/φMn= Vu/φVn= 0.72 I 0.85 I 0.0320	0.19 0.19 N N > 0.005, OK

SIIIS Smith Monroe Gray

CLIENT			
PROJECT			

BY	DATE	REV.

BY	DATE		REV	
JOB NO		_ SHEET	OF	

	JOB NO	SHEET	OF
BAR DEVELOPMENT			
HOOKED DEVELOPMENT		DVAR REQS: Exposé0 = Z" Cast Abanst Earth = 3	24
Min \$ = 6db (#3-#8)	LAST NUMBER BAPTER - 3	
lev = 12. do			
ldh, = (Sy. Ye. Ye. Yr.).	db = 13.3 db ->	#7 = 11.6" MIN	-
Sy= 60000 PSI Ye= 1.0 (UNCONTA) Yc= 0.7 (COVER Yr= 1.0 S'c= 4000 PSI) > 2½")		
ldrz= 8db			
lolhz = 6"			
SPLICE DESIGN * DR < 50% -> Lins B	Spick		
Spuck, ls= 1.3. ld or	2"		
ld = (5y. 4z. 4e) db =>	49.3 db C #6 =	37" 54"	
Sy = 60000 PSI Ye = 1.3 Ye = 1.0 (Uncario) St = 4000 PSI	X=25 C #6 20 C #7		
		SHEE	ET B163

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN BY: BS DATE: 9/29/2018

JOB#: 18-183B SHEET OF

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING = 3,000 PSF

SOIL WEIGHT = 120 PCF REQD. O.T. SAFETY FACTOR = 1.5

STR.INCR.FOR HORIZ. LOADS = 1.33

NCR.FOR HORIZ. LOADS = 1.33 VERTICAL DEAD LOAD = (12.00) KIPS

VERTICAL LIVE LOAD = 0.00 KIPS

HORIZONTAL LOAD = 8.00 KIPS

MOMENT @ TOP OF FOOTING = 0.00 FT-KIPS

FOOTING DIMENSIONS:

FTG. LENGTH (L) = 9.0 FT (PAR.TO LOAD)

FTG. WIDTH (W) = 13.5 FT (PERP.TO LOAD)
FTG. THICKNESS (FT) = 1.50 FT

FOOTING DEPTH (D) = 0.0 FT

PIER LENGTH (PL) = 3.0 FT PIER WIDTH (PW) = 13.5 FT

PIER WIDTH (PW) = 13.5 FT PIER HEIGHT (PH) = 12.0 FT

CONCRETE WEIGHT = 100.2 KIPS

SOIL WEIGHT = 0.0 KIPS

TOTAL WEIGHT = 100.2 KIPS

DESIGN METHOD 1

OVERTURNING MOM. = 108.0 FT-KIPS SOIL PR. FROM DL = 728.2 PSF

SOIL PR. FROM MOM. = (592.6) PSF

MIN. PRESSURE = 133.6 PSF

MAX. PRESSURE = 1.318.8 PSF GOVERNS

DESIGN METHOD 2

e = 1.22 FT Pr L = 9.83 FT

MAX. PR = 1,330.1 PSF

DOES NOT APPLY AS NO UPLIFT AT BACK OF FOOTING

	ACTUAL		ALLOW	ABLE	
LL + DL BEARING =	726	PSF	3,000	PSF	OK
DL + HORIZ. BEARING =	1,319	PSF	4,000	PSF	OK
F.S. OF OVERTURNING =	3.68		1.5		OK

Smith Monroe Grav ENGINEERS, INC.

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN BY: BS DATE: 9/29/2018

JOB#: 18-183B SHEET OF

LPW or PL

노

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

盂

FOOTING:

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING = 3,000 PSF

SOIL WEIGHT = 120 PCF

REQD. O.T. SAFETY FACTOR = 1.5

STR.INCR.FOR HORIZ. LOADS =

VERTICAL DEAD LOAD = (24.00) KIPS

0.00 KIPS VERTICAL LIVE LOAD =

HORIZONTAL LOAD = 48.00 KIPS

MOMENT @ TOP OF FOOTING = 0.00 FT-KIPS

FOOTING DIMENSIONS:

27.0 FT (PAR.TO LOAD) FTG. LENGTH (L) =

FTG, WIDTH (W) = 9.0 FT (PERP.TO LOAD)

FTG. THICKNESS (FT) = 1.50 FT

0.0 FT

FOOTING DEPTH (D) = PIER LENGTH (PL) =

27.0 FT

PIER WIDTH (PW) =

3.0 FT

PIER HEIGHT (PH) =

CONCRETE WEIGHT =

12.0 FT

SOIL WEIGHT =

200.5 KIPS 0.0 KIPS

TOTAL WEIGHT =

200.5 KIPS

DESIGN METHOD 1

648.0 FT-KIPS

OVERTURNING MOM. = SOIL PR. FROM DL =

726.2 PSF

SOIL PR. FROM MOM. =

(592.6) PSF

MIN. PRESSURE =

133.6 PSF

MAX. PRESSURE =

1,318.8 PSF

GOVERNS

DESIGN METHOD 2

6 = 3.67 FT

PrL= 29.48 FT

MAX. PR = 1,330.1 PSF

DOES NOT APPLY AS NO UPLIFT AT BACK OF FOOTING

W or

SHEET B165

	ACTUAL		ALLOW	ABLE		
LL + DL BEARING =	726	PSF	3,000	PSF	OK	
DL + HORIZ. BEARING =	1,319	PSF	4,000	PSF	OK	
F.S. OF OVERTURNING =	3.68		1.5		OK	

SHEET C1

	JOB NO.	18-183B	SHEET	_ OF
EQUIPMENT STORAGE BUILDIN	G:			
DL = SELF WEIGHT LL = 125 PSF (LIGHT STORAGE)	<u> </u>			
SNOW LOAD = 25 PSF <- CONTROLS ROOF LIVE LOAD = 20 PSF				
WIND & SEISMIC (SEE DESIGN CRITEI	RIA)			
	F 6	(1)	© Û	
37 ± 1/2. 38 ± 1/2. 39	90f. The	01 P/O		
(2)————————————————————————————————————	OCBF		0.145ZM	Ordinary moment frame, Typ. (Lateral force resisting system)
20-1-1 R R R R R R R R R R R R R R R R R R	ROOF PLAN (LATERAL FORCE RI	rric Braced Frame, Typ. Esisting System)		
2 (1)		x 14GA, CG G61	•	1
W24x104		W24x104	W24x104 +01x4cM	.8
W24x104		.0-00	W12x40	18,-17/8
33'-2 1/2"		L	33'-2 1/2"	
G SECTION \$60) 1/8" = 1'-0"		F NC S60 1/8*	ORTH ELEVATION = 1'-0"	

CLIENT_		LAKESIDE	INDUSTRIE:	S, INC.		
PROJECT MAPLE VALLEY ASPHALT PLANT						
EQUIPMENT STORAGE BUILDING						
BY	BS	DATE	4/8/2019	REV		
IOD NO		18-183B	OUEET	25		

75 BF (NEGATIVE) 10C - 0.176 is = 5.27 FW/ - 67 439 #.FT/FT OKV
+ SNOW) OC - 0.17643 = 5.27 + W/ -67 439 #.47/ -67 44.47/ -67/ -67/ -67/ -67/ -67/ -67/ -67/ -6
+ SNOW) OC - 0.17643 = 5.27 - W/ - 67 439 # FT/FT OK
+ SNOW) OC - 0.17643 = 5.27 K-W/ - 67 439 #-FT/FT OK-V
+ SNOW) OC - 0.17643 = 5.27 K-W/ - 67 439 #-FT/FT OK-V
+ SNOW) OC - 0.17643 = 5.27 K-W/ - 67 439 #-FT/FT OK-V
0.00643 = 5.27 + W/ 1.67 439 #.47/FT 14.67/FT OKN
0.00643 = 5.27 + W/ 1.67 439 #.47/FT 14.67/FT OKN
OC. 0.17643 = 5.27 KM/ 1.67 439 #.47/FT \$#.67/FT OK
439 #. FT 439 #. FT \$#. FT/FT OK
S# FT/FT OK
52.44
50.44
53 FW
A Zhenus @ 4'oc MA

BY	BS	DATE	4/8/2019	REV	
	EQ	UIPMENT S	STORAGE BU	ILDING	
PROJEC	т	MAPLE V	ALLEY ASPH	ALT PLANT	
CLIENT		LAKESIDE	E INDUSTRIE	S, INC.	

	JOB NO	18-183B	SHEET	OF
EQUIPMENT STORAGE: WALL DESIGN				
Max. Wind PAESSURE, O.GW =	21 PSF			
Tay Venco PLB 36 x 22 GA DEC	KING W/ Z	- lunia C 6	OC MAX.	
Pen Previous, Ma/52 = 439 #. FT				
MARX = 21 PSt x 1FT x (6')2/	18 = 95#	F OH		
Z PURIN LOAD = 21 PSF >				
C 15' SPAN -> 6"x 21/2"x	14 GA - U	Vaunw = 147	PLF	
Use Veneo PLB 36x221	A W/6"x	2/2" x146A	Zhanse 6'00	Mux.
			SH	HEET C3

FLEXOSPAN - CEE AND ZEE LOAD TABLES Allowable Uniform Loads in Pounds Per Lineal Foot

15 15 15 15 15 15 15 15	9	333			Simple	negs a			30				Simple Span	Span	١				or More Spans.	ans, Std. Lap		l
Bay 2 1/2" Fland 3 1/2" Fland 3 1/2" Fland 2 1/2" Fland 3 1/2" Fland 2 1/2" Fland 3 1/2" Fland 3 1/2" Fland 1 1/4" 331 480 1480 480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1480 1490				ednes		egnee	12 G				16 G	ande	14 G	9600	12.6	8uge	16 G	Γ	14 G	١.	ı	enne
10ft 25ft 331 460 12ft 12ft 230 460 12ft 12g 233 460 14ft 230 233 233 14ft 12g 234 233 20ft 67 230 233 233 20ft 67 80 233 233 233 20ft 67 80 233 148 233 233 20ft 67 80 7 60 233 7 20ft 67 80 7 60 7 60 20ft 43 65 83 7 7 60 20ft 16f 172 286 87 162 80 7 20ft 16f 172 286 87 17 166 200 20ft 16f 172 286 87 187 180 20ft 172 186	Section	Bay		3 1/2" Flan	2	Flan	2 1/2" Flan	3 1/2" Flan	Section		1/2" FL		1/2° FL.	3 1/2" FL.	2 1/2" FL.		г	H.	2 1/2" FI.	3 1/2" FL.	2 1/2" FL	3 1/2" FI.
12h 174 - 230 - 333 - 14h 17a - 169 - 244 - 244 - 169 - 244 - 169 - 244 - 169 - 244 - 213 - 148 - 213 - 148 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 149 - 218 - 140 - 218 - 140 - 218 - 140 - 140 - 218 - 140 - 140 - 14		10 ft	251		331		480			10 ft	254		331		499							1
168 - 264 - 15h 171 - 169 - 264 - 16h 77 - 147 - 148 - 213 - 20h 62 - 62 - 148 - 150 - 20h 62 - 63 - 63 - 150 - 20h 65 - 65 - 65 - 150 - 20h 65 - 65 - 65 - 150 - 20h 10h 10h - 63 - 150 - 20h 10h 10h 10h 148 - 150 - 20h 10h 10h 10h 148 - 150 - 20h 10h 10h 10h 112 13h 13h 150 20h 10h 1		124	174		230		333			12.8	126	-	230		346		4	,				
15 h 111 - 147 - 213 - 20 h 62 - 82 - 148 - 20 h 62 - 82 - 120 - 22 h 62 - 68 - 83 - 22 h 43 - 68 - 83 - 25 h 40 - 57 - 83 - 25 h 40 - 57 - 61 83 - 25 h 40 - 57 - 61 83 - - 61 83 - - 61 - - 61 - - - 61 -		14 #	128		169		244			14.11	129		169		254		,					٠
188 77 102 148 - 226 - 62 - 148 - 226 51 - 68 - 99 - 246 43 - 57 - 83 - 256 40 - 53 - 76 - 256 40 - 53 - 76 - 256 34 - 53 - 76 - 256 34 - 53 - 76 - 126 32 34 36 403 - <t< td=""><td></td><td>12.11</td><td>111</td><td></td><td>147</td><td></td><td>213</td><td></td><td></td><td>15.ft</td><td>113</td><td></td><td>147</td><td></td><td>221</td><td></td><td>176</td><td></td><td>235</td><td></td><td>357</td><td></td></t<>		12.11	111		147		213			15.ft	113		147		221		176		235		357	
220 ft 62 - 120 - 120 - 120 - 120 - 224 ft - 120 - 120 - 120 - 120 - 224 ft - 120 -	6.7/100	184	11		102		148	-		18.11	78		102		154	,	118		157		238	
22.6 51 98 99 99 22.6 43 67 83 - 22.6 40 - 53 - 61 - 22.6 40 - 53 - 61 - 12.6 40 - 53 - 61 - 12.6 40 - 53 - 61 - 61 - 12.6 40 - 53 - 61 - 61 - 61 - 61 - 61 - - 61 - <t< td=""><td></td><td>20%</td><td>92</td><td></td><td>85</td><td></td><td>120</td><td></td><td></td><td>20.8</td><td>63</td><td></td><td>82</td><td></td><td>124</td><td>4.</td><td>26</td><td></td><td>124</td><td></td><td>188</td><td></td></t<>		20%	92		85		120			20.8	63		82		124	4.	26		124		188	
284 R 43 - 53 - 63 - 53 - 25 - 776 - 25 - 776 - - 25 - 776 - - 25 - 67 - - 776 - - 776 - - 776 - - - 776 -		22 ft	51		88		66			22.8	52		89		103		76		101		153	
25 R 40 - 53 - 76 - 28 R 40 - 42 - 76 - 12 R 260 289 347 365 465 545 14 R 191 196 250 288 362 400 15 R 115 119 151 162 240 242 400 20 R 115 119 151 162 240 248 362 400 20 R 17 80 101 108 146 182 240 20 R 67 86 87 87 123 136 242 20 R 77 80 101 108 146 187 170 188 187 188 187 188 187 188 188 188 188 188 188 188 188 188 188 188 188 188 188 188 <t< td=""><td></td><td>24 ft</td><td>43</td><td>,</td><td>22</td><td></td><td>83</td><td></td><td></td><td>24 ft</td><td>44</td><td></td><td>57</td><td></td><td>86</td><td></td><td>63</td><td></td><td>97</td><td></td><td>126</td><td></td></t<>		24 ft	43	,	22		83			24 ft	44		57		86		63		97		126	
28 ft 32 42 61 12 ft 280 249 345 493 545 14 ft 191 186 250 268 493 545 15 ft 191 186 250 268 493 545 15 ft 172 218 233 315 349 242 20 ft 115 112 131 177 196 242 20 ft 177 80 101 108 145 162 249 242 20 ft 47 49 62 67 86 97 100 100 20 ft 47 49 62 67 73 26 170 250 100 200 250 100 200 250 200 250 250 250 250 250 250 250 250 260 100 240 100 240 250 100 250 100		25 R	40		53		7.6			25 €	60		53		7.9		58		76		116	
12 ft 260 269 341 365 493 545 14 ft 151 166 172 218 233 362 400 16 ft 115 112 233 362 400 16 ft 115 112 131 177 136 20 ft 115 167 162 177 162 20 ft 17 160 101 108 146 162 20 ft 65 67 86 173 175 196 20 ft 47 48 62 87 80 100 20 ft 47 48 62 87 80 100 20 ft 41 43 54 88 173 286 20 ft 44 48 62 87 80 100 20 ft 115 177 116 126 116 20 ft 146 65 67 77		28 ft	32		42	,	61			28 ft	32		42		63		46		09		94	
14 R 191 198 250 264 302 400 15 R 166 172 218 233 315 349 16 R 175 119 151 162 315 349 20 R 93 17 122 131 177 196 20 R 77 80 101 108 145 116 116 20 R 60 67 77 80 100 <t< td=""><td></td><td>12.6</td><td>280</td><td>269</td><td>341</td><td>365</td><td>493</td><td>545</td><td></td><td>12 ft</td><td>250</td><td>285</td><td>340</td><td>384</td><td>510</td><td>575</td><td></td><td>1</td><td></td><td>-</td><td>1</td><td>1</td></t<>		12.6	280	269	341	365	493	545		12 ft	250	285	340	384	510	575		1		-	1	1
15 ft 166 172 218 233 315 349 20 ft 115 119 151 162 219 242 20 ft 77 80 101 108 146 169 22 ft 77 80 101 108 146 162 24 ft 65 67 86 91 123 136 25 ft 60 62 78 84 113 126 25 ft 60 62 78 87 123 136 26 ft 67 86 87 88 170 220 26 ft 106 173 108 118 100 220 26 ft 107 116 120 118 100 220 26 ft 107 116 124 10 10 10 27 ft 80 - 107 11 10 11 10 28 ft		14 ft	191	198	250	268	362	400		14.0	181	195	250	287	374	401					I	
18ft 115 119 151 162 219 242 20ft 93 97 122 131 177 196 22ft 65 67 86 91 177 196 24ft 65 67 86 97 177 196 25ft 60 62 79 84 173 125 25ft 41 43 54 87 87 100 25ft 41 43 54 88 173 286 22ft 80 - 158 170 286 170 22ft 80 - 116 120 188 178 178 22ft 40 - 107 111 156 170 118 22ft 40 - 107 146 48 67 178 22ft 40 - 54 56 67 94 178		15 ft	166	172	218	233	315	340		15.8	166	169	218	233	326	349	,					
20 h 93 97 122 131 177 196 22 h 77 80 101 108 146 162 24 h 65 67 86 91 146 162 26 h 65 67 86 97 162 162 26 h 47 49 62 67 80 100 30 h 41 43 54 86 78 87 20 h 41 43 54 86 78 87 20 h 41 43 54 86 78 87 20 h 116 170 111 156 170 168 20 h 51 65 87 77 108 118 20 20 h 52 66 79 84 77 108 118 20 h 32 66 79 84 77 173 20 h 32 <td></td> <td>18.6</td> <td>115</td> <td>119</td> <td>151</td> <td>162</td> <td>219</td> <td>242</td> <td></td> <td>181</td> <td>115</td> <td>117</td> <td>151</td> <td>161</td> <td>228</td> <td>242</td> <td>156</td> <td>15.8</td> <td>222</td> <td>235</td> <td>578</td> <td>998</td>		18.6	115	119	151	162	219	242		181	115	117	151	161	228	242	156	15.8	222	235	578	998
22 h 77 80 101 108 145 162 24 h 65 67 85 91 123 136 25 h 60 62 78 84 173 125 28 h 47 49 62 67 90 100 30 h 41 43 54 58 78 87 20 h 115 - 166 173 243 286 20 h 115 - 116 120 100 220 25 h - 116 120 168 175 286 25 h - 116 120 176 170 280 170 280 170 280 170 280 173 280 2	Se Mass	20 ft	93	26	122	131	177	196		20.6	100	8	122	181	183	100	427	430	178	30,	20.00	200
28th 65 67 86 91 123 136 28th 60 62 78 84 113 125 28th 47 49 62 67 87 87 28th 47 49 62 67 78 87 28th 41 43 54 58 78 87 28th 46 - 168 173 2243 286 28th 80 - 116 120 186 185 28th 80 - 107 111 116 124 136 28th 40 - 107 111 116 170 118 170 28th 40 - 107 117 116 170 118 170 28th - - 124 46 67 73 230 234 28th - - - 182 <td>0</td> <td>22.8</td> <td>11</td> <td>80</td> <td>101</td> <td>108</td> <td>148</td> <td>182</td> <td></td> <td>22#</td> <td>77</td> <td>78</td> <td>101</td> <td>108</td> <td>151</td> <td>160</td> <td>105</td> <td>101</td> <td>146</td> <td>1664</td> <td>222</td> <td>200</td>	0	22.8	11	80	101	108	148	182		22#	77	78	101	108	151	160	105	101	146	1664	222	200
25 ft 60 62 78 84 113 125 28 ft 47 49 62 87 90 100 20 ft 115 - 168 173 243 286 20 ft 115 - 158 170 280 22 ft 80 - 116 120 188 188 25 ft 74 77 111 156 170 25 ft 80 - 116 120 188 188 25 ft 40 - 66 67 94 108 25 ft - 56 67 94 108 118 26 ft - 185 206 270 220 28 ft - 185 206 79 87 26 ft - - 94 105 119 27 ft - - 94 105 114 28 ft		24 #	69	67	85	16	123	136		24.0	88	er.	26	**	432	30,7	2	200	0 00	5 9	405	900
28 ft 47 49 62 67 90 100 30 ft 41 43 54 58 78 87 20 ft 115 - 165 173 243 256 25 ft 86 - 159 143 260 220 24 ft 80 - 177 111 155 170 25 ft 74 - 107 111 155 170 25 ft 74 77 108 118 25 ft 86 67 77 108 37 ft 40 67 77 108 118 37 ft 40 66 79 87 108 38 ft 32 48 40 67 77 38 ft - 54 46 67 73 38 ft - - 46 67 74 38 ft - - 94 <td< td=""><td></td><td>25 ft</td><td>60</td><td>82</td><td>78</td><td>84</td><td>113</td><td>505</td><td></td><td>25.4</td><td>90</td><td>64</td><td>32</td><td>00</td><td></td><td>200</td><td>000</td><td>200</td><td>177</td><td>103</td><td>001</td><td>180</td></td<>		25 ft	60	82	78	84	113	505		25.4	90	64	32	00		200	000	200	177	103	001	180
30 ft 41 43 54 58 78 87 20 ft 115 - 168 173 243 265 22 ft 80 - 116 120 188 185 25 ft 74 - 116 120 186 185 25 ft 74 - 177 111 156 110 26 ft 86 - 166 177 110 186 118 30 ft 40 - 66 67 73 84 104 35 ft 35 - 68 60 84 104 104 35 ft 37 - 68 60 84 104 104 36 ft 37 - 185 206 230 344 220 28 ft - - 185 306 230 354 36 28 ft - - - 185		28.0	47	90	69	62	8	200	1	400	000	5	0	00	78.7	07	5	92	1111	118	170	189
20f 115 168 173 246 22f 96 159 143 200 220 22f 16 116 120 168 185 25f 74 117 115 170 220 25f 74 117 156 170 220 25f 74 166 176 176 176 30f 40 65 67 84 92 176 30f 37 68 60 84 92 148 32 148 92 30f 37 58 60 84 97 34 220		408		200		6	200	200	1	107	1	200	70	99	23	100	8	99	8.7	83	133	142
22f 175 175 243 264 24f 86 139 143 243 256 24f 80 116 120 168 185 25f 74 77 148 136 170 25f 80 60 84 92 178 32f 40 65 67 73 87 178 38f 32 46 46 46 67 77 87 38f 32 60 84 92 178		100		0	8	90	2	18		30 K	41	42	22	999	81	87	99	57	76	81	115	123
22 ft 95 159 143 200 220 25 ft 86 116 120 120 220 25 ft 174 177 111 155 170 25 ft 74 77 111 155 170 30 ft 45 65 67 77 108 118 32 ft 40 66 67 73 87 92 35 ft 32 66 67 73 87 92 20 ft 32 66 79 84 104 92 20 ft 32 66 79 84 175 38 20 ft 32 66 79 84 175 38 20 ft 30 7 80 175 38 175 20 ft 30 7 80 175 38 175 30 ft 30 7 80 114 134 35		ZOE.	115		168	173	243	266		20 ft	115	119	168		250	266	131	133	217		385	387
24 ft 80 - 116 120 188 185 25 ft 74 - 107 111 186 186 25 ft - 77 116 124 136 35 ft - 74 77 108 118 35 ft - - 65 67 94 104 35 ft 37 - - 68 77 73 20 ft 37 - - 48 67 73 20 ft 32 - - 48 67 73 20 ft 32 - - 48 67 73 20 ft 32 - - 48 67 73 20 ft - - - 185 206 230 344 20 ft - - - - - - - - - - - - -		1122	98		133	143	200	220		24 ft	90	82	116		173	185	96	16	154		248	263
28ft 74 - 107 111 155 170 28ft 59 - 65 68 124 136 30ft 51 - 74 77 108 118 30ft 40 - 56 60 84 92 38ft 37 - 54 60 84 92 38ft 37 - 54 60 79 87 20ft 37 - 48 46 67 73 20ft - - 48 46 77 149 20ft - - 94 105 149 175 30ft - - 94 105 149 175 30ft - - 94 171 119 35ft - - 96 149 172 36ft - - 97 81 56		24 11	80		116	120	168	185		25 ft	74	76	107		160	170	88	95	142		228	242
2011 559 - 65 85 124 136 3201 51 - 74 77 108 118 3201 45 - 65 67 94 108 341 40 - 56 67 94 108 351 37 - 48 66 79 87 201 32 - 48 66 79 87 201 32 - 185 206 236 201 - 185 206 236 203 234 - 18 13 175 204 - - 94 105 149 175 304 - - 94 105 114 134 354 - - 72 80 114 134 354 - - 64 77 11 96 351		25 11	74		107	111	155	170	10" Web	28.0	SS	60	85	1.00	127	136	72	7.6	114		179	191
321 51 - 74 77 108 118 321 46 - 65 67 104 92 341 40 - 58 60 84 92 201 - 46 46 67 73 201 - 46 46 67 73 244 - 185 206 230 34 254 - 128 143 25 254 - 94 105 149 175 304 - - 94 105 149 175 354 - - 64 77 95 112 351 - - 57 81 101 119 351 - - 51 57 81 12 401 - - 51 57 81 56	10" Web	2811	28		82	888	124	136	1	30.0	51	52	7.4		111	118	99	65	8		156	165
357 H 450 655 67 94 104 358 H 40 - 58 60 84 92 358 H 37 - 54 56 79 87 20 H 37 - 48 67 73 87 20 H 32 - 185 206 290 344 73 20 H - - 128 143 203 239 239 20 H - - 128 132 187 220 239 20 H - - 128 105 143 175 175 20 H - - - 148 107 119 175 30 H - - - 146 57 80 112 30 H - - - - 146 57 80 40 H - - - - - - </td <td></td> <td>30 11</td> <td>51</td> <td></td> <td>74</td> <td>11</td> <td>108</td> <td>118</td> <td></td> <td>32.8</td> <td>45</td> <td>46</td> <td>65</td> <td></td> <td>16</td> <td>104</td> <td>99</td> <td>28</td> <td>87</td> <td></td> <td>135</td> <td>144</td>		30 11	51		74	11	108	118		32.8	45	46	65		16	104	99	28	87		135	144
34 ft 40 - 58 60 84 92 35 ft 37 - 54 46 79 87 38 ft 32 - 46 46 67 73 20 ft - 128 143 203 236 24 ft - 128 143 203 236 25 ft - 94 105 149 175 30 ft - 94 105 149 175 35 ft - 94 105 149 175 35 ft - 94 105 149 175 35 ft - - 94 105 149 175 35 ft - - 94 105 149 175 35 ft - - 94 105 114 119 35 ft - - - 94 105 114 119 35 ft - - - - 94 114 119 35 ft - - - - 57 81 56 40 ft 51 57 81 56 67 86 <td></td> <td>32.8</td> <td>45</td> <td></td> <td>8</td> <td>87</td> <td>z</td> <td>104</td> <td></td> <td>35.8</td> <td>37</td> <td>38</td> <td>54</td> <td>-</td> <td>81</td> <td>87</td> <td>829</td> <td>49</td> <td>7.3</td> <td></td> <td>112</td> <td>119</td>		32.8	45		8	87	z	104		35.8	37	38	54	-	81	87	829	49	7.3		112	119
35 ft 37 - 54 56 79 87 38 ft 32 - 48 46 67 73 24 ft - - 128 143 203 234 25 ft - - 128 143 203 234 25 ft - - 94 105 149 175 30 ft - - 94 105 149 175 35 ft - - 94 105 114 130 35 ft - - 94 105 114 134 35 ft - - 94 105 114 134 35 ft - - 96 114 119 35 ft - - 51 57 81 56 40 ft - - 46 51 73 86		Z,	40		58	89	#	92		38 年	32	33	46	,	69	73	41	42	61		8	101
38		35.0	37	-	8	99	79	87		20 年			183	203	301	345			210	230	418	ART
20 ft		38.8	32		46	48	- 67	73		24 ft			127	141	209	239			163	162	280	454
24 th		20.1			185	208	283	344		25 ft			117	430	102	200	1	1	200	454	200	200
25 th		24 8		,	128	143	203	239	(28.8			50	108	183	476		1	200		240	683
28 th		25 %			118	132	187	1		30 8			311	06	133	1840		1	400	400	400	000
30 th		28 年	,	,	86	105	149	V	1	1			7.1	2	117	73.1			18	600	200	100
32th 72 80 114 134 344 344 35th 64 71 101 119 35th 60 67 95 112 38ft 60 67 87 81 95 40ft 46 51 73 88	400 1817	30 €			82	16	130	153		35.6			90	909	80	442	1	1	200	68	433	101
64 71 101 119 60 67 95 112 51 57 81 56	gan 7	32 ft			72	980	114	134		37.11			63	S	88	100	1		99	77	110	136
60 67 95 112 51 57 81 56 46 51 73 88		347			64	7.1	101	118		40 8	,		46	ş	7.5	5	1	1	3			3
. 51 57 81 55 . 46 51 73 86		35 ft			0.9	19	95	112								3	1			*6		
46 51 73 86		38.0			51	57	81	98														
		40 ft			46	51	73	Г														
section selection. 4. See back page for weights per lines foot of members shown here. 5. Leads shown are stress governing. When deflocition lines are set basis. Many different variables can affect loading. When deflocition lines are set basis. Many different variables can affect loading. For instance, drift loading, building height, georgiaphic location, i.e., Please consult Florospan if special conditions exist. 7. The selection of sections for your application is subject to final approval by your design professional. Exceptional accordance with the ASIS 2001 design manual. B. V. Values shown in the load tables for more spans are based on uniform bay specials. If non-uniform have specials.									the transfe	ir of the sun	the section	directivito the	en subtrack	e section be	Se values.	2. Both flanc	ses of memi	ber must be	fully brace	d. 3. These	loads are l	9886d cm
specified, contact factory. 6. These sample calculations are very basic. Many different variables can affect loading. For instance, drift loading, building height, geographic location, etc. Please consult Flexospan if special conditions exist. 7. The selection of sections for your application is subject to final approval by your design professional. 8. Capacity values have been calculated in accordance with the AISI 2001 design manual. 9. Values shown in the load tables for three or more spans are based on uniform bay spacings. If non-uniform have spacehos exist, covered fortow. UNCONTROLLED									section se	ection, 4.	See back pe	Da for weig	Ms per line	al foot of my	amebers sh	own hare.	Loads sh	Own are stre	Maran B	no When o	leflection in	wits are
geographic boseon, etc. Prease consult Freedepan if special consistents exist. 7. The solutions for your application is subject to final approval by your design professional. 8 Capacity values have been calculated in accordance with the ASIS 2001 design manual. 9. Values subversional. 8 the accordance with the ASIS 2001 design manual. 9. Values subversion to the accordance manual control received fortion. INCONTROL FOLDOW.									specified, oc	entact factor	y. 6. These	в затріе са	lculations a	re very bas	ic. Many di	fferent varia	bles can aft	lect loading.	For instan	oce; drift loa	ding, buildir	ng height,
The of more stants are shorted on uniform bay specials. If non-uniform have specials fortion, INCONTROLL FOR CODY.									your design	n profession	ial 8 Can	acity velues	Priese been	Calculated	ons const.	7. The 50/0	Ston of Sec	tions for you	r application	in is subject	to final app	roval by
										three or mo.	re spans an	a based on	uniform bay	Sparings	If non-mile	our have and	cloos oxiet	contact fac	too, LINCO	WITHOUT E	NOODA	201 00000

0

ROOF DECK

IAPMO/ICC Reports Technical Data Product Options Deck Attachment UL Fire Ratings Factory Mutual: LA City RR

PLB.M-36 or HSB@-36

Phoenik-

Attachment Patterns to Supports

Section Properties:

1 11	Deck	Weight	t _d for D	eflection	Mon	nent
Deck Gage	Galv G60	Phos! Painted	Single Span	Multiple Spans	+S _{eff}	-S _{eff}
	(psf)	(psf)	(in^4/R)	(in ⁴ /ft)	(im ³ /ft)	(in ³ /ft)
22	1.9	1.8	0.177	0.192	0.176	0.188
20%	2.3 :	2.2	0.219	0.231	0.230	0.237
18	2.9	2.8	0.302	0.306.	0.314	0.331
16	3.5.	3.4	0.381	0.381	0.399	0.410
NOTE:	Section r	properties ba	sed on Fy	= 50 ksi.		

Allowa	ıble R	eactions	2.7	100	
Deck		End Bearin	9	Interior E	learing
Gage	2"	3"	4"	3"	4".
22.	935	1076	1163	1559	1671
20	1301	1492	1609	2190	2340
18	2181	2484	2667	3714:	3950
16	3265	3699	3955:	5607	5938

NOTE: Allowable reactions are in pounds per foot of deck width and are based on F₂ = 50 ksi.

The difference between the PLB™-36 profile and HSB®-36 profile is the method of sidelap attachment; the panels themselves are identical in both geometry and material properties. The prefix "PL" designates a Punchtick 20 8 version of the B profile, while "HS" (high shear) indicates a top seam weld, button punch, or screw version of the same profile.

Type 8 profiles are 1.5-inch deep structural roof deck that provide both vertical load and diaphragm shear capacity. The profile contains 6 ribs and is 36 inches wide with male and female edges, creating an interlocking side lap when installed. The wide ribs make the profile an ideal structural substrate to uniformly support roofing systems applied on top of the deck. Type B profiles are typically used for span conditions of 10 feet or less.

Extensive full scale diaphragm testing is an ongoing effort with B deck to produce a more efficient roof diaphragm in terms of capacity and The current industry use of installation. mechanical fasteners (Hitti and Pneusek), restraining elements (Shear Tranzill Systems) and the innovative Punch ok® it side tap attachment. system are all direct results of testing.

CAD DRAWINGS

SMG ENGINEERS	
BS	
18-183B	

EQUIPMENT STORAGE BUILDING

SK -Sept 28, 2018 at 5:46 PM EQUIP STORAGE BLDG Rev_0 9... SHEET C6

Company : SMG ENGINEERS
Designer : BS
Job Number : 18-183B
Model Name : EQUIPMENT STORAGE BUILDING

Sept 28, 2018 5:51 PM Checked By:_

Basic Load Cases

	BLC Description	Category	V Gr	V.C.	7.0	Inlat	Delat	Dist		
1	DEAD LOAD	None	A 91	-1.05	Z Gra.	Joint	Point	Distri	Area(Surfa
3	ROOF SNOW LOAD	None		-1.05	-		-	-	1	-
5	WIND TRANS - WINDWARD + GCpl	None					-	-	1	-
6	-GCpi	None				-		-	5	-
7	WIND TRANS - LEEWARD + GCpi	None				-	-	-	5	-
8	-GCpi	None	-		-		-	-	5	
9	WIND LONG + GCpi	None				-	-	-	5	
10	-GCpi	None	-	-	-		-		.5	
16	SEISMIC LONG	ELX	27			-	-		5	
17	SEISMIC TRANSVERSE	ELZ	61		25				-	

Company : SMG ENGINEERS
Designer : BS
Job Number : 18-183B
Model Name : EQUIPMENT STORAGE BUILDING

Sept 28, 2018 5:51 PM Checked By:_

Load Combinations

	Description	_			_				_	_	_	_	_	_	_	_		_				_	_
1	Description DEAD	Sau	PDelta	SB	Fa	.В.	Fa	В.,	.Fa.,	В.,	.Fa	В	Fa.	В.,	Fa.	.B.	Fa.	B.	Fa.	В	Fa.	.B.,	Fa
2	LIVE	1-	Y	2	1	-	-	-	-	-	-			1	_	_							
3	SNOW LOAD	-	-	2	1	+	-		-	-				╙	_								
4	WIND TRANS1 (WINDWAR	\vdash	Y	3	1	\vdash	-	-	-		-		_	4	_	1							
5	WIND TRANS1 (WINDWAR	-	Y	5	1	+	-	-	_		-			_									
6	WIND TRANS2 (LEEWARD	-	Y	6	1	-	-	_						L									
7	WIND TRANS2 (LEEWARD	-	Y	7	1																		
		1	Y	8	1																		
8	WIND LONG + GCpi)	-	Y		1																		
9	WIND LONG - GCpi)	-	Y	10	1																		
10	SEISMIC - LONG	-	Y	16	1																		
11	SEISMIC - TRANS		Y	17	1									Г									
12	1001010																	Т		Т		-	
13	ASD LOAD COMBINATIONS													П								-	
14		Yes	Y	1	1	2	1											т	1	$^{-}$			
15		Yes	Y	1	1	3	1																
16		Yes		1	1		.75	3	.75						1-			†		т		-	
17	D + 0.6W TRANS1 (WINDW	Yes	Y	1	1		.6	-	-									+		1			-
18		Yes		1	1		.6			†				r	-		+-	+		-	-	-	-
19	D + 0.6W TRANS2 (LEEWA	Yes	Y	1	1		.6			m				+	_		-	+	-	+	-	-	
20	-GCpi	Yes	Y	1	1		.6			Н			-	+-	+-	+	+	+	+	-		-	-
21		Yes	Y	1	1	9							_	+	-	+	-	+	-	-			-
22		Yes		1	1		.6	-	-	H	-			+	+	+	+	+	-	-	-	-	-
23	D + 0.6W (75% TRANS1 + 7	Yes	Y	- 1	1		.45	0	AF	-			-	+	+	+	-	+	-	-	-	-	_
24		Yes		1	1		.45						-	⊬	+-	+	+-	⊬	-	-		-	-
25	D + 0.6W (75% TRANS2 + 7			1	1		.45				-	-	-	-	-	+-	\vdash	+	-	-	-	-	_
26		Yes		1	1						-			-	+	+-	-	⊢	-	-	2		
27	D + 0.75L + 0.75(0.6W[T1+])	Yes	Y	1	1		.45				45		-	+	-	+-	-	+			-		
28	D + 0.75L + 0.75(0.6W[T1-])	Yes	Y		4	2	75	3	.75	5	.45	-	-	-	-	\vdash	-	+	-				
29	D + 0.75L + 0.75(0.6W[T2+])	Vac	Y	1	4	2	75	3	./5	6	.45	_	-	-	-	₩	-	-	-				
30	D + 0.75L + 0.75(0.6W[T2-])	Voc	Y	1	4	6	.75	3	./5	1	.45		-	-	-	-	-	-					
31	D + 0.75L + 0.75(0.6W[L+]) +	Voc	Y	1	1	14	.75	3	.75	8	.45		_	ļ.,	-	-	_	_					
32	D + 0.75L + 0.75(0.6W[L-]) +	Voc	Y	1	1	12	.75	3	./5	9	.45			-	-	-		_					
33	D + 0.75L + 0.75(0.6W[0.75T	Voc	Y		1	2	.75	3	.75	10	.45	-		-	-	-		-					
34	D + 0.75L + 0.75(0.6W[0.75T	Vac	Y	1	1	2	.75	3	.75	5	.338	9	338	-	-	1		L					
35	D + 0.75L + 0.75(0.6W[0.75T	Vac	Y	1	1	2	1/5	3	.75	6	.338	10	.338	_		-		_					
36	D + 0.75L + 0.75(0.6W[0.75T	res	Y	1	1						.338												
37				1	1	2	.75	3	.75	8	.338	10	.338	3									
		Yes		1	1	16	.7							L									
38		Yes		1			.7																
39		Yes		1			7							L									
	D + 0.75L + 0.75(0.7Ex) + 0			1	1	2	75	16	.525	3	.75												
	D + 0.75L - 0.75(0.7Ez) + 0.7	17.		1	1	2	.75	17	.525	3	.75												
42		Yes	Y	_ 1	1	2	.75	17	5	3	.75							Т					
43																		Т					
44	LRFD LOAD COMBINATIONS																			-			
45	1.4D		Y	1	1,4																		
46	1.2D + 1.6L + 0.5S		Y	1	1,2	2	1.6	3	.5														
	1.2D + 1.6S + 0.5W (DOES		Y																				
48	*1.2D + L+ 0.5S		Y	1	1.2	2	1	3	.5														
	1.2D + 1.0W (TRANS1) + L +		Y		1																		
50	-GCpi		Y		1											т		\vdash	_				
51	TRANS2		Y		1	7							_										
52	-GCpi		Y		1	8				П		-					1	-	-	-	-		
53	LONG		Y	L48		9										-	-	-				-	_
54	-GCpi		Ý			10				Н				-	-	-	-		-	-	-		
55	COMB1		Y	L48	_		.75	0	75			-	-	-	-		-	-	-	-			_
56	-GCpi		Y	L48		0	75	10	75			-			-	-	-	-	-	-	-		
99	-900			L40		0	.75	10	./5														

Company Designer Job Number Model Name

: SMG ENGINEERS : BS

: 18-183B : EQUIPMENT STORAGE BUILDING

Sept 28, 2018 5:51 PM Checked By:_

Load Combinations (Continued)

	Description	S	PDelta	S.	В.	Fa	F	3	Fa	R	Fa	D	E-	D	E	D	F-	D	F-	-		-	-	_	_
57	COMB2	1	Y		L48	1		7	75	q	.75	0	ra.		ra.	. В.	. Fa.	D.,	. Fa.	В	. ra.	В.,	Fa	В	Fa.
58	-GCpi		Y		L48									+	-	+-	-	-	-	+	+-	-	-	-	-
59	1.2D + 1.0Ex + L + 0.2S		Y		1					2	1	2	2	_		+	-	-	+	+	-	+	-	-	-
60	1.2D +1.0Ez + L + 0.2S		Y	T	1	1	2 E		1	2	1	3	2	+	-	+	-	-	-	+		+	-	-	-
	1.2D - 1.0Ez + L + 0.2S		Y		1	1	2 E		-1	2	1	3	2	-	-	+	-	-	-	+	-	-	-	-	-

Sept 28, 2018 5:50 PM Checked By:_

Envelope AISC 14th(360-10): LRFD Steel Code Checks

		Shape	Code Check	Loc[ft]	LC	Sh	Loc[ft]	Dir	LC	phi*phi*Pnphi*Mnphi*Mn z Cb Eqr
1	M26	W12x40	.300	15		.023	30	V	24	76.8. 526.5 63 109.609 1.283 H1.
2	M23	W12x40	.277	15	26	.020	30	V	26	76.8. 526.5 63 111.109 1.3 H1.
3	M19	W12x40	.276	15		.020	0	v	26	76.8526.5 63 111.108 1.3 H1.
4	M22	W12x40	.275	15		.020	0	v	26	76.8 526.5 63 111.109 1.3 H1.
5	M20	W12x40	.275	15		.020	30	V	26	76.8526.5 63 111.11 1,3 H1.
6	M21	W12x40	.275	15	26	.020	0	V	26	76.8 526.5 63 111.107 1.3 H1.
7		L3x2x4	.195	0		.000	0	Z	35	1.366 38.88 .826 1.291 1 H2.
8		W12x40	.146	7.656		.044	0	V	24	156526.5 63 156.941 1.153 H1.
9	M123	W12x40	.130	7.5	21	.035	0	V	21	172 526.5 63 164.766 1.164 H1.
10		W12x40	.130	7.5		.040	0	V	24	172 526.5 63 164.679 1.163 H1.
11		W12x40	.120	7,521		.041	0	V	26	191 526.5 63 174.578 1.187 H1.
12		W12x40	.119	7.521			Õ	V	26	191 526.5 63 174.575 1.187 H1.
13		W12x40	.118	7.521			0	V	26	191 526.5 63 174.578 1.187 H1.
14		W12x40	.118	7.521			0	V	26	191 526.5 63 174.572 1.187 H1.
15		W12x40	.117	7.521			0	V	26	191526.5 63 174.575 1.187 H1.
16		L3x2x4	.110	0		.000	Ö	y	27	1.366 38.88 .826 1.291 1 H2.
17	M7	W24x104	.106	21		.014	0	V	27	7961381.5 234 1083.75 1.656 H1.
18	M5	W24x104	.106	21		.014	0	V	27	796 1381.5 234 1083.75 1.656 H1.
19	M9	W24x104	.104	21		.013	0	V	27	7961381.5 234 1083.75 1.667 H1.
20	M3	W24x104	.104	21		.013	0	y	27	796,1381.5 234 1083.75 1.667 H1.
21	M31	L3x2x4	.101	0		.000	0	Z	33	1.366 38.88 826 1.291 1 H2.
22	M16	W24x104	.098	0		.052	0	V	27	4491381.5 234 1083.75 1.764 H1.
23	M15	W24x104	.098	0		.052	0	v	27	4491381.5 234 1083.75 1.764 H1.
24	M17	W24x104	.095	0		.051	0	1	27	4491381.5 234 1083.75 1.739 H1.
25	M14	W24x104	.095	0		.051	0	y	27	4491381.5 234 1083.75 1.739 H1.
26	M27	W12x40	.093	15		.003	0	Z	23	
27	M28	W12x40	.092	15		.003	0		33	76.8 526.5 63 85.463 1 H1. 76.8 526.5 63 85.463 1 H1
28		W12x40	.087	15		.003	0	Z	23	
29	M24	W12x40	.087	15		.003	0	-	33	
30	M10	W24x104	.077	19		.018	0	Z V	36	
31	M4	W24x104	.077	19		.018	0	-	36	
32	MB	W24x104	.071	19		.016	0	V	36	
33	M6	W24x104	.071	19		.016	0	V	36	
34	M1	W24x104	.061	13.5	I BOS HILM, THE	.008	Ö	-	26	
35	M11	W24x104	.046	13.5		.008	0	У	26	
36	M18	W24x104	.040	15.0		.020	15.033	У	27	
37	M13	W24x104	.038	0	_	.020	15.033	У	27	
38	M12	W24x104	.032	19		.008	17,615	V		
39	M2	W24x104	.032	19		.008	17.615	У	17	
40	M32	L3x2x4	.011	0		.000		V		8781381.5 234 1083.75 1.497 H1
41	M30	L3x2x4	.001	-	-		0	Z	27	1.366 38.88 .826 1.291 1 H2
42		L3x2x4		0		.000	0	Z	29	1.366 38.88 .826 1.291 1 H2
49.2	10134	LOXZX4	.000	0	114	.000	0	Z	27	1.366 38.88 .826 1.291 1 H1

CLIEN'	Т	LAKESIDE	E INDUSTRIE:	S, INC.	
PROJE	ECT	MAPLE V	ALLEY ASPHA	ALT PLANT	
	EQ	UIPMENT S	STORAGE BU	ILDING	
BY	BS	DATE	4/8/2019	REV	
				'\"	

	JOB NO	18-183B	SHEET (OF
QUIPMENT STORAGE: MEMBER &	Countries	Occur.		
	CONNECTION	DESIGN		
MAIN COLUMN: WZYX104				
DEMAND (DR = 0.11 P	er RISA,	OK/)		
Axial, Pmax = 23 Kips	(compression)	9 KIBS (TENS	(ON)	
Момент, Мх,млх = 102 Му,мах = 8	K-FT K-FT			
SHEAR, Vy, max = 5 Vy, max = 2				
Defl, Dy = 1/2" → Dx = 3/16" →				
BASE PLATE DESIGN				
MAX COMPRESSION = 23 KIRS MAX TENSION = 9 KIPS				
Vx max = 5 kips Vy max = 2 kips				
1" Base Prate W/ (6)) I"\ ANI	istors OK By	INSPECTION	

AISC 14th(360-10): LRFD Code Check Direct Analysis Method

Max Bend Location Equation	ding Check	0.106 (LC 21 ft H1-1b	27)	Locat	Shear Check ion Defl Ratio	0.014 (y) (LC 0 ft L/2445	27)
Bending N		Compact Compact			oression Flange oression Web	Non-Slender Slender	Qs=1 Qa=1
Fy phi*Pnc phi*Pnt	50 ksi 796.756 k 1381.5 k		Lb KL/r	y-y 21 ft 86.76	z-z 21 ft 25.078		
phi*Mny phi*Mnz phi*Vny phi*Vnz Cb	234 k-ft 1083.75 k- 361.5 k 518.4 k 1.656	-ft	L Comp L-torque Tau_b	Flange e	21 ft 21 ft 1		

CLIENT_		LAKESIDE INDUSTRIES, INC.					
PROJECT MAPLE VALLEY ASPHALT PLANT							
EQUIPMENT STORAGE BUILDING							
BY	BS	DATE	4/8/2019	REV			
JOB NO.		18-183B	SHEET	OF			

Eavirment Storace: Member & Cxn Design (conto)	
MAIN BEAM: W24x104	
DEMAND (DR = O.10. PER PISA, OKV)	
Axial, PMAX = 6 KIPS TMAX = 6 KIPS	
Monter, Mx max = 102 K-FT My max = 6 K-FT	
SHEAR, Vy MAX = 19 KIPS Vx MAX = Z KIPS	
Deft, Dy = 1/4" - 1/1400 Dx = 1/4"	
* Fire CSP Can TO COLUMN OX BY INSPECTION	
EE BUILDING 1, 2, 3 CALCULATIONS FOR CJP W24 BEAM REQUIREMI	ENTS (SIMILAR

CLIENT_		LAKESIDI	E INDUSTRIE:	S, INC.		
PROJECT MAPLE VALLEY ASPHALT PLANT						
	EQUIPMENT STORAGE BUILDING					
BY	BS	DATE	4/8/2019	REV		
JOB NO		18-183B	SHEET	OF		

JOB NO 18-	163B SHEET OF
EQUIPMENT STORAGE: MEMBER & CONNECTION DESIGN	
LONGITUDINAL BEAM: WAXYO (ROTATED 90°)	
DEMAND (DR = 0.30 PER PUSA, OKV)	
AXIAL PMAX = 2 KDS	
AXIAL, PMAX = 2 K.PS TMAX = 3 K.PS	
Moment, Mxmx = 30 K-FT Mymax = 6 K-PT	
Mumay = 6 K-PT	
SHEAR, Vymax = 3 KIPS VX MAX = 1 KIPS	
John Tikes	
YXMX -	
Den Au - (1/2" OK)	
Det, $\Delta y = \langle 1/8" \text{ OF} \rangle$ $\Delta x = \sim 1" \text{ (Gross)}, 1/2" \text{ (NET)} \rightarrow$	1/22
DX (Gross) 1/2 (cor) 4	1100
(, , , , M, (, (, , , ,)	
CONNECTION TO MAIN COLUMN (SHEAR ONLY	//
10. 1. 1. 16. 0 3140	0 / /
DOL CLIP ANCIE W/ (3) Pous of 3/4" of 1	Buts OF By MUSTELTION
V-0	
X-Bircing: L3x2x/4	
M T TO KIPS O TO	
MAX. TENSION = 7.6 KIPS DR= 0.20 C	1.004
CONNECTION	
	- 1.00
Use (2) 3/4 / Bours, Va/R= 11.9 × 2= 5	238 OK/
REQ'D 1/4" WELD LENGTH = 15.2 kip/3.71 k/in = 4.1"	
	>7 7.6 × 2.0 = 15.2 kirs
REQ'D 1/2" GUSSET = 15.2kip/(36ksi*0.5"*1"/1.67)= 1.41"	SEISMIE 1
1/2" GUSSET PL & 1/4" WELD, OK BY INSP.	Oversment SHEET C24

AISC 14th(360-10): LRFD Code Check Direct Analysis Method

Max Bend Location Equation	ding Check	0.300 (LC 15 ft H1-1b	Max She Location	ar Check	0.023 (y) (LC 30 ft	2Max Defi Ratio Location Span	L/1517 21.563 f
Bending (Compact Compact			ession Flange ession Web	Non-Slender Slender	Qs=1 Qa=1
Fy phi*Pnc phi*Pnt	50 ksi 76.873 k 526.5 k		Lb KL/r	y-y 30 ft 185.428	z-z 30 ft 70.279		
phi*Mny phi*Mnz phi*Vny phi*Vnz Cb	63 k-ft 109.609 k 105.315 k 222.758 k 1.283		L Comp L-torque Tau_b		30 ft 30 ft 1		

Direct Analysis Method

Max Bend Location Equation	ling Check	0.195 (LC 0 ft H2-1*	37)	Locatio	hear Check on efl Ratio	0.000 (z) (LC 35) 0 ft L/10000
Bending F Bending V		Compact Compact		-	ression Flange ression Web	Non-Slender Non-Slender
_				y-y'	z-z'	
Fy	36 ksi		Lb	16 ft	16 ft	
phi*Pnc	1.366 k		KL/r	445.476	187.59	
phi*Pnt	38.88 k					
phi*Mny	.826 k-ft		L Comp	Flange	16 ft	
phi*Mnz'	1.291 k-ft		L-torque		36.62 ft	
phi*Vny	14.58 k		Tau_b		1	
phi*Vnz	9.72 k					
Cb	1					

CLIENT_		LAKESIDI	E INDUSTRIES	S, INC.		
PROJEC ⁻	т	MAPLE V	ALLEY ASPHA	ALT PLANT		
	EQUIPMENT STORAGE BUILDING					
BY	BS	DATE_	4/8/2019	REV		
100 110		 18-183B	OUEET			

	OF
QUIPMENT STORAGE: MEMBER & CONNECTION DESIGN	
SECONOMY COLUMN: W12×40	
DEMAND (DR = 0.15 PER PISA, OKY)	
AXIAL, PANX = 14 KIPS TMAX = 1 KIP	
Mombat, Mymax = 23 k-ft Mymax = -	
SHEAR, Vymax = 5 kips Vxmax = -	
VXMAX = -	
DEM, Dy = 0.665" > 1/380	
Brist Pinsk Obsien	
PL3/4" W/ (4) 1" & Ancious OIL By Inspection	
END CONNECTIONS	
DEL CLIP ANGLE W/(2) 3/4"/ BOLTS ON By INSPECTION	
	SHEET C27

AISC 14th(360-10): LRFD Code Check Direct Analysis Method

Max Bend Location Equation	ling Check	0.146 (LC 7.656 ft H1-1b	24)	Locat	Shear Check ion Defl Ratio	0.044 (y) (LC 0 ft L/987	24)
Bending F Bending \		Compact Compact			ression Flange ression Web	Non-Slender Slender	Qs=1 Qa=1
Fy phi*Pnc phi*Pnt	50 ksi 156.884 k 526.5 k		Lb KL/r	y-y 21 ft 129.8	z-z 21 ft 49.195		
phi*Mny phi*Mnz phi*Vny phi*Vnz Cb	63 k-ft 156.941 k 105.315 k 222.758 k 1.153		L Com L-torqu Tau_b		21 ft 21 ft 1		

	DATE	
PROJECT		
CLIENT		·

	JOB NO.	SHEET	OF
EQUIPMENT STORAGE FOUNDA	TION		
Max BEARING REACT	MALE KIPS /ALA)		
BEARING AMA = 15 x	$1.5 = 225 \text{ ft}^2$		
DEPAING PASSUAE = 1	$\frac{1}{225} ft^2 = 490 PSF$	< 3000 PSF	MINABLE
SLIDING CHELK			: <u> </u>
MAX. HOMO. LOND = 1	31 1215		
DEAD LOAD = 770 K	i P.S.		
FRUTION RESILTANCE.	= 0,5 x 770 kips =	285 3, 30	
		. 202 . K-173	: ;
FS = 385/r	SIX = 2.9 OK/		
* No VPLIFF By INSPEC	7701		, <u>.</u>
* No Overturnine By			
1 In San incinia Dil	WSV CTIEN		
			:

: SMG ENGINEERS : BS

: 18-1838 : EQUIPMENT STORAGE BUILDING

Aug 16, 2018 4:34 PM Checked By:_

Envelope Joint Reactions

,	Joint		X [k]	LC	Y [k]	LC.	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	1.0	5.477 (1. 44)	
1	N3	max		14	1.075	33	0	14		14	0	14	MZ [k-ft]	LC 14
2		min	0	14	483	26	Õ	14		14	0	14		14
3	N141	max		14	1.068	33	0	14	······	14	0	14	0	14
4		min	0	14	.488	26	Ŏ	14		14	Ö	14	· • • • • • • • • • • • • • • • • • • •	14
5	N144	max	· · · · · · · · · · · · · · · · · · ·	14	1.059	33	0	14		14	0	14	0	14
6		min		14	481	26	ŏ	14		14	0	14	0	14
7	N4	max		14	1.059	27	0	14	0	14	0	14	0	14
8		min		14	438	26	Ŏ	14		14	0	14	0	14
9	N347	max	1	14	1.052	27	0	14	0	14	0	14	0	14
10		min	T	14	444	26	Ŏ	14		14	0		0	14
11	N139	max		14	1.052	33	0	14	0	14	0	14 14	0	14
12		min		14	.494	26	0	14		14	0		0	14
13	N344	max		14	1.043	27	0	14	0	14	0	14	0	14
14		min		14	.437	26	Ö	14	0	14	0	14 14	0	14
15	N6	max	T	14	1.038	27	0	14	0	14	0	14	0	14
16		min	0	14	.614	26	Ó	14		14			0	14
17	N1	max	***************************************	14	1.038	27	0	14	0	14	0	14	0	14
18		min		14	613	26	0	14	* · · · · · · · · · · · · · · · · ·	14	0	14	0	14
19	N349	max	0	14	1.037	27	0	14	0	14		14	0	14
20		min		14	.453	26	Ö	14	0	14	0	14	0	14
21	N146	max	0	14	1.034	33	0	14	0	14	0	14	0	14
22		min	· · · · · · · · · · · · · · · · · · ·	14	.48	26	Ď	14	0	14	0	14	0	14
23	N137	max	· · · · · · · · · · · · · · · · · · · 	14	1.029	33	0	14	0		0	14	0	14
24		min		14	.501	26	0	14	0	<u>14</u> 14	0	14	0	14
25	N9	max	0	14	1.021	35	0	14	0	14	0	14	0	14
26		min		14	504	24	Ö	14	Ö	14	0	14 14	0	14
27	N342	max	0	14	1.019	27	0	14	0	14	0		0	14
28		min		14	.438	26	0	14	0	14	0	14	0	14
29	N351	max	0	14	1.015	27	0	14	0	14	0	14	Ŏ	14
30		min	1	14	464	26	Ŏ	14	0	14	0	14	0	14
31	N10	max	0	14	1.012	15	0	14	0	14	0	14	0	14
32		min	0	14	.49	24	Ö	14		14	0	14 14	0	14
33	N529	max	0	14	1.012	35	0	14	0	14		14	0	14
34		min	Ō	14	.505	24	0	14		14	0	14	0	14
35	N7	max	0	14	1.01	40	0	14	0	14	0		0	14
36		min	***************************************	14	678	18	0	14		14	Ő	14	0	14
37	N532	max	0	14	1.01	35	0	14		14	0	14 14	0	14
38		min	Ō	14	.506	24	0	14		14	0	14	0	14
39	N12	max	0	14	1.005	15	0	14		14	0		0	14
40		min	Ŏ	14	.68	18	0	14		14	0	14 14	0	14
41	N135	max	0	14	1.003	33	0	14		14	0	~		14
42		min	Ö	14	.508	26	0	14		14	0	14 14	0 0	14
43	N495	max	0	14	1.003	15	0	14		14	***************************************			14
44		min	Ŏ	14	492	24	0	14		14	0	14 14	0	14
45	N492	max	0	14	1.002	15	0	14		14			0	14
46		min	ŏ	14	492	24	0	14		14	0	14	0	14
47	N148	max	0	14	1.002	33	0	14		14		14	0	14
48		min	ŏ	14	48	26	0	14		14	0 0	14	0	14
49	N527	max	0	14	.996	35	0	14		14		14 14	0	14
50		min		14	509	24	0	14		14	0		0	14
		1776/4/			.000		Utanasi	14	<u>Umari f</u>	14	wee Uring	14	0	14

GLIEN]
PROJECT

														JOE	NO.				,,,			_ SHI	EET .			OF	
	Ŀ,.	Ì				. · 		}			:		:						<u> </u>	······································	:	:		:	·	:	
.	Εa	i UrAJ	MESU	: T	5	ORA	i Usk	Fa	e. Demos	(A-117	: }n\$		1	:		:	 :		:	:	i				i i		
-					÷=			·		<u> </u>		 :			.i			·			.:		1		ļ !	: !	
	:	For	: Partino	· · · · · · · · · · · · · · · · · · ·	Der	in de la	1 0.Z	97.	 	 ∂		1	ii FDL	N	T	· · · · ·	:		<u>.</u>	.i	<u>.</u>	: : :	; ;	ļ	<u>.</u>	:	
		4		1			:						:		:				NA 7	70NS	·	ļ	ļ			!	
			М		· · · ·	1 17 L	14	FI	<u>.</u>	<u>سا</u> سو	<u>(</u>	.		······································	j Fr. 2	.i	<u>.</u>		<u>.</u>	: 		İ	ļ	<u>.</u>	! :		
		:	J. U	'Χ	 74 3	10	しょと	- FT	; ;	ن ^ئ مد .	2	: -	7 6		ļ(C)	4 1	76-	(\$	ļ	ļ	, · · · · ·	<u>.</u>	ļ.,.,		<u>.</u>	; ;	
			1	ł		15.	5	i Light	<u>.</u>	. 5	5	<u>.</u>	:		<u></u>		ļ				<u>.</u>		ļ		: :		
	ļ		Πu	Ý		2	2.			. 5.	5		İ	: ,	Kar	<u>.</u>	:	ļ.,				:					:
	ļ	i	ļ.,	Ĺ		13.	1	6-61 		. 5	5		>3	13	F 181	0	S	: 1940A,				:					
	ļ.,		.Vu	٧	<u>.</u>	6.	HK	: :		5	5	: -	j (7	¥	P	Sta	al.				: :		:			
		:	: . ·			:	1						:					: \&	: :		:	,			:	·	!
	:	ķ	,,,,,							?		······	:	· · · · · ·						d	j		:	:	ļ !		
			1)	Ł	3	 	10"	C					1	0	4	<i>/</i>			· · · ·	T.::::		j.	: :	ļ			
	: • • •	1	(V)	£) 	X (5 48.	• (207	110 G	:: . :	: hv	<i>/</i>	.D.			Ď.			; ;	ļ!»		ļ	· :			:
	! · · · · ·	[ļ	.i		<u>:</u>	 !			:	l	ļ	ļ	ļ.,	: 		:	ļ	<u> </u>			: :	· Į			
		: 	:	: :		<u> </u>		: :	; ;	<u>.</u>	; ;	ļ			· · · · · -		:	· •				: :	: ;	: 		·	/h///
		i !	·	! !	:	İ	ļ			<u>.</u>	: :	i 	ļ		<u>.</u>			ļ	: 	i	i		:	<u>.</u>		No	<u>,</u>
	: 		: : :	<u>.</u> :	j	ļ			ļ		ļ	: 	:	: : :		= ا			:					:		,	
	ļ		ļ	ļ	<u>į</u>		: : :			<u>.</u>	<u>.</u>	<u>.</u>	<u>}</u>		Ì		:		:		:		:	· · · · · · · · · · · · · · · · · · ·			
			: :	i (<i>[</i>		i) I						:				:						/	i · · · · ·	
															-		†	i	;	:				∕ İ			
							¥	(:::::				 			: : !				·	-2	FT		>				
			:		ļ [: :	}]		. 2							
				: : :	 		i i	: : :	ļ !	: :		: 	! ! !	i	ļ. 	<u> </u>		! !	i 		ļi			: 			
			:	: 	} /		ļ :		: :	: :	: : :	ļ	: :	ļ	<u>.</u> 					ļ							
					ļ	ļ	ļ				:	ļ. 1		Ĺ	; ;				: : · · · · · · ·								
		:	í 	: 	ļ		<u>.</u>	<i>.</i>	<u>.</u>				ļ	į	<u>.</u>			:		· :							
						:												: :			ļ.,					:	
														<u>{</u>							:				:		
					:																						
:														! }							: : : :					!	
												: : :		: 		: :				:							
	· : :				ļ							·) 	: : :											· · · · · · ;	!	
:	, !				i			. · · · · · · · · · ·	ļ ļ			:				ļ	· :			ļ 							
								: :					<u> </u>	: : :						İ		:				:	
			;																:				:				
					<u>.</u>									:													
	:														: : : :	i i								······		 T C31	

ENGINEERS, INC.

Client: LAKESIDE INDUSTRIES

Job #: 18-183B

By: BS

Concrete Slab Design per ACI 318-08

.....

Date: 8/16/2018 Sheet

af

per ACI 318-08 IN COMPLIANCE W/ACI 318-14

Applied Forces:

Project:

Ultimate Shear, $V_u = 10 \text{ kips}$

Ultimate Moment, $M_u = 18$ ft-kips

Slab Properties:

Width = 12 in

Depth = 18 in

Cover = 3 in.

d = 14.69 in. $f'_{c} = 4000 \text{ psi}$

 $\beta_1 = 0.85$

Capacity:

Shear: $\phi = 0.75$

 $\Phi V_c = \Phi V_n = \Phi^* 2 b^* d^* v f' c$

 $\Phi V_c = \Phi V_n = -16.72 \text{ kips}$

Bending: $\phi = 0.9$

 $\Phi M_n = \Phi(As*fy*(d-a/2))$

 $\Phi M_0 = 26.75 \text{ k-ft}.$

Longitudinal Reinforcement:

Bar Size =

5:

Spacing =

9 inches o.c.

 $f_v = 60000 \text{ psi}$

 $A_s = 0.41 \text{ in}^2$

a = 0.61 in

c = 0.72 in

Shrinkage and Temperature Reinforcing

Min. reinf. ratio =

0.0018

 $A_s min =$

0.32 in²

ОК

max. spacing =:

18.0 in

Check Tension Controlled (ACI 10.3.4)

 $\varepsilon_{\rm t} = [(d-c)/c]^*0.003$

 $\varepsilon_{\rm t} = 0.0586 > 0.005$, OK

Demand Ratios:

 $V_n/\Phi V_n =$

0.60

. :

SLAB IS OK IN SHEAR

 $M_{\rm b}/\Phi M_{\rm o} =$

0.57

SLAB IS OK IN BENDING

ENGINEERS, INC.

Client: LAKESIDE INDUSTRIES

job #: 18-183B

By: BS:

Concrete Slab Design per ACI 318-08

W/ACI 318-14

IN COMPLIANCE

Date: 8/16/2018 Sheet

of

·.

Applied Forces:

Ultimate Shear, $V_u = 3.7 \text{ kips}$

Ultimate Moment, $M_0 = 3.3$ ft-kips

Slab Properties:

Project:

Width = 12 in

Depth = 8 in

Cover = 4 in.

d = 3.69 int

 $f_c = 4000 \text{ psi}$

 $\beta_1 = 0.85$

Capacity:

Shear: $\phi = 0.75$

 $\Phi V_c = \Phi V_n = \Phi^* 2^* b^* d^* v f' c$

 $\Phi V_c = \Phi V_n = 4.20 \text{ kips}$

Bending: $\phi = 0.9$

 $\Phi M_n = \Phi(As^*fy^*(d-a/2))$

 $\Phi M_n = 4.83 \text{ k-ft},$

Longitudinal Reinforcement:

Bar Size = 5

Dai Size - 3

Spacing = 12 inches o.c.

 $f_y = 60000 \text{ psi}$

 $\lambda_s = 0.31 \text{ in}^2$

a # 0.46 in

c = 0.54 in

Shrinkage and Temperature Reinforcing

Min. reinf. ratio = 0.0018:

 $A_s min = 0.08 in^2$

max, spacing = 18.0 in

Check Tension Controlled (ACI 10.3.4)

OK.

 $\varepsilon_t = [(d-c)/c]*0.003$:

 $\varepsilon_{\rm t} = -0.0176 > 0.005$, OK

Demand Ratios:

 $V_u/\Phi V_0 = 0.88$ SLAB IS OK IN SHEAR

 $M_u/\Phi M_n = 0.58$ SLAB IS OK IN BENDING

SMG ENGINEERS BS 18-183B

EQUIPMENT STORAGE BUILDING

Sept 28, 2018 6:40 PM Checked By:____

	Plate	Qx[k] į	C	Qy [k]	LC	Mx [k-ft]	LC	My [k-ft]	LC	Mxy [k-ft]	LC	Fx [k] LC Fy [k] LC Fxy [k] LC
1	P123 ma						17.239	55	1.971	55	0	47	.46 61 .382 58 .962 5
2	m	n77	7 5	8	-2.56	55	-5.516	58	638	58	-1.856	55	-12 291 59 - 353 55 -1.101 5
3	P124 ma						11.649	55	.425	55	0	47	.824 60 .25 55 .57 6
4		n63					-3.721	58	122	58	-2.665	55	-12.708 59 - 271 58 - 658 5
5	P125 ma						6.982	55	.14	55	0	47	1.615 60 .077 61 .472 6
6		n - 44					-2.288	58	031	56	-3.092	55	-13 09 59 - 058 60 - 44 5
7	P164 ma	× 5.64	12 5	55	2.807	55	17,153	55	2.195	55	1.475	55	12.13 61 1.308 55 .591 5
8	mi	n - 98	8 5	8	764	58	-5.301	58	779	58	0	47	-12.285 60 -1.409 5857 5
9	P126 ma	× 5.56	7 5	55	.016	56	3.089	55	.094	55	0	47	2.394 60 .073 61 424 6
10	mi	n26	1 5	8	033	55	-1.186	56	014	56	-3.267	55	-13.473 59 - 058 60 - 392 6
11	P127 ma	× 5.30	9 5	55	.007	56	0	47	.061	57	0	47	3.164 60 .064 61 .396 6
12	mi	n07	5 5	8	- 014	57	511	56	0	56	-3.414	55	13.886 59 - 058 60 - 385 6
13	P103 ma	× 5.14	3 5	55	.431	58	17.042	55	2.059	55	0	47	13.249 61 .224 58 .945 5
14		n42					-2.713	58	301	58	- 432	56	-12.776 60 - 389 55 - 607 5
15	P128 ma	× 5.07	2 5	5	.002	55	.175	58	.036	57	0	47	3.924 60 .062 61 .378 6
16	mi				006		-2.783	55	0	47	-3.511		-14.351 59059 60376 6
17	P146 ma	× 5.0					0	47	.271	58	5.024	55	2.346 61 .697 61 .591 6
18	mi	_	_	7	0	47	-10.551	55	0	47	0	47	2.340 01 .097 01 .591 6
19	P129 ma						.473	58	.039	58	0	47	-2.36 60 - 697 60 - 583 6
20	mi				012		-4.971	55	0	47	-3.565		4.671 60 .061 61 .364 6
21	P326 ma		6 5	7	1 739	57	10.852	57	1.336	57		55	-14 884 5906 60366 60
22	mi				074		- 923	56	04	56	1.685	57	1.407 58 .215 55 .537 5
23	P104 ma						10.943	55	.386		0	47	-11.843 59 - 631 58 -1.733 58
24		32					-1.716	58	038	55	0	47	12.417 61 .266 55 .515 55
25	P399 ma	× 4.67	25	Ť	0	47	0	47		58	994	55	-12.263 60 - 145 58 - 378 58
26	mi				127		-9.79		.267	45	0	47	1.687 60 .232 60 .996 60
27	P130 ma	_					.556	55	0	47	-5.233	55	-1.915 59 - 232 61 -1 6
28	mi				02	58	-6.793	58	.054	58	0	47	5.405 60 .061 61 .35 6
29	P145 ma		4 5	6	1 27	56		55	018	55	-3.585	55	-15.502 59 - 06 60 - 354 60
30	mi			7	0		0 270	47	0	47	6.703	55	.675 58 2.166 61 .166 60
31	P417 ma	-			0	47	-9.372	55	-3.199	55	0	47	- 581 55 -2.171 60 - 156 6
32	mi	_	_		-2.131	47	11.82	57	1.594	57	0	47	11.252 60 2.3 58 .296 60
33	P327 ma	_					7,000	47	0	47	-1.614	57	-11.582 61 - 708 55 -1.012 58
34	mi	-			0	47	7.069	57	.283	57	2.233	57	1.946 61 .441 58 .548 61
35					055		902	56	0	47	0		-12 231 59 - 095 55 -1.011 58
	P131 ma	-	-		026		.45	58	.07	58	0	47	6.123 60 .061 61 .339 59
36	D447 ma				027		-8.33	55	027	55	-3.583		16 221 59 - 061 60 - 341 60
37	P147 ma		_	_	.203		0	47	.306	58	4.842	55	4.132 61 .597 61 .403 61
38	DACE TO	_	4		0	47	-12.125	55	0	47	0	47	-4.149 60 - 597 60 - 394 60
39	P165 ma						11.407	55	.594	55	1.484	55	12.638 61 .318 55 .459 60
40	Diago	60	1 5	ð	0	47	-3.356	58	262	56	0	47	-12.61 60 - 337 58 - 329 56
41	P132 ma	4.36	5	5	.024	55	.181	58	.086	58	0	47	6.825 60 .061 61 .413 59
42	Docco	0	4	7	035	58	-9.644	55	026	55	-3.572	55	-17.065 59 - 061 60 - 327 60
43	P328 ma						3.951	57	.098	55	2.523	57	3.022 61 .072 58 .559 61
44	mi	0	4	7	006	56	908	56	0	47	0	47	-12.585 59 - 048 61 - 669 58
45	P184 ma	4.3	5	5	2.67	55	14.226	55	1.784	55	.689	56	15.094 61 1.44 55 .645 55
46	mir	83	5 5	8	7	58	-5.503	58	777	58	0		15.213 60782 5879 58
47	P105 ma	4.29	15	5	.009	58	5.919	55	.087	59	0	47	11.728 61 .071 61 .34 61
48	mir	22	7 5	8	- 045	55	862	58	0	47	-1.365	55	-11.75 60052 60267 60
49	P133 ma	4.24	2 5	5	.018	55	0	47	.103	58	0		7.515 60 .06 61 .507 59
50	mir	0	4	7 -	043	58	-10.774	55	012	55	-3.57	55	18.061 59 - 06 60 - 313 60

SMG ENGINEERS BS

18-183B EQUIPMENT STORAGE BUILDING Sept 28, 2018 6:40 PM Checked By:_____

1	Plate P213 ma			LC 58	Qy [k] .852		Mx [k-ft]	LC	My [k-ft]	LC	Mxy [k-ft]	LC	Fx [k] LC Fy [k] LC Fxy [k] LC
2							17.36	55	1.979	55	1.718	55	14.193 61 .384 58 .967 58
3	P212 ma				2.564		-5.398	58	63	58	0	47	-13.65760 - 353 55 - 867 55
4	The second district of the second			58			11.733	55	.433	55	2.537	55	13.484 61 .25 55 .527 58
					023		-3.638	58	114	58	0	47	-13.266 6027 58459 55
5	P72 ma	x .8.	29	58	2.807	55	16.995	55	2.171	55	0	47	.082 61 1.308 55 .724 61
6	mii Dodd				762		-5.457	58	803	58	-1.638	55	-12.455 59 -1.415 58 -1.084 60
7	P211 ma	-			.027		7.034	55	.147	55	2.972	55	12.928 61 .075 61 .313 58
8	Dose				081		-2.237	58	024	56	0	47	12.883 60 - 055 60 - 267 61
9	P210 ma				.013		3.115	55	1	55	3.156	55	12.464 61 .071 61 .215 58
10	mir				036		-1.16	56	008	56	0	47	12.50460 - 056 60 - 223 61
11	P209 ma						0	47	.067	57	3.31	55	12.048 61 .062 61 .19 60
12	mir				017		507	56	0	47	0	47	12.12760 - 056 60 - 2 61
13	P266 ma:		1	47	1.902		12.026	57	1.469	57	0	47	13.516 60 .198 55 1.537 58
14		-5.0		-	0	47	0	47	0	47	-1.759	57	-13.00661 - 634 58 - 552 55
15	P90 ma:			47	.146		0	47	.279	58	0	47	16.679 60 1.065 60 6.593 59
16	mir	in the latest terms				47	-10.772	55	0	47	-5.074	55	-21 259 59 -2 391 59 -3 529 60
17	P208 max			47	0	47	.164	58	.041	57	3.414	55	11.66 61 .06 61 .186 60
18		4.9	-	55	007	58	-2.794	55	0	47	0	47	-11.754 60 - 057 60 - 187 61
19	P265 max			47	0	47	7.928	57	.322	57	0	47	12.618 60 .432 58 .838 58
20			89	57	052	57	008	56	0	47	-2.373	57	12 428 61 - 135 55 - 333 55
21	P207 max			47			.45	58	.044	58	3.473	55	11.29 61 .059 61 .18 60
22	mir	4.7	73	55	014	58	-4.994	55	0	47	0	47	-11.38760 - 058 60 - 177 61
23	P52 max	× .44	19	58	3.044	55	16.94	55	2.172	55	.224	59	44 4 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4
24	mir	-4.6	79	55	32	58	-2.74	58	382	58	414	56	
25	P264 max			47			4.566	57	.121	55	0	47	
26	mir	-4.6	62	57	0	47	268	56	0	47	-2.706	57	
27	P91 max	_	_	47	1.43		0	47	0	47	0	47	11.849 6105 61304 61 17.707 60 1.261 60 8.109 59
28	mir	-4.6	58	55	0	47	-9.691	55	-3.237	55	-6.818	55	-17.901 59 -4.505 59 -5.882 60
29	P233 max			58		58	14.336	55	1.759	55	.607	56	19 04 64 407 59 546 50
30			54	55	-2.356	55	-5.468	58	607	58	0	47	18.04 61 .197 58 .646 58
31	P206 max			47	.02	55	.526	58	.059	58			17.54760 - 417 55 - 658 55 10.938 61 .06 61 .171 60
32		-4.5			022		-6.823	55	014	55	3.499	55	
33	P250 max		_	47	.061	45	0	47		_	0	47	-11 032 60 - 06 60 - 166 61
34		-4.5	81	55	0	47	-10.405	57	.199	45	0	47	1.14 60 .043 60 .47 60
35	P71 max	_		58		45	11.204	55	0	47	-4.637	55	-2.148 59043 61472 61
36	min				0	47	-3.56		.568	55	0	47	.983 61 .319 55 .869 61
37	P251 max	-		47		45	-3.36	58	287	56	-1.66	55	-12.14959 - 343 58 -1.088 60
38	min	-			0	47		47	.183	45	0	47	1.979 60 .053 60 .462 60
39	P393 max			47	0	47	-10.605	57	0	47	-4.419	55	-2.231 59 - 053 61 - 464 61
40	min				137	#/ EE	0	47	.274	59	4.955	55	17.393 61 1.766 61 5.88 61
41			_				-10.097	55	0	47	0	47	20.583 59 -2.344 59 -6.474 59
42	P252 max			47			0	47	.19	45	0	47	2.829 60 .053 60 .459 60
43	P253 max	-4.5				47	-10.373	57	0	47	-4.171	55	-2.936 61053 61461 61
			22	47	.064		0	47	.165	45	0	47	3.682 60 .053 60 .455 60
44		-4.5				47	-9.75	57	0	47	-3.948	55	-3.793 61053 61458 61
45	P256 max			47	.354		0	47	.319	45	0	47	6.22 60 .219 55 1.18 58
46		-4.5				47	-6.139	57	0	47	-3.429	57	-6.345 61407 58678 55
47	P249 max			47		47	0	47	0	47	0	47	.328 60 .093 60 .476 60
48	min				227		-9.849	55	21	57	-4.926	55	-2.072 59094 61478 61
49	P254 max		25	47	.057		0	47	.137	45	0	47	4.534 60 .052 60 .507 58
50	min	-4.5	02	55	0	47	-8.805	57	0	47	-3.769	55	-4.649 61 - 052 61 - 454 61

SMG ENGINEERS BS 18-183B

EQUIPMENT STORAGE BUILDING

Sept 28, 2018 6:41 PM Checked By:_____

	Plate			Qy [k]		Mx [k-ft]	LC	My [k-ft]	LC	Mxy [k-ft]	LC	Fx [k] LC Fy [k] LC Fxy [k] LC
1	P213 ma		58	.852	58	17.36	55	1.979	55	1.718	55	14.193 61 .384 58 .967 58
2	mii	-6.25	7 55	-2.564	55	-5.398	58	63	58	0	47	-13.65760 - 353 55 - 867 55
3	P214 ma				58	17.294	55	1.975	55	2.208	55	14.536 61 .385 58 .699 55
4	mir	-1.91	2 58	-2.562	55	-5.307	58	631	58	0	47	-14.00460 - 354 55 - 733 58
5	P123 ma	6.37	1 55	.856	58	17.239	55	1.971	55	0	47	.46 61 .382 58 .962 58
6	mir	777	58	-2.56	55	-5.516	58	638	58	-1.856	55	-12 291 59 - 353 55 -1.101 58
7	P163 ma	1.64	1 58	2.804	55	17.218	55	2.208	55	2.753	55	11.815 61 1.309 55 1.238 5
8	mir	-2.20	5 55	764	58	-5.392	58	778	58	0	47	-11.968 60 -1.411 58 -1.071 59
9	P164 ma	5.642	2 55	2.807	55	17.153	55	2.195	55	1.475	55	
10	mir	988	58	764	58	-5.301	58	779	58	0	47	12.13 61 1.308 55 .591 55 -12.285 60 -1.409 5857 56
11	P122 ma	2.03	4 58	.856	58	17.132	55	1.966	55	Ö	47	1.226 61 .383 58 .595 58
12	mir	-2.293	55	-2.557	55	-5.468	58	639	58	-2.357	55	-11.972 59 - 353 55 - 604 55
13	P73 ma:	2.06	1 55	2.804	55	17.101	55	2.186	55	0	47	410 60 4 300 65 4 527 0
14		-1.786				-5.506	58	- 8	58	-2.904	55	.419 60 1.309 55 1.527 61
15	P102 ma:				58	17.062	55	2.06	55	0		-12.793 59 -1.418 58 -1.628 58
16	mir	-4.08	55	-2.729	55	-2.717	58	3	58	824	47 55	13.548 61 .218 58 .368 58
17	P103 max	5.143	3 55		58	17.042	55	2.059	55			-13.00460 - 386 55 - 768 55
18		422				-2.713	58	- 301	58	432	47	13.249 61 .224 58 .945 55
19	P72 max			2.807		16.995	55	2.171			56	-12 776 60 - 389 55 - 607 58
20		-5.797	55	- 762	58	-5.457	58	803	55	1 620	47	.082 61 1.308 55 .724 61
21	P52 max	.449	58	3 044	55	16.94	55	2.172	58	-1.638		-12 455 59 -1.415 58 -1.084 60
22	mir	-4.679	55	- 32	58	-2.74	58	382	55 58	.224	59	11.177 61 1.422 55 .26 61
23		3.826				16.921	55	2.17		414	56	-11.31360 - 798 58 - 635 60
24	mir			321		-2.735	58		55	0	47	10.925 61 1.42 55 1.222 55
25	P233 max	.919	58	.81	58	14.336	55	386	58	-1.196	55	-11.13360 - 795 58 - 942 58
26		-4.654				-5.468	58	1.759	55	.607	56	18.04 61 .197 58 .646 58
27	P234 max	3 345	55		58	14.318	55	607	58	0	47	-17.54760417 55658 55
28		-1.763				-5.51		1.759	55	.955	55	17.878 61 .246 58 1.058 55
29	P183 max					14.244	58	- 606	58	0	47	-17.31660 - 36 55 - 33 58
30		-3.14				-5.46	55	1.784	55	1.256	55	15.259 61 1.406 55 .257 58
31	P184 max	4.2	55	2.67	55		58	778	58	0		-15.44960811 58 -1.179 55
32	min	835	50	2.01		14.226	55	1.784	55	.689	56	15.094 61 1.44 55 .645 55
33	D206 may	2 050	50	2.04	58	-5.503	58	777	58	0		-15 213 60 - 782 58 - 79 58
34	P306 max					12.235	57	1.533	57	.219	59	13.106 60 .223 55 .574 55
35	P305 max	843				-3.829	56	382	56	01		-12 722 61 - 525 58 -1 286 58
36			50	2.039	57	12.196	57	1.531	57	.672	57	13.441 60 .218 55 1.032 58
37	P286 max	-3.045	50	495	50	-3.793	56	382	56	102	56	13.05861 - 524 58 - 397 55
			56	2.038	57	12.16	57	1.53	57	.076	56	17.785 60 .219 55 1.138 58
38	D266 man	-3.806	0/			-3.914	56	386	56	129	57	-17.42161 - 525 58 - 492 55
39	P356 max				56	12.143	57	1.566	57	.942	57	10.704 60 1.924 58 .838 55
40		664				-3.825	56	564	56	18	56	-10.98761 - 795 55 -1.613 58
41	P287 max	3.095	57	2.037	57	12.137	57	1.528	57	.164	56	17.771 60 .222 55 .479 55
42	Docc	- 727	56	497	56	-3.86	56	385	56	612	57	17.40761 - 524 58 -1.179 58
43	P355 max	.806	56	.35	56	12.105	57	1.559	57	.118	59	10.996 60 1.925 58 .844 58
44		-3.587				-3.789	56	564	56	059	60	-11.28 61 - 798 55 - 211 60
45	P436 max	.596	56	.35	56	12.069	57	1.556	57	.252	56	14.932 60 1.923 58 1.189 58
46	min	-2.865	57			-3.908	56	575	56	872	57	15.23261797 55502 55
47	P437 max			.35	56	12.048	57	1.551	57	.128	59	14.921 60 1.924 58 .532 55
48		869				-3.855	56	574	56	039		-15.221 61 - 796 55 -1.267 58
49	P266 max		47	1.902	_	12.026	57	1.469	57	0	47	13.516 60 .198 55 1.537 58
50	min	-5.092	57	0	47	0	47	0	47	-1.759	57	-13.00661 - 634 58 - 552 55

: SMG ENGINEERS

BS 18-183B

EQUIPMENT STORAGE BUILDING

Sept 28, 2018 6:41 PM Checked By:____

-	Plate	L	Qx [k]				Mx [k-ft]	LC	My [k-ft]	LC	Mxy [k-ft]	LC	Fx [k] LC Fy [k] LC Fxy [k] LC
7	P87	max		47		55	The second secon	47	.378	58	0	47	12.487 60 .107 58 3.051 59
2	D	min		55	0	47	-13.32	55	0	47	-4.233	55	-21.475 59 - 829 59 -1.524 60
3	P149		3.349	-	-	_	0	47	.384	58	4.176	55	6.213 61 .415 61 .045 57
4	Dian	min	0	47		47	-13.246	55	0	47	0	47	-6.236 60 - 415 60 - 049 56
5	P137	100000	3.947			47	0	47	.175	45	0	47	10.462 60 0 45 1.434 59
6		min	0		06		-13.184	55	0	47	-3.962	55	-24.763 59 - 222 59 - 394 60
7	P199	100	0	47		47	0	47	.175	45	3.907	55	9.825 61 .132 61 .24 61
8	500	min		-	_		-13.108	55	0	47	0	47	-9.868 60 - 132 60 - 236 60
9	P86	max	0	47	.19		0	47	.348	58	0	47	11.236 60 .044 58 2.442 59
10	-	_	-2.978	_		47	-13.102	55	0	47	-4.003	55	-20.538 59 - 571 59 -1.317 60
11	P88	max	0	47			0	47	.4	45	0	47	13.857 60 .296 60 3.877 59
12			-3.884			47	-13.099	55	0	47	-4.544	55	-22 175 59 -1.219 59 -1.876 60
13	P150		2.948	55	.191	55	0	47	.355	58	3.943	55	6.874 61 .344 61 .174 60
14		min	0	47		47	-13.062	55	0	47	0	47	-6.9 60 - 345 60 - 166 61
15	P136	100	4.008			47	0	47	.157	58	0	47	9.627 60 .035 61 1.055 59
16	-	min	0	47		7 58	-13.003	55	0	47	-3.778	55	-22.481 59 - 145 59 - 326 60
17	P148	max	3.868	55	.238	55	0	47	.4	45	4.491	55	5.343 61 .495 61 .169 61
18		min	0	47	0	47	-12.982	55	0	47	0	47	-5.363 60 - 495 60 - 16 60
19	P200	max	0	47	0	47	0	47	.159	58	3.72	55	
20			-3.93			58	-12.962	55	0	47	0	47	9.682 61 .109 61 .103 61 -9.732 60 - 109 60 - 099 60
21	P138	max	3.872	55	0	47	0	47	.176	45	0	47	11.505 60 .054 60 2.021 59
22		min	0	47	074	1 58	-12.927	55	0	47	-4.196	55	27.768 59 - 348 59 - 554 60
23	P198		0	47	0	47	0	47	.176	45	4.143	55	10 100 01 101 01 101
24	Mary 1	min	-3.79	55	074	1 58	-12.809	55	0	47	0	47	40.000
25	P85	max	0	47			0	47	.302	58	0	47	10.22560 - 164 60 - 43 60
26		min	-2.7	55		47	-12.556	55	0	47	-3.857	55	10.108 60 .112 61 1.986 59
27	P151	max					0	47	.311	58	3.791	55	7.413.61 202 64 202 60
28	March 1	min	0	47	0	47	-12.544	55	0	47	0	THE REAL PROPERTY.	7.412 61 .292 61 .288 60
29	P135	max	4.071		0	47	0	47	.14	58	0	47	-7.439 60 - 292 60 - 279 61
30	355	min	0	47	06	58	-12.49	55	0	47	-3.657	47	8.892 60 .05 61 .804 59
31	P201	max	0	47	0	47	0	47	.143	58		55	-20.692 59 - 097 59 - 303 60
32			-3.993				-12.477	55	0	47	3.595	55	9.699 61 .091 61 0 45
33		max	0	47	.201		0	47	.305	_	0	47	-9.757 60092 60 0 45
34		min	-4.501		0	47	-12.29	55	0	58	0	47	15.295 60 .634 60 5.001 59
35	P139	max	3.778	55	0	47	0	47	.193	47	-4.892		-22.304.59 -1.773 59 -2.444 60
36		min		47		45	-12.149	55	0	45	0	47	12.94 60 .171 60 2.918 59
37	P147	_					0	47	.306	47	-4.418		31.839 59 - 502 59 - 886 60
38		min		47	0	47	-12.125			58	4.842	55	4.132 61 .597 61 .403 61
39		max	0	47	0	47	0	55 47	102	47	0	47	-4.149 60597 60394 60
40			-3.693			45	-11.982	55	.193	45	4.367	55	10.85 61 .167 61 .686 61
41	P152	max	2 466	55	169	55	0		0	47	0	47	-10.88 60 - 167 60 - 683 60
42		min			0		-11.779	47	.261	58	3.71	55	
43	P84	www.company.com			.167			55	063	55	0	47	-7.907 60 - 254 60 - 364 61
44			-2.512	55	0	47	-11.77	47	.253	58	0	47	9.082 60 .149 61 1.637 59
45	P202				.004			55	072	55	-3.781	55	-18.579.59 - 299 59 -1.14 60
46			4.069	55	062	50	14 720	47	.125	58	3.526	55	9.829 61 .08 61 .061 60
47	D124	may	1.147	55	000	20	-11.736	55	0	47	0	47	-9.894 60 - 08 60 - 056 61
48	P134	min					0	47	.121	58	0		8.198 60 .057 61 .631 59
	-	-			052		-11.729	55	0	47	-3.592	55	-19.25 59 - 068 59 - 303 60
49	P391	-		47			0	47	.419	45	4.415	55	17.713 61 .771 61 3.826 61
50		High!	3.454	2/	- 228	45	-11.305	57	0	47	0	47	-21.483 59 -1.195 59 -3.812 59

: SMG ENGINEERS : BS : 18-183B

EQUIPMENT STORAGE BUILDING

Sept 28, 2018 6:41 PM Checked By:_____

4	Plate Qx [k] LC Qy [k] LC	Mx [k-ft]	LC	My (k-ft)	LC	Mxy [k-ft]	LC Fx [k] LC Fy [k] LC Fxy [k] L
1	P163 max 1.641 58 2.804 5		55	2.208	55	2.753	55 11.815 61 1.309 55 1.238 5
2	min -2.205 55 - 764 5	-5.392	58	778	58	0	47 -11.968 60 -1.411 58 -1.071 5
3	P164 max 5.642 55 2.807 5	5 17.153	55	2.195	55	1.475	55 12.13 61 1.308 55 .591 5
4	min - 988 58 - 764 5	-5.301	58	779	58	0	47 -12.285 60 -1.409 58 - 57 5
5	P73 max 2.061 55 2.804 5	5 17.101	55	2.186	55	0	47 .419 60 1.309 55 1.527 6
6	min -1.786 58763 58	-5.506	58	8	58	-2.904	55 -12 793 59 -1 418 58 -1 628 5
7	P52 max .449 58 3.044 59		55	2.172	55	.224	
8	min -4.679 5532 56		58	- 382	58	-414	59 11.177 61 1.422 55 .26 6 56 -11.313 60 - 798 58 - 635 6
9	P72 max .829 58 2.807 59		55	2.171	55	0	
10	min -5.797 55 - 762 58	-5.457	58	803	58		
11	P53 max 3.826 55 3.042 55	16.921	55	2.17	55	-1.638	55 -12.455 59 -1.415 58 -1.084 6
12	min - 958 58 - 321 58	3 -2.735	58	386		0	47 10.925 61 1.42 55 1.222 5
13	P102 max 1.006 58 .43 58		55		58	-1.196	55 -11.133 60 - 795 58 - 942 5
14	min -4.085 55 -2.729 55			2.06	55	0	47 13.548 61 .218 58 .368 5
15	P103 max 5.143 55 .431 58		58	3	58	824	55 -13.004 60 - 386 55 - 768 5
16	min - 422 58 -2.728 55	The state of the s	55	2.059	55	0	47 13.249 61 .224 58 .945 5
17			58	301	58	432	56 -12.776 60 - 389 55 - 607 5
18	P213 max .893 58 .852 58 min -6.257 55 -2.564 55		55	1.979	55	1.718	55 14.193 61 .384 58 .967 5
19	P214 may 2 414 EE 052 50		58	63	58	0	47 -13.65760 - 353 55 - 867 5
20	P214 max 2.414 55 .852 58	The second secon	55	1.975	55	2.208	55 14.536 61 .385 58 .699 5
21	min -1.912 58 -2.562 55	-5.307	58	631	58	0	47 -14.004 60 - 354 55 - 733 5
	P123 max 6.371 55 .856 58		55	1.971	55	0	47 .46 61 .382 58 .962 5
22	min - 777 58 -2.56 55	-5.516	58	638	58	-1.856	55 -12.291 59 - 353 55 -1.101 5
23	P122 max 2.034 58 .856 58		55	1.966	55	0	47 1.226 61 .383 58 .595 5
24	min -2.293 55 -2.557 55		58	- 639	58	-2.357	55 -11.972 59 - 353 55 - 604 5
25	P184 max 4.3 55 2.67 55		55	1.784	55	.689	56 15.094 61 1.44 55 .645 5
26	min - 835 58 - 7 58	-5.503	58	777	58	0	47 -15.213 60 - 782 58 - 79 5
27	P183 max 1.656 58 2.669 55	14.244	55	1.784	55	1.256	55 15.259 61 1.406 55 .257 5
28	min -3.14 55701 58	-5.46	58	778	58	0	47 -15.449 60 - 811 58 -1.179 5
29	P234 max 3.342 55 .81 58	14.318	55	1.759	55	.955	55 17.878 61 .246 58 1.058 5
30	min -1.763 58 -2.356 55	-5.51	58	606	58	0	4 100 4 100 4 10 10 10 10 10 10 10 10 10 10 10 10 10
31	P233 max .919 58 .81 58		55	1.759	55	.607	
32	min -4.654 55 -2.356 55		58	607	58	0	
33	P416 max .201 56 0 47		57	1.608	57	0	
34	min -1.186 57 -2 128 57	0	47	0	47	-2.568	100 200 100 1.00 10
35	P417 max 4.62 57 0 47		57	1.594	57	0	0.00
36	min 0 47 -2.131 57		47	0	47	-1.614	47 11.252 60 2.3 58 .296 60
37	P462 max 0 47 3.389 55		55	1.589	55		57 -11.58261 - 708 55 -1.012 56
38	min -1.605 55 - 112 58	0	47	-4.926		.74	58 .239 57 8.66 60 .859 58
39	P356 max 2.799 57 .35 56		57		58	777	55 - 208 56 -8 671 61 - 78 59
40	min - 664 56 -2.328 57		56	1.566	57	.942	57 10.704 60 1.924 58 .838 59
41	P355 max .806 56 .35 56	12.105		564	56	18	56 -10 987 61 - 795 55 -1.613 58
42	min -3.587 57 -2.328 57		57	1.559	57	.118	59 10.996 60 1.925 58 .844 58
43	P436 max .596 56 .35 56		56	564	56	059	60 -11.28 61 - 798 55 - 211 60
44	min -2.865 57 -2.328 57		57	1.556	57	.252	56 14.932 60 1.923 58 1.189 5
45	P437 max 3.527 57 .35 56		56	575	56	872	57 -15.232 61 - 797 55 - 502 55
	min 900 50 3300 50		57	1.551	57	.128	59 14.921 60 1.924 58 .532 55
46	min869 56 -2.329 57		56	574	56	039	61 -15.22161 - 796 55 -1.267 58
47	P306 max 3.858 57 2.04 57		57	1.533	57	.219	59 13.106 60 .223 55 .574 55
48	min843 56495 56		56	382	56	01	56 -12.72261525 58 -1.286 58
49	P305 max .778 56 2.039 57		57	1.531	57	.672	57 13.441 60 .218 55 1.032 58
50	min -3.045 57 - 495 56	-3.793	56	382	56	102	56 -13.05861 - 524 58 - 397 55

Company Designer Job Number

: SMG ENGINEERS : BS

18-183B EQUIPMENT STORAGE BUILDING Sept 28, 2018 6:41 PM Checked By:____

4	Plate	La ci	Qx [k	14	C	Qy [k]	LC	Mx [k-ft]	LC	My [k-ft]	LC	Moxy [k-ft]	LC	Fx [k] LC Fy [k] LC Fxy [k] LC
1	P39			4	7	2.334	-	0	47	0	47	0	47	3.357 60 21.087 60 7.993 6
2			-2.025			0	47	-2.021	57	-13.101	55	-4.951	57	-3.36 61-21.11261 -8.001 60
3	P481					2.197	57	0	47	0	47	4.741	45	3.146 60 12.032 60 6.168 60
4		min	0	4	-	0	47	-1.913	57	-12.965	55	0	47	-3.148 61-12.01961 -6.152 6
5	P35	max	0	4	7	2.066	58	.569	55	0	47	0	47	1.415 60 21.199 60 3.968 6
6		min	193			0	47	0	47	-12.8	55	-2.564	58	-1.414 61-21.21161 -3.98 60
7	P37	max	0	4	7	2.438	57	.582	55	0	47	0	47	2.031 60 21.811 60 5.545 61
8		min	- 349			0	47	0	47	-12.683	55	-2.839	57	-2.03 61-21.82861 -5.556 60
9	P477	max	.194	5	5	1.879	58	.587	55	0	47	2.39	60	1.246 60 14.896 60 4.036 60
10		min	0	4		0	47	0	47	-12.643	55	0	47	-1.243 61-14.882 61 -4.024 61
11	P36	max	.106	5	5	0	47	.295	55	0	47	0	47	.396 60 23.845 60 1.914 6
12		min	0	4	7	-2.496	57	0	47	-12.636	55	-2.339	58	- 395 61 -23 83 61 -1 922 60
13	P38	max	0	4		0	47	.005	61	0	47	0	47	.596 59 27.966 60 2.825 61
14	1000	min	178			-2.466		06	58	-12.57	55	-2.718	57	35 61-27.93861 -2.835 60
15	P479	max	.355	5	5	2.332	45	.595	55	0	47	2.738	45	1.695 60 14.337 60 5.132 60
16	4-	min	0	4	7	0	47	0	47	-12.551	55	0	47	-1.693 61-14.32261 -5.118 61
17	P476	max	0	4	بيهدت	0	47	.301	55	0	47	2.189	60	361 60 22.548 60 2.277 60
18		min	109	5	5	-2.352	60	0	47	-12.474	55	0	47	36 61-22 527 61 -2.27 61
19	P447	max	2.023			0	47	0	47	0	47	0	47	.567 60 2.232 60 .967 60
20		min	0	4	7	-2.653	55	-2.514	55	-12.456	57	-6.18	55	- 582 61 -2 232 61 - 966 61
21	P478	max	.17	5	5	0	47	.011	59	0	47	2.612	45	516 60 26.945 60 3 182 60
22	100	min	0	4	7	2.326	60	- 045	58	-12.429	55	0	47	- 516 61-26.913 61 -3.174 61
23	P5	max	0	4		0	47	0	47	0	47	5.926	55	2.505 59 .745 58 .193 61
24	TO STATE	min	-1.962	5	5	2.716	55	-2.438	55	-12.368	57	0	47	-2.24 61 -1.377 59 - 198 60
25	P33	max	0	4	7	1.833	58	.657	55	0	47	0	47	.913 60 20.026 60 3.012 61
26	1000	min	- 232	5	5		47	0	47	-12.159	55	-2.322	58	- 911 61-20.03761 -3.024 60
27	P475	max	.232	5	5	1.636	58	.676	55	0	47	2.098	58	.838 60 14.543 60 3.281 60
28		min	0	4		0	47	0	47	-11.973	55	0	47	- 836 61-14.53161 -3.271 61
29	P34	max	.125	55	5	0	47	.271	55	0	47	0	47	.242 60 20.978 60 1.256 61
30		min	0			2.495	57	0	47	-11.922	55	-2.146	58	241 61 -20 974 61 -1.262 60
31	P9	max	0	4		0	47	.526	45	0	47	3.319	55	.699 59 5.846 60 .957 59
32	TO SERVICE	min	181	59	9.	2.406	55	0	47	-11.907	57	0	47	531 61 -5.857 61385 61
33	P7	max	0	4		0	47	.518	57	0	47	3.642	55	.799 59 3.588 60 1.113 59
34		min	31	5	7 -	2.964	55	0	47	-11.817	57	0	47	649 61 -3.593 61622 61
35	P10	max	.098	45	513	3.385	55	.28	45	0	47	3.055	55	.203 59 14.201 59 1.068 59
36		min	0	4			47	0	47	-11.76	57	0	47	138 61 -13 61784 61
37	P474	max	0	47	7		47	.278	55	0	47	1.94	58	.245 60 19.259 60 1.639 60
38		min	128			2.316		0	47	-11.733	55	0	47	- 244 61 19.248 61 -1.634 61
39	P8	max	0	47		3.268		.063	58	0	47	3.491	55	.588 59 15.869 59 1.555 59
40		min	- 204		5		47	079	55	-11.732	57	0	47	408 61 14 08864 1 249 04
41	P449					0		.515	45	0	47	0	47	496 61-14.08661 -1.248 61
42	-	min				2.973		0	47	-11.584	57	-3.824	55	.086 60 2.701 60 1.01 60
43	P448	-				3.596		.051	58	0	47	0	47	- 222 59 -2.703 61 -1.012 61
44		min				0		09	55	-11.505	57			.052 60 1.62 58 .451 60
45	P451		.173				47	.526	45	0	47	-3.685	55	051 61 -1.267 61455 61
46	1	min				2.479		0	47	-11.479	57	3 524	47	.066 58 3.253 60 1.117 60
47	P11		0	47		_	47	.628	45	-11.479		-3.521	55	- 198 59 -3.254 61 -1.122 61
48		-	- 218					0	47	-11.35	47	2.885	55	.579 59 7.466 60 .708 59
49	P450					3.684		.28	45		57	0	47	- 415 61 -7.48 61 - 078 61
50			000	AF	-	0	47	0	45	-11.346	57	-3.253	47 55	0 45 2.2 60 464 60 062 59 -2.187 61468 61

: SMG ENGINEERS : BS

: 18-183B

: EQUIPMENT STORAGE BUILDING

Sept 28, 2018 6:41 PM Checked By:____

-	Plate		Qx [k]	LC	Qy [k		Mx [k-ft]	LC	My [k-ft]	LC	Mxy [k-ft]	LG.	Fx [k] LC Fy [k] LC Fxy [k] LC
1	P394	max		47		47	0	47	0	47 (6.942	55	14.702 61 3.304 61 7.086 61
2		min			-1.654		-10.165	55	-3.12	55	0	47	-17.279 59 -4.433 59 -7.942 59
3	P145	max	4.664	55	1.37	55	0	47	0	47	6.703	55	
4		min	0	47	0	47	-9.372	55	-3.199	55	0	47	.675 58 2 166 61 .166 60 581 55 -2.171 60156 61
5	P5	max	0	47	0	47	0	47	0	47	5.926	55	
6	1	min	-1.962	55	-2.716		-2.438	55	-12.368	57	0	47	2.505 59 .745 58 .193 61
7	P395		0	47	0	47	0	47	0	47	5.55	55	-2.24 61 -1.377 59198 60
8		min	-3.334	57	-3.378	57	-4.732	55	-5.952	55	0	47	8.842 61 5.547 61 5.277 61
9	P146			55		58	0	47	.271	58	5.024	-	-10.115 59 -7.312 59 -6.341 59
10		min	0	47	0	47	-10.551	55	0	47	0	55	2.346 61 .697 61 .591 61
11	P393	max	0	47	0	47	0	47	.274	59	4.955	55	-2.36 60697 60 - 583 60
12		min	-4.558	57		55	-10.097	55	0	47	0	47	17.393 61 1.766 61 5.88 61
13	P147	max	4.489	55	.203	55	0	47	.306	58	4.842	55	20.583 59 -2.344 59 -6.474 59
14		min	0	47		47	-12.125	55	0	47	0	47	4.132 61 .597 61 .403 61
15	P144	max	3.635	55	3.612		0	47	0	47	4.819	55	-4.149 60 - 597 60 - 394 60
16		min	0	47	0	47	-3.757	57	-6.03	55	0	47	5.264 60 6.99 60 4.563 60
17	P392	max	0	47	0	47	0	47	.317	59	4.762		-5.264 61 -6.976 61 -4.551 61
18		min.	-4.055			59	-10.981	57	0	47	0	55	18.082 61 1.242 61 4.661 61
19	P481	max	2.001	55	2 197	57	0	47	0	47	4.741	47	-21.61 59 -1.738 59 -4.913 59
20		min	0	47	0	47	-1.913	57	-12.965	55	0	45	3.146 60 12.032 60 6.168 60
21	P343	max			0	47	0	47	0	47		47	-3.148 61-12.01961 -6.152 61
22		min	0		214		-10.144	55	- 191	57	4.647	55	32.043 61 .537 61 3.64 61
23	P196	max	0	47	.186		0	47	- 191		0	47	-36.5 59717 59 -4.106 59
24			-3.526		0	47	-10.624	55	208	47	4.615	55	11.906 61 .469 61 1.068 61
25	P148						0	47		55	0	47	-11.93 6047 60 -1.065 60
26		min	0	47	0	47	-12.982	55	.4	45	4.491	55	5.343 61 .495 61 .169 61
27	P391	_	0	47	0	47	0	47	.419	47	0	47	-5.363 60495 6016 60
28	1		-3.454				-11.305	57	0	45	4.415	55	17.713 61 .771 61 3.826 61
29	P344		3.241		0	47	0	47	0	47	0	47	-21.483 59 -1.195 59 -3.812 59
30		min	0	47	983		-8.12	55	994	47	4.377	55	38.749 61 1.371 61 5.436 61
31	P197	_	0	47	0	47	0	47	.193	55	0	47	-44 233 59 -1 807 59 -6 34 59
32			-3.693			45	-11.982	55	0	45	4.367	55	10.85 61 .167 61 .686 61
33	P342				.062	59	0	47		47	0	47	-10.88 60 - 167 60 - 683 60
34		min	0	47	0	47	-10.848	57	.199	45	4.345	55	27.134 61 .357 61 2.603 61
35	P195	The same of	0	47	.981	55	0	47	0	47	0		-30.954 59 - 492 59 -2.868 59
36			-2.677		0	47	-7.851	55	0	47	4.253	55	13.401 61 .713 61 2.348 61
37	P149		3.349			55	0	47	-1.019	55	0		-13.419 60 713 60 -2 347 60
38	-	min		47	0	47	-13.246		.384	58	4.176	55	6.213 61 .415 61 .045 57
39		max	0	47	0	47		55	0	47	0	47	-6.236 60415 60049 56
40			-3.79				12.000	47	.176	45	4.143	55	10.189 61 .164 61 .434 61
41	P341	may	4 222	55	077	45	-12.809	55	0	47	0	47	-10.225 60 - 164 60 - 43 60
42				47			0	47	.183	45	4.108	55	23.474 61 .22 61 1.883 61
43	P390			47		47	-11.13	57	0	47	0	47	26.951 59 - 341 59 -1.988 59
44	-	-				47	0	47	.398	45	4.078	55	16.799 61 ,441 61 3.239 61
45	P150	may	-2.93	55			-11.07	57	0	47	0	47	-20.795 59 - 814 59 -3 226 60
46		min				55	0	47	.355	58	3.943		6.874 61 .344 61 .174 60
47	P199			47		47	-13.062	55	0	47	0		-6.9 60 - 345 60 - 166 61
48				47 55	0	47	0	47	.175	45	3.907	55	9.825 61 .132 61 .24 61
49	D240	may	-3.867	55	07	58	-13.108	55	0	47	0	47	-9.868 60 - 132 60 - 236 60
50	P340					-	0	47	.19	45	3.845	55	20.636 61 .114 61 1.429 61
วบ		min	0	4/	0	47	-10.922	57	0	47	0	47	-23 993 59 - 218 59 -1 423 60

SMG ENGINEERS BS

18-183B

EQUIPMENT STORAGE BUILDING

Sept 28, 2018 6:42 PM Checked By:____

_	Plate	_	Qx [k	LC	Qy [k	LC	Mx [k-ft]	LC	My [k-ft]	LC	Mxy [k-ft]	LC	Fx [k] LC Fy [k] LC Fxy [k] LC
1	P398	max	4.17			47	0	47	0	47	0	47	1.346 60 .839 60 .987 6
2		min	0	47	-1.692	2 55	-10.121	55	-3.245	550	-7.271		-1.83 59833 61988 6
3	P91	max		47	1.43	55	0	47	0	47	0	47	17.707 60 1.261 60 8.109 5
4		min				47	-9.691	55	-3.237	55	-6.818	55	17.901 59 -4.505 59 -5.882 6
5	P447	max	2.023	3 55	0	47	0	47	0	47	0.010	47	
6		min	0	47	-2.653	3 55	-2.514	55	-12.456	57	-6.18		
7	P397	max	3.197	7 57	0	47	0	47	0	47	0.10	47	- 582 61 -2.232 61 - 966 6
8		min	0	47	-3.239		-4.883	55	-6.188	55	-5.835	The second liverage and the second	.386 60 1.642 58 .484 5
9	P399	max	4.672			47	0	47	.267	45	0	47	-1.71 59 -1.112 61 - 263 5
10		min	0	47	127		-9.79	55	0	47	-5.233	55	1.687 60 .232 60 .996 6
11	P90	max	0	47	146		0	47	.279	58	0	47	1.915 59232 61 -1 6
12		min	-5.046	55	0	47	-10.772	55	0	47	-5.074	55	6.679 60 1.065 60 6.593 5
13	P400					47	0	47	.302	45	0	47	21 259 59 -2 391 59 -3 529 6
14		min	0	COLOR	185		-10.523	57	0	47	-5.069		2.092 60 .19 60 1.097 60
15	P92	max	0		3.661		0	47	0	47		55 -	2.172 61 - 19 61 -1.101 6
16		min	-3.679	55	0	47	-3.954	57	-6.104	55	0	47 EE	7.637 60 17.592 60 12.109 6
17	P39	max	0	_	2.334		0	47	0	47	-4.971		17.68961-17.62261-12.08960
18	0.00	min	-2.025			47	-2 021	57	-13.101	_	0		3.357 60 21.087 60 7.993 6
19	P249	max	0	47	0	47	0	47	0	55	-4.951		3.36 61-21.11261 -8.001 60
20	1	min	-4.51	-			-9.849	55	21	47	0	47	.328 60 .093 60 .476 60
21	P89	max	0	47	.201	55	0	47		57	-4.926	55 -	2.072 59094 61478 61
22			-4.501	55	0	47	-12.29	55	.305	58	0	47 1	5.295 60 .634 60 5.001 59
23	P401				0	47	0	47	0	47	-4.892	55 -	22 304 59 -1 773 59 -2 444 60
24	1.70	min	0		228		-10.77	57	.419	45	0	47 2	2.593 60 .176 60 1.152 60
25	P140			55	193		0		0	47	-4.749	55 -	2.674 61 - 177 61 -1.156 61
26		min	0	47	0	47	-10.844	55	0	47	0		5.076 60 0 45 4.182 59
27	P250	-	0	47	.061	45	0	47	21	55	-4.672		37.482 5973 59 -1.344 60
28	1 200	min	-4.581	55	0	47	-10.405	57	.199	45	0		1.14 60 .043 60 .47 60
29	P248		0	47	0	47	0		0	47	-4.637	55 -	2 148 59 - 043 61 - 472 61
30	. 2.40	-	-3.584			55		47	0	47	0	47	312 61 .319 58 .24 60
31	P88		0	47	.237	55	-8.01	55	-1.047	55	-4.617	55 -	1.997 59 - 27 61 - 245 61
32			-3.884		0	47	12,000	47	.4	45	0	47 1	3.857 60 .296 60 3.877 59
33	P402			57	0	47	-13.099	55	0	47	-4.544	55 -2	2.175 59 -1.219 59 -1.876 60
34	1 402	min	0	47	209		10.512	47	.398	45	0	47 3	.163 60 .169 60 1.18 60
35	P251	man de	0	47	.077	45	-10.513	57	0	47	-4.432		3.244 61 - 17 61 -1.185 61
36	1		-4.567		0	47	10.005	47	.183	45	0		.979 60 .053 60 .462 60
37	P139						-10,605	57	0	47	-4.419		2.231 59053 61464 61
38	F 139	min	0	47	06	47	0	47	.193	45	0		2.94 60 .171 60 2.918 59
39	P141	ADDRESS:				45	-12.149	55	0	47	-4.418	55 -3	1.83959 - 502 59 - 886 60
40		min	2.679			55	0	47	0	47	0	47 1	8.465 60 .678 60 6.446 59
-			0	47		47	-8.077	55	-1.029	55	-4.318	55 4	5.357 59 -1.824 59 -1.551 60
41	P87	min	2 272	47	.212		0	47	.378	58	0	47 1	2.487 60 .107 58 3.051 59
	D420	222	-3.372	22		47	-13.32	55	0	47	-4.233	55 -2	1.475 59829 59 -1.524 60
43	P138					47	0	47	.176	45	0	47 1	1.505 60 .054 60 2.021 59
44					074		-12,927	55	0	47	-4.196	55 -2	7.768 59 - 348 59 - 554 60
45	P252		0	47	.069		0	47	.19	45	0	47 2	.829 60 .053 60 .459 60
46			4.548			47	-10.373	57	0	47	-4.171	55 -	2 936 61 - 053 61 - 461 61
47	P403					47	0	47	.335	45	0	47 3	.776 60 .162 60 1.194 60
48		min			- 193		-9.862	57	0	47	-4.166	55 <	3.856 61 - 163 61 -1.199 61
49	P86		0	47		55	0	47	.348	58	0	47 1	1.236 60 .044 58 2.442 59
50		min	-2.978	55	0	47	-13.102	55	0	47	-4.003	55 -2	0.538 59 - 571 59 -1.317 60

www.hilti.us

Profis Anchor 2.7.6

Company: Specifier: Address: Phone I Fax:

E-Mail;

Page: Project:

Sub-Project | Pos. No.:

Date:

9/28/2018

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 + HAS-E 1

Effective embedment depth: $h_{ef,act} = 10.000 \text{ in. } (h_{ef,limit} = - \text{in.})$

Material: 5.8

Evaluation Service Report: ESR-3187

Issued I Valid: 11/1/2016 | 3/1/2018

Proof: Design method ACt 318-14 / Chem Stand-off installation: $e_0 = 0.000$ in. (no stand-off); $t \approx 1.000$ in.

Anchor plate: I_x x I_y x t = 25,000 in. x 14,000 in. x 1,000 in.; (Recommended plate thickness; not calculated

Profile: W shape (AISC); (L x W x T x FT) = 24,100 in, x 12,800 in, x 0,500 in, x 0,750 in. Base material: cracked concrete, 4000, f_0 = 4,000 psi; h = 18,000 in., Temp. short/long; 32/32 °F

Installation: hammer drifted hole, Installation condition: Dry

Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present

edge reinforcement; none or < No. 4 bar

www.hiiti.us:

Profis Anchor 2.7.6

Company: Specifier; Address: Phone I Fax:

E-Mail:

Page: Project:

Sub-Project I Pos. No.: Date:

9/28/2018

2 Load case/Resulting anchor forces

Load case: Design loads.

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

. 44.0 (0.00	(or margin, -consisting	,		
Anchor	Tension force	Shear force	Shear force x	Shear force v
1	4,833	1,233	1,167	-400
2	4,833	1,233	1,167	~400
3.	4,033	1,233	1,167	-400
4	4,833	1,233	1,167	-400
5.	4,833	1,233	1,167	-400
6	4,833	1,233	1,167	-400

max, concrete compressive strain:

~ [%s]

max, concrete compressive stress:

- [psi]

resulting tension force in (x/y)=(0.000/0.000): 29,000 resulting compression force in (x/y)=(0.000/0.000): 0 [ib] 29,000 [Б]

3 Tension load

	Load N _{ua} [lb]	Capacity & Na [ib]	Utilization $\beta_N = N_{va}/\phi N_{ra}$	Status
Steel Strength*	4,833	28,541	17	OK
Bond Strength**	29,000	43,943	66	ОК
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	29,000	34,532	84	OK

^{*} anchor having the highest loading - **anchor group (anchors in tension)

3.1 Steel Strength

= ESR value:

refer to ICC-ES ESR-3187

 $\phi/N_{s,a} \ge N_{c,\alpha}$ ACI 318-14 Table 17,3,1,1

Variables

	Α,	se,N [A	$n^{\frac{2}{2}}$	•		f _{ota} (psi]	
:		0.61				72,500	:	

Calculations

 N_{so} [lb] 43,910

N _{sa} [lb]	∮ steel	φ N _{so} [lb]	N _{ea} fibl
43,910	0.650	28,541	4.833

www.hilti.us

Profis Anchor 2.7.6

Company: Specifier:

E-Mail:

Address: Phone | Fax:

Page: Project:

Sub-Project I Pos. No.::

Date:

9/28/2018

3.2 Bond Strength

/ Au. X	
$N_{ag} = \left(\frac{A_{Na}}{A_{Na0}}\right) \psi eci, No \Psi eci, No \Psi eci, No \Psi eci, No \Psi co, No \Psi co, No \Psi co, No W$	ACI 318-14 Eq. (17.4.5.1.b)
 ψ N_{ag} ≥ N_{ug} A_{ng} ≃ see ACI 318-14. Section 17.4.5.1. Sig. D. 47.4.5.1 (Ex.) 	ACI 318-14 Table 17.3.1.1

$$A_{Na} \approx \text{see ACI 318-14, Section 17.4.5.1, Fig. R.17.4.5.1(b)}$$

 $A_{Na0} \approx (2 c_{Na})^2$

$$c_{Na} = 10 d_a \sqrt{\frac{t_{uncr}}{1100}}$$

$$\psi_{\text{ec,Na}} = \left(\frac{1}{1 + \frac{e_N}{c_{Na}}}\right) \le 1.0$$

$$v_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{8,\text{tren}}}{c_{\text{Na}}} \right) \le 1.0$$

$$\psi_{c_B,N_B} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{N_B}}{c_{ac}} \right) \le 1.0$$
:
 $N_{oa} = \lambda_a + \epsilon_{k_B} + \epsilon_{k_B} + \delta_a + h_{ee}$

ACI 318-14 E	ig. (17.4.5.1d)
ACI 318-14 E	q. (17.4.5.3)

ACI 318-14 Eq. (17.4.5.1c)

Variables.

τ _{k.c.uncr} [psi]	d _a [in.]	h _{et} (in.)	C _{a,min} [in.]	r _{k e} [psi]
2,327	1.000	10.000	14.000	1,326
e _{=1,N} (in.)	$e_{r2,N}$ [in.]	c _{ac} [in.]	λ_{a}	
0.000	0.000	20.543	1.000	

Calculations

c _{Na} (in.)	A _{tta} (in.²)	A_{Na0} [in. 2]	W ed.Na
14.478	1,374.52	838.50	0.990
₩ act Na	₹/ ec2.Na	Ψ op,Na	N _{ba} [lb]
1.000	1.000	1 000	. A1 65A

N _{ag} [ib∮	band $\dot{\phi}$	φ N _{aq} [lb]	N _{ua} [ib]
67,604	0.650	43,943	29,000

www.hilti.us Profis Anchor 2.7.6

Company:
Specifier:
Address:
Phone I Fax:

Page: Project:

Sub-Project I Pos. No.:

Date:

9/28/2018

3.3 Concrete Breakout Strength

/ A _{No.} \	•
$N_{\text{cha}} = \left(\frac{A_{\text{No}}}{A_{\text{No}}}\right) \Psi \in \mathbb{N} \Psi \in \mathbb{N} \Psi \in \mathbb{N} \Psi \in \mathbb{N} \Psi$	ACI 318-14 Eq. (17.4.2.1b)
$\phi \mid N_{cbg} \ge N_{oa}$	ACI 318-14 Table 17.3.1.1
Ave. see ACI 318-14. Section 17 4 2.1. Fig. B 17 4 2 1/63	((a. 0.12 11 data 11 d. 1. 1

$$A_{NCO} = 9 h_{ef}^2$$
 ACI 318-14 Eq. (17.4.2.1c)

$$\Psi = \sqrt{1 + \frac{2 e_N}{3 h_{ef}}} \le 1.0$$
 ACI 318-14 Eq. (17.4.2.4)

$$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{C_{a,\text{min}}}{1.5 h_{\text{el}}} \right) \le 1.0$$
ACI 318-14 Eq. (17.4.2.5b)

$$\psi_{\text{ed,N}} = \text{MAX} \left(\frac{C_{a,\text{min}}}{C_{\text{elc}}}, \frac{1.5 h_{\text{el}}}{C_{\text{elc}}} \right) \le 1.0$$
ACI 318-14 Eq. (17.4.2.7b)

$$N_{o} = R_{o} \lambda_{a} \sqrt{N_{o}} h_{\text{el}}^{1.5}$$
ACI 318-14 Eq. (17.4.2.2a)

Variables

E-Mail:

h _{et} [in.]	e _{ct,N} (in.)	e _{s2.N} [in.]	c _{s,min} [in.]	₩ c.N
10.000	0.000	0.000	14.000	1.000
C _{ac} (in.)	k.	3	f. fosil	
20.543	17	1.000	4,000	

Calculations

A 15 - 34	A 41. 25					
A _{No} [in.`]	A_{Nc0} (m.*)	Ψ ect.N	Ψ ec2.N	€r ed.N	61 · ·	N _E IIb1
1.435.00	900.00	1.000	1 000		S C0.74	(AP Inc)
1,177	500,00	1.000	1,000	0,980	1.000	34.000

N _{obg} (lb)	 \$ concrete		¢	N _{cbg} (lb)	N _{ua} [lb]
53,127	0.650	:		34,532	29,000

www.hilti.us

Company:
Specifier:
Address:

Profis Anchor 2.7.6

Page: Project:

Sub-Project I Pos. No.: Date:

9/28/2018

4 Shear load

Phone | Fax:

E-Mail:

	and the second s			
· · · · · · · · · · · · · · · · · · ·	Load V _{us} [lb]	Capacity & V _n [ib]	Utilization $\rho_V = V_{ua}/\phi V_u$	Status
Steel Strength*	1,233	15,807	8	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)**	7,400	74,378	10	ok
Concrete edge failure in direction x+**	7,400	17,593	43	OΚ
* anchor having the highest loading **anch	nor group (relevant ancho	rs)	1,4	O.C

4.1 Steel Strength

V_{sa}	$= (0.6 A_{\rm se,V} f_{\rm obs})$	re
& Vsee	≥ V	Α

refer to ICC-ES ESR-3187 ACI 318-14 Table 17.3.1.1

Variables

A _{se,V} (in. ²)	f _{ea} [psi]	(0.6 A _{se,V} f _{uta}) [lb]
0.61	72,500	26.345

Calculations

Results

V _{sa} [[b]	φ stent	φ V _{sa} [lb]	V _{ua} [lb]
26,345	0.600	15,807	1,233

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpg.} = R_{cp} \left[\left(\frac{A_{Ns}}{A_{Nsg}} \right) \psi_{eq,N} \psi_{od,N} \psi_{s,N} \psi_{cp,N} N_b \right]$	ACI 318-14 Eq. (17.5.3.1b)
ϕ , $V_{\text{chg}} \ge V_{\text{loc}}$ $A_{N_{\text{c}}}$ see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b):	ACI 318-14 Table 17.3.1.1
$A_{\text{NoR}} = 9 h_{\text{ef}}^2$	ACI 318-14 Eq. (17.4.2.1c)
$W_{acN} = \left(\frac{1}{1 + \frac{2e_N}{3h_{af}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text{ed},N_1} = 0.7 + 0.3 \left(\frac{c_{0,\text{mat}}}{1.5h_{\text{of}}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{co,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
$N_b = k_a \lambda_a \sqrt{l_a} h_{ab}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k _{op}	h _{e!} [in.]	e _{atN} (in.)	e _{c2.N} [in.]	Camin [in.]
2	10.000	0.000	0.000	14.000
Ψсм	c _{ad} [in.]	k,	i. La	f _e [gsi]
1.000	20.543	17.	1.000	4,000

Calculations

A_{N_0} [in. ²]	Assadin.21			· ·		
196, 6	7720 2 - 3	Ψ ec1,94	Ψ ec2,N	Ψ ed.Nt	₩ ce.N	N _o [ib]
1,435.00	900,00	1.000	1,000	0.980	1.000	34,000

V _{spg} { b]	\$ concess	φ V _{cpn} [lb]	V _{ea} (tb)
106,254	0.700	74,378	7,400

 www.hilti.us
 Profis Anchor 2.7.6

 Company:
 Page:
 6

 Specifier:
 Project:

 Address:
 Sub-Project I Pos. No.:
 9/28/2018

 E-Mail:
 Date:
 9/28/2018

4.3 Concrete edge failure in direction x+

$V_{\text{abg}} = \left(\frac{A_{V_{c}}}{A_{V_{c}}}\right) \psi_{c}$	s,V V вя,V V с,V V п,V Ф	pareitos v V _b	ACI 318-14 I	Eq. (17.5.2.1b)
y chy ~ vut				Table 17.3.1.1
$A_{Vc0} = 4.5 c_{a1}^{2}$	14, Section 17.5.2,1	, Fig. R 17.5,2.1(b)	ACI 318-14 I	Еq. (17.5.2.1с)
$ \psi _{\text{et,V}} = \left(\frac{1}{1 + \frac{2e_v}{3c_{af}}}\right)$) ≤ 1.0		ACI 318-14 I	Eq. (17.5.2.5)
$\psi_{\text{ed},V} = 0.7 * 0.3$	$\left \frac{\mathbf{c}_{n2}}{5\mathbf{c}_{n1}}\right \le 1.0$		ACI 318-14 I	Eq. (17.5,2.6b)
$\psi_{b,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge$			ACI 018-14 (Eq. (17.5.2.8)
$V_{fit} = 9 \lambda_{ijk} \sqrt{f_{ji}} c_{aj}^{ij}$	5.		ACI 318-14 (Eq. (17.5.2.2b)
Variables				
c _{at} (in.):	C _{a2} [in.]	e _{cV} [in.]	¥ c.∨	h _a [in.]
14.000	15 500:	0.000	4 000	

	C ₃₁ (m.)	C ₃₂ [in.]	e _{dV} [in.]	₩ c.V	h _a (in.)
	14.000	15.500	0.000	1.000	18.000
				1177	14.00
				•	
	l _e [in.]	λa	d _a [in.]	f_c [psi]	W paradet V
*.	8.000	1.000	1.000	4,000.	1.000
			4 4 5 5	11000	1.000

Calculations:

A _{Ve} [in. ²]		ΨeiV	Ψ ag.v	Ψay	V _b [lb]
747.00	882.00	1.000	0,921	1.080	29,817
Results			•		

V _{ong} [lh]	φ concrete:	φ V _{chg} [lb]	V _{va} [lb]
25,133	0.700	17,593	7,400

5 Combined tension and shear loads

line	β _V	<u> </u>	Utilization [f _{N,V} [%]	Status
0,840	0.421	5/3	99	. OK
$\beta_{NV} = \beta_N^2 + \beta_N^2 <= 1$				

6 Warnings:

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor, input data and results must be checked for agreement with the existing conditions and for plausibility!
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Installation of Hiti adhesive anchor systems shall be performed by personnel trained to install Hiti adhesive anchors. Reference ACI 318-14, Section 17.8.1.

Fastening meets the design criteria!

www.hiiti.us Profis Anchor 2.7.6 Company: Page:: Specifier: Project: Address: Sub-Project I Pos. No.:: Phone | Fax: Date: 9/28/2018

7 Installation data

Anchor plate, steel: -

E-Mail;

Profile: W shape (AISC); $24.100 \times 12.800 \times 0.500 \times 0.750$ in. Hole diameter in the fixture: $d_i = 1.125$ in.

Plate thickness (input): 1,000 in.

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

Anchor type and diameter: HIT-HY 200 + HAS-E 1 Installation torque: 1,800.003 in.lb Hole diameter in the base material: 1.125 in. Hole depth in the base material: 10,000 in. Minimum thickness of the base material: 12,250 in.

7.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary Hammer Properly sized drill bit	Compressed air with required accessories to blow from the bottom of the hote Proper diameter wire brush	Dispenser including cassette and mixer Torque wrench

Coordinates Anchor in.

	Anchor	X	У	C.x	C+x	C.y	C+4	Anchor	x	v	C,x	C.,	C.v	C.,
1	1 2 3	-6.000 0.000 6.000	-2.500 -2.500 -2.500	.]	26.000 20.000 14.000	15.500 15.500 15.500		4 5 6	-6.000 0.000 6.000	2.500 2.500 2.500	-	26.000 20.000 14.000	20.500 20.500 20.500	

4.47			-945	
www.hilti.us		***	•	Profis Anchor 2.7.6
Company:			Page:	O
Specifier:			Project:	0
Address:			Sub-Project I Pos. No.:	
Phone Fax:	f:		Date:	9/28/2018
E.Made	ļ.		Satu.	9/40/2010

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hitti products and are based on the principles, formulas and security regulations in accordance with Hitti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hitti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

www.hilti.us Profis Anchor 2.7,6

Company:
Specifler:
Address:
Phone I Fax:

Page:: Project:

Sub-Project I Pos. No.:

Date:

9/28/2018

Specifier's comments:

1 Input data

E-Mail:

Anchor type and diameter: HIT-HY 200 + HAS-E 1

Effective embedment depth: $h_{ef,act} = 10,000 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: 5.8:

Evaluation Service Report: ESR-3187

Issued I Valid: 11/1/2016 [3/1/2018

Proof: Design method ACI 318-11 / Chem Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 1.000 in.

Anchor plate: $I_x \times I_y \times t = 20,000 \text{ in, } x = 9,000 \text{ in, } x = 1,000 \text{ in.;}$ (Recommended plate thickness: not calculated

Profile: W shape (AISC); (L x W x T x FT) = 11,900 in, x 8,010 in, x 0,295 in, x 0,515 in. Base material: cracked concrete, 4000, f_c ' = 4,000 psi; h = 18,000 in., Temp. short/long: 32/32 °F

Installation: hammer drifted hole, Installation condition: Dry

Reinforcement: lension: condition B, shear: condition B; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading (lb, in.lb)

www.hilti.us Profis Anchor 2.7.6

Company:
Specifier;
Address;
Phone I Fax;

Page: Project:

2

Tension

 \bigcirc_3

9/28/2018

Address: Sub-Project I Pos. No.:
Phone I Fax: Date:

2 Load case/Resulting anchor forces

Load case; Design loads

Anchor reactions [ib]

Tension force: (+Tension, -Compression)

	. 1			the state of the s	
Д	nchor	Tension force	Shear force	Shear force x	Shear force y
	1:	250	1,750	1,750	0
	2 :	250	1,750	1,750	Q
	3	250	1,750	1,750	ά·
	4:	250	1,750	1,750	α

3 Tension load

		Load N _{ua} [lb]	Capacity 🌢 N. [Ib]	Utilization $\beta_N = N_{\nu \sigma}/\phi N_{\nu}$	Status
Steel Strength*		250	28,541	1	QK
Bond Strength**		1,000.	39,600	3/	ок
Sustained Tension Loa	d Bond Strength*	N/A	N/A	N/A	N/A
Concesto Frankovi Cir.		4 800	24.422	. \	
Concrete Breakout Stre anchor having the high		1,000 or group (anchors in tens	31,163 ion)	4	OK
		1,000 If group (anchors in tens	•	4	OΚ

 A _{se,N} (in.*)		f _{eta} [psi]	
 0.61		:	72,500

Calculations

N_{sa} (ib) 43,910

Results

N _{sa} (lb)	∮ stesi		N _{ua} [lb]
43,910	0.650	28,541	250

DEMAND OK BY INSPECTION FOR INCREASED SEISMIC PER AISC 341

www.hilti.us

Profis Anchor 2.7.6

Company: Specifier: Address: Phone | Fax:

E-Mail:

Page: Project:

Sub-Project I Pos. No.:

Date:

9/28/2018

3.2 Bond Strength

$$\begin{array}{lll} N_{ag} &= \left(\frac{A_{Na}}{A_{4a0}}\right) \forall \ \ \text{sc1,Na} \ \forall \ \ \text{sc2,Na} \ \forall \ \ \text{sp,Na} \ \forall \ \text{sp,Na} \ N_{ba} \\ & \varphi \ N_{ag} &\geq N_{La} \\ A_{Na} &= \ \text{see} \ \text{ACI 318-11, Part D.5.5.1, Fig. RD.5.5.1(b)} \\ A_{Na0} &= \left(2 \ C_{No}\right)^2 \\ & A_{CI 318-11, CD-20} \end{array}$$

$$A_{\text{NaO}} = (2 c_{\text{No}})^2$$
 $c_{\text{Na}} = 10 d_a \sqrt{\frac{c_{\text{unor}}}{1100}}$

$$\psi_{\text{ec},ths} = \left(\frac{1}{1 + \frac{e_N}{c_{Na}}}\right) \le 1.0$$

$$\begin{split} & \frac{c_{Na}}{\psi_{ed,lm}} = 0.7 + 0.3 \left(\frac{c_{a,min}}{c_{Na}} \right) \leq 1.0 \\ & \psi_{cp,Na} = \text{MAX} \left(\frac{c_{a,min}}{c_{an}}, \frac{c_{Na}}{c_{ac}} \right) \leq 1.0 \\ & N_{ba} = \lambda_{a} \cdot \tau_{k,c} \cdot \pi \cdot d_{a} \cdot h_{et} \end{split}$$

$$\Psi_{CD,Na} = MAX \left(\frac{c_{a,min}}{c_{an}}, \frac{c_{Na}}{c_{an}} \right) \le 1.0$$

$$N_{DA} = \lambda_{AB} \cdot T_{BA} \cdot T_{AB} \cdot T_{$$

Variables

τ κις,υρςι [psi]	d _a (in.)	h _{of} {in.}	c _{a,min} (in.)	r k.c (psi)
2,327	1.000/	10.000	14.000	1,326
e _{ct.N} [in.]	e _{can} (in)	c _{ac} (in.)	λa	
0.000	0.000	20.543	1 000	

Cafculations

c _{Na} [in.]	A _{Na} [in. ²]	A _{Nas} [in. ²]	¹⁾ rd.Na
14.478	1,238,69	838.50	0.990
Ÿ qc1.Na	₩ ec2Na	Ψ ср,ма	N _{ba} [lb]
1.000	1.000	1.000	41.654

N _{ay} [lb]	·	ф N ад [lb]	N _{ua} [ib]
60,924	0,650	39,600	1,000

www.hilti.us Profis Anchor 2,7.6

Company: Specifier: Address: Phone I Fax: E-Mail:

Page: Project:

Sub-Project I Pos. No.:

Date:

9/28/2018

3.3 Concrete Breakout Strength

$$N_{cby} = \left(\frac{A_{Nc}}{A_{Ncx}}\right) \psi_{cc,N} \psi_{cd,N} \psi_{c,N} \psi_{cp,N} N_{2c}$$
 $\delta N_{cc} \ge N_{cc}$

ACI 318-11 Eq. (D-4)

ACI 318-11 Table D.4.1.1

 ϕ N_{cbg} ≥ N_{or} A_{Ncc} see ACI 318-11, Part D.5.2.1, Fig. RD.5.2.1(b) A_{Ncc} = 9 h_{el}²

ACI 318-11 Eq. (D-5)

ACI 318-11 Eq. (D-8)

ACI 318-11 Eq. (D-10)

 $\begin{array}{ll} \psi_{(ed,n)} &= 0.7 \pm 0.3 \left(\frac{C_{0,min}}{1.5h_{el}} \right) \leq 1.0 \\ \psi_{(ep,N)} &= MAX \left(\frac{C_{0,min}}{C_{0el}}, \frac{1.5h_{el}}{C_{0el}} \right) \leq 1.0 \\ N_{h} &= k_{e} \lambda_{el} \sqrt{k_{el}} \, h_{ef}^{1.5} \end{array}$

ACI 318-11 Eq. (D-12)

ACI 318-11 Eq. (D-6)

Variables

h _{ef} (in.)	e _{ct,N} (in.)	e _{c2.N} [in.]	c _{a,min} (in.)	W 6.14
10.000	0.000	0.000	14.000	1.000
C _{ac} [in.]	k _c	λa	f [psi]	
20.543	17	1.000	4.000	

Calculations.

A _{Nc} (in. ²)	Auen fin. 3	let :				
- INC (1-1-1)		Ψ ect.N	₩ ec2.N	Ψ ad si	⁶ ℓ co.Nt	N _v libi
4.206.00	000.00	4 4 4 4				
1,230,00.	900.00	1.000	1.000	กดดก	1.000	0.1.00.07
						34 000

N _{cbis} [[b]	∳ constete	N _{cbg} [lb]	N_{us} [lb]
47,944	0.650	31,163	1,000

 www.hilti.us
 Profis Anchor 2.7.6

 Company:
 Page:
 5

 Specifier:
 Project:
 4

 Address:
 Sub-Project | Pos. No...
 9/28/2018

 E-Mail:
 Date:
 9/28/2018

4 Shear load

	Load V _{va} [lb]	Capacity & V _n [ib]	Utilization $p_V = V_{p_0}/\phi V_p$	Status
Steel Strength*	1,750	15,807	12	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	NIA
Pryout Strength (Concrete Breakout Strength controls)**	7,000	67,121	11	OK
Concrete edge failure in direction x+**	7,000	21,624	33	ОК
* anchor having the highest loading. ***asch	or group (relevant anchors)			4214

4.1 Steel Strength

$V_{sa} = (0.6 A_{se,V} f_{uta})$	refer to ICC-ES ESR-3187
ψ V _{steat} ≥ V _{set}	ACI 318-11 Table D.4.1.1

Variables

$A_{ae,V}$ (in. ²)	f _{uta} [psi]	$(0.6 \; A_{se,V} \; f_{nta}) \; [lb]$
0.61	72,500	26,345

Calculations:

Results

V₃a [lb]	Ф stopi		V _{ea} (lb)
26,345	0.600	15,807	1,750

4.2 Pryout Strength (Concrete Breakout Strength controls)

$V_{cpd} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{cc,N} \psi_{ad,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-11 Eq. (D-41)
Ψ [*] σρα ^{c.} Yua	ACI 318-11 Table D.4.1.1
A _{No.} see ACI 318-11, Part D.5,2.1, Fig. RD.5.2.1(b)	
$A_{\text{Neg}} = 9 h_{\text{ef}}^2$	ACI 318-11 Eq. (D-5)
$\psi_{\text{ec,N}} = \left(\frac{2e_{\text{N}}}{1 + \frac{2e_{\text{N}}}{3h_{\text{O}}}}\right) \le 1.0$	ACI 318-11 Eq. (D-8)
$\psi_{\text{ed,h}} = 0.7 + 0.3 \left(\frac{c_{n,min}}{1.5 h_{\text{ef}}} \right) \le 1.0$	ACI 318-11 Eq. (D-10)
$\psi_{cp,N} = MAX\left(\frac{c_{\theta,min}}{\underline{c}_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-11 Eq. (D-12)
$\int c_{ac} \cdot c_{ac} \int$	
$N_{si} = k_{si} \lambda_{si} \sqrt{f_{si}} h_{ef}^{1.5}$	ACI 318-11 Eq. (D-6)

Variables

k _{ce}	h _{ef} [in.]"	e _{s1 N} [in.]	$e_{s2,\mathbf{n}}$ (in.)	c _{a.min} [in.]
2	10,000	0.000	0,000	14.000
W.c.ni	c _{ac} (in.)	$\mathbf{k}_{a}^{(\cdot)}$	λ	f _c (psi)
1.000	20.543	17	1.000	4,000

Calculations

A _{Nc} [in.']	A _{Nső} [in.²]	Ψ eq1.N	₩ ec2,N	W od N	₩ co.N	N _n [fb]
1,295.00	900.00	1.000	1.000	0,980	1.000	34,000

V _{cpg} (lb)	∳ concreta	φ V _{ope} (b)	V _{oa} [lb]
95,888	9.700	57,121	7,000

 www.hilti.us
 Profis Anchor 2.7.6

 Company:
 Page:
 6

 Specifier;
 Project:
 8

 Address:
 Sub-Project I Pos. No.:
 9/28/2018

 E-Mail:
 Date:
 9/28/2018

4.3 Concrete edge failure in direction x+

Variables

c _{a1} (in.)	c _{a2} (in.)	e _{sv} (in.)	Ψεν	h _a [in.]
14.000	* * * * * * * * * * * * * * * * * * * *	0.000	1,000	18.000
•		·		
l. fin.1	λ.	d _a [in.]	f _c (psi)	
	/ <u>A</u> g		**** **********************************	V,safafaq W
9.000	1.000	1.000	4,000	1.000

Calculations					
A _{va} (in. ²)	A _{Ved} (in. ²)	V ec.v	Wed.V	Ψ'nν	V _b { b]
846,00	882.00	1.000	1.000	1.080	29,817
Results					
V _{obg} [lb]	∮ sansrete	φ V _{opa} [lb]	V _{ua} [ib]		
30,892	0.700	21,624	7,000		

5 Combined tension and shear loads

il is	βv	<u> </u>	Utilization $\beta_{N,V}$ [%]	Status
0.032	0.324	5/3	16	OΚ
BNV # BN + BV <= 1.				

6 Warnings

- * The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor, Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength, Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-11, Part D.9.1.

Fastening meets the design criteria!

www.hilti.us Profis Anchor 2.7.6 Company: Page: Specifier: Project: Address: Sub-Project I Pos. No.: Phone 1 Fax: Date: 9/28/2018 E-Mail:

7 Installation data

Anchor plate, steel: -

Profile: W shape (AISC); 11.900 x 8.010 x 0.295 x 0.515 irr. Hole diameter in the fixture: d_f = 1.125 irr.

Plate thickness (input): 1,000 in. Recommended plate thickness; not calculated

Drilling method: Hammer drilled Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

Anchor type and diameter; FRT-HY 200 + HAS-E 1 Installation torque: 1,800.003 in.lb

Hole diameter in the base material: 1.125 in. Hole depth in the base material; 10,000 in. Minimum thickness of the base material: 12,250 in.

7.1 Recommended accessories

Cleaning Setting Suitable Rotary Hammer · Compressed air with required · Dispenser including cassette and mixer accessories to blow from the bottom of · Properly sized drill bit. · Torque wrench the hole · Proper diameter wire brush

Coordinates Anchor in.

Anchar	. X.	У	C.K	C+x	Cly	C+v
1	-4.000	-2.500	-	22.000	*	•:
2	4.000	-2.500		14.000	<u>.</u>	_
3	-4.000	2.500	-	22.000		4
4	4.000	2.500	-	14.000		

	and the state of t		
www.hilti.us			Profis Anchor 2.7.6
Company:		Page:	8
Specifier:		Project:	
Address:		Sub-Project Pos. No.:	÷
Phone I Fax:	1∙	Date:	9/28/2018
E-Mail:	3		m tolko la

8 Remarks; Your Cooperation Duties:

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an add to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

CLIENT		
PROJECT		

SHEET D1

					DATE	REV.
				JOB NO		SHEET OF
SECON	DAM CONTAIN	MENT				
Vo	WME = 5	5'. (36'x	36') =	6480 ft3		
No	T Vownt =	6480	Et3 -	3. (7. (12)/	4).5' = 4783	3 A 3
	1 x 30.000	CAL =	33 00	0 CAL - 44	11 ft3 OKV	
	CONTRINIME	W Vous	nd 15 (DISTILLENT FOR	110% of TANK	Variet
		7000		701100001	7,1.00	VVVVE
/	SECONDAR	Y CONTA	INMENT	STRUCTURE	S CAPABLE OF	CONTAINING
	A SINGLE 30	0,000 GAL	TANK II	N THE EVENT	OF A LEAK/FAILI	JRE.
-						

CLIENT	LAKE	SIDE	INDUSTRIES
PROJECT	ASPH	IALT TA	NK FOOTING DESIGN

BY_	EW	DATE	8/16/18	REV.	
	10102			1	0

Coverning code:	ZOIZ IBC <- 2015 IBC , CALCS ARE IN COMPLIANCE)
	- ASCE 7-10
Design criteria:	- AUWA D100-5
	DL: - 1246+(55(5.752-5.732))44)490 = 17144 LBS
	- Sw of conc. 150 pcf LL: -30,000 gal (4) AC Tank
	-30,000 gal (4) AC Tank
	· 8.56(30000) = 756.8 Kips
WIND CALC IS CONSERVATIVE,	WL: Wind Speed V= 115 MPH; Exposure C; Risk III
RISK II STRUCTURE & 110 mph WIND, ACTUAL	92=0.00256 KzKZ+KdUZ [ASCE 7-10 Eq 29.3-1]
, , , , , ,	Kd=0.95 [ASCE 7-10 To Z6.6-1]
	kz=1.065 [ASCE 7-10 Tb 29.3-1]
	KZ = 1 [ASCE 7-10 26.8.2]
	2=0.00256 (1.065)(1)(0.95)(115)3 = 34.3 PSi
	Wo -> 45/11.5 = 3.91
	CF = 0.549 [ASCE 7-10 Fig 29.5-1]
	F= 2= 6CFAF [ASCE 7-10 Eq 29.5-1]
	G=0.85 [ASCE 7-10 26.4]
	AF = 11.5 (44.04) = 507 Ft2
	F= 34.3 (0.85)(0.549)(507) = 8.12 Lips
AWWA Dloo-S -> 1	Ea: ms = V[A:(Ws xs + Wr H+ + W; x;)] + [Acwext] [Ea 13-23]
	$A_{I} = \frac{S_{OI}I_{E}}{1.4 R_{i}} \ge \frac{0.36 S_{i}I_{E}}{R_{i}}$ (EQ 13-17)
	SaI = SDS = 0.8849
	$I_{E}=1$ (Table 24) $R=3$
	5, = 0.495
	SHEET D2

CLIENT	
PROJECT	

IOR NO	CHEET	7	OF	9	

		JOB NO.		_ SHEET _ C OF _	
EQ Continued:	Ai =	0.884(1) =	0.210 20.0591	4= 0.36(-495)	30
	Wg=	17144 LBS			
	X5=	22 57			
*ASSume 45 PSF	Wr=	TC (45) ->	TC (5,75) (45):	=4674 LBS	
	HT =	44 F+		[Ea 13-25]	
	DA	= 11.5/44 = 0	. 261 : W = [1-		-
	w;=	[1-0,218(0.26	1)] ZS6.8 = Z4Z	.2 kips	
	×1 =	0.5-0.094 P] H [Fa 13-24]		
			26)]44 = 20.9 F		
		SACIE (Fa)			
	E= 5	TT 0 3.68g Tanh (3	(Ea 13-2:	2]	
	Tc= 23	3.68 Janh (3	(8(44)) = 11,107	s < 16s	
	· SAC	= 14501 ->	1(0,497) = 0	.045	
	RC	= 1.5 (Table 0.045(1) = 1.4(1.5)	28]		
			H) WT (FQ 13		
W)c=0.2	30 44 Jonh (3.	(1.5) ZS6800 =	: 15437 LBS	
[EQ 13-30] X	c= [1.0	$0 - \frac{\cosh\left(\frac{3.67H}{D}\right)}{\frac{3.67H}{D} \sinh\left(\frac{3}{2}\right)}$	$\frac{\left \frac{1}{67H}\right }{\left \frac{67H}{D}\right } = \frac{100 - \frac{100}{3}}{\frac{3}{100}}$	55h(3.67(44))-1 6-(44) 5:nh(3.67(44))	(44)
	XC = 40			SHEET D3	

PROJECT			
BY	DATE	REV	

BY	DATE		R	EV		
JOB NO		SHEET	3	OF	9	

			JOB NO		SHEET	_ OF\
Ea	continued:					
moment @	Ms=V[0.21(1)	1144 (22) +467	1		214 (15437)	(40.9)]2
	Z.Ms=1,185	kip.ft	C> 24	ZKIPS		
	Mmf=J[A; (u	15×5+WFH++	w; xint)]2+[Acuc Xcmf]	2 [Ea 13	-32]
	Xim= (0.5+	0.06 PH]H [EQ 13-34] ->	0.5+0.06	11.544]44=	22.69 Ft
	Xcmf = [1.0-	3.67H Sint	-) - 1.937 (3.67H)	[Ea 13-35		
	Xonf = [1.0-	(ash (3.67(44)) 3.67(44) Sir	-)-1,937 7h(3.67(44))	(44) =	40.9 Ft	
moment @	mm= - (0.21(17144 (22) + 4	674(44) + Z4Z	200 (22.64))) = [0.0214(15	437)(40.9)]2
	6Mmf = 1,27	7 K. FA				
	VF=V[A:CWs.	twr twf tw	1]2+[A(W)2			
	w; = >= (11,5)}	4 (6.25/12)40	10 = 1060 List	s		
	VF = \[(0.21(171)	14+ 4674 + 106	0+ 242200)]	2+6.0214(1	5437)]2 =	55.7 Kips
Check over					le.	
Winel:	V=4(8.12)(0,6)= 19.5 kip	s		Kn	$^{0}\omega^{\tau}V_{\tau}$
Mw= 8.	12 (22) (0.6) =	107.2 K.A				
	144+4674+10		54.9 Kips			
	(107.2)= 420	(C-F+				
(see spre	adsheet)					
					SHEE	T D4

CLIENT_

Smith Monroe Gray

ENGINEERS, INC.

CLIENT: PROJECT:

> BY: JOB #:

DATE: 8/13/2018

SHEET - OF 9

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING = 3,000 PSF

SOIL WEIGHT = 115 PCF

REQD. O.T. SAFETY FACTOR = 1.5

STR.INCR.FOR HORIZ. LOADS = 1.33

VERTICAL DEAD LOAD = 54.90 KIPS

VERTICAL LIVE LOAD = 0 KIPS HORIZONTAL LOAD = 19.5 KIPS

MOMENT @ TOP OF FOOTING = 429 FT-KIPS

FOOTING DIMENSIONS:

FTG. LENGTH (L) = 37.0 FT (PAR.TO LOAD)

FTG. WIDTH (W) = 37.0 FT (PERP.TO LOAD)

FTG. THICKNESS (FT) = 2.00 FT

FOOTING DEPTH (D) = 0.0 FT

PIER LENGTH (PL) = 0.0 FT

PIER WIDTH (PW) = 0.0 FT

PIER HEIGHT (PH) = 0.0 FT

CONCRETE WEIGHT = 246.4 KIPS

SOIL WEIGHT = 0.0 KIPS

TOTAL WEIGHT = 246.4 KIPS

DESIGN METHOD 1

OVERTURNING MOM. = 468.0 FT-KIPS

SOIL PR. FROM DL = 220.1 PSF

SOIL PR. FROM MOM. = (55.4) PSF

MIN. PRESSURE = 164.7 PSF

MAX. PRESSURE = 275.5 PSF GOVERNS

DESIGN METHOD 2

e =

1.55 FT

Pr L = 50.84 FT MAX. PR = 320.4 PSF

DOES NOT APPLY AS NO UPLIFT AT BACK OF FOOTING

OK

OK

OK

 ACTUAL
 ALLOWABLE

 LL + DL BEARING =
 220 PSF
 3,000 PSF

 HORIZ. BEARING =
 276 PSF
 3,990 PSF

1.5

DL + HORIZ. BEARING = 276 PSF F.S. OF OVERTURNING = 11.91

SIIS Smith Monroe Gray

CLIENT		
PROJECT		
BY	DATE	REV

	JOB NO	SHEET 5 OF 9	
Check for Stiding: Wind:		*	
FSSliding = Resisting > 1.5	-> (54.9+246)(0.5)	+ /2(350)(2)2(37)/1000	
	1/2(35)(2)2((37)/1000 + 19.5	
Check overturnig: Seismic:		7.98 71.5 OE	
	V 5		
$M_{T} = 1,277(4)(0.7) = 3576$			
VT = 55.7(4)(0.7)= 156 8	15%		
PTL= [(256.8)4+91.5](0.6)=	671.22 Kips		
(See spreadsheet)			
check for sliding:			
seismic:			
FSSliding = Resisting >1.5 ->	1	0.5 + /2(350)(2)2(37)/1000	_
acting Acting	1/2 (35)(37)/	1000 + 156	
	= 3.05>	1.5 00	
Check Beneding of Sleep:	(LRFD) 0.9DL+	oE	
Mr = 1,277(4) = 5,109 K. Ft			1
V7 = 55.7(4) = ZZZ kips			
Pr = [256.8(4) +91.5]0,9= 1	007 Kips	mu?	~(
MTested = 223(2) +5,109 = 55	SS K.Ft	• 1664	KT
Protal = 1007 + 410.7(0.4) =	1377 EIPS		
$\sigma_{\text{max}} = \frac{P}{A} + \frac{mc}{\Gamma} \rightarrow \frac{1377(c)}{37^2}$	∞) ₊ 5555((000) <u>-</u>	1664 PSF	1
$O_{min} = \frac{P}{A} - \frac{mc}{I} \rightarrow \frac{13770}{37}$	1000) _ 5555(1000)	= 348 PSF	
A I 37	37(37)2/6		
		SHEET D6	

Smith Monroe Gray

ENGINEERS, INC.

CLIENT:

PROJECT:

BY: JOB #: DATE: 8/14/2018

SHEET 6 OF 9

누

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

a

FOOTING:

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING = 3,000 PSF

SOIL WEIGHT = 115 PCF

REQD. O.T. SAFETY FACTOR = 1.5

STR.INCR.FOR HORIZ. LOADS = 1 33

VERTICAL DEAD LOAD = 671.22 KIPS

VERTICAL LIVE LOAD = 0 KIPS

HORIZONTAL LOAD = 156.0 KIPS

MOMENT @ TOP OF FOOTING = 3,576 FT-KIPS

FOOTING DIMENSIONS:

37.0 FT (PAR.TO LOAD) FTG. LENGTH (L) =

FTG. WIDTH (W) = 37.0 FT (PERP.TO LOAD)

FTG. THICKNESS (FT) = 2.00 FT

FOOTING DEPTH (D) = 0.0 FT

PIER LENGTH (PL) = 0.0 FT

PIER WIDTH (PW) = 0.0 FT

PIER HEIGHT (PH) = 0.0 FT

CONCRETE WEIGHT = 246.4 KIPS

SOIL WEIGHT = 0.0 KIPS

TOTAL WEIGHT = 246.4 KIPS

DESIGN METHOD 1

OVERTURNING MOM. = 3,888.0 FT-KIPS

SOIL PR. FROM DL = 670.3 PSF

SOIL PR. FROM MOM. = (460.5) PSF

MIN. PRESSURE = 209.8 PSF

MAX. PRESSURE = 1,130.8 PSF

e = 4.24 FT

PrL=

DESIGN METHOD 2

42.79 FT

MAX. PR = 1,159.2 PSF

GOVERNS

DOES NOT APPLY AS NO UPLIFT AT BACK OF FOOTING

OK

OK

OK

3,990 PSF

1.5

ACTUAL		ALLOWABLE
LL + DL BEARING =	670 PSF	3.000 PSF

F.S. OF OVERTURNING =

DL + HORIZ. BEARING = 1,131 PSF

SHEET D7

SHEET D8

	BY	DATE	REV
	JOB NO	SHEE	T 7 OF 9
Omnu > 1664-348 = X-348 37 = 32.5	om:		
Mu= -1504 (4.5) /2 - = (1664-1504) : Mu= 15.8 K-F+/4 OF 189 K		5/3)+Mu=0	
ASCORT (2) 0.9(60)(21-2)		8 in 2/5+	
$a = \frac{Asfy}{0.85f2b} = \frac{0.18(60)}{0.85(4)(12)} =$	0.26 in/	74	
$A_{SM,n} = \frac{3\sqrt{f'c}}{fy} bwd \to \frac{3\sqrt{4cx}}{6000}$ (ACT 318-11 EQ 10-13) Zoo bwd/fy \to Zoo(12)(2	(12)(zi) 0 (12)(zi) 21)/60000=	= 0.80 in 2/f+ = 0.84 in 2 F+	
Astequired = 4 Ascell [Act 318-11 10.5.3]]=4/360.1	8)= 0.24 in 2/F+	
* Kuse No. 5 bars @ 12"0.c Both Directions: $P = \frac{As}{bd} \Rightarrow \frac{0.266}{12(21)} = 0.0011$			1 in 7 AT (OB)
Check shear:			
Øun ≥vu → Øun= Ø(uc+us)	- (-22)(21 - 5097	k.\e5
UC = ZX JF'C band -> 2(1) J4000 JUC > Vu : NO Feinforcen			
[ACI 318: 11.4	-		
0.75/2 Vc > 0.75 (589.7) 1/2 = 721	. I Kips	755.7 KIPS.	

PROJECT		
BY	DATE	BEV

SHEET D9

	D1	DATE		REV	
	JOB NO		_ SHEET _ 8	OF _	9
Tank Failure Foundation Walls					
1.1(30) = 33k gallons = 4411	H3 * use	5 Ft tal	l walls		
5(32)(32) = 5120 F13 >4411 F	43 OF				
Check wall for Bending:					
P=Pgh 8.56/(0.133681)= 64	-1 LB/F+3 =	P			
P= 64(5) = 320 P	SF				
F= 126h -> 12320(5) = 800	L105/F+				
$m_u = 1.6[(200)(1.667)] = 213$	4 LB-FT OF	75.6	e-in		
$A_{s} = \frac{m_{u}}{g_{f}(d-\frac{\alpha}{2})} \rightarrow \frac{z}{0.966}$	5.6	0.1217	n7/F+		
0.85 F'C b 0.85 (4) (1	2) = 0.18	3 11			
Asreq = 4 (0.121) = 0.161 in2					
* use No. 4 bars @ 12110,	C As=0.2	in2 > c	0,161in ²		
P= AS = 0.171 = 0.0036 <					
				1.1	

CLIENT_

CLIENT	CLIENT LAKESIDE INDUSTRIES, INC.						
PROJECT MAPLE VALLEY ASPHALT PLANT							
RELOCATED SILO							
BY	BS	DATE_	4/8/2019	REV.	_		
JOB NO		18-183B	SHEET	OF	_		

ALCECIDE INDUICTRIES INC

VERIFY RELOCATED SILO FOUNDATION IS SUFFICIENT FOR THE NEW SITE

MAPLE VALLEY SITE PARAMETER SUMMARY

WIND. Vult = 110 mph

SITE CLASS D

SEISMIC DESIGN CATEGORY D

SEISMIC ACCELERATION PARAMETERS

Ss = 1.325q

S1 = 0.495a

SDS = 0.883q

SD1 = 0.496a

BY INSPECTION SITE PARAMETERS ARE APPROX. EQUIVALENT. ORIGINAL FOUNDATION DESIGN IS ADEQUATE PENDING ORIGINAL DESIGN SUFFICIENCY

ORIGINAL SILO FOUNDATION DESIGN PARAMETERS (ref. B&T DRAWING 16091-S1.1)

GENERAL NOTĚ

INTERNATIONAL BUILDING CODE -- 2015 EDITION CODE:

ALL ASTM'S CALLED OUT ARE TO BE THE LATEST EDITION

LIVE LOADS

BUILDING RISK CATEGORY II (IBC TABLE 1604.5)

LATERAL LOADS:

WIND Vult = 120 MPH Vasd = 95 MPH

.... EXPOSURE "C" Kzt = 1.00

SEISMIC SITE CLASS "D"

SEISMIC DESIGN CATEGORY "D"

IMPORTANCE FACTOR Ie = 1.0

R = 3.5 (ORDINARY MOMENT FRAME)

FOUNDATION

FOUNDATION DESIGN WAS BASED UPON SOILS REPORT NO. JN 16376 BY GEOTECH CONSULTANTS. INC., DATED AUGUST 16, 2016. THE FOLLOWING VALUES WERE USED:

FOOTING BEARING PRESSURE: . . . 3000 PSF ON DENSE NATIVE MATERIAL OR COMPACTED

STRUCTURAL FILL (33% INCREASE FOR WIND OR SEISMIC)

LATERAL EARTH PRESSURE: 35 PCF EQUIVALENT FLUID PRESSURE (ACTIVE-UNRESTRAINED)

.... 50 PCF EQUIVALENT FLUID PRESSURE (ACTIVE—RESTRAINED)

. 350 PCF EQUIVALENT FLUID PRESSURE (PASSIVE)

COEFFICIENT OF FRICTION: 0.50

ALL EXTERIOR FOOTINGS SHALL BE A MINIMUM OF 1'-6" BELOW FINISH GRADE. SLABS AND FOOTINGS SHALL BEAR ON UNDISTURBED SOIL OR STRUCTURAL FILL COMPACTED TO 95% MAXIMUM DRY DENSITY PER ASTM D-1557 AS RECOMMENDED IN SOILS REPORT. CONTRACTOR SHALL PROVIDE PERMANENT POSITIVE DRAINAGE OF BUILDING PERIMETER. ALL SITE PREPARATION AND GRADING SHALL BE DONE IN ACCORDANCE WITH SOILS REPORT.

SHEET E1

PROJECT			
	DATE	week	

	JOB NO	SHEET	OF
VAPORIZER FNON			
HT = ~34!-8" CG HT = ~17'-2"	Empty WT = 650 Openation WT = 700	0 [#] + // 200 + 00 [#]	7000
(4) BASE PLATES W/(4)	1 / Anestors		
Seismic Paramerers			
* ON Symmeminy Ba	ALEA LEGS -> R=3.	.0	
$C_5 = \frac{505}{P/Ie} = \frac{0.88}{(3.9)}$	(3) = 0.29		
Ev = 0.2.5ps. D =	0.18 D		
MIND			
V= 110 mpH Ld = 0.85 V= 1.0 V= 0.85	9z = 0.00156, Kd. Kz	.Kzt .V2 = 22.4	PSF
Fw = G. 9z. Cz = 0.85.2	2.4 PSF. 1.65 = 31.4 PSF		
Cs = 1.65 (B/S = 0	.24)		
0.6. Fw = 18.8 P.	SF		
			CUEET E4

Smith Monroe Gray

PROJECT	

	BY	DATE	REV
	JOB NO	SHEET	OF
0 0			
BASE RXW - SEISMIL			
W+ = 7000#			
7000			
Vx = 7000#, 0.29 = 2030# x 0.	7 = 1421#		
Vy = 7000# · 0.18 = 1260# x 0.7	1 = 882#		
Mover = 2030# · (206"/12"/4)	24040#	FT 177- 711201.#	·FT
[OVER = 2030" (206 /12 /A)	= 37818	X U-7 = 19399	
BASE RXN- WIND			
WT = 7000#			
Vx = 18.8 PSF. (416". 48")/14	4-2 - 62	22#	
Marks = 5322#. (4161/121/18)/2	= 92248#	FT	
ANCHORAGE DESIGN			
Vmax = 5322#/4 = 1330#/1	SALL DINGL	104 = 77-16# =	1/.
Trax = 92248#.FT = (84"/12"/FT).Z	6589#/BASE	PLATE 10.6 = TU=	10982#
(84"/12"MFT).Z			
USE (4) 1"DIA ANCHORS W/ 10	" EMBED (SE	E HILTI OUTPUT)	
FOOTING PASSURE - Try 24" x 12 So	2		
Very Pressure = 7000# + 3	100 1st = 34	18 1sf x12 = 1	1176PLF
Morent = 92248 #.FT		TOTA =	50112
	. ,		
LHEEK MODILE 1/3 For ELL = 2° → 92248#	1 /2FT = 4	16124# 50112#	OKV
			SHEET F2

Profis Anchor 2.8.1 www.hilti.us

Company: Page:

Specifier: Project: Address:

Phone I Fax:

E-Mail:

Specifier's comments:

1 Input data

Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 36 1

Effective embedment depth: $h_{ef} = 10.000 \text{ in.}$ Material: **ASTM F 1554**

Design method ACI 318-14 / CIP Proof:

Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 0.500 in.

 $I_x \times I_y \times t = 16.000$ in. x 16.000 in. x 0.500 in.; (Recommended plate thickness: not calculated Anchor plate:

Profile: no profile

Base material: cracked concrete, 4000, $f_c' = 4,000 \text{ psi}$; h = 24.000 in.

tension: condition B, shear: condition B; Reinforcement:

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F) Tension load: yes (17.2.3.4.3 (d))

Shear load: yes (17.2.3.5.3 (c))

Geometry [in.] & Loading [lb, in.lb]

Sub-Project I Pos. No.:

4/8/2019

^R - The anchor calculation is based on a rigid anchor plate assumption.

www.hilti.us Profis Anchor 2.8.1

Company: Page: Specifier: Project:

Specifier: Address:

Address: Sub-Project i Pos. N
Phone I Fax: Date:

E-Mail:

Sub-Project I Pos. No.:
Date: 4/8/2019

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	5,500	1,100	0	-1,100
2	5,500	1,100	0	-1,100
3	5,500	1,100	0	-1,100
4	5,500	1,100	0	-1,100

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ϕ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	5,500	26,361	21	OK
Pullout Strength*	5,500	25,217	22	OK
Concrete Breakout Strength**	22,000	49,392	45	OK
Concrete Side-Face Blowout, direction **	N/A	N/A	N/A	N/A

^{*} anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

 $N_{sa} = A_{se,N} f_{uta}$ ACI 318-14 Eq. (17.4.1.2) $\phi N_{sa} N_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.61	58,000

Calculations

N _{sa} [lb]	φ steel	φ N _{sa} [lb]	N _{ua} [lb]	
35,148	0.750	26,361	5,500	

Profis Anchor 2.8.1

www.hilti.us

Page:

Company: Specifier:

Project: Address: Sub-Project I Pos. No.:

Phone I Fax: Date: 4/8/2019 E-Mail:

3.2 Pullout Strength

$$\begin{array}{lll} N_{pN} &= \psi_{\ c,p} \ N_p & ACI \ 318\text{-}14 \ Eq. \ (17.4.3.1) \\ N_p &= 8 \ A_{brg} \ f_c & ACI \ 318\text{-}14 \ Eq. \ (17.4.3.4) \\ \phi \ N_{pN} \ N_{ua} & ACI \ 318\text{-}14 \ Table \ 17.3.1.1 \end{array}$$

Variables

Ψ c,p	A _{brg} [in. ²]	λa	f _c [psi]
1.000	1.50	1.000	4,000

Calculations

Results

N _{pn} [lb]		∮ seismic	∮ nonductile	φ N _{pn} [lb]	N _{ua} [lb]
48,032	0.700	0.750	1.000	25,217	5,500

3.3 Concrete Breakout Strength

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N
10.000	0.000	0.000	24.000	1.000
c _{ac} [in.]	k _c	λa	f _c [psi]	
-	24	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
1,764.00	900.00	1.000	1.000	1.000	1.000	48,000
Results						
N _{cbg} [lb]	φ concrete	φ seismic	φ nonductile	φ N _{cbg} [lb]	N _{ua} [lb]	
94,080	0.700	0.750	1.000	49,392	22,000	

4/8/2019

www.hilti.us Profis Anchor 2.8.1

Company: Page: Specifier: Project:

Address:
Phone I Fax:

Sub-Project I Pos. No.: Date:

E-Mail:

4 Shear load

	Load V _{ua} [lb]	Capacity ϕ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	1,100	13,708	9	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	4,400	131,712	4	OK
Concrete edge failure in direction y-**	4,400	34,426	13	OK

^{*} anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

$$\begin{array}{lll} V_{sa} &= 0.6 \; A_{se,V} \; f_{uta} & & ACI \; 318\mbox{-}14 \; Eq. \; (17.5.1.2b) \\ \varphi \; V_{steel} & V_{ua} & & ACI \; 318\mbox{-}14 \; Table \; 17.3.1.1 \end{array}$$

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	
0.61	58.000	

Calculations

Results

V _{sa} [lb]	φ steel	φ V _{sa} [lb]	V _{ua} [lb]
21,089	0.650	13.708	1,100

4.2 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$	ACI 318-14 Eq. (17.5.3.1b)
ϕ V _{cpg} V _{ua} A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	ACI 318-14 Table 17.3.1.1
A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
/ <u>1</u> \	
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{C_{\text{a,min}}}{1.5 h_{\text{ef}}} \right) 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{cp,N} = MAX \left(\frac{C_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) 1.0$ $N_b = k_c \lambda_a \overline{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.7b)
$N_b = k_c \lambda_a \overline{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k_{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	10.000	0.000	0.000	24.000
Ψ c,N	c _{ac} [in.]	k _c	λa	f _c [psi]
1.000	-	24	1.000	4,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	ψ ed,N	Ψ cp,N	N _b [lb]
1,764.00	900.00	1.000	1.000	1.000	1.000	48,000
Results						
V _{cpg} [lb]	φ concrete	φ seismic	φ nonductile	φ V _{cpg} [lb]	V _{ua} [lb]	
188,160	0.700	1.000	1.000	131,712	4,400	

Profis Anchor 2.8.1 www.hilti.us

Company: Page: Specifier:

Project: Sub-Project I Pos. No.:

Address: Phone I Fax:

E-Mail:

4/8/2019

4.3 Concrete edge failure in direction y-

$$\begin{array}{lll} V_{cbg} &= \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \, \psi_{ed,V} \, \psi_{c,V} \, \psi_{h,V} \, \psi_{parallel,V} \, V_b & \text{ACI 318-14 Eq. (17.5.2.1b)} \\ \phi \, V_{cbg} & V_{ua} & \text{ACI 318-14 Table 17.3.1.1} \\ A_{Vc} & \text{see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)} \\ A_{Vc0} &= 4.5 \, c_{a1}^2 & \text{ACI 318-14 Eq. (17.5.2.1c)} \end{array}$$

$$\psi_{\text{ec,V}} = \left(\frac{1}{1 + \frac{2e_{\text{v}}}{3c_{\text{v}}}}\right)$$
 1.0 ACI 318-14 Eq. (17.5.2.5)

$$\psi_{\text{ed,V}} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \quad 1.0$$
ACI 318-14 Eq. (17.5.2.6b)

$$\Psi_{h,V} = \frac{1.5C_{a1}}{h_a}$$
 1.0 ACI 318-14 Eq. (17.5.2.8)
 $V_b = 9 \lambda_a \frac{f_c}{f_c} c_{a1}^{1.5}$ ACI 318-14 Eq. (17.5.2.2b)

Variables

c _{a1} [ın.]	c _{a2} [ın.]	e _{cV} [ɪn.]	Ψ c,V	n _a [ın.]
24.000	24.000	0.000	1.000	24.000
l _e [in.]	λa	d _a [in.]	f _c [psi]	Ψ parallel,V
8.000	1.000	1.000	4.000	1.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψ ec,V	ψ ed,V	Ψ h,V	V _b [lb]	
1,728.00	2,592.00	1.000	0.900	1.225	66,925	
Results						
Vaha [lb]	d	d asismis	d nondustile	φ V _{aba} [lb]	V [lb]	

V _{cbg} [lb]	\$\phi\$ concrete	ϕ seismic	∮ nonductile	φ V _{cbg} [lb]	V _{ua} [lb]
49,180	0.700	1.000	1.000	34,426	4,400

5 Combined tension and shear loads

β_{N}	β_{V}	ζ	Utilization β _{N,V} [%]	Status
0.445	0.128	5/3	30	OK

$$\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$$

www.hilti.us Profis Anchor 2.8.1

Company: Page:

Specifier: Project:
Address: Sub-Pro

 Address:
 Sub-Project I Pos. No.:

 Phone I Fax:
 Date:
 4/8/2019

E-Mail:

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The
 and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to
 your local standard.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.

Fastening meets the design criteria!

Profis Anchor 2.8.1 www.hilti.us

Company: Page:

Specifier: Project: Address: Sub-Project I Pos. No.:

Phone I Fax: Date: 4/8/2019 E-Mail:

7 Installation data

Anchor plate, steel: -

Profile: no profile Hole diameter in the fixture: $d_f = 1.063$ in.

Plate thickness (input): 0.500 in.

Recommended plate thickness: not calculated

Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 36 1

Installation torque: -Hole diameter in the base material: - in.

Hole depth in the base material: 10.000 in. Minimum thickness of the base material: 11.172 in.

Coordinates Anchor in.

Anchor	X	у	C _{-x}	C+x	C _{-y}	C _{+y}
1	-6.000	-6.000	36.000	36.000	24.000	48.000
2	6.000	-6.000	48.000	24.000	24.000	48.000
3	-6.000	6.000	36.000	36.000	36.000	36.000
4	6.000	6.000	48.000	24.000	36.000	36.000

www.hilti.us Profis Anchor 2.8.1

Company: Page:

Specifier: Project:
Address: Sub-Pro

 Address:
 Sub-Project I Pos. No.:

 Phone I Fax:
 J

 Date:
 4/8/2019

E-Mail:

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

Smith Monroe Gray

_

JOB	NO	SHEET OF
LNG FOUNDATION		
TANK Wr. = 25.9 KIPS ± 3% LNG WT. = 54.6 KIPS	= 26.7 Kils	0
2 Deslew Wr. = 81.3 KIPS	0	0
VENT. C.G. = 8.5 /2 + (9'-	8.5') = 4.75'(
SUSMIL PARAMETERS (SIMILAR TO VAPONICE		
Cs = 0.94	1,	
$E_{V} = 0.18 \cdot D$ Convaous over	MIND	
Anceron Rxn Summany		
LC Town	TOTAL RXW	Rxn Pen Anceson
DL	81.3 K	20.3 ^K ↓
Ex-SHEAR 81.3 . 0.44 = 35.8 K	35.8 ^K	9.0 1 →
E-OVERTURNING 35.8 4.75/7.5'	22.7 14	11.4k 1
Ev 8134.0.18=	14.61	3.7×14
MAX V 81.3 K+ M.6 K	95.9×	31.4K L
Max 1 0.60 + 0.7E	38.6K	1.6 K J
(2) 5 x 10 foothers on by las	P. Sp= 1110 PSF OK	
		SHEET F11

PROJECT		
HOJECI		

SHEET F12

JOB NO	SHEET	OF
+09.5:12	· 2. 0.15 lect	cct
- K-FT		
10		
ID a ck F	T	
= 118.8	OVV	
11014/6	12 - 1 12 2	0510
+1.0.17.6 +	17.2.10.7.1	J.15 Ker
10 -1 11)	7 - 772 14	0 70
(T.2.10) XI	L - L.W FSF	C (PINEOUS
	1 2000	PSF DKV
	3000	
		3
CLUR (MIN LONGE	45510N = 1.6K)	
ASD DEMAND		
KIPS		
OR W/ 6" MIN EM	RED	
JIC VV/ O IVIIIN LIVI	DED	
	i i	
	- + 09.5 12 70 + FT = 178.8 + F + 1.0.146 + + (2.5'.12') x CLUE (M. LONGE ASD DEMANE LRFD DEMANE KIPS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Profis Anchor 2.8.1 www.hilti.us

Company: Page:

Specifier: Project: Address: Sub-Project I Pos. No.:

Phone I Fax: 4/8/2019

E-Mail:

Specifier's comments:

1 Input data

Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 36 1 3/8

Effective embedment depth: $h_{ef} = 6.000 \text{ in.}$ Material: **ASTM F 1554**

Design method ACI 318-14 / CIP Proof:

Stand-off installation: - (Recommended plate thickness: not calculated)

Profile: no profile

Base material: cracked concrete, 4000, $f_c' = 4,000 \text{ psi}$; h = 12.000 in.

Reinforcement: tension: condition B, shear: condition B;

edge reinforcement: none or < No. 4 bar

Seismic loads (cat. C, D, E, or F) Tension load: yes (17.2.3.4.3 (d))

Shear load: yes (17.2.3.5.3 (c))

Geometry [in.] & Loading [lb, in.lb]

^R - The anchor calculation is based on a rigid anchor plate assumption.

Profis Anchor 2.8.1 www.hilti.us

Company: Page: Project:

Specifier: Address:

Sub-Project I Pos. No.: Phone I Fax:

4/8/2019 E-Mail:

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	-3,200	18,000	0	-18,000

- [‰] max. concrete compressive strain: max. concrete compressive stress: - [psi] 0 [lb] resulting tension force in (x/y)=(0.000/0.000): resulting compression force in (x/y)=(0.000/0.000): 0 [lb]

3 Tension load

	Load N _{ua} [lb]	Capacity _♠ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	-3,200	50,460	7	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction **	N/A	N/A	N/A	N/A

3.1 Steel Strength

$$N_{sa} = A_{se,N} f_{uta}$$
 ACI 318-14 Eq. (17.4.1.2)
 $\phi N_{sa} N_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
1 16	58 000

Calculations

Results

N _{sa} [lb]	φ steel	φ N _{sa} [lb]	N _{ua} [lb]
67.280	0.750	50.460	-3.200

The steel proof was done for the highest absolute force per anchor - in this case compression loading. Please be aware that buckling should be verified separately

www.hilti.us Profis Anchor 2.8.1

Company: Page: Specifier: Project:

Specifier: Address:

Sub-Project I Pos. No.:

Phone I Fax: | Date: 4/8/2019
E-Mail:

4 Shear load

	Load V _{ua} [lb]	Capacity ϕ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	18,000	26,239	69	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	18,000	31,232	58	OK
Concrete edge failure in direction y-**	18,000	22,540	80	OK

^{*} anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

$$\begin{array}{lll} V_{sa} &= 0.6 \; A_{se,V} \; f_{uta} \\ \varphi \; V_{steel} & V_{ua} \end{array} \qquad \begin{array}{ll} \text{ACI 318-14 Eq. (17.5.1.2b)} \\ \text{ACI 318-14 Table 17.3.1.1} \end{array}$$

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
1.16	58.000

Calculations

Results

V _{sa} [lb]	φ steel	φ V _{sa} [lb]	V _{ua} [lb]	
40,368	0.650	26,239	18.000	

4.2 Pryout Strength

$V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right]$	ACI 318-14 Eq. (17.5.3.1a)
$\phi \ V_{cp} \ V_{ua}$ A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	ACI 318-14 Table 17.3.1.1
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{1.5h_{\text{ef}}} \right) 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{cp,N} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) 1.0$ $N_{b} = k_{c} \lambda_{a} f_{c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.7b)
$N_b = k_c \lambda_a f_c h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	6.000	0.000	0.000	24.000
Ψ c,N	c _{ac} [in.]	k _c	λa	f _c [psi]
1.000	-	24	1.000	4.000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	ψ ed,N	Ψ cp,N	N _b [lb]
324.00	324.00	1.000	1.000	1.000	1.000	22,308
Results						
V _{cp} [lb]	φ concrete	φ seismic	φ nonductile	φ V _{cp} [lb]	V _{ua} [lb]	_
44,617	0.700	1.000	1.000	31,232	18,000	-

Profis Anchor 2.8.1 www.hilti.us

Company: Page: Specifier: Project:

Sub-Project I Pos. No.:

Address: Phone I Fax: Date:

E-Mail:

4/8/2019

4.3 Concrete edge failure in direction y-

$$\begin{array}{lll} V_{cb} &= \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ed,V} \, \psi_{c,V} \, \psi_{h,V} \, \psi_{parallel,V} \, V_b & \text{ACI 318-14 Eq. (17.5.2.1a)} \\ \phi \, V_{cb} & V_{ua} & \text{ACI 318-14 Table 17.3.1.1} \\ A_{Vc} & \text{see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)} \\ A_{Vc0} &= 4.5 \, c_{a1}^2 & \text{ACI 318-14 Eq. (17.5.2.1c)} \end{array}$$

$$\psi_{\text{ec,V}} = \left(\frac{1}{1 + \frac{2e_{\text{v}}}{3c_{\text{a1}}}}\right) \quad 1.0$$
ACI 318-14 Eq. (17.5.2.5)

$$\psi_{ed,V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \quad 1.0$$

$$\psi_{h,V} = \frac{1.5c_{a1}}{h_a} \quad 1.0$$

$$V_b = 9 \lambda_a \quad f_c c_{a1}^{1.5}$$
ACI 318-14 Eq. (17.5.2.8)
ACI 318-14 Eq. (17.5.2.2b)

$$V_{\rm b} = 9 \, \lambda_{\rm a} \, f_{\rm c} \, c_{\rm a1}^{1.5}$$
 ACI 318-14 Eq. (17.5.2.2b)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψ c,V	h _a [in.]
20.000	30.000	0.000	1.000	12.000
l _e [in.]	λa	d _a [in.]	f _c [psi]	Ψ parallel,V
6.000	1.000	1.375	4,000	1.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψ ec,V	$\psi_{\text{ed,V}}$	Ψ h,V	V _b [lb]
720.00	1,800.00	1.000	1.000	1.581	50,912
Results					
V _{cb} [lb]	ф concrete	φ seismic	φ nonductile	φ V _{cb} [lb]	V _{ua} [lb]
32,199	0.700	1.000	1.000	22,540	18,000

5 Combined tension and shear loads

β_{N}	$\beta_{\sf V}$	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.063	0.799	5/3	70	OK	

$$\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$$

www.hilti.us Profis Anchor 2.8.1

Company: Page:

Specifier: Project:

Address: Sub-Project I Pos. No.:
Phone I Fax: | Date:

Phone I Fax: | Date: 4/8/2019

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Attention! In case of compressive anchor forces a buckling check as well as the proof of the local load transfer into and within the base material (incl. punching) has to done separately.
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.

Fastening meets the design criteria!

www.hilti.us Profis Anchor 2.8.1

Company: Page:

Specifier: Project:

Address: Sub-Project I Pos. No.:
Phone I Fax: Date:

Phone I Fax: | Date: 4/8/2019

7 Installation data

Anchor plate, steel: -

Profile: -

Hole diameter in the fixture: -Plate thickness (input): -Recommended plate thickness: - Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 36 1 3/8 Installation torque: -

Hole diameter in the base material: - in. Hole depth in the base material: 6.000 in. Minimum thickness of the base material: 7.406 in.

Coordinates Anchor in.

Anchor	X	у	C _{-x}	C+x	C _{-y}	C _{+y}	
1	0.000	0.000	30.000	30.000	24.000	48.000	

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

Smith Monroe Gray

ROJECT		

BY	DATE	REV.	

JOB NO SHE	ET OF
Sours ATTENTUATION WALL I (18 MAX HEIGHT)	
MAX. HT. = 18'	
DESIGN WIND SPEED = 110 MPH = V	
Soud SIGN WIND LOADING PER ASCE 7-14,	
$5/n = 1.0$ $8/s = 2.0 \text{ min} \rightarrow C_5 = 1.40$	
= 20 MAX -> Cz = 1.30 MAX. Cz = 1.40	
2= 0.00256. Kd. Kx. Kz. V2 = 22.4 PSF	
Kd = 0.85 Kz = 1.0 Lz = 0.85 C H= 0-15' FXP. C	,~
Fw= 6 92. Cs = 26.7 PSF	
G = 0.85 9z = 12.4 PSF Cz = 1.4	
SEISMIC LOAD - NONBUILDING STANGENING (MASS CANTILEVER)	
$C_{5} = 0.29$ ($A = 3.0$)	
$W_{G}^{n} = 6^{n}/n^{n}$. 150 Pcf. 0.201 = 21.75 PLF \leftarrow W.	IND CONTROLS
	SHEET F19

Smith Monroe Gray

CLIENT		
PROJECT		

3Y	DATE	REV.	
		11117-2-1111	

	JOB NO	SHEET _	OF
SOUND ATTENUATION WALL (CONTO)			
WALL DEMAND (DL+1.0WL LOAD	Combo CONTROLS)	· · · · · · · · · · · · · · · · · · ·	K 6"
W= 26,7 Pcf		18-011 Max	
Mu = (26.7 PLF. 18'). (18/2 + 2') =	5286# FT /FT	= * -11/11/11	-1178/11
Vu = 26.7 PLF 18' = 481#/FT		-70	10" Ji'o"
Use 6" War w/ #6 @ 9" oc	C CENTER, Cover		, v
WALL OVERTURNING ANALYSIS			
Awar = 6.0'.1.0' + 18'.6"/12" =	15.0 ft2		
Warre = 150 Pcf. 15.0 6+2/tt =	2250 PLF		
*SEE SPREADSHEET, WMAX = FS OVER =	1570 PSF (L=1 2.0 7 1.5 c		
FOOTING DEMAND WHAX = 1570 PLF W. = 1570 AF/4.55' x 1.8" =	621 PLF		
Mu= 621 PLF. (2.75')2/2 = 2348	3 # FT	1.8'	Wrax 75
Muz= (1570 M+ CZIP4). 2.75 FT. 2	3. 275' = 2392 [#]	FT	
Mu= 4740 # FT			
Vu = 621 PLF. 2.75 + (1570-621).2.75/2 = 3012	# 144012"00	SHEET F20

Job #: 18-183B

By: BS

Project:

Date: 11/1/2018 Sheet

of

Concrete Slab Design per ACI 318-08

Applied Forces:

Ultimate Shear, V_u = 0.48 kips

Ultimate Moment, M_u = 5.286 ft-kips

Slab Properties:

Width = 12 in

Depth = 6 in

Cover = 2.625 in.

d =3.00 in.

 $f'_{c} = 4000 \text{ psi}$

 $\beta_1 =$ 0.85

Capacity:

Shear: $\phi = 0.75$

 $\Phi V_c = \Phi V_n = \Phi^* 2 * b * d * \sqrt{f'} c$

 $\Phi V_c = \Phi V_n = 3.42 \text{ kips}$

Bending: $\phi = 0.9$

 $\Phi M_n = \Phi(As*fy*(d-a/2))$

 $\Phi M_n = 6.78 \text{ k-ft.}$

Longitudinal Reinforcement:

Bar Size =

Spacing =

9 inches o.c.

 $f_v =$

60000 psi

 $A_s =$

0.59 in²

a =

0.86 in

1.01 in c =

Shrinkage and Temperature Reinforcing

Min. reinf. ratio =

0.0018

 $A_s \min =$

0.06 in2

OK

max. spacing =

18.0 in

Check Tension Controlled (ACI 10.3.4)

 $\varepsilon_t = [(d-c)/c]*0.003$

 $\epsilon_{t} = 0.0059$

> 0.005, OK

Demand Ratios:

 $V_u/\Phi V_n =$

0.14

SLAB IS OK IN SHEAR

 $M_u/\Phi M_n =$

0.78

SLAB IS OK IN BENDING

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN

BY: BS

DATE: 11/1/2018

JOB #: 18-183B SHEET

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING = 3,000 PSF

SOIL WEIGHT = 120 PCF

REQD. O.T. SAFETY FACTOR = 1.5

STR.INCR.FOR HORIZ. LOADS = 1.33

VERTICAL DEAD LOAD = 0.00 KIPS

VERTICAL LIVE LOAD = 0.00 KIPS

HORIZONTAL LOAD = 0.35 KIPS

MOMENT @ TOP OF FOOTING = 0.00 FT-KIPS

FOOTING DIMENSIONS:

FTG. LENGTH (L) = 6.00 FT (PAR.TO LOAD) FTG. WIDTH (W) = 1.0 FT (PERP.TO LOAD)

FTG. THICKNESS (FT) = 1.00 FT

FOOTING DEPTH (D) = 2.0 FT

PIER LENGTH (PL) = 0.5000 FT

PIER WIDTH (PW) = 1.0 FT

PIER HEIGHT (PH) = 18.0 FT

CONCRETE WEIGHT = 2.25 KIPS

SOIL WEIGHT = 1.32 KIPS

TOTAL WEIGHT = 3.57 KIPS

DEGICAL METUOD 4

DESIGN METHOD 1

OVERTURNING MOM. = 5.3 FT-KIPS

SOIL PR. FROM DL = 595.0 PSF

SOIL PR. FROM MOM. = (883.3) PSF

MIN. PRESSURE = (288.3) PSF

MAX. PRESSURE = 1.478.3 PSF

DOES NOT APPLY AS UPLIFT AT BACK OF FOOTING

PW or PL A A A W or L

DESIGN METHOD 2

e = 1.48 FT

Pr L = 4.55 FT

MAX. PR = 1,570.5 PSF <--- GOVERNS

SHEET F22

	ACTUAL			ALLOWABLE		
LL + DL BEARING =	595	PSF	3,000	PSF	OK	
DL + HORIZ. BEARING =	1,571	PSF	4,000	PSF	OK	
F.S. OF OVERTURNING =	2.02		1.5		OK	

Job #: 18-183B

By: BS

Project:

Date: 11/1/2018 Sheet

of

Concrete Slab Design per ACI 318-08

Applied Forces:

Ultimate Shear, V_u =

3.01 kips

Ultimate Moment, M,, =

4.74 ft-kips

Slab Properties:

Width =

12 in

Depth =

12 in

8.75 in.

Cover = 3 in.

d=

f'c = 4000 psi

 $\beta_1 = 0.85$

Capacity:

Shear: $\phi = 0.75$

 $\Phi V_c = \Phi V_n = \Phi^* 2 * b * d * V f' c$

 $\Phi V_c = \Phi V_n = 9.96 \text{ kips}$

Bending: $\phi = 0.9$

 $\Phi M_n = \Phi(As^*fy^*(d-a/2))$

 $\Phi M_n = 7.74 \text{ k-ft.}$

Longitudinal Reinforcement:

Bar Size =

Spacing =

12 inches o.c.

 $f_v =$ 60000 psi

A_s =

0.20 in²

a =

0.29 in

0.35 in c =

Shrinkage and Temperature Reinforcing

Min. reinf. ratio =

0.0018

 $A_s \min =$

0.19 in²

OK

max. spacing =

18.0 in

Check Tension Controlled (ACI 10.3.4)

 $\varepsilon_{t} = [(d-c)/c]*0.003$

 $\epsilon_{t} = 0.0729 > 0.005, OK$

Demand Ratios:

 $V_u/\Phi V_n =$

0.30

SLAB IS OK IN SHEAR

 $M_u/\Phi M_n =$

0.61

SLAB IS OK IN BENDING

Smith Monroe Gray

PROJECT		

JOB NO	SHEET OF
Sound ATTENDATION WALL 2 (30' MAX. HEIGHT)	12"
MAX HEIGHT = 30'	
Pen Previous 2= 22.4 Bt	
5/h = 1.0, B/s = 6.0 - Cg = 1.35	no.
Fw= 6. 2z. Cs = 25.7 BF	30,-
G = 0.85 C5 = 135 W _{12"} = 1 - 150 Pct. 0.29 = 43.5 PLF \(\) Common	e.s.
WALL DEMAND	
$M_{\nu} = wl^2/2 = 43.5 \text{ PLF } (32')^2/2 = 22300^{\frac{1}{2}.5}$	T/FT 20 80"
Vu= 43.5 PLF. 32' = 1392#/FT	9'-0"
USE 12" WALL W/#6 @ 8" OL @ (2)	FACES
WALL OVERTURNING (SEE SPEEROSHEET) - WIND	- SEISML
WMAX = 2211 PSF (L=4.88') Wh	rax = 3178 /SP L= 4.84 FT Sover= 1.57 71.5
FOOTING DESIGN W, = 3178 PLF/4.89' x 1.39' = 903 PLF	
Mu, = 903 PLF (4.5') 2/2 = 9143 + FT Muz = (3178)	Pet - 903 Pet) . 4.5', 2.45'= 1535
2Mu = 24500 # FT Vu = 908 Pcf. 4.5 + (3178 Pcf-90	03 PLF). 4.5/2 = 9182#
Use 12" FOOTING W/ # 7 e 10" OC	QUEET FOA

Job #: 18-183B

By: BS

Project:

Date: 4/7/2019

Sheet

of

Concrete Slab Design per ACI 318-14

Applied Forces:

Ultimate Shear, $V_u = 1.34 \text{ kips}$ Ultimate Moment, $M_u = 22.3 \text{ ft-kips}$

Slab Properties:

Width = 12 in

Depth = 12 in

Cover = 3 in. d = 8.63 in. $f'_c = 4000 psi$ $\beta_1 = 0.85$

Capacity:

Shear: $\phi = 0.75$ $\Phi V_c = \Phi V_n = \phi * 2*b*d*vf'c$ $\Phi V_c = \Phi V_n = 9.82 \text{ kips}$

> Bending: $\phi = 0.9$ $\Phi M_n = \phi(As*fy*(d-a/2))$ $\Phi M_n = 24.17 \text{ k-ft.}$

Longitudinal Reinforcement:

Bar Size = 6Spacing = 8 inches o.c. $f_v = 60000$ psi

> $A_s = 0.66 \text{ in}^2$ a = 0.97 inc = 1.14 in

Shrinkage and Temperature Reinforcing

Min. reinf. ratio = 0.0018 $A_s min = 0.19 in^2$ OK max. spacing = 18.0 in

Check Tension Controlled (ACI 10.3.4)

 $\epsilon_t = [(d-c)/c]*0.003$ $\epsilon_t = 0.0197 > 0.005, OK$

Demand Ratios:

 $V_{\nu}/\Phi V_{n} = 0.14$ SLAB IS OK IN SHEAR

 $M_{\nu}/\Phi M_{\rho} = 0.92$ SLAB IS OK IN BENDING

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN
BY: BS DATE: 4/7/2019

JOB #: 18-183B SHEET OF

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING: WIND

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING = 3,000 PSF

SOIL WEIGHT = 120 PCF

REQD. O.T. SAFETY FACTOR = 1.5

STR.INCR.FOR HORIZ. LOADS = 1.33

VERTICAL DEAD LOAD = 0.00 KIPS

VERTICAL LIVE LOAD = 0.00 KIPS

HORIZONTAL LOAD = 0.77 KIPS

MOMENT @ TOP OF FOOTING = 0.00 FT-KIPS

FOOTING DIMENSIONS:

CONCRETE WEIGHT =

FTG. LENGTH (L) = 8.00 FT (PAR.TO LOAD)

FTG. WIDTH (W) = 1.0 FT (PERP.TO LOAD)

FTG. THICKNESS (FT) = 1.00 FT

FOOTING DEPTH (D) = 2.0 FT

PIER LENGTH (PL) = 1.0 FT

PIER WIDTH (PW) = 1.0 FT

PIER HEIGHT (PH) = 30.0 FT

5.70 KIPS

SOIL WEIGHT = 1.68 KIPS

TOTAL WEIGHT = 7.38 KIPS

DESIGN METHOD 1

OVERTURNING MOM. = 13.1 FT-KIPS

SOIL PR. FROM DL = 922.5 PSF

SOIL PR. FROM MOM. = (1,228.1) PSF MIN. PRESSURE = (305.6) PSF

MAX. PRESSURE = 2,150.6 PSF

DOES NOT APPLY AS UPLIFT AT BACK OF FOOTING

DESIGN METHOD 2

e = 1.78 FT

Pr L = 6.67 FT

MAX. PR = 2,211.3 PSF <--- GOVERNS

SHEET F26

ACTUAL			ALLOWABLE		
LL + DL BEARING =	923	PSF	3,000	PSF	OK
DL + HORIZ. BEARING =	2,211	PSF	4,000	PSF	OK
F.S. OF OVERTURNING =	2.25		1.5		OK

Smith Monroe Gray

ENGINEERS, INC.

CLIENT: LAKESIDE INDUSTRIES

PROJECT: MAPLE VALLEY ASPHALT PLANT

FOUNDATION DESIGN

BY: BS

DATE: 4/7/2019

JOB #: 18-183B SHEET OF

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING = 3,000 PSF

120 PCF SOIL WEIGHT =

REQD. O.T. SAFETY FACTOR = 1.5

STR.INCR.FOR HORIZ. LOADS = 1.33

VERTICAL DEAD LOAD = 0.00 KIPS

VERTICAL LIVE LOAD = 0.00 KIPS

HORIZONTAL LOAD = 1.39 KIPS

MOMENT @ TOP OF FOOTING = 0.00 FT-KIPS

FOOTING DIMENSIONS:

9.00 FT (PAR.TO LOAD) FTG. LENGTH (L) =

FTG. WIDTH (W) = 1.0 FT (PERP.TO LOAD)

FTG. THICKNESS (FT) = 1.00 FT

FOOTING DEPTH (D) = 2.0 FT

1.0 FT PIER LENGTH (PL) = PIER WIDTH (PW) = 1.0 FT

30.0 FT PIER HEIGHT (PH) =

5.85 KIPS CONCRETE WEIGHT =

> SOIL WEIGHT = 1.92 KIPS

7.77 KIPS TOTAL WEIGHT =

DESIGN METHOD 1

OVERTURNING MOM. = 22.3 FT-KIPS

SOIL PR. FROM DL = 863.3 PSF

SOIL PR. FROM MOM. = (1,651.9) PSF

> MIN. PRESSURE = (788.5) PSF

> 2.515.2 PSF MAX. PRESSURE =

DOES NOT APPLY AS UPLIFT AT BACK OF FOOTING

PW or PL 풉 노 W or L

DESIGN METHOD 2

2.87 FT e =

Pr L = 4.89 FT

MAX. PR = 3,177.9 PSF <--- GOVERNS

		ACTUAL		ALLOW	ABLE		
	LL + DL BEARING =	863	PSF	3,000	PSF	OK	
	DL + HORIZ. BEARING =	3,178	PSF	4,000	PSF	OK	
	F.S. OF OVERTURNING =	1.57		1.5		OK	
_							SHEET F27

Job #: 18-183B

By: BS

Project: Date: 4/7/2019 Sheet

Concrete Slab Design per ACI 318-14

Applied Forces:

Ultimate Shear, $V_u = 9.2 \text{ kips}$

Ultimate Moment, M_u = 25 ft-kips

Slab Properties:

Width = 12 in

Depth = 12 in

Cover = 3 in.

d = 8.56 in.

 $f'_{c} = 4000 \text{ psi}$

 $\beta_1 = 0.85$

Capacity:

Shear: $\phi = 0.75$

 $\Phi V_c = \Phi V_n = \Phi^* 2 b^* d^* V f' c$

 $\Phi V_c = \Phi V_n = 9.75 \text{ kips}$

Bending: $\phi = 0.9$

 $\Phi M_n = \Phi(As*fy*(d-a/2))$

 $\Phi M_n = 26.03 \text{ k-ft.}$

Longitudinal Reinforcement:

Bar Size =

7

Spacing =

10 inches o.c.

 $f_v = 60000 \text{ psi}$

 $A_s = 0.72 \text{ in}^2$

a = 1.06 in

c = 1.25 in

Shrinkage and Temperature Reinforcing

Min. reinf. ratio =

0.0018

A_s min =

0.18 in²

ОК

max. spacing =

18.0 in

Check Tension Controlled (ACI 10.3.4)

 $\varepsilon_{t} = [(d-c)/c]*0.003$

 $\varepsilon_{\rm t} = 0.0176 > 0.005, \, {\rm OK}$

Demand Ratios:

 $V_{u}/\Phi V_{n} =$

0.94

SLAB IS OK IN SHEAR

 $M_{ij}/\Phi M_{ij} =$

0.96

SLAB IS OK IN BENDING

- Wall to be designated Noise Barrier Wall Type 2A, 2B, 2C or 2D. The Contract specifies actual wall designations.
- Panels shall have at least 3 feet of level ground

DRAMN BY: ADAM COCHRAN

- Construction joints in the footing shall be spaced at 120 feet maximum.

CAST-IN-PLACE CONCRETE WALL ON SPREAD FOOTING

NOISE BARRIER WALL TYPE 2

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION Harold J. Peterfeso

11-10-05 Washington State Depart

CAST-IN-PLACE CONCRETE WALL ON SPREAD FOOTING

NOISE BARRIER WALL TYPE 2

STANDARD PLAN D-2.04-00 SHEET 2 OF 2 SHEETS

11-10-05 Harold J. Peterfeso

APPROVED FOR PUBLICATION Washington State Depart

FOOTING WIDTH TRANSITION DETAIL FOR LOCATIONS WITHOUT FOOTING STEP (TRANSVERSE BARS NOT SHOWN) 1'-0" MIN. (TYP.) BAR "A" (TYP.) 3" CLR. (TYP.) Z/M

€ FOOTING

- 3" (TYP.) TRAFFIC SIDE SEALER (TYP.) JOINT AND CORNER DETAIL REINFORCED PER LISTED WALL HEIGHT REINFORCEMENT TABLE 3/4" CHAMFER (TYP.) BAR "D" CORNER ANGLE POINT -

RAMBOLL

DRAFTED BY: KB

DATE: 10/30/2018

Onsite Structures and Noise Barriers

Lakeside Maple Valley Asphalt Plant Site King County, Washington

FIGURE

Project: 1690002813