\qquad
\qquad
\qquad DATE \qquad REV. \qquad
\qquad
\qquad OF

Bun Ware/Footing DEsion (contio)
Check Upift

$$
P_{v}=42^{k}
$$

Wenat of Waun $=7.4 \mathrm{k} / \mathrm{kT}$

Check Suping (20^{\prime} trib Sletion)

$$
P_{\text {SUDE }}=34^{\mathrm{ktF}} \times 20^{\prime}=68^{\mathrm{kips}}
$$

Werant of Wan $=7.4^{\mathrm{k}} \times 20^{\prime}=148 \mathrm{kPs}$
Cowimn Reaction $=10 \mathrm{kips}$ (Min. Lowmn Deho LaAd)

$$
\begin{aligned}
& P_{\text {Resist }}=\left(10^{k}+148^{k}\right) \times 0.5=79^{k i p s}>P_{\text {suor }} \text { okl } \\
& \tau_{\text {faction fran }}
\end{aligned}
$$

CLIENT: LAKESIDE INDUSTRIES
PROJECT: MAPLE VALLEY ASPHALT PLANT
FOUNDATION DESIGN
ENGINEERS,INC.
BY: BS DATE: 8/17/2018
JOB 放 18-183B SHEET OF

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

CLIENT: LAKESIDE INDUSTRIES
PROJECT: MAPLE VALLEY ASPHALT PLANT
FOUNDATION DESIGN
BY: BS
DATE: 8/17/2018
JOB \# 18-183B SHEET OF

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

\qquad
\qquad BY \qquad DATE \qquad REV. \qquad
\qquad

* Provide Supplemewtar Calculatons to Increase Bin wall Stick-up to $14^{\text {Ft }}$

Tautr Wau Onvy Occurs e Bumding \#z, Assume Warst Case Londing from 12 Ft Wan Lalculatoons, (Consfarative)....
Maximum Demand (Par Mooer)
Footing (LC ${ }^{\#} \mid$ Conmars)

$$
\begin{array}{ll}
M_{U}=21.8^{\mathrm{kFT}} / \mathrm{FT} & <\varnothing M_{n}=28^{\mathrm{k} \cdot-\mathrm{T}} / \mathrm{HT} \\
V_{u}=11.5^{\mathrm{k}} / \mathrm{FT} & <\phi V_{n}=16^{\mathrm{k}} / \mathrm{FT}
\end{array} \text { okV }
$$

WALL (LC\#3 Conntois, w/ Weratt of SOIL ADOEN)

$$
\begin{array}{ll}
M_{u}=31.8^{k+T} / \pi & <\phi m_{n}=64^{k-\pi} / \mathrm{Tr} \\
V_{v}=4^{k} / \mathrm{kr} & <\phi V_{n}=37^{k} / \mathrm{Ht}
\end{array} \text { okv }
$$

Orginal Ranforcemiont is Surncisat for Extendes Hatoatt
Max Berume Per Mooke $\approx 200^{\#}\left(6^{\circ} \times 6^{\circ}\right) \rightarrow 2800$ PF <3000 PS Anompa, OKJ

* Vpurt \& Sudime Gonorucuo By Shartar Wan

Loads: LC 3, DL + SURCHARGE + WIND

SMG ENGINEERS	AGG STORAGE FOUNDATION	SK -
BS		Apr 9, 2019 at 5:55 PM
18-183B		AGG BUILDING FOUNDATION 15ft Rev1.r3d

Loads: BLC 1, SELF WEIGHT
Results for LC 1, DL + MAX COLUMN LOAD

SMG ENGINEERS		SK -1
	AGG STORAGE FOUNDATION	Apr 9, 2019 at 5:48 PM
		AGG BUILDING FOUNDATION 15ft Rev1.r3d

Loads: BLC 1, SELF WEIGHT
Results for LC 3, DL + SURCHARGE + WIND

SMG ENGINEERS	AGG STORAGE FOUNDATION	SK -
BS		Apr 9, 2019 at 5:49 PM
18-183B		AGG BUILDING FOUNDATION 15ft Rev1.r3d

Loads: BLC 1, SELF WEIGHT
Results for LC 3, DL + SURCHARGE + WIND

SMG ENGINEERS	AGG STORAGE FOUNDATION	SK -
BS		Apr 9, 2019 at 5:50 PM
18-183B		AGG BUILDING FOUNDATION 15ft Rev1.r3d

\qquad
Smith Monroe Gray
ENGINEERS, I NC.
\qquad BY \qquad DATE \qquad REV. \qquad
\qquad
$14^{\text {fi }}$ Wau Overturnint
Surutarate + Wind
Wino Coumn $R_{x a n}=10^{\mathrm{K}}$ © zott oc (Latonal)
Sumenanod Fouce $=105 \mathrm{PCF} \cdot 0: 45: 14 \mathrm{FT} \cdot 14^{\mathrm{PT}} / 2=4630 \mathrm{~F} / \mathrm{FT}$ $\imath_{K_{A}}$
Wau Dranand e zots Shetion

$$
\begin{aligned}
& P_{\text {wimo }}=10^{k} \\
& P_{\text {Suncuname }}=4630^{\# / 4 T} \cdot 20^{\prime}=92600^{\#}=92.6^{\mathrm{K}} \\
& \text { Min. Column LoAD }=0 \mathrm{kiPs} \\
& \text { Movea e rootne }=10^{k} \cdot 15.5^{\prime}+92.6^{k} \cdot\left(14^{\prime} / 3+1 \cdot 5^{\prime}\right)=726^{\text {K-FT }}
\end{aligned}
$$

Aspatit lat Resistance

$$
\begin{aligned}
& W_{T}=105 \mathrm{PCF} \cdot 14^{\prime} \cdot 3^{\prime} \cdot 20^{\prime}=88.2^{\mathrm{K}} \\
& E_{C L}=3^{F T} \\
& M_{R}=3^{F T} \cdot 88.2^{\mathrm{K}}=264 \mathrm{KFTT} \\
& \quad N_{G T} \text { Movar }=726-264=462^{\mathrm{KFT}}
\end{aligned}
$$

Smith Monroe Gray

ENGINEERS,INC.

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

LOADING PARAMETERS

LOADING PARAMETERS:			
ALLOWABLE SOIL	RING =	3,000	
	GHT =	105	PCF
REQD. O.T. SAFET	TOR =	1.5	
STR.INCR.FOR HOR	ADS =	1.33	
VERTICAL D	OAD =	0.00	KIPS
VERTICAL	OAD =	0.00	KIPS
HORIZON	OAD =	102.60	KIPS
MOMENT @ TOP OF	TING =		FT-KIPS
FOOTING DIMENSIONS:			
FTG. LENGTH (L) =	9.0	FT (PAR.TO	LOAD)
FTG. WIDTH (W) =	20.0	FT (PERP.T	O LOAD)
FTG. THICKNESS (FT) =	1.50	FT	
FOOTING DEPTH (D) =	0.0	FT	
PIER LENGTH (PL) =	3.0	FT	
PIER WIDTH (PW) =	20.0	FT	
PIER HEIGHT (PH) =	14.0	FT	
CONCRETE WEIGHT =	166.5	KIPS	
SOIL WEIGHT =		KIPS	
TOTAL WEIGHT =	166.5	KIPS	

DESIGN METHOD 1	
OVERTURNING MOM. $=$	462.0 FT-KIPS
SOIL PR. FROM DL $=$	925.0 PSF
SOIL PR. FROM MOM. $=$	$(1,711.1)$ PSF
MIN. PRESSURE $=$	(786.1) PSF
MAX. PRESSURE $=$	2,636.1 PSF
DOES NOT APPLY AS UPLIFT AT BACK OF FOOTING	

$$
\begin{array}{|rrl}
\hline \text { DESIGN METHOD 2 } & & \\
\hline \mathrm{e}= & 2.77 \mathrm{FT} \\
\mathrm{Pr} \mathrm{~L}= & 5.18 \mathrm{FT} \\
\text { MAX. PR }= & 3,217.0 & \mathrm{PSF} \quad \text { <--- GOVERNS }
\end{array}
$$

\qquad
\qquad
\qquad
\qquad DATE \qquad REV. \qquad
\qquad
\qquad OF

Rap Crasher \& Stomate Bundiner \qquad (BUILDING \#3)

* Simisar in Drsign to Agenentía STonate Buidinge, Reterence Sat. for jwfo Not Sham HERE
* No Inoterior Biris/wans, cemera of Buidoine uses A moment frame for teansvense stasility
* Sae Moder Ourpot for Member Demanos
* Foundaton Desiom Simiaar to Age Builoingeg Cowmn Reactiows < Ace Buibaine, ok By Insferión

Use Island foundation to Support Singer coumn e Open face DEmAND

$$
\begin{align*}
& P_{\text {max }}=131^{K} \quad(\text { LRHD }) \tag{LR+D}\\
& P_{H t}=10^{\text {kuPs }} \\
& P_{a L}=70^{\mathrm{k} / \mathrm{s}} \quad \text { (BuLomine ONLy, No footme) }
\end{align*}
$$

* Suoina ok By Inspetion

See Spratosubit

$$
\text { USE } 14^{\prime \prime} \times 9^{\prime} \text { SQ FTG w/\#G'S C } 120 C
$$

Sinsiury (ASD) Rxous

$$
\begin{array}{ll}
\text { Max. } \text { Thasien }=12^{\text {kiPS }} & L C 26 \\
V_{\text {Lont }}=24^{\text {kPMS }} & \\
V_{\text {TMats }}=8 \text { kes } & L C 37 \\
\hline
\end{array}
$$

Smith Monroe Gray
ENGINEERS, INC.

CLIENT: LAKESIDE INDUSTRIES
PROJECT: MAPLE VALLEY ASPHALT PLANT FOUNDATION DESIGN
BY: BS
SHEET: \qquad OF \qquad
DATE: 11/2/2018

SINGLE REINFORCED RECTANGULAR CONCRETE FOOTING ANALYSIS

FOOTING CRITERIA:			APPLIED LOAD:				
L:	9.00	FT		P :	131.00		
W:	9.00	FT	LOAD FACTOR:		1.00		
DEPTH:	14.00	IN	$\mathrm{P}_{\mathrm{u}}: \quad 13$			131 K	
COVER: $\quad 3.00 \mathrm{IN}$							
			REINFORCEMENT IN 9.00 FOOT DIRECTION:				
CONCRETE DESIGN CRITERIA:			BAR SIZE:				
CONC f_{s} :	4000	PSI	QUANTITY:		10		
REINF F_{y} :	60000	PSI					
$\beta_{2}=$	0.85		REINFORCEMENT IN 9.00 FOOT DIRECTION:				
			BAR SIZE:		6		
COLUMN BEARING AREA:			QUANTITY:		10		
L:	52.00	IN					
W:	36.00	IN	ALLOWABLE SOIL BEARING PRESSURE:			3.00 KSF	
SOIL BEARING:							
FTG DL=	14.18	K	$\mathrm{f}_{\mathrm{p}}=$	1.79 K	KSF ($P+\mathrm{DL}$)	DEMAND $=$	0.60
$\mathrm{P}+\mathrm{DL}=$	145.18	K	$\mathrm{f}_{\mathrm{p}}=$	1.62 K	KSF (P_{u} ONLY		
PUNCHING SHEAR:							
$\mathrm{V}_{\mathrm{u}}=$	99.12	K	$\phi V_{n}=$	403.77		DEMAND $=$	$\underline{0.25}$
CONCRETE DESIGN FOR 9.00 FOOT DIRECTION:							
$A_{s}=$	4.40				$a=$	0.72	
$A^{\text {, min }}$ =	2.07				$c=\beta_{1}{ }^{*} \mathrm{a}=$	0.85	
	10.625	IN		$\varepsilon_{1}=[(d-c)$	c)/c] ${ }^{*} 0.003=$	0.0347	.005, OK
ULTIMATE FORCES:			NOMINAL STRENGTH:			DEMAND RATIOS:	
$\mathrm{Mu}^{4}=$	39.62	FT-K	$\phi \mathrm{M}_{n}=$	203.26 F	FT-K	$\mathrm{Mu} / \phi \mathrm{Mn}=$	0.19
	21.08	K	$\phi \mathrm{V}_{\mathrm{a}}=$	108.86 K		$\mathrm{Vu} / \phi \mathrm{V} \mathrm{n}=$	0.19
CONCRETE DESIGN FOR 9.00 FOOT DIRECTION:							
$\mathrm{A}_{3}=$	4.40				$a=$	0.72	
$A_{s, m i s}=$	1.92	$1 \mathrm{~N}^{2}$			$c=a / \beta_{1}=$	0.85	
d=	9.875	IN		$\varepsilon_{\text {t }}=[(d-c)]$	c) $/ \mathrm{c}]^{*} 0.003=$	0.0320	.005, ok
ULTIMATE FORCES:			NOMINAL STRENGTH:			DEMAND RATIOS:	
$\mathrm{M}_{\mathrm{V}}=$	65.50	FT-K	$\phi \mathrm{M}_{\mathrm{n}}=$	188.41 F	FT-K	$\mathrm{Mu} / \phi \mathrm{Mn}=$	0.35
$\mathrm{V}_{\mathrm{v}}=$	31.69	K	$\phi V_{n}=$	101.18 K		$\mathrm{Vu} / \phi \mathrm{Vn}=$	0.31

\qquad
\qquad
\qquad DATE, \qquad REV. \qquad
\qquad
\qquad of

Bar Development
HeorkD Divenopment
Covk Reqs:

$$
E_{x p o s t o}=2^{\prime \prime}
$$

$$
\begin{aligned}
& \operatorname{Min} \phi=6 d b \quad(\# 3-\# 8) \\
& \text { Cast Aumast EARASt }=3^{n} \\
& l_{\text {ara }}=R \cdot d_{6} \\
& l_{d h_{1}}=\left(\frac{S_{y} \cdot \psi_{c} \cdot \psi_{c} \cdot V_{y}}{50 \cdot \lambda \cdot \sqrt{s_{c}^{c}}}\right) \cdot d_{b}=13.3 \cdot d_{b} \rightarrow 7=11.6^{\prime \prime} \mathrm{M}_{1 \mathrm{~N}} \\
& S_{y}=60000 \text { PSI } \\
& \psi_{e}=1.0 \text { (Uncomio) } \\
& \psi_{c}=0.7 \quad\left(\text { Covke }>21 / 2^{\prime \prime}\right) \\
& \psi_{r}=1.0 \\
& S_{c}^{\prime}=4000 \mathrm{PS} 1 \\
& l_{d d_{2}}=8 d_{b} \\
& l \operatorname{dh}_{3}=6^{k}
\end{aligned}
$$

Splee Desion

$$
* D_{k}<50 \% \rightarrow \text { Luss B SPLuck }
$$

Spuce, $l_{S T}=1.3 \cdot l d$ or 12^{n}

$$
\begin{aligned}
& l_{d}=\left(\frac{s_{y} \cdot \Psi_{t} \cdot \psi_{e}}{X-\lambda \cdot \sqrt{s_{i}^{\prime}}}\right) d_{b \rightarrow} \rightarrow \begin{array}{l}
49.3 \mathrm{dbe} C^{\# 6}=37^{\prime \prime} \\
6.6 d_{b} C^{\# 7}=54^{\prime \prime}
\end{array} \\
& S_{y}=60000 \mathrm{ps} \quad x=25 \quad \text { e } \# 6 \\
& \psi_{t}=1.3 \quad 20 \mathrm{e} \# \\
& \psi_{e}=1.0 \text { (Unceaso) } \\
& S_{c}^{\prime}=4000 \mathrm{ps}
\end{aligned}
$$

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

ENGINEERS,INC.

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

ENGINEERS, INC.

CLIENT	LAKESIDE INDUSTRIES, INC.	
PROJECT	MAPLE VALLEY ASPHALT PLANT	
	EQUIPMENT STORAGE BUILDING	
BS	BATE $4 / 8 / 2019$	

JOB NO. 18-183B SHEET \qquad OF \qquad

EQUIPMENT STORAGE BUILDING:

DL = SELF WEIGHT
LL = 125 PSF (LIGHT STORAGE)
SNOW LOAD = 25 PSF <- CONTROLS
ROOF LIVE LOAD = 20 PSF

WIND \& SEISMIC (SEE DESIGN CRITERIA)

(S $\frac{\text { NORTH }}{1 / 8^{*}=1^{1}-0^{*}}$ ELEVATION
\qquad
\qquad
\qquad

Eoupment Storage: Roof Lesion
Max. Pressure
Deeming DL $=3$ PSt
Wind, $0.6 \mathrm{~W}=V_{\text {Amiss, }} 24 \mathrm{ist}$ (Pasmive), 25 BA (Negative)
$S_{\text {Now }}=25 \mathrm{ASt}$
Roof Live Load $=25$ PSF
Max. LoAD Combination Pressure $=28$ Pst $(a+$ Snow $)$
Try Vireo PLB $36 \times 22 G \mathrm{w} / \mathrm{z}$-Purus $\mathrm{C} 4^{\prime} \mathrm{oc}$

$$
M_{\max }=\omega l^{2} / 8=29 \operatorname{Rt}\left(4^{\prime}\right)^{2} / 8=58^{17 \cdot 1 / M T} \text { OK V }
$$

Z. Furn lone, $w=28 \mathrm{PSt} x^{4}$ 'OC $=112 \mathrm{PLF}$

$$
\text { C } 30^{\prime} \operatorname{SAN}, 12^{\prime \prime} \times 3 \frac{1}{2} 2^{\prime \prime} \times 126 A \rightarrow \omega_{\text {numen }} 153 \mathrm{RL}
$$

\qquad
\qquad
\qquad
\qquad OF

Equipment Storage: Wan Desion
Max. Wino Parssune, $0.6 \omega=21 \mathrm{Pst}$
Toy Vanes PLB 36×22 ga Decking w/ z-lumen 0 c 6^{\prime} oc max.
Pen Parnous, $M_{n} / \Omega=439^{H \cdot A T}$

$$
M_{\text {ant }}=21 \text { PSF } \times 1^{F T} \times\left(6^{\prime}\right)^{2} / 8=95^{A \cdot H} \text { of }
$$

Z Pumas $L_{\text {aAA }}=21 \mathrm{ASF} \times 6^{\text {KT }}=126 \mathrm{PLF}$
C $15^{\prime} \mathrm{SPAN} \rightarrow 6^{\prime \prime} \times 21 / 2^{4} \times 14 \mathrm{GA} \rightarrow \omega_{\text {ALow }}=147$ PL
Use Vireo PLB $36 \times 226 A \mathrm{w} / 6^{n} \times 2^{1 / 2 "} \times 146 A$ Zlamuse b $^{\prime \circ}$ oc Manx
FLEXOSPAN - CEE AND ZEE LOAD TABLES

CEE		Simplo Span						zEE		Siluple Span						3 cr Moro Spans. Std. Lap						
		16 Gauge		14 Gavge		12 Gauge				16 Gsuge		14 Guuge		1268ug		16 Gauge		14 Gauga				
Soction	Bay	$21 / 2^{\circ} \mathrm{Fla}$	$31 / 2 \text { Flar }$	21/2 Flar	$31 / 2 \mathrm{Flan}$	$21 / 2^{\circ}$ Flar	13 M2 Fuar	Stacton	88	21/2. Fi	$1312^{\prime} \mathrm{FL}$	21/2'9.	$3112^{+} \mathrm{F}$	21/2*	क 312×7.	21/2	$31 / 2 \mathrm{Fl}$	$21 / 2^{\prime}$ F.	31/2 ${ }^{\text {Pr }}$	21/2'A	$131 / 2 \mathrm{Fl}$	
6^{*} Web	10 H	251	-	331	-	480	\square	6^{*} Web	10t	254	-	231	-	499	.		-	兂	-	年	.	
	12π	174	-	230	.	333	.		12 tr	126	.	230	-	346	.	.	-	\bigcirc	-	-	-	
	14%	128	.	169	.	244	.		14%	129	.	169	.	254	.	.	-	-	.	.	.	
	15%	111	-	147	.	213	.		15 f	113	.	147	-	221	.	176	.	235	.	357	\div	
	18%	77	.	102	.	148	-		18%	78	.	102	.	154	.	118	.	157	.	238	.	
	20%	62	.	82	-	120	-		20%	63	.	82	.	124	.	94	.	124	.	188	-	
	22π	51	.	68	.	99	.		22\%	32	.	65	-	103	-	75	.	101	-	153	,	
	24%	43	.	57	.	83	-		24%	44	-	57	.	86	\checkmark	63	-	84	.	126	.	
	25 tr	40	-	53	.	76	.		25%	40	-	53	-	79	\square	38	.	76	-	116	-	
	28 t	32	.	42	.	61	-		28 ft	32	-	42	.	63	\bigcirc	46	-	60	-	91	-	
5 Web	124	260	2×9	341	365	493	545	$8^{\text {\% Wob }}$	12π	260	265	340	364	810	645	.	.	,	.	9	\cdots	
	14 m	191	198	250	268	362	400		14 f	181	195	250	267	374	401	\cdots	.	.	-	-	-	
	150	166	172	218	233	315	349		15 f	166	169	218	283	326	349	\cdots	\cdots	-	.	.		
	18 f	115	119	151	162	218	242		18%	115	117	151	161	228	242	15\%	158	222	235	345	388	
	20 n	93	97	122	131	177	196		201	80	96	122	131	183	195	127	129	178	188	275	293	
	22 \%	77	80	101	108	148	182		22%	77	78	101	108	151	162	105	107	145	154	223	238	
	$\frac{24 \%}{254}$	65	67	85	91	123	136		24%	85	66	85	91	127	138	85	90	121	129	185	195	
	25%	65	62	78	84	113	125		25\%	69	61	78	89	117	125	81	83	111	118	170	181	
	288	47	49	62	87	S\%	100		28%	47	48	62	66	93	100	65	66	87	93	133	142	
	30 E	41	43	54	58	78	87		300	41	42	54	58	811	87	56	57	76	81	115	123	
$10 . \mathrm{Web}$	20 tr	115	-	165	173	243	286	10. Web	20 ta	115	119	168	,	250	266	131	133	217	-	365	357	
	22 t	96	.	139	143	200	220		24π	80	82	116	-	173	185	96	97	154	.	248	283	
	24 n	80	-	116	120	168	185		25 n	74	76	107	-	165	170	89	91	142	-	225	242	
	$\frac{254}{251}$		\cdots		$\frac{119}{88}$	155	$\frac{170}{136}$		2817	59	60	85	.	127	136	72	74	114	.	179	191	
	25\%	59	.	${ }^{65}$	85	126	136		30 n	51	52	74	-	111	118	64	65	99	.	155	185	
	30\%	51	.	74 6	77	108	118		32\%	45	46	65	.	97	104	56	58	87	.	135	144	
	38 34 34	45	-	65	67	$\frac{94}{84}$	104		35\%	37	38	54	.	81	87	45	49	73	.	112	119	
	34% 35%	40	-	58	60	84	82		38%	32	33.	46	203	$\stackrel{6}{91}$	73	41	42	61	200	9	101	
	38%	37	\cdots	${ }_{4} 4$	48	79	87	$12^{\prime \prime}$ Wiob	20\%	\cdots	\div	183	203	801	345	\cdots	\checkmark	210	220	418	463	
12^{*} Web	20%	.	\cdots	185	206	293	344		25π	-	.	117	130	192	220	\bigcirc	-	142	151	285	324	
	24 \%	\cdots	.	128	143	203	239		28π	.	.	93	109	153	176	.	-	116	124	210	238	
	25\%	.	.	118	132	187	2200		30 n	-	.	31	90	133	153	.	.	102	109	183	207	
	28%	-	.	94	105	149	175		प2011	-	.	71	79	117	134	.	-	90	97	100	181	
	30 t	.	.	82	91	130	153		35 f	.	.	59	65	98	112	.	-	76	82	133	151	
	$\frac{32 t}{34 t}$	\cdots	-	72	80	114	134		37π	.	.	53	59	83	100	.	.	63	74	119	135	
	34 n	-	\cdots	64	71	101	119		Notes: 1. The weight of the section has not been subtracted from these vailues. 2. Both farges of merrber mustbe fuly braced. 3. These loads are based on													
	35it	-	-	51	57	85	$\underline{112}$															
	40%	.	.	46	51	73	88															

hoperoct

IAPMO/ICG Reports

Tecinnical Datn
Product Options
Deck Attachment
UL fire Ratings
Factory Mutual
LA City RR

PLem 36 or HSB . 36

Pronke Oimensions

Atachment Patemns to Supports

Section Properies

	Deck Weight		$\}_{\text {d }}$ for Deflection		Moment	
$\begin{aligned} & \text { Deck } \\ & \text { Gage } \end{aligned}$	Galy G6a	Phos! Painted	Singie Span	Muitiples Spans:	$+S_{\text {et }}$	$\mathrm{S}_{\text {eft }}$
	(PST)	(ps]	(im $\left.{ }^{4} / \mathrm{M}\right)$	(in ${ }^{4} / \mathrm{ft}$)	(in ${ }^{3} / \mathrm{ft}$)	(in $\left.{ }^{3} / \mathrm{K}\right)$
22	1.9	1.8	0.177	0.992	0.176	0.188
20:	2.3	2.2	0.219	$0.23 \pm$	0.230	0.237
18	2.9	2.8	0.302	0.306	0.314	0.331
16	3.5	3.4	0.381	0.38%	0.399	0.413

NOTE: Section properties based on $F y=50 \mathrm{ksh}$.

Allowable Reactions

Deck		End gearing		Interior Eearing	
Gage	$2{ }^{\prime \prime}$:	$3{ }^{4 \prime}$	$4{ }^{\prime \prime}$	$3^{\prime \prime}$	4".
22.	935	1076	1663:	1559	$167 \dagger$
20	1301	1492	1609	2100	2340
18	218\%	2484	2867.	3714	3950
16	3265	3699	3955:	5607	59

NotE: Allowable reactions are in pounted per loat of deck. widh and are based on $F_{y}=50 \mathrm{ksi}$,

The diference between the PLEn*-36 profte and HSB但36 profile is the method of sidelag athachent; the panels themselves are identicat in both geometry and raterial propertias. The
 the 8 profile, while. "HS" (high shear) indicates a
 the same profite.

Type 8 profthes are 1.5 -itch deep shucturaf rout deck that provide boh vertical load ato diaphranm shear capacity. The profile contains 6 ribs and is 36 mehes wide with male and temate edges, creating an interlocking side lap when installed. The wide ribs make the profile an ideal stfuctural substrate to uniformly suppart roofing systems ayplied on top of the deck. Type B promes are typicaliy used for span conditions of to feet or tess.

Extensive full sc̣aie diaphragrn testing is att angoing effort with B deck to produce a more ethesent foof diaphragm in terms of capacity and installation. The cursent industry use of mechanicai fasteners (\#st and Ppensek), restraining elements (Sear ramem Systems) and the ingovative pinchicik th in side tap attachenent sysleme ate all rirgct results of testing.

SMG ENGINEERS		SK -
BS	EQUIPMENT STORAGE BUILDING	Sept 28,2018 at 5:46 PM
$18-183 B$		EQUIP STORAGE BLDG Rev_09....

Basic Load Cases

	BLC Description	Category	X Gr..	Y Gr...	Z Gra.	Joint	Point			
1	DEAD LOAD	None		-1.05					Area,.	Surfa.
3	ROOF SNOW LOAD	None								
5	WIND TRANS - WINDWARD + GCpi	None							1	
6	-GCpl	None							5	
7	WIND TRANS - LEEWARD + GCpi	None							5	
8	-GCpi	None							5	
9 10	WIND LONG + GCDi	None							5	
10 16	-GCpi	None							5	
16	SEISMIC LONG	ELX	-. 27						5	
17	SEISMIC TRANSVERSE	ELZ			-. 25					

18-1838
EQUIPMENT STORAGE BUILDING
\qquad

Load Combinations

\qquad

Load Combinations (Continued)

Lomds BLC 6, GCpi
SHEET C12

\qquad

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Memb.	Shape	Code Check	Leci[0]	LC Sh...	Loc[fil	Dir	LC	phi*...phi'P	*Mn..	phi*Mnz.	Cb Eqn
1	M26	W12×40	300	15	24.023	30	v	24	76.8. 526.5	63	109.609	1.283 H 1.
2	M23	W12×40	277	15	26.020	30	y	26	76.8. 526.5	63	111.109	$1.3 \mathrm{H1}$
3	M19	W12x40	276	15	26.020	0	Y	26	76.8. 526.5	63	111.108	$1.3 \mathrm{H1}$
4	M22	W 12×40	275	15	26.020	0	y	26	76.8. 526.5	63	111.109	$1.3 \mathrm{H1}$
5	M20	W12x40	275	15	26.020	30	Y	26	76.8. 526.5	63	111.11	$1.3 \mathrm{H1}$
6	M21	W 12×40	275	15	26.020	0	y	-26	76.8. 526.5	63	111.107	$1.3 \mathrm{H1..}$.
7	M29	L $3 \times 2 \times 4$	195	0	37.000	0	z	35	1.36638 .88	826	1.291	$1 \mathrm{H} 2 \ldots$
8	M124	W12×40	146	7.656	24.044	0	y	-24	156... 526.5	63	156.941	1.153 H1...
9	M123	W12×40	130	7.5	21.035	0	V	21	172...526.5	63	164.766	1.164 $\mathrm{H} 1 .$.
10	M119	W 12×40	130	7.5	26.040	0	y	24	172... 526.5	63	164.679	1.163 ${ }^{\text {H1... }}$
11	M125	W 12×40	120	7.521	26.041	0	y	26	191... 526.5	63	174.578	$1.187 \mathrm{H} 1 .$.
12	M126	W12x40	119	7.521	26.041	0	y	26	191... 526.5	63	174.575	1.187 H1...
13	M120	W12×40	118	7.521	26.041	0	V	26	191...526.5	63	174.578	$1.187 \mathrm{H} 1 .$.
14	M121	W12 ${ }^{\text {W }} 12 \times 40$	118	7.521	26.041	0	y	26	191... 526.5	63	174.572	1.187 $\mathrm{H} 1 .$.
15	M122	W12x40	117	7.521	26.041	0	y	26	191... 526.5	63	174.575	1.187 $\mathrm{H1}$
16	M33	L $3 \times 2 \times 4$	110	0	37.000	0	y	27	1.366 38,88	826	1.291	1 H 2
17	M7	W24×104	106	21	27.014	0	v	27	796...1381.5	234	1083.75	$1.656 \mathrm{H1}$
18	M5	W 24×104	106	21	27.014	0	y	27	796... 1381.5	234	1083.75	$1.656 \mathrm{H1}$
19	M9	W24×104	104	21	27.013	0	y	27	796...1381.5	234	1083.75	$1.667 \mathrm{H1} .$.
20	M3	W 24×104	104	21	27.013	0	y	27	796... 1381.5	234	1083.75	$1.667 \mathrm{H1}$
21	M31	L $3 \times 2 \times 4$	101	0	37.000	0	z	33	1.36638 .88	826	1.291	$1 \mathrm{H2}$
22	M16	W 24×104	. 098	0	27.052	0	y	27	449... 1381.5	234	1083.75	1.764 H1...
23	M15	W 24×104	. 098	0	27.052	0	y	27	449... 1381.5	234	1083.75	$1.764 \mathrm{H1} .$.
24	M17	W 24×104	095	0	27.051	0	y	27	449... 1381.5	234	1083.75	$1.739 \mathrm{H1}$.
25	M14	W 24×104	. 095	0	27.051	0	Y	27	449...1381.5	234	1083.75	$1.739 \mathrm{H1}$
26	M27	W12×40	. 093	15	23.003	0	2	23	76.8.526.5	63	85,463	$1 \mathrm{H1}$
27	M28	W12×40	. 092	15	23.003	0	z	33	76.8.526.5	63	85,463	$1 \mathrm{H1}$
28	M25	W12×40	087	15	23.003	0	z	23	76.8. 526.5	63	85.463	$1 \mathrm{H1}$
29	M24	W12x40	087	15	23.003	0	z	33	76.8. 526.5	63	85.463	1 H1...
30	M10	W24×104	. 077	19	36.018	0	y	36	878...1381.5	234	1083.75	1.425 $\mathrm{H1}$
31	M4	W 24×104	. 077	19	36.018	0	V	36	878.... 1381.5	234	108375	1.425 H1.
32	M8	W24×104	. 071	19	29.016	0	y	36	878.1381 .5	234	1083.75	$1.7 \mathrm{H}_{1}$
33	M6	W24×104	071	19	29.016	0	y	36	878... 1381.5	234	1083.75	$1.7 \mathrm{H1}$
34	M1	W 24×104	061	13.5	26.008	0	y	26	796...1381.5	234	1083.75	$1.428 \mathrm{H1}$
35	M11	W24×104	. 046	13.5...	26.008	0	y	26	796.. 1381.5	234	1083.75	$1.425 \mathrm{H1}$
36	M18	W24×104	. 040	15.0...	21.020	15.033	y	27	449... 1381.5	234	1083.75	$1.72 \mathrm{H1}$
37	M13	W24×104	. 038	0	26.020	15.033	v	27	449...1381.5	234	1083.75	$2.06 \mathrm{H}_{1}$
38	M12	W24×104	032	19	26.008	17.615	y	17	878... 1381.5	234	1083.75	$1.496 \mathrm{Hl}_{1}$
39	M2	W 24×104	. 032	19	26.008	17.615	v	17	878...1381.5	234	1083.75	1.497 H 1.
40	M32	$13 \times 2 \times 4$	011	0	18.000	0	2	27	1.366 38,88	826	1.291	1 H 2.
41	M30	L $3 \times 2 \times 4$	001	0	18.000	0	2	29	1.36638 .88	826	1.291	$1 \mathrm{H2}$
42	M34	L $3 \times 2 \times 4$	000	0	14.000	0	z	27	1.36638 .88	826	1.291	1 H1..

\qquad
\qquad
\qquad

Equipment Storage: Mambies \& Connection Design
MAIN Caumn: W24×104
$D_{\text {Emend }}\left(D_{R}=0.11 \quad P_{\text {ER }} \quad R_{\text {SSA }}\right.$, OK $\left.\sqrt{ }\right)$
Axial, $P_{\text {max }}=23^{\text {kiPs }}$ (commission) $9^{\text {keas }}$ (tension)
Moment, $M_{\text {x, max }}=102_{k-F T}^{k-T T}$

$$
M_{y, \text { max }}=8^{k-T}
$$

SHeAR, $\begin{aligned} V_{Y, \text { max }} & =5^{\text {Kips }} \\ V_{y, \text { max }} & =2^{\text {kips }}\end{aligned}$
Deft, $\quad \Delta_{y}=1 / 2^{\prime \prime} \rightarrow L / 500$

$$
\Delta_{x}=3 / 16^{\prime \prime} \rightarrow 4 / 1300
$$

Base Plait Design

$$
\begin{aligned}
& M_{\text {Ax }} \text { Compression }=2^{\text {kits }} \\
& \text { MAx TENBION }=9^{\text {kips }} \\
& V_{x} \text { max }=5^{\text {kits }} \\
& V_{y} \text { max }^{\text {mils }}
\end{aligned}
$$

1" Base Rate w/(6) I"申 Ancitors OK By Inspletion

Column: M7
Shape: W24x104
Material: A572 Gr. 50
Length: 21 ft
I Joint: N4
J Joint N22
Envelope
Code Check: 0.106 (LC 27)
Report Based On 97 Sections

AISC 14th(360-10): LRFD Code Check
Direct Analysis Method

\qquad
\qquad
\qquad

Eavimewt Stomata: Member \& (xn Design (comic)
Main Beam: W24x 104
$D_{\text {fematio }}\left(D_{R}=0.10\right.$ Pbs $R_{1 S A}$, OK V $)$
Axime, $P_{\text {max }}=6^{\text {kits }}$

$$
T_{\text {max }}=6^{\text {kits }}
$$

Moment, $M_{x m a x}=102$ wAFT

$$
M_{y \text { max }}=6^{k-M T}
$$

S $\begin{aligned} & \text { Hear }, \\ & V_{y} \text { max }=19^{\text {k, Ps }} \\ & V_{x} \text { max }=2^{\text {k. Ps }}\end{aligned}$
Deter, $\quad \begin{aligned} \Delta y & =1 / y^{\prime \prime} \rightarrow L / 1400 \\ \Delta x & =1 y^{\prime \prime}\end{aligned}$

$$
\Delta x=1 y^{u}
$$

* fou CSP Un to Cowman of By Inspection

SEE BUILDING 1, 2, 3 CALCULATIONS FOR CJP W24 BEAM REQUIREMENTS (SIMILAR)

Beam: M15		
Shape: W24×104 Material: A572 Gr.50 Length: 30.067 ft I Joint: N 21 J Joint N 15 Envelope Code Check: 0.098 (LC 27) Report Based On 97 Sections		
		$\mathrm{Vz} \frac{1.129 \text { at } 0 \mathrm{ft}}{-.506 \text { at } 28.501 \mathrm{ft}} \mathrm{k}$
$\mathrm{T} \frac{0 \text { at } 28.814 \mathrm{ft}}{-.012 \text { at } 10.649 \mathrm{ft}} \mathrm{k}-\mathrm{ft}$		$\text { My } \frac{4.367 \text { at } 15.346 \mathrm{ft}}{-.117 \text { at } 25.369 \mathrm{ft}} \mathrm{k}-\mathrm{ft}$
$\mathrm{fa} \frac{.174 \text { at } 30.067 \mathrm{ft}}{-.187 \text { at } 28.814 \mathrm{ft}} \mathrm{ksi}$		$f(z) \frac{1.295 \text { at } 15.346 \mathrm{ft}}{-1.295 \text { at } 15.346 \mathrm{ft}} \mathrm{ksi}$

AISC 14th(360-10): LRFD Code Check

Direct Analysis Method

Bending Flange Bending Web

Compact Compact

Compression Flange
Compression Web
$y=y$
Lb
KL/r
L Comp Flange
L-torque
Tau_b
z-z 30.067 ft 35.905 phi*Pnc 449.478 k phi*Pnt 1381.5 k phi*Mny 234 k-ft phi*Mnz 1083.75 k -ft phi*Vny 361.5 k phi*Vnz $\quad 518.4$ k $\begin{array}{ll}\mathrm{Cb} & 1.764\end{array}$
\qquad
\qquad
\qquad EQUIPMENT STORAGE BUILDING
\qquad
\qquad
\qquad OF

Demand $\quad\left(D_{R}=0.30 \quad P_{t r} \quad R_{1 S A}, O_{k} V\right)$
Axine,

$$
\begin{aligned}
& P_{\text {max }}=2^{\text {kes }} \\
& T_{\text {max }}=3^{\text {xps }}
\end{aligned}
$$

Momewt, $M_{y \text { max }}=30^{k-1 / 4}$

$$
M_{y \text { max }}=6^{k-1}
$$

Sitbe, $\begin{aligned} V_{\text {ymax }} & =3^{\text {k+1/s }} \\ V_{x \max } & =1^{\text {kits }}\end{aligned}$

Dth, $\Delta y=\left\langle 1 / 8^{\prime \prime}\right.$ okl

$$
\Delta_{X}=\sim 1^{\prime \prime}(\text { (hoos }), 1_{2}^{\prime \prime}(\text { wer }) \rightarrow L / 720
$$

Connuenow to Main Lowmn (shbar Onvy)
DBL Lui Ancet $w /(3)$ Pous of $3 / 44 \varnothing$ Pats of by lassecien
X-Bineting: $L 3 \times 2 \times 1 / 4$

$$
M_{\text {ax }} \cdot T_{\text {Ension }}=7.6^{\mathrm{k} / \mathrm{s}} \quad 刀_{\mathrm{h}}=0.20<1.00 \mathrm{k} /
$$

Connerion

$$
U_{\text {se }}(2) 3 / 4 \phi \text { Bons, } V_{\text {a }} / \mathrm{s}=11.1^{k} \times 2=23.8^{k \cdot n s} \text { ok }
$$

REQ'D 1/4" WELD LENGTH $=15.2 \mathrm{kip} / 3.71 \mathrm{k} / \mathrm{in}=4.1^{\prime \prime}$

Beam: M26 Shape: $\mathrm{W} 12 \times 40$ Material: A572 Gr. 50 Length: 30 ft I Joint: N 21 J Joint: N 22 Envelope Code Check: 0.300 (LC 24) Report Based On 97 Sections		
		$\mathrm{Dz}=\frac{.097 \text { at } 5 \mathrm{ft}}{.028 \text { at } 30 \mathrm{ft}} \text { in }$
	2.471 at 30 ft	$\mathrm{Vz} \frac{.446 \text { at } 14.688 \mathrm{ft}}{-.461 \text { at } 15 \mathrm{ft}} \mathrm{k}$
$T \frac{0 \text { at } 0 \mathrm{ft}}{0 \text { at } 0 \mathrm{ft}} \mathrm{k}-\mathrm{ft}$		$\text { My } \frac{1.454 \text { at } 15 \mathrm{ft}}{-.738 \text { at } 5.625 \mathrm{ft}} \mathrm{k}-\mathrm{ft}$
$\mathrm{fa} \frac{.235 \text { at } 0 \mathrm{ft}}{-.058 \text { at } 0 \mathrm{ft}} \mathrm{ksi}$		$\mathrm{f}(\mathrm{z}) \frac{1.584 \text { at } 15 \mathrm{ft}}{-1.584 \text { at } 15 \mathrm{ft}} \mathrm{ksi}$

AISC 14th(360-10): LRFD Code Check Direct Analysis Method

Max Bending Check Location Equation		$\begin{aligned} & 0.300 \text { (LC 解x Shear Check } \\ & 15 \mathrm{ft} \text { Location } \\ & \mathrm{H} 1-1 \mathrm{~b} \end{aligned}$			0.023 (y)	(y) (LC	2Max Defl Ratio	L/1517			
		30 ft		Location	21.563 ft						
				Span	2						
Bending Flange Bending Web					Compact Compact		Compression Flange Compression Web			Non-Slender Slender	$\begin{aligned} & Q s=1 \\ & Q a=1 \end{aligned}$
Fy phi*Pnc phi"Pnt phi'Mny phi*Mnz phi*Vny phi ${ }^{*}$ Vnz	50 ksi			y-y		z-z					
						Lb	30 ft		30 ft		
	$76.873 \mathrm{k}$		KL/	185.428		70.279					
	63 k -ft		L Com	Flange	30 ft						
	109.609 k -ft		L-torq		30 ft						
	105.315 k		Tau_b		1						
	1.283										

AISC 14th(360-10): LRFD Code Check
Direct Analysis Method

\qquad
\qquad
\qquad
\qquad
\qquad OF

Equipment Stonabe: Mamba \& Connection Design
Sreonomy Cowman: W12x40
Demand $\left(D_{R}=0.15\right.$ PaR PISA, OK/)
Axial, $\begin{aligned} P_{\text {max }} & =14 \mathrm{kMPs} \\ T_{\text {max }} & =1 \mathrm{kiP}\end{aligned}$

$$
T_{\text {max }}=1 \mathrm{k}, \mathrm{p}
$$

Moment, $M_{x \text { max }}=23^{\text {kAT }}$

$$
M_{y \text { max }}=-
$$

Shat, $V_{y \text { max }}=5^{\text {kips }}$

$$
V_{x_{\text {max }}}=-
$$

Der, $\Delta y=0$ (bbs ${ }^{\text {" }} \rightarrow L / 380$

Base Pans Dterlon

$$
\text { PL } 3 / y^{\prime \prime} w /(4) I^{\prime \prime} \phi \text { Annates } G K \text { By Insketron }
$$

End Connections
DBL Lip Anal $w(2)^{3 / 4} 4^{\prime} p$ bouts of By Inspection

Column: M124		
Shape: W12x40 Material: A572 Gr. 50 Length: 21 ft I Joint: N123 J Joint: N2491 Envelope Code Check: 0.146 (LC 24) Report Based On 97 Sections		$\mathrm{Dz} \frac{.001 \text { at } 4.156 \mathrm{ft}}{-.172 \text { at } 21 \mathrm{ft}} \text { in }$
		$\mathrm{Vz} \frac{.073 \text { at } 0 \mathrm{ft}}{-.051 \text { at } 21 \mathrm{ft}} \mathrm{k}$
$\mathrm{T} \frac{0 \text { at } 0 \mathrm{ft}}{0 \text { at } 7.656 \mathrm{ft}} \mathrm{k} \text {-ft }$		$\text { My } \frac{.267 \text { at } 11.813 \mathrm{ft}}{-.017 \text { at } 1.531 \mathrm{ft}} \mathrm{k}-\mathrm{ft}$
$\mathrm{fa} \frac{.231 \mathrm{at} 0 \mathrm{ft}}{.035 \text { at } 21 \mathrm{ft}} \mathrm{ksi}$		$\mathrm{f}(\mathrm{z}) \frac{.291 \text { at } 11.813 \mathrm{ft}}{-.291 \text { at } 11.813 \mathrm{ft}} \mathrm{ksi}$

AISC 14th(360-10): LRFD Code Check Direct Analysis Method

\qquad

ENG|NEERS,INC.
\qquad
\qquad
\qquad DATE \qquad REV. \qquad

Eaupmar Stomme fonomtion
Max Beating Renttion = $11^{\text {kips }}$ (ADD)
BEAMN AMA $=15^{\prime} \times 15^{\prime}=225 \mathrm{ft}^{2}$

Sunng: Cake
Max Hon: Lono $=131 \mathrm{ku}$
Dead LoAO $=770 \mathrm{kis}$
Frition Restract $=0.5 \times 770$ kes $=385 \times 15$

$$
F S=385^{k} 131^{k}=29 \text { ok }
$$

* No Upar By losiatrion
* No Ovemumair By Juspetman

Aug 16, 2018
\qquad

Envelope Joint Reactions

\qquad
Smith Monroe Gray \qquad
ENGINEERS,INC. \qquad
BY \qquad DATE \qquad FIEV. \qquad

Eaupmbur Stornoe Foundano
Footwle Demmos par RsA (LNO Lone Comingtrons)

$$
\begin{aligned}
& \text { Mux }=174 \text { in } \frac{L 6}{55}-2 y^{4 / 4} Q 54 \mathrm{~B} \\
& \text { Muy }-\frac{13.32^{k}+4}{2}+55 \\
& V_{y y}=64^{-131} \quad 55 \quad \rightarrow 331+e x^{2} \quad 50
\end{aligned}
$$

USE $3^{3} \times 18^{\prime \prime}$ Footing w/ $8^{154 B}$

Smith Monroe Gray

ENGINEEAS,INO.
Job \#: 18-183B
By: BS
Project:
Date: $8 / 16 / 2018$ Sheet

Concrete Slab Design per ACl 318-08
 IN COMPLIANCE W/ACI 318-14

Applied Forces:

Ultimate Shear, $\mathrm{V}_{4}=$
Ultimate Moment, $\mathrm{M}_{\mathrm{G}}=$

10 kips
18 ft -kips

Slab Properties:

Width $=$	12 in
Depth $=$	18 in
Cover $=$	3 in
$d=$	14.69 in
$\mathrm{f}_{\mathrm{c}}=$	4000 psi
$\beta_{1}=$	0.85

Capacity:

Shear: $\phi=0.75$
$\Phi V_{0}=\Phi V_{n}=\phi^{*} 2^{*} b^{*} d^{*} V f^{\prime} c$
$\Phi V_{c}=\Phi V_{n}=\quad 16.72 \mathrm{kips}$

Bending: $\phi=0.9$

$$
\begin{aligned}
& \Phi M_{\mathrm{n}}=\phi\left(\mathrm{A} s^{*} \mathrm{f} y^{*}(\mathrm{~d}-\mathrm{a} / 2)\right) \\
& \Phi \mathrm{M}_{\mathrm{m}}=2675 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

Demand Ratios:

$V_{4} /\left(V_{\mathrm{A}}=\right.$	0.60	SLAS IS OK IN SHEAR
$\mathrm{M}_{\mathrm{L}} / \Phi \mathrm{M}_{\mathrm{n}}=$	0.67	SLAB IS OK IN BENDING

Smith Monroe Gray
ENGINEERS. N (NC.
fob \#: 18-1838

By: BS
Project:

Concrete Slab Design per ACl 318-08
 IN COMPLIANCE W/ACI 318-14

Applied Forces:

Ultimate Shear, $\mathrm{V}_{4}=$
Ultimate Moment, $\mathrm{M}_{9}=$
3.7 kips
3.3 ft -kips

Longitudinal Reinforcement:

Bar Size $=$	5
Spacing $=$	12 inches o.c.
$f_{y}=$	60000 psi

Slab Properties:

Width =	12 in
Depth $=$	8 in
Cover =	4 in
$d=$	3.69 in
$\mathrm{f}_{\mathrm{c}}{ }^{\text {e }}=$	4000 psi
$\beta_{1}=$	0.85

Capacity:

Shear: $\phi=0.75$

$$
\begin{array}{ll}
\Phi V_{c}=\Phi V_{n}=\phi^{*} 2^{*} b^{*} d^{*} V^{\prime} c \\
Q V_{c}=\Phi V_{n}= & 4.20 \mathrm{kips}
\end{array}
$$

Bending: $\downarrow=0.9$

$$
\begin{gathered}
\Phi \mathrm{M}_{\mathrm{n}}=\Phi\left(\mathrm{As}^{*} \mathrm{fy} \mathrm{y}^{*}(\mathrm{~d}-\mathrm{a} / 2)\right) \\
\Phi \mathrm{M}_{\mathrm{n}}=\quad 4.83 \mathrm{k} \mathrm{ft}
\end{gathered}
$$

Demand Ratios:

$\mathrm{V}_{4} / \mathrm{DV}_{n}=$	0.88	SLAB IS OK IN SHEAR
	\ddots	
$\mathrm{M}_{\mathrm{i}} / \mathrm{DM}_{n}$	$=0.68$	SLAB IS OK IN BENDING

SMG ENGINEERS

Sept 28, 2018
6:40 PM
Checked By: \qquad

Envelope Plate Forces (per ft)

Plate					M× [k-ff]		My [k-ft]					
1	P123	mac 6	6.371	55) 85658	17.239	55	1.971	55	0	47	4661.382	96255
2		min -	- 777	58-2.56 55	-5.516	58	-638	58	-1.856	55	-1229159-353 50	. 10158
3	P124	max 6	6.122	55.06955	11.649	55	425	55	,	47	$.82460 \quad 25 \quad 55$	5761
4		min	- 62	58-.019 58	-3.721	58	- 122	58	-2.665	55	-1270859-271 58	-5761
5	P125		5.838	55.03156	6.982	55	14	55	0	47	1.61560 .07761	
6		min-	-442	58-.078 55	-2.288	58	-. 031	56	-3.092	55	-1309 59-058 60	47261 44
7	P164	max 5	5.642	552.80755	17.153	55	2.195	55	1.475	55	12.13611 .3085	4458
8		min.	-988	58-.764 58	-5.301	58	-. 779	58	0	47	-12.285 $60-1.4095$	
9	P126	max 5	5.567	55.01656	3.089	55	094	55	0	47	239460 . 073	
10		min.	- 261	58-033 55	-1.186	56	-. 014	56	-3.267	55	-13.473159-058	
11	P127	max 5	5.309	55.00756	0	47	061	57	0	47	3.16460 .0646	39260
12		min -	-. 075	58-014 57	-. 511	56	0	56	-3.414	55	-13.886 $59-05860$	
13	P103	max 5	5.143	55.43158	17.042	55	2.059	55	-3.414	47	13.24951 22458	-.385 60
14		min	-. 422	58-2.728 55	-2.713	58	-. 301	58	-432	46		. 94555
15	P128	max 5	5072	55.00255	175	58	036	57	,	47	3.9246006261	
16		min	0	47-.006 60	-2.783	55	0	47	-3.511	55	-14.35159-059	
17	P146	max	5.04	55.13758	0	47	271	58	5.024	55	2.34661 .09	1
18		min	0	$47 \quad 0 \quad 47$	-10 551	55	0	47	0	47	-2.36 60-697	
19	P129m	max 4	4.858	55.01455	473	58	039	58	0	47	4.6716006161	1
20		min	0	47-012 58	-4.971	55	0	47	-3.565	55	-1488459 -06 60	
21	P326	max 4	4.756	571.73957	10.852	57	1.336	57	1.685	57	1.40758 .21555	53755
22		min	0	47-.074 56	. 923	56	-. 04	56	,	47	-11.84359-631 58	-1.733 58
23	P104	max 4	4.7415	55.11255	10.943	55	386	55	0	47	12.41761 .26655	. 51555
24		min -	-329 5	58-016 58	-1.716	58	-. 038	58	- 994	55	$-12.26360-.14558$	37858
25	P399	$\max 4$	4.672	$\begin{array}{lll}57 & 0 & 47\end{array}$	0	47	267	45	0	47	1.68760 .23260	99660
26		min	0	47-.127 55	-9.79	55	0	47	-5.233	55	-1.915 $59-23261$	-1 61
27	P130	max 4	4.668	55.02255	556	58	054	58	0	47	5.40560 .06161	3561
28		min	0	47 -02 58	-6.793	55	. 018	55	-3.585	55	-15.50259 -06 60	-. 35460
29	P145	max 4	4.664	551.3755	0	47	0	47	6.703	55	. 675582.16661	16660
30		min	04	$\begin{array}{llll}47 & 0 & 47\end{array}$	-9.372	55	-3.199	55	.	47	$-58155 \cdot 2.17160$	- 15661
31	P417	max	4.62	$\begin{array}{llll}57 & 0 & 47\end{array}$	11.82	57	1.594	57	0	47	11.252601 .358	29660
32		min	$0 \quad 4$	47-2.131 57	0	47	0	47	-1.614	57	-11.58261-708 55	1.01258
33	P327m	max 4	4.5595	$57 \quad 0$	7.069	57	283	57	2.233	57	1.94661 .44158	54861
34		min	04	47-.055 57	-. 902	56	0	47	0	47	-1223159-095 55	-1.01158
35	P131m	max 4	4.502	55.02655	45	58	07	58	0	47	6.12360 .06161	33959
36		min	0	47-.027 58	-833	55	. 027	55	-3.583	55	-1622159-06160	-.34160
37	P147	max 4	4.489	55.20355	0	47	306	58	4.842	55	4.13261 .597 1	40361
38		min	04	47.047	-12.125	55	,	47	O	47	-4.149 60-597 60	-.394 60
39	P165	max 4	4.406	$\begin{array}{lll}55 & 163 & 45\end{array}$	11.407	55	594	55	1.484	55	12.63861 .31855	45960
40		min-	-601	58 0 47	-3.356	58	- 262	56	,	47	-12.61 60-337 58	32956
41	P132	max 4	4.36	55.02455	181	58	086	58	0	47	6.82560 .06161	41359
42		min	04	47-.035 58	-9.644	55	. 026	55	-3.572	55	-17.06559-061 60	-32760
43	P328	max 4	4.3425	57.04955	3.951	57	098	55	2.523	57	3.02261 .07258	. 55961
44		min	04	47-.006 56	-. 908	56	0	47	0	47	-12.585 $59-04861$	-669 58
45	P184m	max	4.35		14.226	55	1.784	55	689	56	15.094611 .4455	. 64555
46		min -	-835	$\begin{array}{llll}58 & -7 & 58\end{array}$	-5.503	58	-. 777	58	,	47	-15.21360-.782 58	-79 58
47	P105	max 4	4.2915	55.00958	5.919	55	087	59	0	47	11.72861 .07161	3461
48		min -	-227	58-045 55	-. 862	58	0	47	-1.365	55	-11.75 60-052 60	26760
49	P133m	$\max 4$	4.2425	55.01855	0	47	103	58	0	47	$7.51560 \quad 06 \quad 61$. 50759
50		min	04	47-.043 58	-10.774	55	. 012	55	-3.57	55	-18.061\|59 - 06	-.31360

18-183B

EQUIPMENT STORAGE BUILDING
6.40 PM

Checked By: \qquad

Envelope Plate Forces (per ft)

Plate						$\begin{gathered} M \times[k-[f] \\ 17.36 \end{gathered}$	55	$\begin{gathered} \text { My [k-fl] } \\ 1.979 \end{gathered}$	$\frac{\mathrm{LC}}{55}$	$\begin{array}{c\|c} \hline M x y[K-f]] & L C \\ \hline 1.718 & 55 \end{array}$		Fx[k] LC Fy $[k]$ LC $F x y[k] L C$ 		
1														
2			-8.257 5	55)-2.564		-5.398	58	-. 63	58	.	47	13.65760	- 35355	-.867 55
3	P212	max	. 7295	58.065		11.733	55	433	55	2.537	55	13.48461	- 2555	-. 52758
4		min	-6.015 5	55-. 023		-3.638	58	- 1114	58	2.53	47	-13.28660	- 27	- -45955
5	P72	max	8295	582.807		16.995	55	2.171	55	0	47	08261	1.30855	- 72461
6		min	-5.797 5	55-.762		-5.457	58	-. 803	58	-1.638	55	-12.455 59	-1.415 58	- -1.08460
7	P211	max	. 5465	58.027		7.034	55	147	55	2.972	55	12.92861	07561	. 31358
-		min	-5.7375	55,-081		-2.237	58	-. 024	56	0	47	-12.88360	-055 60	-267 61
9	P210	max	3595	58.013		3.115	55	1	55	3.156	55	12.46461	. 07161	1215 58
10		min	-5.471 5	55.-036		-1.16	56	-. 008	56	.	47	-12.50460	-. 05660	- 223 \|61
1	P209m	max	1695	58.005		0	47	067	57	3.31	55	12.04861	. 0626	1. 1960
12		\min	-5.217 5	55-017		- 507	56	0	47	0	47	-12.12760	-. 056	-. 261
13	P266m	max	04	471.902		12.026	57	1.469	57	0	47	13.51660	19855	1.53758
14		min	-5.092 5	570	47	0	47	0	47	-1759	57	-13.00661	-634 58	-.552 55
15	P90	max	04	47.146	58	,	47	279	58	0	47	16.67960	1.06560	6.59359
16		min	-5.046 5	550	47	-10.772	55	0	47	-5.074	55	-21.25959	-2.391 59	-3.529 60
7	P208	max	04	470	47	164	58	041	57	3.414	55	11.6661	.0661	. 18660
18		min	-4.984 5	55-.007	58	-2.794	55	0	47	O	47	-11.75460	-.05760	-18761
19	P265 m	max	04	470	47	7.928	57	322	57	0	47	12.61860	43258	. 83858
20		min	-4.889 5	57-052		-. 008	56	0	47	-2.373	57	-1242861	-135 55	-.333 55
21	P207 ${ }^{\text {m }}$	max	04	47.012		45	58	044	58	3.473	55	11.2961	05961	. 1860
22		min	-4.773 5	55-014		4.994	55	,	47	0	47	-11.38760	-058 60	-177] 61
23	P52	max	4495	583.044		16.94	55	2.172	55	224	59	11.17761	1.42255	2661
24		min	-4.679 5	55, -32		-2.74	58	-. 382	58	-414	56	-11.31360	-. 7985	-.635 60
25	P264	max	04	47.062	55	4.566	57	121	55	0	47	11.86360	. 07358	49958
26		min	4.662 .5	570	47	-268	56	0	47	-2.706	57	11.84961	-05 61	- 30461
27	P91	max	04	471.43		0	47	0	47	0	47	17.70760	1.26160	8.10959
28		min	-4.658 5	550	47	-9.691	55	-3.237	55	-6.818	55	-17.90159	-4.505 5	-5.882 60
29	P233m	max	9195	58.81	58	14.336	55	1.759	55	607	56	18.0461	19758	. 64658
30		min	4.654	55-2.356	55	-5.468	58	-. 607	58	0	47	-17.54760	-417 55	-658 55
31	P206m	max	04	47.02	55	526	58	. 059	58	3.499	55	10.93861	0661	17160
32		min	-4.585 5	$55-022$	58	-6.823	55	. 014	55	0	47	-11.03260	-06 60	- 16661
33	P250 m	max	0.4	47.061	45	0	47	199	45	0	47	1.1460	. 04360	. 4760
34		min	-4.581 5	550	47	-10.405	57	0	47	-4.637	55	-2.148 59	-. 04361	-472 61
35	P71	max	435	58.163	45	11.204	55	568	55	0	47	. 98361	. 31955	86961
36		min	-4.574 5	550	47	-3.56	58	- 287	56	-1.66	55	-12.14859	-343 58	-1.088 60
37	P251m	max	04	47.077	45	0	47	183	45	0	47	1.97960	05360	46260
38		min	-4.567 5	550	47	-10.605	57	0	47	-4.419	55	-2.231 59	-. 05361	. 46461
39	P393	max	04	470	47	,	47	274	59	4.955	55	17.39361	1.76661	5.88 61
40		min	4.558	57-137	55	-10.097	55	,	47	O	47	20.58359	-2.344 59	-6.474 59
41	P252 m	max	04	47.069	45	0	47	19	45	,	47	2.82960	. 05360	45960
42		min	4.5485	550	47	-10,373	57	,	47	-4.171	55	-2.936 61	-.05361	-.46161
43	P253m	max	04	47.064	45	0	47	165	45	0	47	3.68260	. 05360	45560
44		min -	-4.522 5	550	47	-9.75	57	0	47	-3.948	55	-3.79361	-. 05361	-458 61
45	P256 m	max	04	47.354	45	0	47	319	45	0	47	6.2260	21955	1.18 58
46		min	-4.51 5	570	47	-6.139	57	0	47	-3.429	57	-6.345 61	-40758	-678 55
47	P249 m	max	047	470	47	0	47	0	47	0	47	.32860	. 09360	. 47660
48		min	-4.51 55	55-227	55	-9.849	55	-21	57	-4.926	55	-2072 59	-094 61	-.47861
49	P254 m	max	047	47.057	56	0	47	137	45	0	47	4.53460	. 05260	. 50758
50		min -	4.502 55	55.	47	-8.805	57	,	47	-3.769	55	-4.849 61	-05261	-45461

Company
Designer Job Number Model Name

SMG ENGINEERS
BS
18-183B
EQUIPMENT STORAGE BUILDING

Sept 28, 2018
6:41 PM
Checked By: \qquad

Envelope Plate Forces (per ft)

6:41 PM
Checked By:

Plate						Mx [k-fif		My [k-(t)		Mxy[k-fi] L			
1	P87	max				0	47		58	0	47		83.05159
2		min	-3.372	550	47	-13.32	55	0	47	-4.233	55		
3	P149	max	3.349	55. 213	55		47	384	58	-4.176	55		-1.52460
4		min	0	470	47	-13.246	55	0	47	4.176	47	${ }_{-6.2136}^{61} 60-415615$. 04557
5	P137	max	3.947	550	47	0	47	175	45	0		-6.236 $10.452-.41500$	-049 56
6		min	0	47-.069	58	-13.184	55	0	47	-3.962	55	-24.76359-222 59	1.43459
7	P199	max	0	470	47	0	47	175	45	3.907	55	9.82561-222 61	- 39460
8		min	-3.867	55-. 07	58	-13.108	55	0	47	,	47	-9.888 60-.132	- 2461
9	P86	max	0	47.19	55	0	47	348	58	0	47	11.23660 .04458	-236 2442
10		min	-2.978	55	47	-13.102	55	0	47	-4.003	55	-20.53859-571 59	2,44259
11	P88	max	0	47.237	55	0	47	4	45	0	47	13.85760 296 60	- 3.87750
12		min	-3.884	55	47	-13.099	55	0	47	-4.544	55	-22.17559-1.219 59	
13	P150	max	2.948	55.191	55	0	47	355	58	3.943	55	6.87461 .34461	-1.876 60
14		min	0	470	47	-13.062	55	0	47	0	47	-674 60-344 61	-174 60
15	P136	max	4.008	550	47	0	47	157	58	0	47	-6.97 60 -345 .635	-166561
16		min	0	47.067	58	-13.003	55	0	47	-3.778	55	$22.48159-1455$	1.055 529
7	P148		3.868	55.238	55	0	47	4	45	4.491	55	5.34361 .49561	-.32680 16961
18		min	0	470	47	-12.982	55	0	47	0	47	-5.363 $60-49560$	16961
19	P200	max	0	470	47	0	47	159	58	3.72	55	9.68261 .40961	
20		min	-3.93	55-068	58	-12.962	55	0	47	.	47	-9.732 60.10960	. 10361
21	P138	max	3.872	550	47	0	47	176	45	0	47	$11.50560-10960$	-099 60
22		min	0	47-.074	58	-12.927	55	0	47	-4.196	55	-27.76859-348 5159	2.02159
23	P198	max	0	470	47	0	47	176	45	4.143	55	10.18961. 16461	-554 60
24		min	-3.79	$55-.074$	58	-12.809	55	0	47	,	47	-10.22560-164 60	
25	P85	max	0	47.175	55	0	47	302	58	0	47	10.10860 .11261	- 1.436850
26		min	-2.7	$55 \quad 0 \quad 4$	47	-12.556	55	0	47	-3.857	55	-19.543159-.405 59	-1.20160
27	P151	max	2.6615	55.176	55	0	47	311	58	3.791	55	7.41261 .29261	
28		min	0	470	47	-12.544	55	0	47	,	47	-7.439 60-292 60	. 28860
29	P135	max	4.071	550	47	0	47	14	58	0	47	$8.89260-29260$	$\begin{array}{r}-27961 \\ \hline 80459\end{array}$
30		min	0	47-06	58	-12.49	55	0	47	-3.657	55	-20.69259-097	. 80459
31	P201	max	0	470	47	0	47	143	58	3.595	55	9.69961 .09161	-30360 $0 \quad 45$
32		min	-3.993	55-062	58	-12.477	55	0	47	0	47	-9.75760-09260	5
33	P89	max	$0 \quad 4$	47.2015	55	0	47	305	58	0	47	15.29560 .63460	00159
34		min	4.5015	55 0 4	47	-12.29	55	0	47	-4.892	55	-22.30459-1.773 59	-2.444 60
35	P139	max 3	3.7785	550	47	0	47	193	45	0	47	12.9460 .17160	2.91859
36		min	04	47-.06	45	-12.149	55	0	47	-4.418	55	31.83959-502 59	. 8886
37	P147	$\max 4$	4.4895	55.2035	55	0	47	306	58	4.842	55	4.13261 .59761	-88660
38		min	04	$\begin{array}{llll}47 & 0 & 4\end{array}$	47	-12.125	55	306	47	4.842	47	4.414960 .59760	. 40361
39	P197	max	04	$47 \quad 0$	47	0	47	193	45	4.367	55	10.8561 .16761	. 68661
40		min -	-3.693 5	$55-064$	45	-11.982	55	0	47	0	47	-10.8860-16760	-. 68360
41	P152 m	max 2	2.466	55.168	55	0	47	261	58	3.71	55	7.8861 .25461	37360
42		min	04	47004	47	-11.779	55	-. 063	55	0	47	-7.90760-254 60	-364 61
43	P84	max	04		55	0	47	253	58	0	47	9.08260.149 61	1.63759
44		min -	-2.512	$55 \quad 0 \quad 4$	47	-11.77	55	-. 072	55	-3.781	55	-18.57959-299 59	-1.1460
45	P202m	max	0	47.0045	55	0	47	125	58	3.526	55	9.82961 .0861	. 06160
46		min	4.0895	55-053 5	58	-11.736	55	0	47	0	47	$\begin{array}{llllll}-9.894 & 60 & -.08 & 60\end{array}$. 05661
47	P134	$\max 4$	4.1475	55.0065	55	0	47	121	58	O	47	8.19860 .05761	63159
48		min	04	47-.052 5	58	-11.729	55	0	47	-3.592	55	-19.25 59-068 59	-.30360
49	P391	max	04	$47 \quad 0 \quad 4$	47	0	47	419	45	4.415	55	17.71361 .77161	3.82661
50		min	3.4545	$57 .-2284$	45	-11.305	57	-	47	0	47	21.483/59)-1.195 59	-3.812 59

SMG ENGINEERS

Sept 28. 2018
6:41 PM
Checked By
\qquad

Envelope Plate Forces (per ft)

SMG ENGINEERS

Sept 28, 2018
6:41 PM
Checked By
\qquad

Envelope Plate Forces (per ft)

Plate			$\begin{gathered} \text { Qx[k] LC } 2 y[k] L C \\ 0 \\ 0 \end{gathered} 47\|2.334\| 57$			$\begin{gathered} M \times[k-f(t) \\ 0 \end{gathered}$	LC		$\begin{aligned} & \mathrm{LC} \\ & 4 Z \\ & \hline \end{aligned}$	May [k-tt] LC		Fx $[k]$ LC Fy [k] LC Fxy [k] LC		
1	P39	max				47	0	0		47				
2		min	-2.025 5	550			-2.021	57	-13.101					
3	P481	max	2.0015	55.2 .197		-2.021	47	-13.101	$\frac{55}{47}$	-4.951	45	-3.36 61-21.11261	-8.00160	
4		min	0	470	47	-1.913	57	-12.965	55	4.74	47	-3.146601203260	6.16860	
5	P35	max	0	472.066	58	569	55	.	47	0	47	1.41561-12.01961	-6.152 61	
6		min	- 1935	550	47	.	47	-128	55	-2.564	58	-1.4156021-21.21161	3,96861	
7	P37	max	04	472.438	57	582	55	0	47	-2,564	47	-1.41461-21.21161	-3.9860	
8		min	-349 5	550	47	0	47	-12.683	55	-2.839	57	-2.03 $61-21.8286$	5.54561	
9	P477	max	1945	55.1 .879	58	587	55	0	47	2.39	60	1.2466014 .89660	-5.556 60	
10		min	04	4710	47	0	47	-12.643	55	0	47	-1.243 $61-14.8826$	4.03660	
11	P36	ax	1065	550	47	295	55	0	47	0	47	3966023.84560	-4.02461	
12		min	04	47-2.496	57	0	47	-12.636	55	-2.339	58	-.395 61-23.8361	-1.91461	
13	P38	max	04	470	47	005	61	.	47	-2.339	47	-. 596515927.96660		
14		min	-. 1785	55-2.466	58	. 06	58	-12.57	55	-2.718	57	-596 591-27.93961	-2.82561	
15	P479	max	355	552.332	45	595	55	,	47	2738	45	1.6956014 .33760	- 13260	
16		min	04	470	47	0	47	-12.551	55	0	47	-1.693 61-14.3226	5.13260	
7	P476	max	4	470	47	301	55	0	47	2.189	60	3616022.548		
8		min	-109 5	55-2.352	60	0	47	-12.474	55	0	47	-.36 61-22 52761		
19	P447	max	2.0235	550	47	0	47	0	47	0	47	. 567602.23260	-276160	
20		min	04	47-2.653	55	-2.514	55	-12.456	57	-6.18				
21	P478 m	max	175	550	47	. 011	59	-12.456	47	-6.612	45	$\begin{array}{rl}-582 & 61-2.232 \\ 516 & 60 \\ 26.945 \\ 60\end{array}$	-96661	
2		min	04	47 -2326	60	-045	58	-12.429	55	2.612	45	-516 61616.264560	3.18260 -3.17461	
23	P5	max	04	470	47	0	47	12.429	47	5.926	55	-516 2.505 1	19361	
24		min	-1.962 5	55-2716	55	-2.438	55	-12.368	57	5.926	47	-2.24 61-1.377 59	-193 61	
25	P33	max	04	471.8335	58	657	55	0	47	0	47	. 9136020.02650	-19860	
26		min	-232	55	47	0	47	-12.159	55	-2.322	58	-911 61-20.03761	-3.02460	
27	P475	max	2325	551.636	58	676	55	0	47	2.098	58	. 8386014.54360	3.28160	
28		min	04	47	47	0	47	-11.973	55	0	47	-836 61-14.53161	-3.27161	
29	P34	max	1255	550	47	271	55	,	47	0	47			
30		min	04	47-2.495 5	57	0	47	-11.922	55	-2.146	58	-242 $64161-20.97461$	-1.25661	
31	P9	max	04	470	47	526	45	0	47	3.319	55	-699595.84660	-1.262 60	
32		min	-. 1815	59-2406	55	0	47	-11.907	57	0	47	-531 $61-5.85761$	-.385 61	
33	P7 m	max	04	$47 \quad 0$	47	518	57	0	47	3.642	55	799593.58860	1.11359	
34		min	-. 315	57-2.964	55	0	47	-11.817	57	0	47	-649 $61-3.593 \mid 61$	-. 622	
35	P10 m	max	. 0984	453.3855	55	28	45	0	47	3.055	55	2035914.20159	1.06859	
36		min	4	4704	47	0	47	-11.76	57	0	47	-. $13881-1361$	-.784 61	
37	P474m	max	04	47 0 4	47	278	55	,	47	1.94	58	2456019.25960	-. 163960	
38		min	-. 1285	5 -2.316 5	57	0	47	-11.733	55	1.94	47	-244 61-19.24861	-1.634 61	
39	P8 m	max	04	473.2685	55	063	58	0	47	3.491	55	. 5885915.86959	1.55559	
40		min -	-204 55	55	47	-. 079	55	-11.732	57	,	47	-496 61-14.08661	-1.248 61	
41	P449 m	max	315	$\begin{array}{llll}57 & 0 & 4\end{array}$	47	515	45	0	47	0	47	. 086602.70160	1.0160	
42		min	04	47-2.973 5	55	0	47	-11.584	57	-3.824	55	-222 59-2.70361	-1.01261	
43	P448 m	max	2185	553.596	55	051	58	0	47	0	47	. 052601.6258	45160	
44		min	047	47 0 4	47	-. 09	55	-11.505	57	-3.685	55	-.051 61-1.287 61	-455 61	
45	P451 m	max	.17345	4504	47	. 526	45	0	47	0	47	. 066583.25360	1.11760	
46		min	047	47-2.479 5	55	0	47	-11.479	57	-3.521	55	-198 59 -3.254 61-	-1.122 61	
47	P11 m	max	04	47.04	47	628	45	,	47	2.885	55	579597.46660	70859	
48		min	-218 5	57-1.689 5	55	0	47	-11.35	57	,	47	-415 $61-7.4861$	-.078 61	
49	P450 m	max	047	473.6845	55	28	45	,	47	0	47	$0 \quad 45$	46460	
50		min	-. 098145	450	47	0	47	-11.346	57	-3.253	55	-. 062 [59-2.187\|61		-468 61

SMG ENGINEERS

EQUIPMENT STORAGE BUILDING

Sept 28, 2018
6:41 PM
Checked By
\qquad

Envelope Plate Forces (per ft)

Company
Designer Job Number Model Name

SMG ENGINEERS

EQUIPMENT STORAGE BUILDING

Sept 28, 2018 6:42 PM
Checked By
\qquad

Envelope Plate Forces (per ft)

Plate		$Q x[k] L C Q y[k] L C$				$\begin{aligned} & m \times[k-(f)] \\ & \hline \end{aligned}$	47	$\begin{aligned} & M y[k-f t] \\ & 0 \end{aligned}$	47	Mxy[k-ft]		Fx[k] LC Fy[k] LC Fxy[k] LC 1346608396098760	
1	P398					M \times, 1 -				47			
2		min	0	47-1.692	55		-10.121	55	-3.245	55	-7.271	55	
3	P91	max	0	471.43	55	.	47	0	47	- 271	47	17.707 601.261608 .10959	
4		min	4.658	550	47	-9.691	55	-3.237	55	-6.818	55	-17.901 $59-4.405$ [59-5.882 60	
5	P447	max	2.023	550	47	0	47	0	47	0			
6		min	0	47-2653	55	-2.514	55	-12.456	57	-6.18	55	$\begin{array}{lllllll}.567 & 602.23260 & .96760 \\ -582 & 61-2.232 & 61 & .966 & 61\end{array}$	
7	P397	max	3.197	570	47	0	47	-12456	47	-6.18	47	-582 $61-2.232$ 61-.966 61	
8		min	0	47-3.239	57	-4.883	55	6.188	55	-5.835	55		
9	P399	\max	4.672	570	47	0	47	267	45	-5.835	55	-1.71-59-1.112 $61-26358$	
0		min	0	47-127	55	-9.79	55	0	47	-5233	55	1.68760 .232 -1.915 59	
1	P90	max	0	47.146	58	0	47	279	58	,	55		
12		min	-5.046	550	47	-10.772	55	0	47	-5.074	55	$16.679601 .065606 .593 ~$ -21.259 1	
13	P400	max	4.235	570	47	0	47	302	45	0	47		
14		min	0	47-185	45	-10.523	57	0	47	-5.069	55	(1.09260	
15	P92	max	0	473.661	55	0	47	0	47	0	47	17.6376017 .59260112 .10961	
16		min	3.679	550	47	-3.954	57	-6.104	55	-4.971	55	-17.689 $61-17.622611^{-12.08960 ~}$	
17	P39	max	0	472.334	57	0	47	, 104	47	-4.911	47	3.3576021 .08760799361	
18		min	-2.025	550	47	-2021	57	-13.101	55	-4.951	57	-3.36 $61-21.11261-8.00160$	
19	P249	max	04	470	47	0	47	0	47	0	47	. 32860.09360 .47660	
20		min	-4.51	55-227	55	-9.849	55	-21	57	-4.926	55	-2.072 $590-09461-47861$	
21	P89	max	0	47.201	55	0	47	305	58	0	47	1529560.634605 .00159	
22		min	-4.501 5	550	47	-12.29	55	0	47	-4.892	55	-22.30459-1.773 $59-244460$	
23	P401	max	369	570	47	0	47	419	45	0	47	2.59360	
24		min	04	47-228	45	-10.77	57	0	47	-4.749	55	-2.674 61-.177 61-1.156\|61	
25	P140	max 3	3.6115	55.193	55		47	0	47	0	47	15.0766000454 .18259	
26		min	04	470	47	-10.844	55	-21	55	-4.672	55	-37.482 59 - -73 59 -1.344 60	
27	P250	max	04	47.061	45	0	47	199	45	0	47		
28		min	-4.581 5	55	47	-10.405	57	0	47	-4.637	55	-2.148 $59-04361-47261$	
29	P248	max	04	470	47	0	47	0	47	0	47	$\begin{array}{llllllllllll}312 & 61 & 319 & 58 & 24 & 60\end{array}$	
30		min	-3.584 5	55-1.005	55	-8.01	55	-1.047	55	-4.617	55	-1.997 59 - -27 61-245 61	
31	P88	max	04	47.237	55	0	47	4	45	0	47		
32		min	-3.884	55	47	-13.099	55	0	47	-4.544	55	-22.17559-1.219 $59-1.876$ 60	
33	P402	max	3.215	570	47	0	47	398	45	0	47	$\begin{array}{lllllllllll}3.16360 & 16960 & 1.18 & 60\end{array}$	
34		min	04	47-209	45	-10.513	57	0	47	-4.432	55		
35	P251	max	04	47.077	45	0	47	183	45	0	47	1.97960 .05360 .46260	
36		min	-4.567 5	55.	47	-10.605	57	0	47	-4.419	55	-2.231 $59-.05361-46461$	
37	P139	max 3	3.7785	55	47	0	47	193	45	0	47	12.9460 .171602 .91859	
38		min	04	47-.06	45	-12.149	55	0	47	-4.418	55	-31.83959--502 $59-.88660$	
39	P141	max 2	2.679	55.999	55	0	47	0	47	0	47	$18.46560 \quad 678606.44659$	
40		min	04	4704	47	-8.077	55	-1.029	55	-4.318	55	-45.357 $599-1.824 .59-1.551 / 60$	
41	P87	max	04	47.2125	55	0	47	. 378	58	0	47		
42		min	-3.372 5	5504	47	-13.32	55		47	-4.233	55	-21.475599-.829 59 -1.524 60	
43	P138	max 3	3.8725	55	47	0	47	176	45	0	47	11.50560 .054602 .02159	
44		min	0	47-.074 5	58	-12.927	55	0	47	-4.196	55	-27.76859-348-59-.55460	
45	P252m	max	04	47.0694	45	-	47	19	45	0	47	2.82960 .05360 .45960	
46		min	4.548	550	47	-10.373	57	0	47	-4.171	55	-2.936 61-.05361-461 61	
47	P403	max 2	2.8095	70	47	,	47	335	45	0	47	3.77660 .162601 .19460	
48		min	4	47-193 4	45	-9.862	57	,	47	-4.166	55	-3.856 61-163 61-1.199 61	
49	P86	max	04	47.19	55	0	47	348	58	0	47	$\begin{array}{lllllllllll}11.23660 & .044 & 58 & 2.44259\end{array}$	
50		min -2	-29785	55	47	-13.102	55	,	47	-4.003	55	20.53859-571-59-1.317]60	

Company:
Page:
Specilier:
Address:
Project:
Phone I Fax: | E-Mail:

Profis Anchor 2.7.6

Specifier's camments:

1 Input data

Anchor type and diameter:
Effective embedrent depth:
Materiá:
Evafuation Service Report:
Issued IValid:
Proof:
Stand-off instalation:
Anchor plate:
Profile:
Base makeriay:
Iristallation:
Reinforcement:

HET-HY 200 + HAS-E 1

$h_{\text {efact }}=10.000$ in. $\left(h_{\text {esfiritit }}=-\right.$ in. $)$

5.8.

ESR-3!87
11/1/2016 3/1/2016
Design method ACl 318-14/Chem
$e_{n}=0.000 \mathrm{in}$. (no stand-aff); t $=1.000 \mathrm{in}$.
$t_{x} \times l_{y} \times t=25.000$ in. $\times 14.000 \mathrm{in} \times 1.000$ in.; (Recommended plate thickness: not catouated W shape $(A \mid S C) ;(L \times W \times T \times F T)=24,100 \mathrm{in} \times 12.800 \mathrm{in} . \times 0.500 \mathrm{in} \times 0.750 \mathrm{in}$.
cracked concrete, $4000, f_{c}^{\prime}=4,000 \mathrm{psi} i \mathrm{~h}=18.000 \mathrm{in}$., Temp. shortlong: $32 / 322^{\circ} \mathrm{F}$
hammer drilled hole, Installation condition: Ory
tension: condition B, shear: condition B; no supplemental spliting reinforcement present edge reinforcement: none or < No. 4 bar

Geametry [in.] \& Loading flb, in.lb]
STEEL DEMANDS ARE SUFFICIENTLY LOW, ANCHORS \& BASEPLATE ARE

www．hilti．us：

wwwhitius			Profis Anchor 2．7．6
Company：		Page：：	2
Specifier：		Project：	2
Address：		Suturaject 1 Pos，No．i	
Phone IFdx： E－Mail：		Date ：	9／28／2018

2 Load case／Resulting anchor forces

Load case：Design loads

Anchar reactions［lb］
Tension force：（＋Tensian－Cornpression）

Anchor	Tension force	Shear force	Shear forte x	Shear force y
1	4，833	1，213	f， 167	－400
2	4，833	1,233	T， 167	－400
3	4，833	1，233	1，167．	－400
4	4，833	1，233：	1，167	400：
5	4.833	1，233	†，167：	． 400
a	4，833	1，233：	1，16\％	－400
max．cnacrete campressive strain： max．concrete comprassive stress： resulting tension force in $(x / y)=(0.000 / 0.000)$ ： resulting compression force in $(x / y)=(0,000 / 0.000)$			$-\mathrm{F}_{\mathrm{g}} \mathrm{l}$ －［psi］ 29,000 向！ 0 揓！	

$0.000 .009):$
resultieg compression force in $(x / y)=(0,000 / 0.000)$ ： 0 縣

3 Tension load

	Load $\mathbf{N}_{\text {ua }}[l \mathrm{~b}]$	Capacity ${ }_{\text {p }} \mathrm{Na}_{\mathrm{a}}$［ib］		Status
Steel Strength ${ }^{*}$	4，533	20，541：	$\cdots \quad 17:$	OK
Gond Strength＊＊．	29，000	43，943：	$66:$	OK
Sustaned Tension Load Bond Strength：	N／A．	N／A	N／A	N / A
Concteke Greakrut Strengthe	29，000	34，532	84	OK

＊anchor having the frighest foading．＊anchor grotrp（anchors in tension）
3．1 Steel Strength
$N_{s a}=$ ESR value：feter to ICC－ESESR－318\％：

Variables

$A_{5 e n}[i n, 1$
$\quad 0.61$

Calculations
$\frac{N_{55}\{\mid t]}{43,910}$

Results

$\mathrm{N}_{\mathrm{sa}}[$［ tb$]$	16sem	$\pm \mathrm{N}_{5}$［ $[\mathrm{b}]$	$\mathrm{N}_{42}\left[{ }^{[6]}\right.$
43，910	9.650	28，541	4.833

Company:
Specilier:
Address:
Phone / Fax:
E-Maify

Page:
Project:
Sub-Project IPos, No:
Date: :
9/28/2014

3.2 Bond Strength


```
| N Nag
```

$A_{\text {ma }} \simeq$ see $A C$ 318-14, Section 17.4.5.1, Fig. R. 17.4.5. (b)
$A_{\text {tiad }}=\left(2 C_{16}\right)^{2}$

$\mathrm{ACl} 318-14 \mathrm{Eq} .(17.4 .5 .4 \mathrm{c})$
$y_{\text {ec, Ma }}=\left(\frac{1}{1+\frac{e_{N}}{\varepsilon_{N a}}}\right) \leq 1.0$
$\mathrm{ACl} 318.14 \mathrm{Eq},(77.4 .5 .1 \mathrm{~d})$

ACI 318-14 Eq. (17.4.5.3)

AC 318 -14.Eq. (17.4.5.4b)

$\mathrm{ACl} 318-14 \mathrm{Eq},(17.4 .5 .5 \mathrm{~b})$
$\mathrm{ACI} 31 \mathrm{~B}-\mathrm{t} 4 \mathrm{Eq} .(17.4 .5 .2)$
Variables.

τ ecuper [psu]	d_{a} (in)	$h_{01} \mathrm{~lm} .1$	$c_{3, \min }$ and	r_{40} [psi]
- 2,327	1.000	10.000	14.000	1,326
$e_{=1 N}(\underline{i n} \mid$	$\mathrm{eran}_{\mathrm{R}}[\mathrm{min}]$	$\mathrm{c}_{\text {as }}[\mathrm{in}]$	\pm	
0.000	0.000	20.543	1.000	

Casculations

$\mathrm{c}_{\mathrm{NH}}[\mathrm{ln}$ [$]$		$\mathrm{A}_{\text {man }}\left[\operatorname{lin} .^{2}\right]$	W
14.478	1,374.52	838.50	0.990
4f ecs Na	$400^{2} \mathrm{Na}_{3}$	Y PmPa	$\mathrm{N}_{\mathrm{b},}$ [[1] $]$
1000	1.000	1.000	41,654

Results

	\$ 5ans	d) $\mathrm{Nax}_{69}[\mathrm{lb}]$	N_{40} [ib]
67.604	0.650	43,943	29,000

www. hilti.us

Company
Specifier:
Adduess:
Phone I Fax: . |
E-Mail:

Page:
Project:
Stib-Project I Pes No.
Date:
$9 / 28 / 2018$
3.3 Concrete Breakout Strength

中 $\mathrm{N}_{\mathrm{ctg} \mathrm{g}} \geq \mathrm{N}_{\mathrm{uc}}$ ACl318-14 Table 17.3.1. 1
$A_{\text {sis }}$ see ACl 318-t4, Section 17.4.2.1, Fig. R 17.4.2.1(b)
$A \operatorname{sic}=9 h_{e t}^{2}$

ACl 318-14 Eq. (17.4.2.1c)

ACl 378-14Eq. (37.4.2.7b)

Variables

$\mathrm{h}_{\text {et }} \mathrm{Fin} \mid$	$\mathrm{e}_{\mathrm{G}, \mathrm{N}}(\mathrm{in}$]	$\mathrm{e}_{\text {e2, }} \sin \cdot 1$	c_{3} mun 9 in. $]$	Lf C, N
10.000	0.000 :	0.000 O	14.000.	ORO

$\mathrm{c}_{\text {ar }}[\ln]$	8	λ_{2}	$f_{6}[0 \times \mathrm{s}]$
20.543.	17	1.000	4,000

Calcutations

$\mathrm{A}_{\operatorname{kos}}[\mathrm{in} .1]$	$\mathrm{A}_{\text {N: } 0} \operatorname{tin}^{2} 3$	4 Ocis	(if ecz, ${ }^{\text {a }}$			
1,435.00	900.00	1.000	$\frac{1.000}{}$	0.980	U60nd	$\mathrm{N}_{5}(16)$

Results

	中 conerte	\% $\mathrm{N}_{\text {cta }}$ (l b]	Nas_{3} [tb]
53,127:	0.650	34,532	29,000

wWw．hilti．us
Company：
Specifier：
Address：
Phone I Fax：
Envalk：

Page：：
Praject：
Sub－Project I Pos．No．：
Date：：9／28／2018

4 Shear load

	Load $V_{u s}[1 \mathrm{~b}]$	Capacity \％$V_{\text {a }}$［ib］	Utilization $\rho_{v}=V_{u 0} \chi_{\phi} V_{n}$	Status：
Steet Strengith＊＊	1，233：	15,807	\cdots	OK
Steel failure（with lever arm）＊	N／A	N／A：	N / A	N／A
Pryaut Strength（Concrete Breakou： Strength controls）＊＊．	7.400	74，378	10	OK
Concrete edge fajure in direction $x+$＊＊	7，400	17，593	43	OK
＊aruchor having the highest foading．＊＊anchor group（relevan anchors）				

4．1 Stael Strength

$V_{\text {Sti }}$	$=\left(0.6 A_{s, 0, V} f_{1, t a}\right\}$ ．	reter to ICC－ES ESR－3187
	$\geq V^{\text {Ua }}$	ACł 318－14 Table 17．3．1．1

Variablas

$A_{\left.\text {se } \mathrm{Y} \text {［in．}{ }^{2}\right]}$	$5_{\text {asa }}[\mathrm{psi}]$	
0.61	72，500	26，345

Caiculations

$\frac{V_{53} \mathrm{Ib}}{26,345}$

Results：

$V_{9,0}[1]$	f sters	4）V39 化］	
26，345i	0.600	15,807	1，233

4．2 Pryouk Strengh（Concrete Ereakout Strength controls）

$A_{\text {NF：}} \operatorname{see} \mathrm{ACl}$ 318－14，Section 17．4．2．7．Fig．R 17．4．2．1（0）
$A_{\text {rect }}=9 h_{\mathrm{e}}^{2 \dot{t}}$
$4=\left(\frac{1}{\left.1+\frac{2 \mathrm{e}_{\mathrm{N}}}{3 \mathrm{~h}_{\mathrm{e}}}\right) \leq 10}\right)$
$A C l 318-14$ Eq．$\{17.4 .2 .7 c\}$
wern $=0.7+0.3\left(\frac{c_{a, m}}{1.5 中_{0 f}}\right) \leq 1.0$
$\mathrm{ACl} 3\{8 \mathrm{l}$ Eq．（17．4．2．4）

$A C 1318-14$ E4．（17．4．2．5b）

Varfables

k	hel［im］	Qontind	$e_{62 \times}[$ in	$\mathrm{c}_{\mathrm{amin}(1 \mathrm{n}}$ ］
2	$10.000:$	0.200	0.000	14.000
W con	C_{3}［in．$]$	k_{0}	$)_{\text {a }}$	f_{6}［psi］
1.000	20．543．	17	1.000	4，000

Calculations．

	$A_{\text {Pred }}\left[\mathrm{in}^{2}{ }^{2}\right]$	W．	Yeezes	Weds	4 men	$\mathrm{N}_{3}[16]$
1，435．00：	900.00	1.000	1.000	0.980	1.000	． 34.000
Results						
$V_{\text {rips }}$ 国	4 ancons	¢ $\mathrm{V}_{\mathrm{CPO}}[\mathrm{lo}]$	$V_{\text {va }}(\mathrm{lb})$ ］			
106，254．	0，700	74，378	7，400			

www.hiltì.us
Profis Anchor 2.7.6
Compary

Specisier:

Address:
Phone I Fax: :
Pago
Project:
Sub-Project I Pos. Nas
E-Mail:
Date::
9/28/2018

4.3 Concrete edge faifure in direction x x.

$\mathrm{ACl} 318-14 \mathrm{Eq}(17.5 .2 .1 \mathrm{~b})$
${ }_{4} V_{\text {Cht }} \geq V_{\text {uI }}$
Ave set AC\& 318.14, Section 17.5.2.1, Fig. R 17.5,2.1(b)
$A_{\text {vro }}=4.5 C_{i s}^{2}$
iverv. $=\left(\frac{1}{1+\frac{2 e v}{3 c_{a x}}}\right) \leq 10$
Uec, $v=0.7+0.3\left(\frac{c_{n 2}}{1.5 c_{21}}\right) \leq 1.0$
ACl 318-14 Table 173.1.1
$w_{b, 4}=\sqrt{1-\sigma_{c}} h_{s t} \geq 1.0$
$A C l 319-14$ E4. (17.5.2.tc)
$V_{\text {ic: }}=9 \lambda$ a $\sqrt{f_{\mathrm{E}}} \mathrm{c}_{\mathrm{ek}}^{\mathrm{t}}$
$\mathrm{ACl} 318 \mathrm{M} 14 \mathrm{Eq} \cdot(17.5 .2 .5)$

ACl 318.14 Eq. (17.5.2.6b)
ACl 318-14 Eq. (17.5.2.8)
U. $: \quad$ a

ACl $318-14 \mathrm{E}$. $(17.5 .2 .2 \mathrm{~b})$

Variables

$\mathrm{c}_{3,5 \mathrm{fat}}^{1}$	ε_{122} [m].	e_{c} [im]	4 y	$\mathrm{ha}_{\mathrm{a}}^{\text {[in]) }}$
14.000 :	15.5000	0.000	1.000	18.000
4 sm [in	λ_{2}	$\mathrm{C}_{4}(\mathrm{~m}, 1$	$f_{c}^{\prime}[p s i]$	
8.000	1,000	1.000	4,000.	1.000

Calculations:

$\mathrm{Avg}_{\text {difl. }}{ }^{\text {a }}$]	A_{ven} in 7]	werv	$47 \times$	4 0	$V_{n}[16]$
747.00	$882.00:$	1.000	0,921	1.080	29,817
Results:					
$V_{\text {coge }}[$ [b] $]$	¢ cometer	¢ $\mathrm{V}_{\mathrm{cog},}[\mathrm{lb}]$	$\mathrm{V}_{9, \mathrm{a}}[\mathrm{lb}]$		
25,133	0.700 :	17,593:	7,400.		

5 Combined tension and shear loads

100	M	5	Utilization fruv [\%]	Status
7.840	. 421	$5 / 3$	39	OK

fin $=\left\{\begin{array}{l}6 \\ 4\end{array}\right.$

6 Warnings

- The anchor design thethods in PROFFS Anchor require rigid anchor plates per curtent regutations (ETAG COt/Annex C, EOTA TRO29, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchar ptate is assumed to be sufficiently stiff, in order not to be deformed when sisbiacted to the design loading. PROFIS Anchor catculates the mininum required anchor plate thickness with FEAl to limit the stress of the anchor plate based on the assumptions axplained above. The proof if the rigici base plate assumption Is valid is not carfied out by PROFIS Anchor, trput data and resuits must be checked for agreartent with the existirg conditions and for plausibility?
- Condition A appiies when supplertentary reifforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strengitr, Refer to your local standard:
- Design Strengths of adhesive anchor systems are influenced by the cleaning meinod. Refer to the INSTRUCTIONS FOR USE tiven in the Evaluation Service Repori for cleaning and instaliation Instructions
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACl 318 or the relevant standard!
- Imstalfation of Hiti adnesive anchor systems shall be performed by personnet traned to instan Hiti adhesive anchors, Reference $A C=318-14$ Section 17.8.t.

Fastening meets the design criteria!

Company:
Specifier:
Address:
Phone f Fax:
E-Maif

Page:
Project:
Sub-Project I Pos. Na.:
Date:: 9/28/2018

7 Installation data

Anchor plate, steet: -
Profile: W shape (ASSC), $24.100 \times 12.800 \times 0.500 \times 0.750 \mathrm{ir}$.
Hole diameter in the fixture: $d y=1.125 \mathrm{in}$.
Plate thickness (ingut): 1.000 im .
Recommended plate thickness: not calculated
Driling methed: Hammer difited
Cieaning: Compressed air cleaning of the drifed hole according to instructions for use is reguted
7.1 Recommended accessories

Dribling	Clearing	Setting
* Suitable Rolary Hammer: - Praperly sized caris bit	- Compressed air with required atcessories to blow from the bottom of the hole - Proper diameter wire brush	- Dispenser including cassette and mixer - Torques wrench

Coordinates Anchor in.

Anchor	\times	y	$c_{*} \times$	c_{+6}	c. ${ }^{\text {y }}$	$\mathrm{c}_{\text {¢f }}$	Anchor	x	y	c_{-x}	c_{+x}	c_{-y}	$c_{r y}$
1	-6.000	2.500:	\sim	26.000	15.500	\cdots	4	-6.000	2.500	-	20.000	20.500	
2	0.000	-2.500	:	20.000	15.509	\therefore	5	0.000	2.500	.	20.000	20.500	-
3	6.000	-2.500	\therefore	14.000	15.500.	-	6	6.000	2.500	.	14.000	20.500	-

Company:
Specifer:
Address:
Phone I Fax: E-Mail

8 Remarks; Your Cooperation Duties

- Any and alk information and data contaned in the Software concern sofely the use of Hitt products and are based on the principles, formblas and securizy regulations in accordance with hilit's technical directions and aperating, moknting and assembly instructions, eto., that mast be strictly compled with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be condected prior to using the reievamt Hitti product. The resuts of the calcotations carfied ouf by feans of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreaver, you bear sole responsibility for having the results of the calculation checked and cieared by an expert, particularly with regard to compliance with applicabie noms and permits, prior to using them for your specific facilily. The Sotware serves anly as an aid to interpret norms and permits without any guarantee as ta the absence of errors, the correctness and the relevance of the results or suitability for a specific application:
- You must take all necassary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicatife, carry out the updates of the Sotware offered by Hiti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the eurrent and thus uputo-date version of the Software in each case by carrying obl fnanual updates via the Hilt Website. Hittill not be liable for consequences, such as the tecovery of lost of damaged data or programs, arising from a culpable breach of duky by yous.

Company:
Protis Anchor 2.7.6
Specifiler:
Address:
Phone 1 Fax:
E-Mail:

Page:
Project'
Stib-Project I Pos. No:
Date: 9/29/2018

Specifier's comments:

1 Input data

Anchor type and diameter:
Effective embedment depth:
Matarial:
Evaluation Service Report:
lssued I Valde:
Proof:
Stand-ofl installation:
Actchor plate:
Pinfle:
Base material:
Instaflation:
Reinforcemens:

HIT-HY 200 + HAS-E 1
$h_{\text {etfact }}=10.000 \mathrm{in} .\left(h_{\text {grf, imat }}=-\mathrm{jn}.\right)$

5.8.

ESR-3187
11/1/201613/1/2018
Design methad $A C 1316-11 /$ Chern
$e_{b}=0.000 \mathrm{in}$. (no stand-off); $t=1.000 \mathrm{jn}$.
$1_{x} \times t_{1} \times t=20.000$ in. $\times 9.000 \mathrm{in} \times 1.000$ in.; (Rechmmended plate thickness: not catculated W shape $(A: S C) ;(E \times W \times T \times F T)=11.900 \mathrm{in}, \times 8.010 \mathrm{in}, \times 0.295 \mathrm{in}, \times 0.515 \mathrm{in}$. crackec concrete, $4000, f_{c}^{\prime}=4,00 \mathrm{psit} h=18.000 \mathrm{in}$, Temp, short/ong: $32 / 32^{\circ} \mathrm{F}$ hammer drilied hole, Installation condition: Dry
Iension: condition B, shear: condition B ; no supplemental splitting reinforcement present edge reinforcement: none or $<$ No. 4 bar

Geometry [in.] \& Loading [lb, in.lb]

Company:
Address:
Phone 1 fax:
Page:
2

1
Prpect:

E-Mail: Sub-Project Pos. No.:
Date:
$9 / 28 / 2018$

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+ Yension, Compression)

Anchor	Tensionforce	Shearfarce	Shear force x	Shearforce y
$1:$	250	1,750	1,750	0
$2:$	250	1,750	1,750	0
3	250	1,750	1,750	0
4	250	1,750	1,750	0
4				0

[\%]
max. concrete compressive stram: - [nsi\} resuthing tensian force in (xiy)=(0.00000.000): $\quad 1,000$ If resulting compression force in $(x / y)=(0.000 / 0.000): 0[b]$:

3 Tension load

Results:

N_{38} \{ 4 bl	$\$_{\text {sieg }}$	${ }_{6} \mathrm{~N}_{33}\left[\mathrm{~m}^{\prime}\right]$	$\mathrm{N}_{43} \mathrm{f}$ (b)
43,910	0.650	28,54f	250

Company:
Specifier:
Address:
Phone I Fax:
E. Mati:

Protis Anchor 2.7.6
Page:
Project:
Sub-Prapel ! Pos. No.:
Date::
9/28/2018:

3.2 Eond Strengtit

${ }^{1} \mathrm{~N}_{\mathrm{a}, \mathrm{g}}$ こ N_{La} ACI 318-11 Table 0.4.1.
$A_{\mathrm{Naxi}^{\prime}}=$ see ACl 318-11, Part D.5.5.1, Fig, RD.5.5. (b)
$A_{\mathrm{NiO}}=\left(2 \mathrm{C}_{\mathrm{NO}}\right)^{2}$
ACl 318-11 Eq. (0-20)

$N_{\text {bax. }}=\lambda_{\text {a }} \cdot t_{k_{1}=:} \cdot r \cdot d_{\text {a }} \cdot h_{\text {et }} \quad \therefore \quad$ AC! 318-11Eq. (D-22)

Variables

$\Sigma_{\text {kgeng }}[p 3 i]$	$\left.\mathrm{d}_{4} \mathrm{im}.\right]$	h_{sf} [in].]	$\varepsilon_{\text {a,mol }}$ [in. 1	
2,327	1.000:	10.000	14.000	1,326
enem [in]	$s_{c a n}\{\ln \}$	$\mathrm{c}_{\text {ac }} \mathrm{lin}$.	λ_{s}	
0.000	0.0000	20.543	1.000	
Calculations				
$\mathrm{c}_{4 \mathrm{fa}}$ [in.]	$A_{\text {Na }} \mathrm{Tinm}^{2}$	$A_{\text {Nas }}\left[\right.$ in $\left.{ }^{2}\right\}$	\% id .4	
14.478	1,238,69	838.50	0.990	
Esc! Na	Q $\mathrm{cc}_{2} \mathrm{Na}$	$\psi_{\text {cos }} \mathrm{Na}$	$N_{b G}[1 b]$	
1.000	1.009	1.000	41,654	
Results:				
N_{49} [1] $]$	¢ ¢and		$\mathrm{Nam}_{\text {ma }} \mathrm{LbF}$	
60,924	0.650.	39.600	1,000:	

www，hllti．us
Company：
Specifier：
Address：
Page：
Project：
Phone！frax：：｜ Sub－Project I Pos，No：

E．Mal：
Date：：．9／28／2018

3．3 Concrete Breakout Strength

क $\mathrm{N}_{\mathrm{ctig}} \geq \mathrm{N}_{\mathrm{t} \text { ti }}$
Anc see ACl 310－11，Part D．5．2．1，Fig．RD．5．2．1（i）
$A_{\text {foif }}=9 \mathrm{~h}_{\mathrm{ef}}^{2}$
$v_{e c}, r y=\left(\frac{1}{1+\frac{2}{3} e_{N}}\right) \leq 10$
$\mathrm{ACl} 318-11$ Taiale 0．4．1．

ACl $318-11 \mathrm{Eq}$（ $\mathrm{B}-5)$

ACt $318-11$ Eq．（D－8）

ACl $318+11$ Eq．（D－10）
$N_{h:} \quad=k_{c} \lambda_{a} \sqrt{f_{i}} h_{e i}^{?, 5}$
$\mathrm{ACl} 3 \mathrm{~B}-\mathrm{f}=\mathrm{Eq},(\mathrm{O}-12)$

Variables

$h_{\text {ef }}\{$ in $\}$	$\mathrm{eftran}_{\text {che }}$［in］	ecan ins $]$	$\mathrm{c}_{\text {arsmin }}$（in）	U 6.4
10.000	0.000	$0.000:$	14．000	1.000
$\mathrm{C}_{\mathrm{ac}}[\mathrm{man}$ ］$]$	k_{r}	$\lambda_{\text {a }}$	$\mathrm{f}_{\text {c }}$（psi）	
20.543	17	1.000	4.000	

Catculations

$A_{\text {Nr }}\left[\operatorname{inm},{ }^{2}\right]$	$A_{* \rightarrow 0}\left[\mathrm{in}^{2}{ }^{3}\right]$	Wecta	$y \mathrm{Fc} 2 \mathrm{~N}$	4 y 吅的		$\mathrm{N}_{3} \mid b^{\prime}$
1，295．00	900.00	1．000	1.000	0.980	1.000	34.000

Results：

$N_{\text {ctil }}[\mathrm{lb}]$	\＄comerete	b） $\mathrm{N}_{\text {cma }}$ 价］	$\mathrm{N}_{0 j}[14]$
47.944	0.650	31，163	1，000

Compary:
Spectier:
Address
Phone I Fax:
E-Niai!

4 Shear load

	Load $V_{u a} \mathrm{I} \mathrm{l}$)	Capacity ¢ $^{\text {V }}$ [fb$]$	Utilization $j_{V}=V_{\text {uja }} / \phi V_{n}$	Status
Steel Strengit ${ }^{*}$	1,750	15,807\%	12....)	OK
Steel failure (with lsver afm)*	N/A:	N/A	N / A	NIA
Pryout Strength (Concrete Breakout Stremgth controls)**:	7,000	67,12\%	17	OK
Concrete edge falure in difection $x+$ ** * anchor having the highest toading.	$7,000 .$ roup (relevant	21.624	33	OK

4.1 Stael Strength

$$
V_{S A}=\left(0.6 A_{s e, y} f_{\text {sit }}\right) \quad \text { refor to ICC-ES ESR-3187 }
$$

Variables

$\mathrm{A}_{\text {rey }}$ (in. ${ }^{\text {² }}$)	$\mathrm{f}_{\text {Lta }}$ fpsil	
0.61	72,500	26.345

Calculations:
V $\quad 26,345$
Results

$V_{\text {sis }}[10]$	中 stom	${ }^{5} \mathrm{~V}_{\text {aja }} \mathrm{l} \mathrm{lbj}^{\prime}$	$4 / \mathrm{va}$ [$[6]$
26,345:	0.600	15807	1,750

4.2 Pryout Strength (Concrete Breakout Strength controis)

Variables

$\mathrm{k}_{\mathrm{c},}$	$\mathrm{h}_{\mathrm{ts}}[\mathrm{in}$] $]$	$\dot{E}_{\text {c1a }}$ [in 1	$\mathrm{e}_{-2,4}$ [in $]$	$\mathrm{Camman}_{\text {andin }}$]
2	10.000	0.000	0,000	14000
4 Ca	$c_{35}(\mathrm{in}]$	k_{6}	λ.	C, [psi]
1000	20.543	17	\},000.	4,000

Calcufations

$A_{\text {Pse }}[i n .1]$	$A_{\text {mas }}\left[\operatorname{in} \cdot{ }^{2}\right]$	48.8	4 ec 3 N	1180, 4	ut cp, ${ }^{\text {c }}$	N_{n} [lb$\}$
1,295.00	900.00	1.000	\$.000:	0.980	1.000	34,000
Resutts						
$\mathrm{V}_{50} \mathrm{f} \mid \mathrm{bl}$	ϕ concmin	(4) $\mathrm{V}_{\text {con }}[\mathrm{lb}$	$\mathrm{V}_{4,}$ [tb]			
$95,888$.	0.700	57.121	7,000			

Phone I Fax. \quad Sub-Project IPos. Na..

4.3 Concrete edge failure in direction x^{4}

if $V_{\mathrm{cmp}_{1} \mid} \geq \mathrm{V}_{\mathrm{va}}$
Ave see ACl 3t日-11, Part 0.6.2.1, Fig, R0.6.2.1(b)
$A_{v a t}=4,5 c_{\mathrm{a}}^{2}$:
$\varphi_{00, y}=\left(\frac{1}{1+\frac{2 e_{j}}{3 c_{a t}}}\right) \leq 1.0$
$2404, \mathrm{v}=0.7+0.3\left(\varepsilon_{\mathrm{paz}}\right) \leq 1.0$
$v_{n, y}=\sqrt{\frac{15 c_{n y}}{h_{0}} \geq 1.0}$
$v_{\mathrm{b}} \quad=9 \lambda_{\mathrm{a}} \sqrt{\mathrm{F}_{\mathrm{a}}} c_{a!}^{1.5}$

ACl $318-11$ Eq. (D-31)
ACl 3ta-11 Táble D.4.1.1
AC! 318-11 Eq. (D-32)
$\mathrm{ACl} 318-11 \mathrm{Eq}$ ($\{\mathrm{D}-36$)

ACl 319-11 Eq. (0-38)
ACI 318-41 Eq. (D-39)
ACl 3 报-11 Eq. (D-34)

Variables

$\mathrm{c}_{11} \mathrm{im}$	$\mathrm{c}_{32} \operatorname{lin}$ I	e_{c} [in]	\%ev	$\mathrm{mam}_{4} \mathrm{im}$
14.000	\cdots	Q.000:	1.000:	18.000
Cemin	x_{3}	$\mathrm{d}_{3}[\mathrm{ma}]$	$f_{c}[p s i]$	if mambey
Q.000	1000	1.000	4,000)	1.000

Calculations

$A_{v s}\left[\mathrm{in}^{2}\right]$	Avgi $\left.\operatorname{lin}^{2}{ }^{2}\right]$	yec. y	Westv	4ifor	$V_{b}\{[\mid b]$
846.00	882,00:	1.000	1.000	1.080	29,817
Results					
$\mathrm{V}_{10 \mathrm{~m}} 1 \mathrm{ll}$]	If ennerete	¢ $V_{\text {cong }}$ [b]	$V_{\text {va }}\left[\right.$ [${ }^{\text {c }}$]		
30,892.	0.700	21,624.	7,000		

5 Combined tension and shear loads

$\mathrm{NN}_{2}-\mathrm{BD}^{<}<1$

6 Warnings

* The anchor design methods in PROFIS Anchor requite figid anchor piates per current regulations (ETAG 001/Annex C, EOTA TR029, ett.). This means ioad re-distribution on the anchoas due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, if order not to be deformed when subjected to the design daading. PROFiS Anchor calculates the minimum required anchor plate thickness witt FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFiS Anchor, faput data and results must be checked for agreement with the existing conditions and for plausibitity!
- Condition A appies wher supplementary reinforcement is used. Tha ofactor is increased for non steet Design Strenguts except Publout Strengih and Pryout strength. Condition 3 appless when supplementary reinforcement is fot used and for Fullaul Strength and Pryout Strength. Refer to your focal standard:
- Design Strengths of athesive anchor systems are influencad by the cteaning method. Refer to the NSTRUCTIONS FOR USE giver in the Evaluation Service Report for cleaning arid installation instructions:
- Checking the transer of loads into the base material and the shear resistance are required in accordance with ACl 318 or the ralevant standard!
 Part D.9.I

Fastening meets the design criteria!

Compary:
Specifler:
Address:
Phone 1 Fax:
E-Mail:

Page:
Project:
Sub-Project I Pos. No.:
Datee:
9/28/2018

7 Installation data

Anchor plate, steel: -
Profle: W shape (AISC); $11.900 \times 8.010 \times 0.295 \times 0.515$ in.
Hole diameter in the fixture: $\mathrm{d}_{\mathrm{i}}=1.125 \mathrm{in}$.
Plate thickness (input): 1.000 in .
Recommended plate thickness: nut calculated
Drilitm method: Harmer drilled
Cleaning: Compressed air clearting of the cirilled hole according to instructions for use is required

7.1 Recommended accessories

Driling	Cleaning	Selting
- Suilable Rotary Hammar. : Properly sized drill bit:	- Compressed aif with required accessories to blow from the bottom of the thole - Proper diameter wire brush	- Dispenser including cassette and mixer - Torque wrench

Coordinates Anchor in.

Anchar	x	y	C.k	c_{+x}	Cy	G_{+y}
1	-4.000	-2.500	\cdots	22.000	\cdots	
2	4.000	-2.500	\cdots	14.000	\cdots	-
3	-4.000	2.500	-	22.000	$\dot{4}$	-
4	4.000	2.500	\cdots	14.000	+	\cdots

Company:
Specifief:
Address:
Phone I Fax:
E Mail:

8 Remarks; Your Cooperation Duties

- Any and at information and data containet in the Software concem sofety the use of Hifti products and are based on the principles, formulas and security reguations in accordance with Hitis technical directions and operating, mounting and assembly instructions, etc., that must be strictly compled with by the user. All ugures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the felevant Hitti product. The results of the calculations carfied out by means of the Sofware are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, ypu bear saie responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable noms and pernits, prior to using inero for your speciffe facility. The Soflware serves ofly as an add to interpret notms and permits without any guarantee as to the absence of efrors, the correctness and the reizvance of the tesults or suitability fof a specific appliçation;
- You must take all necessary and reasonable steps to prevent or timit damage caused by the Software. in particular, you must amange for the fegular backup of programs and data and, if applicable, camy out the updates of the Software offered by Hilti on a regular basis. If you do not use the Autolfodate function of the Software, you must ensure that you are using the cufrent and thas up-todate version of the Sofware in each case by carrying out mamual updates via the ritit Websile. Hitit will not bo liable for consequences, such as the fecovery of lost or damaged data or programs, afising frof a culpable breach of duty by you
\qquad
Smith Monroe Gray
ENGINEERS,INO.
\qquad
\qquad DATE \qquad REV, \qquad
\qquad
\qquad OF
Seconony Containment

$$
\begin{aligned}
& V_{\text {owmt }}=5^{\prime} \cdot\left(36^{\prime} \times 36^{\prime}\right)=6480 \mathrm{ft}^{3} \\
& N_{E T} V_{\text {own }}=6480 \mathrm{ft}^{3}-3 \cdot\left(\pi \cdot\left(12^{\prime}\right)^{2} / 4\right) \cdot 5^{\prime}=4783 \mathrm{ft}^{3} \\
& 1.1 \times 30,000 \mathrm{GAL}=33,000 \mathrm{GAL} \rightarrow 4411 \mathrm{ft}^{3} \mathrm{OKV}
\end{aligned}
$$

Containment Vowne is Suttuint For 110% of Tank Vawme SECONDARY CONTAINMENT STRUCTURE IS CAPABLE OF CONTAINING A SINGLE 30,000 GAL TANK IN THE EVENT OF A LEAK/FAILURE.
\qquad

ENGINEERS, INC. BY \qquad EM DATE \qquad $8 / 16 / 18$ REV. \qquad JOB NO. \qquad 18183 \qquad 1 of \qquad 9
Governing code:
$2012 I B C<-2015$ IRC, CALCS ARE IN COMPLIANCE)

- ASCE $7-10$

Design criteria:

- Anna Dlgo-5

DG:

$$
-1246+\left[\left(\pi\left(5.75^{2}-5.73^{2}\right)\right) 44\right] 490=17144 \text { LBS }
$$

- Sw of conc. Iso pdF

LL:
-30,000 gal (4) AC Tank

$$
\text { . } 8.56(30000)=256.8 \text { kips }
$$

WIND TALC IS CONSERVATIVE, RISK II STRUCTURE \& 110 mph WIND, ACTUAL

UL:
wind speed $V=115 \mathrm{MPH}$; Exposure c; Risk III

$$
\left.q_{z}=0.00256 k_{z} k_{z t} k_{d} U^{2} \text { [ASCE } 7-10 E_{q} 29.3-1\right]
$$

where:

$$
\begin{aligned}
& K d=0.95\left[\begin{array}{llll}
& & 7 S C E & 70 \\
\hline 16 & 26.6-1
\end{array}\right] \\
& k_{z}=1.065 \text { [ASCh } 7-10 \text { Tb 29.3-1] } \\
& k_{z+}=1 \text { [ASCE 7-10 26.8.2] } \\
& q_{z}=0.00256(1.065)(1)(0.45)(115)^{2}=34.3 \mathrm{Psi} \\
& h / 0 \rightarrow 45 / 11.5=3.91 \\
& \left.C_{F}=0.549 \text { [AShE } 7-10 \mathrm{Fig} 29.5-1\right] \\
& F=q_{z} G C_{F} A_{F}[\text { [ASCE 7-10 Eq 29.5-1] } \\
& G=0.85 \text { [} A S C E \text { 7-10 26.9] } \\
& A_{F}=11.5(44.04)=507 \mathrm{Ft}^{2} \\
& F=34.3(0.85)(0.549)(507)=8.12 \text { kips }
\end{aligned}
$$

$$
\begin{aligned}
& \text { AWWA Dloo-5 } \longrightarrow E Q: \\
& m_{s}=\sqrt{\left[A_{i}\left(w_{s} x_{s}+w_{r} H++w_{i} x_{i}\right)\right]^{2}+\left[A_{c} w_{c} x_{c}\right]^{2}} \\
& \text { [EA } 13-23] \\
& A_{I}=\frac{S_{O I} I_{E}}{1.4 R_{i}} \geq \frac{0.36 S_{I} I_{E}}{R_{i}}(E Q 13-17) \\
& S_{A I}=S_{D S}=0.884 \mathrm{~g} \\
& I_{E}=1 \text { (Table 24) } R_{i}=3 \\
& S_{1}=0.495
\end{aligned}
$$

\qquad
\qquad DATE \qquad REV. \qquad
\qquad
EQ Continued:

$$
\begin{aligned}
& A_{i}=\frac{0.884(1)}{1.4(3)}=0.210 \geq 0.0594=\frac{0.36(.495)(1)}{3} \\
& \omega_{s}=17144 \mathrm{LBS} \\
& x_{s}=22 \mathrm{ft}
\end{aligned}
$$

* ASSume 45 PSF

$$
\begin{aligned}
& w_{r}=\pi r^{2}(45) \rightarrow \pi(5.75)^{2}(45)=4674 \text { LBS } \\
& H_{T}=44 \mathrm{Ft} \\
& \text { [Ea 13-25] } \\
& D / H=11.5 / 44=0.261 \therefore \omega_{i}=\left[1.0-0.218 \frac{D}{H}\right] \omega_{T} \\
& \omega_{i}=[1-0.218(0.261)] 256.8=242.2 \text { kips } \\
& x_{i}=\left[0.5-0.094 \frac{\mathrm{D}}{\mathrm{H}}\right] \mathrm{H} \quad[\mathrm{EQ} \mid z-24] \\
& x_{i}=[0.5-0.094(0.261)] 44=20.9 \mathrm{Ft} \\
& A_{L}=\frac{S_{A C I_{E}}}{1.4 R_{C}}[E Q 13-18] \\
& T_{C}=2 \pi \sqrt{\frac{D}{3.68 y \cdot \tanh \left(\frac{3.68 H}{D}\right)}} \quad[E Q \text { 13-22] } \\
& T_{c}=2 \pi \sqrt{\frac{11.5}{3.68 \operatorname{Tanh}\left(\frac{3.68(44)}{11.5}\right)}}=11.1075<165 \\
& \therefore S_{A C}=\frac{k S_{D 1}}{T_{C}} \rightarrow \frac{1(0.497)}{11.11}=0.045 \\
& R_{C}=1.5 \text { [Table 28] } \\
& A_{c}=\frac{0.045(1)}{1.4(1.5)}=0.0214 \\
& W_{C}=0.230 \frac{D}{H} \tanh \left(\frac{3.67 H}{D}\right) W_{T} \text { (EQ 13-16) } \\
& \omega_{c}=0.230 \frac{11.5}{44} \tanh \left(\frac{3.67(44)}{11.5}\right) 256800=15437 \text { LBS } \\
& \left.[E Q 13-30] \quad x_{C}=\left[1.0-\frac{\cosh \left(\frac{3.67 H}{D}\right)-1}{\frac{3.67 H}{D} \sinh \left(\frac{3.67 H}{D}\right)}\right] H \rightarrow\left[1.0-\frac{\cosh \left(\frac{3.67(44)}{11.5}\right)-1}{\frac{3.6 x(44)}{11.5} \sinh \left(\frac{3.67(44)}{11.5}\right)}\right](444)\right] \\
& x_{L}=40.9 \mathrm{ft}
\end{aligned}
$$

\qquad
\qquad

BY \qquad DATE \qquad REV. \qquad
\qquad SHEET \qquad of 9
EQ continued:
moment © base of shell

$$
\begin{aligned}
& 2 M_{s}=1,185 \text { kip } f \mathrm{Ft} \\
& m_{m f}=\sqrt{\left[A_{i}\left(w_{s} x_{s}+w_{r} H_{t}+w_{i} x_{\text {inf }}\right)\right]^{2}+\left[A_{c} W_{c} x_{c m f}\right]^{2}} \quad[E Q 13-32] \\
& x_{\text {imf }}=[0.5+0.06 D / H] H[E Q 13-34] \rightarrow[0.5+0.06 \quad 11.5 / 44] 44=22.69 \mathrm{Ft} \\
& x_{c m f}=\left[1.0-\frac{\cosh \left(\frac{3.67 H}{D}\right)-1.937}{\frac{3.67 H}{D} \sinh \left(\frac{3.67 \mathrm{H}}{D}\right)}\right] H[\text { EQ } 13.35] \\
& x_{c m f}=\left[1.0-\frac{\cosh \left(\frac{3.67(44)}{11.5}\right)-1.937}{\frac{3.67(44)}{11.5} \sinh \left(\frac{3.67(44)}{11.5}\right)}\right](44)=40.9 \mathrm{ft} \\
& \left.M_{m f}=\sqrt{[0.21(17144(22)+4674(44)+242200(22.69))]^{2}+[0.0214(15437)(40.9)]^{2}}\right]
\end{aligned}
$$

moment @
$\begin{aligned} & \text { Top of } \\ & \text { Foundation }\end{aligned} \quad \rightarrow M_{m f}=1,277 \mathrm{k} \cdot \mathrm{ft}$

$$
\begin{aligned}
& V_{f}=\sqrt{\left[A_{i}\left(w_{s}+w_{r}+w_{f}+w_{i}\right)\right]^{2}+\left[A_{c} w_{c}\right]^{2}} \\
& w_{i}=\pi(11.5)^{2} / 4(0.25 / 12) 490=1060 \text { LBS } \\
& V_{f}=\sqrt{[0.21(17144+4674+1060+242200)]^{2}+[0.0214(15437)]^{2}}=55.7 \mathrm{k} \cdot \mathrm{ps}
\end{aligned}
$$

Check overturning:

$$
\begin{aligned}
& \text { wind: } v_{T}=4(8.12)(0.6)=19.5 \text { kips } \\
& m_{\omega}=8.12(22)(0.6)=107.2 \mathrm{k} \cdot \mathrm{ft} \\
& P=4(17144+4674+1060)(0.6)=54.9 \mathrm{kips} \\
& m_{\omega T}=4(107.2)=429 \mathrm{k} \cdot \mathrm{Ft}
\end{aligned}
$$

(see spreadsheet)

5113
 Smith Monroe Gray

ENGINEERS, INC.

CLIENT:
PROJECT:

BY:
DATE: 8/13/2018
JOB\#:
SHEET 4 OF 9

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

LOADING PARAMETERS:			
ALLOWABLE SOIL BEARING $=$		3.000	PSF
SOIL WEIGHT =			PCF
REQD. O.T. SAFETY FACTOR =		1.5	
STR.INCR.FOR HORIZ. LOADS =		1.33	
VERTICAL DEAD LOAD =		54.90	KIPS
VERTICAL LIVE LOAD =			KIPS
HORIZONTAL LOAD =		19.5	KIPS
MOMENT @ TOP OF FOOTING =			FT-KIPS
FOOTING DIMENSIONS:			
FTG. LENGTH (L) =	37.0	FT (PAR	TO LOAD)
FTG. WIDTH (W) =	37.0	FT (PER	P.TO LOAD)
FTG. THICKNESS (FT) =		FT	
FOOTING DEPTH (D) =		FT	
PIER LENGTH (PL) =			
PIER WIDTH (PW) =		FT	
PIER HEIGHT (PH) =		FT	
CONCRETE WEIGHT =	246.4	KIPS	
SOIL WEIGHT =		KIPS	
TOTAL WEIGHT =	246.4	KIPS	

\qquad
\qquad
ENGINEERS, I NC.
BY \qquad DATE \qquad REV. \qquad
\qquad
Check for sliding:
Wind:

$$
\begin{aligned}
& \text { FSind: } \begin{array}{r}
\text { Resisting }>1.5 \rightarrow \frac{(54.9+246)(0.5)+1 / 2(350)(2)^{2}(37) / 1000}{\text { Acting }}>1 / 2(35)(2)^{2}(37) / 1000+19.5 \\
\begin{array}{l}
\text { Check overturnig: } \\
\text { Seisin: }
\end{array}
\end{array}=7.98>1.5
\end{aligned}
$$

Seismic:

$$
\begin{aligned}
& m_{T}=1,277(4)(0.7)=3576 \mathrm{k} \cdot \mathrm{ft} \\
& V_{T}=55.7(4)(0.7)=156 \mathrm{kips} \\
& P_{T_{L L}}=[(256.8) 4+91.5](0.6)=671.22 \mathrm{kips}
\end{aligned}
$$

(See spreadsheet)
Check for sliding:
Seismic:

$$
\begin{aligned}
& F S_{\text {sliding }}=\frac{\text { Resisting }}{\text { Acting }}>1.5 \rightarrow \frac{(54.9+246+616) 0.5+1 / 2(350)(2)^{2}(37) / 1000}{1 / 2(35)(2)^{2}(37) / 1000+156} \\
& =3.0571 .5 \text { Ot }
\end{aligned}
$$

Check Bending of Slab: (LRFD) 0.9DL + $1.0 E$

$$
\begin{aligned}
& M_{T}=1,277(4)=5,109 \mathrm{k} \cdot \mathrm{Ft} \\
& V_{T}=55.7(4)=223 \mathrm{kips} \\
& P_{T}=[256.8(4)+91.5] 0.9=1007 \mathrm{kips} \\
& M_{\text {Total }}=223(2)+5,109=5555 \mathrm{k} \cdot \mathrm{Ft} \\
& P_{\text {Total }}=1007+410.7(0.9)=1377 \mathrm{kips} \\
& \sigma_{\text {max }}=\frac{P}{A}+\frac{m c}{I} \rightarrow \frac{1377(1000)}{37^{2}}+\frac{5555(1000)}{37(37)^{2} / 6}=1664 \mathrm{PSF} \\
& \sigma_{\text {min }}=\frac{P}{A}-\frac{m c}{I} \rightarrow \frac{1377(1000)}{37^{2}}-\frac{5555(1000)}{37(37)^{2} / 6}=348 \mathrm{PSF}
\end{aligned}
$$

SME

 Smith Monroe Gray

 Smith Monroe Gray}

CLIENT:
PROJECT:

ENGINEERS, INC.
BY:
DATE: 8/14/2018
JOB \#:
SHEET 6 OF 9
DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT

FOOTING:

LOADING PARAMETERS:

ALLOWABLE SOIL BEARING $=$	3.000 PSF	
SOIL WEIGHT $=$	115 PCF	
REQD. O.T. SAFETY FACTOR $=$	1.5	
STR.INCR.FOR HORIZ. LOADS $=$	1.33	
VERTICAL DEAD LOAD $=$	671.22 KIPS	
VERTICAL LIVE LOAD $=$	0	KIPS
HORIZONTAL LOAD $=$	156.0	KIPS
MOMENT @ TOP OF FOOTING $=$	3.576	$\mathrm{FT}-\mathrm{KIPS}$

FOOTING DIMENSIONS:

FTG. LENGTH (L) = FTG. WIDTH (W) = FTG. THICKNESS (FT) = FOOTING DEPTH (D) = PIER LENGTH $(\mathrm{PL})=$ PIER WIDTH (PW) = PIER HEIGHT (PH) = CONCRETE WEIGHT = SOIL WEIGHT = TOTAL WEIGHT =
37.0 FT (PAR.TO LOAD)
37.0 FT (PERP.TO LOAD)
2.00 FT
0.0 FT
0.0 FT
0.0 FT
0.0 FT
246.4 KIPS
0.0 KIPS
246.4 KIPS

DESIGN METHOD 1
OVERTURNING MOM. $=3.888 .0$ FT-KIPS
SOIL PR.FROM DL $=670.3 \mathrm{PSF}$
SOIL PR. FROM MOM. $=(460.5)$ PSF
MIN. PRESSURE $=209.8 \mathrm{PSF}$
MAX PRESSURE $=1,130.8 \mathrm{PSF}$

DESIGN METHOD 2

MAX. $\mathrm{PR}=$ 1.159.2 PSF
DOES NOT APPLY AS NO UPLIFT AT BACK OF FOOTING

LL + DL BEARING	ACTUAL
DL	670
PSF	
DL HORIZ. BEARING	$=1,131 \mathrm{PSF}$
F.S. OF OVERTURNING	$=4.37$

DAGRAM FOR DFSICN NFTHOD 2

ALLOWABLE
3,000 PSF
3,990 PSF OK
1.5 OK
\qquad
\qquad

BY \qquad DATE \qquad REV. \qquad
\qquad SHEET \qquad of 9

$$
\begin{aligned}
& \sigma_{\min u} \rightarrow \frac{1664-348}{37}=\frac{x-348}{32.5} \therefore \sigma_{\text {min }}=1504 \mathrm{PSF} \\
& m_{u}=-1504(4.5)^{2} / 2-\frac{1}{2}(1664-1504)(4.5)(4.5 / 3)+m_{u}=0 \\
& \therefore m_{u}=15.8 \mathrm{k} \cdot \mathrm{Ft} / \mathrm{k} \text { or } 189 \mathrm{k} \cdot \mathrm{in} / \mathrm{Ft} \\
& A_{\text {Col }}=\frac{M_{u}}{\phi f_{1}\left(d-\frac{0}{2}\right)} \rightarrow \frac{189}{0.9(60)\left(21-\frac{.26}{2}\right)}=0.18 \mathrm{in}^{2} / \mathrm{ft} \\
& a=\frac{\text { Ashy }}{0.85 F^{\prime} \mathrm{cb}}=\frac{0.18(60)}{0.85(4)(12)}=0.26 \mathrm{in} / \mathrm{ft} \\
& \begin{array}{c}
\text { Admin }=\frac{3 \sqrt{F^{\prime} c}}{f_{y}} b_{w d} \rightarrow \frac{3 \sqrt{4000}}{60000}(12)(21)=0.80 \mathrm{in}^{2} / \mathrm{ft} \\
\text { (AlI } 318-11 \text {) }
\end{array} \\
& E Q(0-13) \quad 200 b_{w d} / f_{y} \rightarrow z 00(12)(21) / 60000=0.84 i n^{2} \mathrm{~F}+ \\
& A_{\text {required }}=\frac{4}{3} A_{\text {scale }}\left[\text { Act } 318-11 \text { 10.5.3] }=4 / 3(0.18)=0.24 \mathrm{in}^{2} / \mathrm{Ft}\right.
\end{aligned}
$$

*use No. 5 bars \& $12^{\prime \prime}$ OC. $\rightarrow A_{s}=0.31 \cdot \mathrm{in}^{2} / \mathrm{ft}>0.24 \mathrm{in}^{2} / \mathrm{ft}$ (ot)
Both Directions.

$$
P=\frac{A_{s}}{b d} \rightarrow \frac{0.266}{12(21)}=0.0011<0.018 \text { OK } \varnothing=0.9
$$

Check shear:

$$
\begin{aligned}
& \phi v_{n} \geq v_{u} \rightarrow \phi v_{n}=\phi\left(v_{c}+v_{s}\right) \\
& v_{c}=2 \lambda \sqrt{f^{\prime} c} \text { bud } \rightarrow 2(1) \sqrt{4000}(222)(21)=589.7 \mathrm{kips}
\end{aligned}
$$

$\frac{1}{2} v_{c}>v_{u} \therefore$ no reinforcement needed
[ACI 318: 11.4 .6 .1]

$$
0.75 \frac{1}{2} \mathrm{~V}_{C} \rightarrow 0.75(589.7) 1 / 2=221.1 \mathrm{kips}>55.7 \mathrm{kips} .
$$

\qquad
\qquad
ENGINEERS, I NC.
BY \qquad DATE \qquad REV. \qquad
\qquad SHEET \qquad
Tank Failure Foundation walls:
$1.1(30)=33 \mathrm{k}$ gallons $=4411 \mathrm{ft}^{3}$ *use 5 ft tall walls

$$
5(32)(32)=5120 \mathrm{Ft}^{3}>4411 \mathrm{Ft}^{3} \text { (ot) }
$$

Check wall for Bending:

$$
\begin{aligned}
& P=\rho g h \quad 8.56 /(0.133681)=64 \quad L B / F t^{3}=P \\
& P=64(5)=320 \text { PSF } \\
& F=\frac{1}{2} \mathrm{bh} \rightarrow \frac{1}{2} 320(\mathrm{~s})=800 \mathrm{Lbs} / \mathrm{Ft} \\
& m_{u}=1.6[(800)(1.667)]=2134 \mathrm{LB} \cdot \mathrm{Ft} \text { of } 25.6 \mathrm{k} \cdot \mathrm{in} \\
& A_{s}=\frac{m_{u}}{\ell f_{y}\left(d-\frac{a}{2}\right)} \rightarrow \frac{25.6}{0.9(60)\left(4-\frac{.08}{2}\right)}=0.121 \mathrm{in}^{2} / \mathrm{Ft} \\
& a=\frac{\text { Ashy }}{0.85 f^{\prime} \mathrm{Cb}}=\frac{0.121(60)}{0.85(4)(12)}=0.18 \mathrm{in} \\
& A_{\text {seq }}=\frac{4}{3}(0.121)=0.161 \mathrm{in}^{2}
\end{aligned}
$$

* use No. 4 burs @ $12^{\prime \prime} 0 . C \quad A_{s}=0.2 \mathrm{in}^{2}>0.161 \mathrm{in}^{2}$

$$
P=\frac{A_{s}}{b d}=\frac{0.171}{12(4)}=0.0036<0.018 \text { (0t)} \therefore \varnothing=0.9
$$

ENGINEERS, INC.
PROJECT \quad MAPLE VALLEY ASPHALT PLANT

RELOCATED SILO
BY_BS DATE 4/8/2019 REV.
\qquad

VERIFY RELOCATED SILO FOUNDATION IS SUFFICIENT FOR THE NEW SITE

MAPLE VALLEY SITE PARAMETER SUMMARY
WIND, Vult = 110 mph
SITE CLASS D
SEISMIC DESIGN CATEGORY D
SEISMIC ACCELERATION PARAMETERS
Ss $=1.325 \mathrm{~g}$
S1 $=0.495 \mathrm{~g}$
SDS $=0.883 \mathrm{~g}$
SD1 $=0.496 \mathrm{~g}$
BY INSPECTION SITE PARAMETERS ARE APPROX. EQUIVALENT, ORIGINAL FOUNDATION DESIGN IS ADEQUATE PENDING ORIGINAL DESIGN SUFFICIENCY

ORIGINAL SILO FOUNDATION DESIGN PARAMETERS (ref. B\&T DRAWING 16091-S1.1)

\qquad
Smith Monroe Gray
ENGINEERS, IN C.
\qquad BY \qquad DATE \qquad REV. \qquad
\qquad
\qquad OF
$V_{\text {APomzer }} F_{\text {NON }}$

$$
\begin{array}{ll}
H_{T}=r 34^{\prime}-8^{\prime \prime} & \text { Empty } W_{T}=6500^{\#} \\
C_{G} H T=-17^{\prime}-2^{\prime \prime} & \text { Ophemant } W_{T}=7000^{\#}
\end{array}
$$

(4) Base Plates $n /(4) 1^{" \varnothing} \not$ Anvetions 2

Sursmic Paramertas

* On Symmermenty Banes Lees $\rightarrow R=3.0$

$$
\begin{aligned}
& C_{s}=\frac{S_{D S}}{R / I_{e}}=\frac{0.883}{(3.0 / 1.0)}=0.29 \\
& E_{V}=0.2 \cdot S_{D S} \cdot D=0.18 D
\end{aligned}
$$

Wino

$$
\begin{gathered}
V=110 \mathrm{mPH} \quad \begin{array}{l}
L_{d}=0.85 \quad q_{z}=0.00256 \cdot \mathrm{Kd} \cdot \mathrm{~K}_{z} \cdot \mathrm{~K}_{z t} \cdot V^{2}=22.4 \mathrm{PSF} \\
K_{z t} \\
K_{z}=0.0 \\
F_{w}=G \cdot q_{z} \cdot C_{s}=0.85 \cdot 22.4 \mathrm{PsF} \cdot 1.65=31.4 \mathrm{PsF} \\
C_{s}=1.65 \quad(\mathrm{~B} / \mathrm{s}=0.24) \\
0.6 \cdot F_{w}=18.8 \mathrm{PSF}
\end{array}
\end{gathered}
$$

\qquad
Smith Monroe Gray
ENGINEERS, INC.
\qquad BY \qquad DATE \qquad REV. \qquad JOB NO. \qquad
\qquad OF

Bast $R_{x n}$ - SEismic

$$
\begin{aligned}
& W_{t}=7000^{\#} \\
& V_{x}=7000^{\#} \cdot 0.29=2030^{\#} \times 0.7=1421^{\# \#} \\
& V_{y}=7000^{\#} \cdot 0.18=1260^{\#} \times 0.7=882^{\#} \\
& M_{\text {ovER }}=2030^{\#} \cdot\left(206^{\prime \prime} / 12^{\text {iN }} / 4\right)=34848^{\# \cdot F T} \times 0.7=24394^{\# \cdot F T}
\end{aligned}
$$

BASK $R_{X N}$ - W lind

$$
\begin{aligned}
& W_{T}=7000^{\#} \\
& V_{x}=18.8 \mathrm{Pst} \cdot\left(416^{\prime \prime} \cdot 48^{\prime \prime}\right) / 144 \mathrm{in}^{2}=5322^{\#} \\
& M_{\text {oran }}=5322^{\#} \cdot\left(416^{\prime \prime} / 12^{\prime \prime / \pi}\right) / 2=92248^{\#} \cdot \mathrm{FT}
\end{aligned}
$$

Anchorage Design

$$
\begin{aligned}
& V_{\text {max }}=5322^{\#} / 4=1330^{\#} / \text { BASE P PATE } / 0.6=2216^{\#}=V_{U} \\
& T_{\text {Max }}=\frac{92248^{\# \prime \cdot T T}}{\left(84^{\prime \prime} / 12^{\prime \prime N} / T\right) \cdot 2}=6589^{\# / B A S E} \text { P PATE } / 0.6=T_{U}=10982^{\#}
\end{aligned}
$$

USE (4) 1"DIA ANCHORS W/ 10" EMBED (SEE HILTI OUTPUT)
Footman Pressing - Ty $24^{\prime \prime} \times n^{\prime} S Q$

$$
\begin{aligned}
& M_{\text {ornut }}=92248^{\text {\#.FTT}} \\
& \text { CHECK cOOL } 1 / 3
\end{aligned}
$$

www.hilti.us

Company:

Page:
1
Specifier:
Project:
Address:
Phone I Fax:
Sub-Project I Pos. No.:
Date:
4/8/2019
E-Mail:

Specifier's comments:

1 Input data

Anchor type and diameter:

Effective embedment depth:
Material:
Proof:
Stand-off installation:
Anchor plate:
Profile:
Base material:
Reinforcement:

Seismic loads (cat. C, D, E, or F)

Heavy Hex Head ASTM F 1554 GR. 361

$h_{\text {ef }}=10.000 \mathrm{in}$.
ASTM F 1554
Design method ACI 318-14 / CIP
$\mathrm{e}_{\mathrm{b}}=0.000 \mathrm{in}$. (no stand-off); $\mathrm{t}=0.500 \mathrm{in}$.
$I_{x} \times I_{y} \times t=16.000$ in. $\times 16.000$ in. $\times 0.500$ in.; (Recommended plate thickness: not calculated no profile
cracked concrete, 4000, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=4,000 \mathrm{psi} ; \mathrm{h}=24.000 \mathrm{in}$.
tension: condition B, shear: condition B;
edge reinforcement: none or < No. 4 bar
Tension load: yes (17.2.3.4.3 (d))
Shear load: yes (17.2.3.5.3 (c))
${ }^{\mathrm{R}}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] \& Loading [lb, in.lb]

www.hilti.us

Company:

Specifier:
Address:
Phone I Fax
E-Mail:

Project:
Sub-Project I Pos. No.:
Date: 4/8/2019

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	5,500	1,100	0	$-1,100$
2	5,500	1,100	0	$-1,100$
3	5,500	1,100	0	$-1,100$
4	5,500	1,100	0	$-1,100$

max. concrete compressive strain: max. concrete compressive stress: - [\%] - - [psi] resulting tension force in $(x / y)=(0.000 / 0.000): \quad 22,000[\mathrm{lb}]$ resulting compression force in $(x / y)=(0.000 / 0.000): 0[\mathrm{lb}]$

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load $\mathbf{N}_{\mathbf{u a}}[\mathbf{l b}]$	Capacity $\left.\boldsymbol{\phi} \mathbf{N}_{\mathbf{n}} \mathbf{[l b}\right]$	Utilization $\boldsymbol{\beta}_{\mathbf{N}}=\mathbf{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathbf{N}_{\mathbf{n}}$	Status
Steel Strength	26,361	21	OK	
Pullout Strength*	5,500	25,217	22	OK
Concrete Breakout Strength**	5,500	49,392	45	OK
Concrete Side-Face Blowout, direction **	22,000	$\mathrm{~N} / \mathrm{A}$	N / A	N / A

* anchor having the highest loading **anchor group (anchors in tension)
3.1 Steel Strength
$N_{\text {sa }}=A_{\text {se, }} f_{\text {uta }} \quad$ ACl 318-14 Eq. (17.4.1.2)
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad \mathrm{ACl} 318$-14 Table 17.3.1.1

Variables

$\mathrm{A}_{\text {se, } \mathrm{N}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.61	58,000

Calculations

$$
\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]
$$

$$
35,148
$$

Results

$\mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
35,148	0.750	26,361	5,500

Specifier:	
Address:	
Phone I Fax:	\|
E-Mail:	
3.2 Pullout Strength	
$\mathrm{N}_{\mathrm{p}}{ }^{\text {a }}=\psi_{\mathrm{c}, \mathrm{p}} \mathrm{N}_{\mathrm{p}}$	ACI 318-14 Eq. (17.4.3.1)
$N_{p}=8 A_{\text {brg }} f_{c}^{\prime}$	ACl 318-14 Eq. (17.4.3.4)
$\phi \mathrm{N}_{\mathrm{p} N} \geq \mathrm{N}_{\text {ua }}$	ACI 318-14 Table 17.3.1.1

Variables

$\psi_{\mathrm{c}, \mathrm{p}}$	$\mathrm{A}_{\text {brg }}\left[\mathrm{in}.{ }^{2}\right]$	λ_{a}	$\mathrm{f}_{\mathrm{c}}[\mathrm{psi}]$
1.000	1.50	1.000	4,000

Calculations

$\mathrm{N}_{\mathrm{p}}[\mathrm{lb}]$
48032

Results

$\mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{N}_{\mathrm{pn}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
48,032	0.700	0.750	1.000	25,217	5,500

3.3 Concrete Breakout Strength

$\mathrm{N}_{\mathrm{cbg}}=\left(\frac{\mathrm{A}_{\mathrm{Nc}}}{\mathrm{A}_{\mathrm{Nc} 0}}\right) \psi_{\mathrm{ec}, \mathrm{N}} \psi_{\text {ed,N }} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}} \quad \quad$ ACl 318-14 Eq. (17.4.2.1b)
$\phi N_{\text {cbg }} \geq \mathrm{N}_{\text {ua }}$
ACI 318-14 Table 17.3.1.1
$A_{N c} \quad$ see ACl 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)
$A_{\text {Nco }}=9 h_{\text {ef }}^{2}$
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{N}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
ACI 318-14 Eq. (17.4.2.1c)

- $\left.1+\frac{2 \mathrm{~h}_{\mathrm{ef}}}{3}\right) \leq 1.0$ ACl 318 14 Eq. (17.4.2.4)
$\psi_{\text {ed, } \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0 \quad \quad$ ACI 318-14 Eq. (17.4.2.5b)
$\Psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \min }}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad \quad$ ACI 318-14 Eq. (17.4.2.7b)
$N_{b}=k_{c} \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}}} h_{\mathrm{ef}}^{1.5} \quad$ ACI 318-14 Eq. (17.4.2.2a)
Variables

$\mathrm{h}_{\mathrm{ef}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \text { min }}[\mathrm{in}]$.	$\psi_{\mathrm{c}, \mathrm{N}}$
10.000	0.000	0.000	24.000	1.000
$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ_{a}	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$	
-	24	1.000	4,000	

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nco}}\left[\mathrm{in}.{ }^{2}{ }^{2}\right]$	$\psi_{\text {ecc } 1, \mathrm{~N}}$	$\psi_{\text {ecc }, \mathrm{N}}$	$\psi_{\text {ed,N }}$	$\psi_{\mathrm{cp}, \mathrm{N}}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
$1,764.00$	900.00	1.000	1.000	1.000	1.000	48,000

Results

$\mathrm{N}_{\mathrm{cbg}}[\mathrm{bb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{N}_{\mathrm{cbg}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
94,080	0.700	0.750	1.000	49,392	22,000

Company:

Specifier:
Address:
Phone I Fax:
E-Mail:

Page:
Project:
Sub-Project I Pos. No.:
Date:
4/8/2019

4 Shear load

	Load $\mathrm{V}_{\text {ua }}$ [lb]	Capacity ${ }^{\text {V }} \mathbf{V}$ [lb]	Utilization $\beta_{\mathrm{V}}=\mathrm{V}_{\mathrm{ua}} / \boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	1,100	13,708	9	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	4,400	131,712	4	OK
Concrete edge failure in direction y -**	4,400	34,426	13	OK
* anchor having the highest loading **anchor group (relevant anchors)				

4.1 Steel Strength

$$
\begin{array}{ll}
\mathrm{V}_{\text {sa }}=0.6 \mathrm{~A}_{\text {se, }, \mathrm{V}} \mathrm{f}_{\text {uta }} & \text { ACl 318-14 Eq. (17.5.1.2b) } \\
\phi \mathrm{V}_{\text {steel }} \geq \mathrm{V}_{\text {ua }} & \text { ACl 318-14 Table 17.3.1.1 }
\end{array}
$$

Variables

$\mathrm{A}_{\text {se, }, ~}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
0.61	58,000

Calculations

$\frac{\mathrm{V}_{\text {sa }}[\mathrm{lb}]}{21,089}$

Results

$\mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
21,089	0.650	13,708	1,100

4.2 Pryout Strength

$V_{\text {cpg }}=k_{\text {cp }}\left[\left(\frac{A_{\text {Nc }}}{A_{\text {Nc } 0}}\right) \psi_{\text {ec, } \mathrm{N}} \psi_{\text {ed, }, \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}}\right]$	ACl 318-14 Eq. (17.5.3.1b)
$\phi \mathrm{V}_{\text {cpg }} \geq \mathrm{V}_{\text {ua }}$ 	ACI 318-14 Table 17.3.1.1
$\mathrm{A}_{\text {Nco }}=9 \mathrm{~h}_{\text {ef }}^{2}$	ACl 318-14 Eq. (17.4.2.1c)
$\psi_{e c, N}=\left(\frac{1}{1+\frac{2 e_{N}^{\prime}}{3 h_{e f}}}\right) \leq 1.0$	ACl 318-14 Eq. (17.4.2.4)
$\psi_{\text {ed, } \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a}, \mathrm{min}}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0$	ACl 318-14 Eq. (17.4.2.5b)
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ff}}}{\mathrm{Cac}_{\mathrm{ac}}}\right) \leq 1.0$	ACl 318-14 Eq. (17.4.2.7b)
$\mathrm{N}_{\mathrm{b}} \quad=\mathrm{k}_{\mathrm{c}} \lambda_{\mathrm{a}} \sqrt{ } \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{h}_{\mathrm{ef}}^{1.5}$	ACl 318-14 Eq. (17.4.2.2a)

Variables

k_{cp}	h_{ef} [in.]	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.]	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}$ [in.]	$\mathrm{c}_{\mathrm{a}, \min }$ [in.]
2	10.000	0.000	0.000	24.000
$\psi_{\mathrm{c}, \mathrm{N}}$	$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.	k_{c}	λ_{a}	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$
1.000	-	24	1.000	4,000

Calculations

$\mathrm{A}_{\text {Nc }}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\text {Nco }}\left[\right.$ in. $\left.{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ec } 2, \mathrm{~N}}$	$\psi_{\text {ed,N }}$	$\psi_{\text {ep,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
$1,764.00$	900.00	1.000	1.000	1.000	1.000	48,000

Results

$\mathrm{V}_{\text {cpg }}[\mathrm{bb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{V}_{\text {cpp }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
188,160	0.700	1.000	1.000	131,712	4,400

Company:

Specifier:

Project:
Address:
Phone I Fax
E-Mail:

Sub-Project I Pos. No.:
Date:
4/8/2019

4.3 Concrete edge failure in direction y -

$V_{\text {cbg }}=\left(\frac{A_{V_{\mathrm{Vc}}}}{\mathrm{V}_{\mathrm{cc} 0}}\right) \psi_{e c, V} \psi_{\text {ed, }, ~} \psi_{\mathrm{c}, \mathrm{V}} \psi_{\mathrm{h}, \mathrm{V}} \psi_{\text {paralle, }, ~} \mathrm{~V}_{\mathrm{b}}$	ACI 318-14 Eq. (17.5.2.1b)
$\phi \mathrm{V}_{\text {cbg }} \geq \mathrm{V}_{\text {ua }}$	ACI 318-14 Table 17.3.1.1
$A_{V_{c}}$ see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
$\mathrm{A}_{\mathrm{vc} 0}=4.5 \mathrm{c}_{\mathrm{a} 1}^{2}$	ACI 318-14 Eq. (17.5.2.1c)
$\psi_{e c, V}=\left(\frac{1}{1+\frac{2 e_{v}^{\prime}}{3 c_{a 1} 1}}\right) \leq 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\psi_{\text {ed, }, ~}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$\psi_{\mathrm{h}, \mathrm{v}}=\sqrt{\frac{1.5 \mathrm{c}_{\mathrm{at}}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0$	ACI 318-14 Eq. (17.5.2.8)
$\mathrm{V}_{\mathrm{b}} \quad=9 \lambda_{\mathrm{a}} \sqrt{\mathrm{f}_{\mathrm{c}} \mathrm{C}_{\mathrm{a} 1}^{1.5}}$	ACI 318-14 Eq. (17.5.2.2b)

Variables

$\mathrm{c}_{\mathrm{a} 1}$ [in.]	$\mathrm{c}_{\mathrm{a} 2}$ [in.]	e_{cv} [in.]	$\psi_{\mathrm{c}, \mathrm{V}}$	h_{a} [in.]
24.000	24.000	0.000	1.000	24.000
I_{e} [in.]	λ_{a}	d_{a} [in.]	$\mathrm{f}_{\mathrm{c}}^{\prime}$ [psi]	$\psi_{\text {parallel, },}$
8.000	1.000	1.000	4,000	1.000

Calculations

$\mathrm{A}_{\mathrm{Vc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Vco}}\left[\mathrm{in} .{ }^{2}\right]$	$\psi_{\mathrm{ec}, \mathrm{V}}$	$\psi_{\text {ed }, \mathrm{V}}$	$\psi_{\mathrm{h}, \mathrm{V}}$	$\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$
$1,728.00$	$2,592.00$	1.000	0.900	1.225	66,925

Results

$\mathrm{V}_{\text {cbg }}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{V}_{\text {cbg }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
49,180	0.700	1.000	1.000	34,426	4,400

5 Combined tension and shear loads

β_{N}	β_{V}	ζ	Utilization $\beta_{N, V}[\%]$	Status
0.445	0.128	$5 / 3$	30	OK

$\beta_{N V}=\beta_{N}^{\kappa}+\beta_{V}^{\zeta}<=1$
www.hilti.us
Profis Anchor 2.8.1

Company:

Page:
6
Specifier:
Address:
Phone I Fax:
E-Mail:
Project:
Sub-Project I Pos. No.:

Date:
4/8/2019

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in $\mathrm{ACI} 318-14$, Chapter 17 , Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω_{0}.

Company:
Specifier:
Address:
Phone I Fax
E-Mail:

Page:
Project:
Sub-Project I Pos. No.:
Date:
4/8/2019

7 Installation data

Anchor plate, steel: -
Profile: no profile
Hole diameter in the fixture: $d_{f}=1.063$ in.
Plate thickness (input): 0.500 in.
Recommended plate thickness: not calculated

Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 361 Installation torque: -
Hole diameter in the base material: - in.
Hole depth in the base material: 10.000 in
Minimum thickness of the base material: 11.172 in.

Coordinates Anchor in.

Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{c}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$
1	-6.000	-6.000	36.000	36.000	24.000	48.000
2	6.000	-6.000	48.000	24.000	24.000	48.000
3	-6.000	6.000	36.000	36.000	36.000	36.000
4	6.000	6.000	48.000	24.000	36.000	36.000

www.hilti.us
Profis Anchor 2.8.1
Company:

Page:

8
Specifier:
Address:
Phone I Fax: |
Sub-Project I Pos. No.:
E-Mail:
Date: 4/8/2019

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.
\qquad
Smith Monroe Gray
ENGINEERS, I NC.
\qquad
\qquad DATE \qquad REV. \qquad
\qquad
\qquad OF

LnG foundation

$$
T_{\text {AUK }} W_{K}=25.9 \mathrm{kiPs} \pm 3 \% \rightarrow 26.7 \mathrm{kMs}
$$

LuG $W_{T}=54.6 \mathrm{kles}$
2 Design $W_{T}=813^{\mathrm{k} / \mathrm{s}}$

$$
V_{\text {EAT } . ~} . G=8.5^{\prime} / 2+\left(9^{\prime}-8.5^{\prime}\right)=4.75^{\prime}(\square)
$$

Seismic Parameters (simian to Vapominar)
$C_{S}=0.44$
$E_{V}=0.18 \cdot D \quad$ Commas over Wind

$$
\begin{aligned}
& C_{s}=0.44 \\
& E_{v}=0.18 \cdot D
\end{aligned}
$$

Anchor Ra Summary

(2) $5^{\prime} \times 10^{\prime}$ footings or By lass, $S_{p}=1110$ PSF OK
\qquad
Smith Monroe Gray
ENGINEERS, I NC. By \qquad DATE \qquad REV. \qquad
\qquad
\qquad of \qquad
Lng Foundation (cont's)
Foundation Overturning

$$
\begin{aligned}
& \text { Min. Weraht }=0.9 \cdot 81.3^{\mathrm{K}}+0.9 \cdot 5^{\prime} \cdot 12^{\prime} \cdot 2: 0.15 \mathrm{kCF} \\
& =89.4^{k-\pi} \\
& \text { Moves }=35.8^{k} \cdot\left(4.75^{\prime}\right)=170^{\mathrm{k}-F T} \\
& M_{\text {RESIST }}=89.4^{\mathrm{k} \cdot P \mathrm{PS}} \cdot 12^{\prime} / 6=178.8^{\mathrm{k}-\text { vT }} 0 \mathrm{KJ}
\end{aligned}
$$

$$
\begin{aligned}
\text { Max. Werloht } & =1.2 \cdot 81.3^{k}+1.0 \cdot 14.6^{k}+1.2 \cdot 5^{\prime} \cdot 12^{\prime} \cdot 2 \cdot 0.15 \text { keF } \\
& =133.8^{\text {kiss }}
\end{aligned}
$$

$$
\begin{aligned}
\text { Max. Pressure }=133.8^{\mathrm{kPP}} /\left(2.5^{\prime} \cdot 12^{\prime}\right) \times 2= & 2.23 \mathrm{kSF} \text { e Trinturan } \\
& <3000 \text { PSF OF J }
\end{aligned}
$$

Ancherater $\mathrm{RXN}_{\mathrm{N}}$

$$
\begin{aligned}
& \left.T_{U}=N A * \text { Does Not occur (Mir Compassion }=1.6^{k}\right) \\
& V_{U}=9.0^{k} \times 0.7=6.3^{k} \\
& \begin{array}{l}
\text { ARD DEMAND } \\
\text { RFD DEMAND }=9.0 \\
\text { KIPS }
\end{array}
\end{aligned}
$$

USE A SINGLE 1 3/8" DIA ANCHOR W/ 6" MIN EMBED (SEE HILTI OUTPUT)
www.hilti.us

Specifier's comments:

1 Input data

Anchor type and diameter:

Effective embedment depth:
Material:
Proof:
Stand-off installation:
Profile:
Base material:
Reinforcement:

Seismic loads (cat. C, D, E, or F)

Heavy Hex Head ASTM F 1554 GR. 361 3/8

$h_{\text {ef }}=6.000 \mathrm{in}$.
ASTM F 1554
Design method ACI 318-14 / CIP

- (Recommended plate thickness: not calculated)
no profile
cracked concrete, 4000, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=4,000 \mathrm{psi} ; \mathrm{h}=12.000 \mathrm{in}$.
tension: condition B, shear: condition B;
edge reinforcement: none or < No. 4 bar
Tension load: yes (17.2.3.4.3 (d))
Shear load: yes (17.2.3.5.3 (c))
${ }^{R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] \& Loading [lb, in.lb]

www.hilti.us
Profis Anchor 2.8.1

Company:

Page:
2
Specifier:
Project:
Address:
Phone I Fax: | Date: 4/8/2019
E-Mail:
Sub-Project I Pos. No.:

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	$-3,200$	18,000	0	$-18,000$

max. concrete compressive strain: - [\%]
max. concrete compressive stress: - [psi]
resulting tension force in $(x / y)=(0.000 / 0.000): \quad 0[\mathrm{lb}]$
resulting compression force in $(x / y)=(0.000 / 0.000): 0[\mathrm{lb}]$

3 Tension load

	Load $\mathbf{N}_{\mathbf{u a}}[\mathrm{lb}]$	Capacity $\boldsymbol{\phi} \mathbf{N}_{\mathbf{n}}[\mathrm{lb}]$	Utilization $\boldsymbol{\beta}_{\mathbf{N}}=\mathbf{N}_{\mathrm{ua}} / \boldsymbol{\phi} \mathbf{N}_{\mathrm{n}}$	Status
Steel Strength	50,460	7	OK	
Pullout Strength*	$-3,200$	$\mathrm{~N} / \mathrm{A}$	N / A	N / A
Concrete Breakout Strength**	N / A	N / A	N / A	N / A
Concrete Side-Face Blowout, direction ${ }^{* *}$	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	N / A

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

$\mathrm{N}_{\text {sa }}=\mathrm{A}_{\text {se, }} \mathrm{f}_{\text {uta }} \quad$ ACl 318-14 Eq. (17.4.1.2)
$\phi \mathrm{N}_{\mathrm{sa}} \geq \mathrm{N}_{\mathrm{ua}} \quad \mathrm{ACl} 318$-14 Table 17.3.1.1

Variables

$\mathrm{A}_{\text {se, }}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
1.16	58,000

Calculations

N_{sa} [lb]
67,280

Results

$\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
67,280	0.750	50,460	$-3,200$

The steel proof was done for the highest absolute force per anchor - in this case compression loading. Please be aware that buckling should be verified separately

Company:

Specifier:
Address:
Phone I Fax:
E-Mail:

Page:
Project:
Sub-Project I Pos. No.:
Date: 4/8/2019

4 Shear load

	Load $\mathrm{V}_{\text {ua }}$ [lb]	Capacity ${ }^{\text {V }} \mathbf{V}$ [lb]	Utilization $\beta_{\mathrm{V}}=\mathrm{V}_{\text {ua }} / \boldsymbol{\phi} \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	18,000	26,239	69	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	18,000	31,232	58	OK
Concrete edge failure in direction y -**	18,000	22,540	80	OK
* anchor having the highest loading **anchor group (relevant anchors)				

4.1 Steel Strength

$$
\begin{array}{ll}
\mathrm{V}_{\text {sa }}=0.6 \mathrm{~A}_{\text {se, }, \mathrm{V}} \mathrm{f}_{\text {uta }} & \text { ACl 318-14 Eq. (17.5.1.2b) } \\
\phi \mathrm{V}_{\text {steel }} \geq \mathrm{V}_{\text {ua }} & \text { ACl 318-14 Table 17.3.1.1 }
\end{array}
$$

Variables

$\mathrm{A}_{\mathrm{se}, \mathrm{V}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
1.16	58,000

Calculations

$\frac{\mathrm{V}_{\text {sa }}[\mathrm{lb}]}{40,368}$

Results

$\mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
40,368	0.650	26,239	18,000

4.2 Pryout Strength

$V_{c p}=k_{c p}\left[\left(\frac{A_{\text {Nc }}}{A_{\text {cco }}}\right) \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{b}\right]$	ACI 318-14 Eq. (17.5.3.1a)
$\phi \mathrm{V}_{\text {cp }} \geq \mathrm{V}_{\text {ua }}$ A_{Nc} see ACl 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	ACI 318-14 Table 17.3.1.1
$A_{\text {NcO }}=9 h_{\text {ef }}^{2}$	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{hef}_{\text {ef }}}}\right) \leq 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi_{\text {ed, }}=0.7+0.3\left(\frac{\mathrm{Ca}_{\text {a,min }}}{1.5 \mathrm{hef}_{\text {ef }}}\right) \leq 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0$	ACI 318-14 Eq. (17.4.2.7b)
$N_{b} \quad=k_{c} \lambda_{\mathrm{a}} \sqrt{ } \sqrt{\mathrm{f}_{\mathrm{c}}} \mathrm{h}_{\mathrm{ef}}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k_{cp}	h_{ef} [in.]	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.]	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}$ [in.]	$\mathrm{c}_{\mathrm{a}, \text { min }}$ [in.]
2	6.000	0.000	0.000	24.000
$\psi_{\mathrm{c}, \mathrm{N}}$	c_{ac} [in.]	k_{c}	λ_{a}	f_{c} [psi]
1.000	-	24	1.000	4,000

Calculations

$\mathrm{A}_{\text {Nc }}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{A}_{\text {Nco }}\left[\right.$ in. $\left.{ }^{2}\right]$	$\psi_{\text {ec } 1, \mathrm{~N}}$	$\psi_{\text {ec } 2, \mathrm{~N}}$	$\psi_{\text {ed,N }}$	$\psi_{\text {ep,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
324.00	324.00	1.000	1.000	1.000	1.000	22,308

Results

$\mathrm{V}_{\mathrm{cp}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{V}_{\text {cp }}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
44,617	0.700	1.000	1.000	31,232	18,000

Company:

4.3 Concrete edge failure in direction y -

$V_{c b}=\left(\frac{A_{V_{c}}}{A_{V_{c 0}}}\right) \psi_{\text {ed }, V} \psi_{c, V} \psi_{h, V} \psi_{\text {parallel }, \mathrm{V}} V_{b}$	ACI 318-14 Eq. (17.5.2.1a)
$\phi \mathrm{V}_{\mathrm{cb}} \geq \mathrm{V}_{\text {ua }}$	ACI 318-14 Table 17.3.1.1
$A_{V_{c}}$ see $A C I 318-14$, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
$A_{V c 0}=4.5 c_{a 1}^{2}$	ACI 318-14 Eq. (17.5.2.1c)
$\psi_{e c, V}=\left(\frac{1}{1+\frac{2 e_{v}^{\prime}}{3 \mathrm{c}_{\mathrm{a} 1}}}\right) \leq 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\psi_{\mathrm{ed}, \mathrm{v}}=0.7+0.3\left(\frac{\mathrm{c}_{\mathrm{a} 2}}{1.5 \mathrm{c}_{\mathrm{a} 1}}\right) \leq 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$\psi_{\mathrm{h}, \mathrm{v}}=\sqrt{\frac{1.5 \mathrm{c}_{\mathrm{a} 1}}{\mathrm{~h}_{\mathrm{a}}}} \geq 1.0$	ACI 318-14 Eq. (17.5.2.8)
$V_{b}=9 \lambda_{a} \sqrt{f_{c}^{\prime}} \mathrm{c}_{\mathrm{a} 1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2b)

Variables

$\mathrm{c}_{\mathrm{a} 1}$ [in.]	$\mathrm{c}_{\mathrm{a} 2}$ [in.]	e_{cv} [in.]	$\psi_{\mathrm{c}, \mathrm{v}}$	h_{a} [in.]
20.000	30.000	0.000	1.000	12.000
I_{e} [in.]	λ_{a}	d_{a} [in.]	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$	$\psi_{\text {parallel, } \mathrm{V}}$
6.000	1.000	1.375	4,000	1.000

Calculations

$\mathrm{A}_{\mathrm{Vc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Vc} 0}\left[\mathrm{in} .{ }^{2}\right]$	ψ ec, V	$\psi_{\text {ed,V }}$	$\psi_{\mathrm{h}, \mathrm{V}}$	$\mathrm{V}_{\mathrm{b}}[\mathrm{lb}]$
720.00	$1,800.00$	1.000	1.000	1.581	50,912
Results					
$\mathrm{V}_{\mathrm{cb}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{V}_{\mathrm{cb}}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$
32,199	0.700	1.000	1.000	22,540	18,000

5 Combined tension and shear loads

β_{N}	β_{V}	ζ	Utilization $\beta_{N, V}[\%]$	Status
0.063	0.799	$5 / 3$	70	OK

$\beta_{N V}=\beta_{N}^{\kappa}+\beta_{V}^{\zeta}<=1$
www.hilti.us
Profis Anchor 2.8.1

Company:

Page: 5
Specifier:
Address:
Phone I Fax: |
Project:
Sub-Project I Pos. No.:
E-Mail:

Date:

4/8/2019

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Attention! In case of compressive anchor forces a buckling check as well as the proof of the local load transfer into and within the base material (incl. punching) has to done separately.
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω_{0}.

Fastening meets the design criteria!

www.hilti.us
Profis Anchor 2.8.1
Company:
Page:
6
Specifier:
Address:
Phone I Fax: |
Project:

E-Mail:

Sub-Project I Pos. No.:
Date:
4/8/2019

7 Installation data

Anchor plate, steel: -
Profile: -
Hole diameter in the fixture: -
Plate thickness (input): -
Recommended plate thickness: -

Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 361 3/8 Installation torque: -
Hole diameter in the base material: - in.
Hole depth in the base material: 6.000 in.
Minimum thickness of the base material: 7.406 in.

Coordinates Anchor in.

Anchor	\mathbf{x}	\mathbf{y}	$\mathbf{c}_{-\mathbf{x}}$	$\mathbf{c}_{+\mathbf{x}}$	$\mathbf{C}_{-\mathbf{y}}$	$\mathbf{c}_{+\mathbf{y}}$
1	0.000	0.000	30.000	30.000	24.000	48.000

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.
\qquad
\qquad BY \qquad DATE \qquad REV. \qquad
\qquad
Sound Atentuation Wall I (18^{\prime} max Herat)

$$
\text { Max. } H_{T}=18^{\prime}
$$

Design Wind Speed $=110 \mathrm{MPH}=\mathrm{V}$
Sound Sun Wino Loading Per Asci 7-14,

$$
\begin{aligned}
& \mathrm{s} / \mathrm{h}=1.0 \quad \mathrm{~B} / \mathrm{s}=2.0 \mathrm{~mm} \rightarrow C_{s}=1.40 \\
& M_{\text {max }} C_{s}=1.40 \quad 20 \mathrm{max} \rightarrow C_{s}=1.30 \\
& q_{z}=0.00256 \cdot \mathrm{Kd} \cdot \mathrm{~K}_{z t} \cdot K_{z} \cdot V^{2}=22.4 \mathrm{PsF} \\
& K_{d}=0.85 \\
& K_{z t}=1.0 \\
& K_{z}=0.85 \quad C H=0.15^{\prime}, \mathrm{kPP} \cdot \mathrm{C} \\
& F_{w}=G \quad q_{z} \cdot C_{F}=26.7 \mathrm{PSF} \\
& G_{G}=0.85 \\
& q_{z}=22.4 \mathrm{PsF} \\
& C_{f}=1.4
\end{aligned}
$$

Seismic LoAd - Nonbuildwa Smucrove (Mass Cantilever)

$$
\begin{aligned}
& C_{s}=0.29 \quad(R=3.0) \\
& W_{6} n=6^{u} / 12^{n} \cdot 150 \mathrm{PCt} \cdot 0.29=21.75 \quad \mathrm{PLF} \\
& \text { Wins Covens }
\end{aligned}
$$

\qquad
\qquad
\qquad BY \qquad DATE \qquad ne x \qquad JOB NO. \qquad
Sound Attenuation Whee (con trio)
Wan Demand (DL+1.0WL LoAd Combo Conitars)

$$
\begin{aligned}
& w=26.7 \mathrm{PLF} \\
& M_{U}=\left(26.7 \mathrm{PF} \cdot 18^{\prime}\right) \cdot\left(18^{\prime} / 2+2^{\prime}\right)=5286^{\# \cdot 1 T T} / \mathrm{FT} \\
& \left.V_{U}=26.7 \mathrm{PrF} \cdot 18^{\prime}=48\right)^{\# / \mathrm{FT}}
\end{aligned}
$$

USE $6^{\prime \prime}$ Wan $w / \#$ e $q^{\prime \prime}$ oc e cinvth, coven $=25 / 8^{11}$

Wal Overturning Analysis

$$
\begin{aligned}
& A_{\text {wat }}=6.0^{\prime} \cdot 1.0^{\prime}+18^{\prime} \cdot 6^{\prime \prime} / 12^{\prime \prime}=15.0 \mathrm{ft}^{2} \\
& W_{\text {Lam }}=150 \mathrm{PCF} \cdot 15.0 \mathrm{kt}^{2} / \mathrm{tt}=2250 \mathrm{PLF} \\
& \text { * Ser Spransutet, } W_{\text {max }}=1570 \text { PSF } \quad\left(L=4.55^{\prime}\right) \\
& F_{\text {ours }}=2.0>1.5 \mathrm{okv}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Footing Demand } \\
& \omega_{\text {rect }}=1570 \mathrm{PL} \\
& W_{1}=1570 \mathrm{MF} / 455^{\prime} \times 1.81^{\prime}=621 \mathrm{PL} \\
& M_{V 1}=621 \text { plus. }\left(2.75^{\prime}\right)^{2} / 2=2348^{\# .49} \\
& \text { (1.84):-} \\
& M_{u}=\frac{\left(1570 \mathrm{pt}-(21 \mathrm{Pu}) \cdot 2.75^{47}\right.}{2} \cdot \frac{2}{3} \cdot 275^{\prime}=2392^{\# \cdot \pi} \\
& M_{u}=4740^{\# \cdot 1 T} \\
& V_{v}=621 \text { Pf } 2.7 .75^{1}+(1570-621) \cdot 2.75^{1} / 2=3012^{\#}
\end{aligned}
$$

Project:

Concrete Slab Design per ACI 318-08

Applied Forces:
 Ultimate Shear, $\mathrm{V}_{\mathrm{u}}=0.48 \mathrm{kips}$
 Ultimate Moment, $\mathrm{M}_{\mathrm{u}}=5.286 \mathrm{ft}$-kips

Slab Properties:

$$
\begin{array}{rlrl}
\text { Width }= & & 12 \mathrm{in} \\
\text { Depth }= & & 6 \mathrm{in} \\
\text { Cover } & = & 2.625 \mathrm{in} . \\
d & = & 3.00 \mathrm{in} . \\
\mathrm{f}_{\mathrm{c}}^{\prime} & = & & 4000 \mathrm{psi} \\
\beta_{1}= & & 0.85
\end{array}
$$

Capacity:
Shear: $\phi=0.75$

$$
\Phi V_{c}=\Phi V_{n}=\phi^{*} 2^{*} b^{*} d^{*} V f^{\prime} c
$$

$$
\Phi \mathrm{V}_{\mathrm{c}}=\Phi \mathrm{V}_{\mathrm{n}}=\quad 3.42 \mathrm{kips}
$$

Bending: $\phi=0.9$
$\Phi \mathrm{M}_{\mathrm{n}}=\phi\left(\mathrm{As}{ }^{*} \mathrm{fy}{ }^{*}(\mathrm{~d}-\mathrm{a} / 2)\right)$
$\Phi \mathrm{M}_{\mathrm{n}}=6.78 \mathrm{k}$-ft.

Demand Ratios:

$$
\begin{array}{ccc}
\mathrm{V}_{u} / \Phi V_{n}= & 0.14 & \text { SLAB IS OK IN SHEAR } \\
\mathrm{M}_{u} / \Phi \mathrm{M}_{\mathrm{n}}= & 0.78 & \text { SLAB IS OK IN BENDING }
\end{array}
$$

Longitudinal Reinforcement:

Bar Size $=$	6
Spacing $=$	9 inches o.c.
$f_{y}=$	60000 psi

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{s}}= & 0.59 \mathrm{in}^{2} \\
\mathrm{a}= & 0.86 \mathrm{in} \\
\mathrm{c}= & 1.01 \mathrm{in}
\end{array}
$$

Shrinkage and Temperature Reinforcing
Min. reinf. ratio $=0.0018$
$\mathrm{A}_{5} \min =\quad 0.06 \mathrm{in}^{2} \quad \mathrm{OK}$
max. spacing $=\quad 18.0$ in

Check Tension Controlled (ACI 10.3.4)

$$
\begin{aligned}
& \varepsilon_{t}=[(\mathrm{d}-\mathrm{c}) / \mathrm{c}]^{*} 0.003 \\
& \varepsilon_{\mathrm{t}}=0.0059>0.005, \mathrm{OK}
\end{aligned}
$$

5115
 Smith Monroe Gray

ENGINEERS, I NC.

CLIENT: LAKESIDE INDUSTRIES
PROJECT: MAPLE VALLEY ASPHALT PLANT FOUNDATION DESIGN
BY: BS DATE: 11/1/2018
JOB\#: 18-183B SHEET OF

DESIGN OF RECTANGULAR FOOTING WITH OVERTURNING MOMENT
FOOTING:

Smith Monroe Gray

ENGINEERS, I NC.
Client: LAKESIDE INDUSTRIES
Job \#: 18-183B
$B y: B S$

Concrete Slab Design per ACl 318-08

Applied Forces:
Ultimate Shear, $\mathrm{V}_{\mathrm{u}}=$
Ultimate Moment, $\mathrm{M}_{\mathrm{u}}=$

$$
3.01 \text { kips }
$$

$4.74 \mathrm{ft}-\mathrm{kips}$

Slab Properties:

Width $=$		12 in
Depth	$=$	12 in
Cover	$=$	3 in.
d	$=$	8.75 in.
$\mathrm{f}_{\mathrm{c}}^{\prime}=$	4000 psi	
β_{1}	$=0.85$	

Capacity:
Shear: $\phi=0.75$

$$
\Phi V_{c}=\Phi V_{n}=\phi^{*} 2^{*} b^{*} d^{*} V f^{\prime} c
$$

$$
\Phi \mathrm{V}_{\mathrm{c}}=\Phi \mathrm{V}_{\mathrm{n}}=\quad 9.96 \mathrm{kips}
$$

Bending: $\phi=0.9$
$\Phi M_{n}=\phi\left(A s * f y^{*}(d-a / 2)\right)$
$\Phi M_{n}=\quad 7.74 \mathrm{k}-\mathrm{ft}$.

Demand Ratios:		
$\mathrm{V}_{\mathrm{u}} / \Phi \mathrm{V}_{\mathrm{n}}=$	0.30	SLAB IS OK IN SHEAR
$\mathrm{M}_{\mathrm{u}} / \Phi \mathrm{M}_{\mathrm{n}}=$	0.61	SLAB IS OK IN BENDING

\qquad
Smith Monroe Gray
ENGINEERS,INC.
\qquad
\qquad DATE \qquad REV. \qquad
\qquad
\qquad OF

Sowd Atrmation Wau 2 (30^{\prime} max. Heshti)

$$
M_{\text {Ax }} H_{\text {floht }}=30^{\prime}
$$

Par Previous $q_{z}=22.4 \mathrm{pst}$

$$
\begin{aligned}
& s / h=1.0, \mathrm{~B} / \mathrm{s}=6.0 \rightarrow C_{S}=1.35 \\
& F_{W}=G \cdot q_{z} \cdot C_{S}=25.7 \mathrm{PS} \\
& G=0.85 \\
& C_{5}=135 \quad \begin{aligned}
W_{12} & =1^{\mathrm{PT}} \cdot 150 \mathrm{PLF} \cdot 0.29 \\
& =43.5 \mathrm{PLF} \leftarrow \mathrm{C}_{\mathrm{s}}
\end{aligned}
\end{aligned}
$$

Wau Demane

$$
\begin{aligned}
& M_{U}=w \ell^{2} / 2=43.5 \mathrm{PLF} \cdot\left(32^{\prime}\right)^{2} / 2=22300^{\text {F.FT } / \mathrm{FT}} \\
& V_{U}=43.5 \mathrm{PLF} \cdot 32^{\prime}=1392^{\#} / \mathrm{FT}
\end{aligned}
$$

$$
\begin{array}{lll}
W_{\text {max }}=2211 \text { PSF } & \left(L=4.88^{\prime}\right) \\
F S_{\text {ovke }}=2.25 & >1.50 \mathrm{kV} & W_{\text {max }}=3178 \mathrm{pH} \quad L=4.84^{4 T} \\
F_{\text {oren }}=1.57>1.5
\end{array}
$$

Footing Desien

$$
\begin{aligned}
& \omega_{1}=3178 \mathrm{PCF} / 4.89^{1} \times 1.39^{\prime}=903 \mathrm{PLF} \\
& M_{U_{1}}=903 \operatorname{PLF}\left(4.5^{\prime}\right)^{2} / 2=9143^{\# \cdot F T} \quad M_{v_{2}}=\frac{(378 \mathrm{Rt}-903 \mathrm{PL}) \cdot 4.5^{\prime}}{2} \cdot \frac{2}{3} \cdot 45^{\prime}=15355^{\text {¹/ fr }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Use } 12^{4} \text { Footing w/ \#t el } 10^{\circ \mathrm{OC}}
\end{aligned}
$$

ENGINEERS,INC.

Concrete Slab Design per ACI 318-14

Applied Forces:

Ultimate Shear, $\mathrm{V}_{\mathrm{u}}=$ Ultimate Moment, $\mathrm{M}_{\mathrm{u}}=22.3 \mathrm{ft}$-kips

Slab Properties:

| Width | $=$ | 12 in |
| ---: | :--- | ---: | :--- |
| Depth | $=$ | 12 in |
| Cover | $=$ | 3 in. |
| d | $=$ | 8.63 in. |
| $\mathrm{f}_{\mathrm{c}}^{\prime}$ | $=$ | 4000 psi |
| β_{1} | $=$ | 0.85 |

Capacity:
Shear: $\phi=0.75$

$$
\begin{aligned}
& \Phi V_{\mathrm{c}}=\Phi \mathrm{V}_{\mathrm{n}}=\phi^{*} 2^{*} \mathrm{~b}^{*} \mathrm{~d}^{*} V \mathrm{f}^{\prime} \mathrm{c} \\
& \Phi \mathrm{~V}_{\mathrm{c}}=\Phi \mathrm{V}_{\mathrm{n}}=\quad 9.82 \mathrm{kips}
\end{aligned}
$$

Bending: $\phi=0.9$

$$
\begin{aligned}
& \Phi M_{n}=\phi\left(\mathrm{As}^{*} \mathrm{fy} *(\mathrm{~d}-\mathrm{a} / 2)\right) \\
& \Phi \mathrm{M}_{\mathrm{n}}=24.17 \mathrm{k} \text {-ft. }
\end{aligned}
$$

Longitudinal Reinforcement:

Bar Size $=$	6
Spacing $=$	8 inches o.c.
$f_{y}=$	60000 psi

Shrinkage and Temperature Reinforcing
Min. reinf. ratio $=0.0018$
$\mathrm{A}_{5} \min =\quad 0.19 \mathrm{in}^{2} \quad \mathrm{OK}$
max. spacing $=\quad 18.0$ in

Check Tension Controlled (ACl 10.3.4)

$$
\begin{aligned}
& \varepsilon_{\mathrm{t}}=[(\mathrm{d}-\mathrm{c}) / \mathrm{c}]^{*} 0.003 \\
& \varepsilon_{\mathrm{t}}=0.0197>0.005, \text { OK }
\end{aligned}
$$

Demand Ratios:

$$
\begin{array}{ccc}
\mathrm{V}_{u} / \Phi V_{n}= & 0.14 & \text { SLAB IS OK IN SHEAR } \\
\mathrm{M}_{u} / \Phi \mathrm{M}_{n}= & 0.92 & \text { SLAB IS OK IN BENDING }
\end{array}
$$

5115
 Smith Monroe Gray

CLIENT: LAKESIDE INDUSTRIES
PROJECT: MAPLE VALLEY ASPHALT PLANT
FOUNDATION DESIGN
ENGINEERS,I NC.
BY: BS DATE: 4/7/2019
JOB\#: 18-183B SHEET OF

5115
 Smith Monroe Gray
 ENGINEERS,INC.

Client: LAKESIDE INDUSTRIES
Job \#: 18-183B
By: BS
Project:
Date: 4/7/2019
Sheet
of

Concrete Slab Design per ACI 318-14

Applied Forces:

Ultimate Shear, $\mathrm{V}_{\mathrm{u}}=$

$$
\text { Ultimate Moment, } \mathrm{M}_{\mathrm{u}}=
$$

$$
9.2 \text { kips }
$$

$$
25 \text { ft-kips }
$$

Slab Properties:

$$
\begin{aligned}
\text { Width } & = & 12 \mathrm{in} \\
\text { Depth } & = & 12 \mathrm{in} \\
\text { Cover } & = & 3 \mathrm{in} . \\
\mathrm{d} & = & 8.56 \mathrm{in} . \\
\mathrm{f}_{\mathrm{c}}^{\prime} & = & 4000 \mathrm{psi} \\
\beta_{1} & = & 0.85
\end{aligned}
$$

Capacity:
Shear: $\phi=0.75$

$$
\Phi V_{c}=\Phi V_{n}=\phi^{*} 2^{*} b^{*} d^{*} V f^{\prime} c
$$

$$
\Phi \mathrm{V}_{\mathrm{c}}=\Phi \mathrm{V}_{\mathrm{n}}=\quad 9.75 \mathrm{kips}
$$

Bending: $\phi=0.9$
$\Phi \mathrm{M}_{\mathrm{n}}=\phi(\mathrm{As} * \mathrm{fy} *(\mathrm{~d}-\mathrm{a} / 2))$
$\Phi \mathrm{M}_{\mathrm{n}}=26.03 \mathrm{k}$-ft.

Longitudinal Reinforcement:

$$
\begin{array}{rc}
\text { Bar Size }= & 7 \\
\text { Spacing }= & 10 \text { inches o.c. } \\
f_{y}= & 60000 \text { psi }
\end{array}
$$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{s}} & =0.72 \mathrm{in}^{2} \\
\mathrm{a}= & 1.06 \mathrm{in} \\
\mathrm{c}= & 1.25 \mathrm{in}
\end{aligned}
$$

Shrinkage and Temperature Reinforcing
Min. reinf. ratio $=0.0018$

$$
\mathrm{A}_{\mathrm{s}} \min =\quad 0.18 \mathrm{in}^{2} \quad \mathrm{OK}
$$

max. spacing $=$

Check Tension Controlled (ACl 10.3.4)

$$
\begin{aligned}
& \varepsilon_{\mathrm{t}}=[(\mathrm{d}-\mathrm{c}) / \mathrm{c}]^{*} 0.003 \\
& \varepsilon_{\mathrm{t}}=0.0176>0.005, \mathrm{OK}
\end{aligned}
$$

Demand Ratios:
$V_{u} / \Phi V_{n}=0.94 \quad$ SLAB IS OK IN SHEAR
$\mathrm{M}_{\mathrm{u}} / \Phi \mathrm{M}_{\mathrm{n}}=0.96 \quad$ SLAB IS OK IN BENDING
NOTES

1. Wall to be designated Noise Barier Wall Type 2 A ,
2B 2C or 2 D . The Contract specifies actual wall
designations.
2. For intermediate wall heights not listed, use the
next higher H .
3. Panels shall have at least 3 feet of level ground
on each side.
4. Construction joints in the footing shall be spaced

