110 James Street, Suite 106 Edmonds, WA 98020 Tel: 425-458-9700 Email: cadd@designwesteng.com

275 W. Hospitality Lane, Suite 100 San Bernardino, CA 92408 Tel: 909-890-3700 Fax: 909-890-3770 Email: info@designwesteng.com

DESIGN WEST ENGINEERING

UPS BFI GATEWAY PROJECT 7300 PERIMETER ROAD

WSEC COMPLIANCE FORMS OCTOBER 30, 2019

Project Sur					PROJ-SUM			
				R3, & R4 over 3 stories and all R1				
General Info Project			or o bir oateway rioject		Date 10/30/2019			
PROJ-SUM form shall be provided as	,	Street Address:	7300 Perimeter Road		For Building Department Use			
a cover sheet for all	-	City, County, Zip:	Seattle, WA 98108					
compliance form submittals. Project	Project (Owner or Rep:	UPS					
Title shall match project plans title	Jurisdict	ion:	King County					
block.								
Project Descrip	tion	New Constructi	on and Additions					
Select all that apply to scope of project.	o the	✓ New Buil	ding	Building Addition				
Select Addition + Exis		Existing Buildin	g Retrofit					
or Alteration + Existin the existing building w combined with the ad	vill be dition	Alteration	-	Change of Occupancy	Change in Space Conditioning			
or alteration to demor compliance per Sectio C502.1 or C503.1.		Historic I	Building					
		Building Eleme	nts Scope - Select all	that apply				
		✓ All		Building Envelope	Mechanical Systems			
		Service H	lot Water Systems	Lighting Systems	Electrical Systems			
		All Comn	nercial	Group R - R2, R3, & R4 over 3 stories and all R1	O Mixed Use			
о т		Mixed Use - Building is greater than three stories above grade and it has both Commercial and Group						
Occupancy Typ	e	R occupancies.						
		Mixed Occupancy - Building is three stories or less above grade and it has both Commercial and Group R2, R3 or R4 occupancies. Select All Commercial to document compliance for the commercial areas of the building. The residential spaces shall comply with the WSEC Residential Provisions.						
		Select all that a	pply to the scope of p	roject				
		✓ Fully Cor	nditioned	Semi-heated ²	Refrigerated Spaces			
					(Warehouse and/or Walk-in ¹)			
Space Conditio	ning	Low Energy Space Category ³						
Categories	0	Eligible Low En	ergy Spaces					
		Uncondit	0, 1	Low energy heating/cooling	a capacity			
		Wireless equipme	service nt shelter	Greenhouse ⁴	Equipment building			
Floor Area and		Floors Above Grade	Building Gro	ss Conditioned Floor Area	Project Gross Conditioned Floor Area			
Stories		2		52,370	63,370			
		Complian	nce Method 1 - Gener	al Compliance M	lethod 2 - Total Building			
General Compl	iance	Compliance Method 1 - Projects shall demonstrate compliance with all applicable mandatory and prescriptive requirements of this code. Refer to C401.2, Item 1 for more information. Compliance forms to include with a Prescriptive submittal: All applicable ENV, LTG, and MECH.						
Path		Compliance Method 2 - Projects complying via total building performance (TBP) shall include a summ of results from a whole building energy model per Section C407 and shall demonstrate compliance with applicable mandatory provisions in this Code. Refer to Section C401.2, Item 2 for more information. Compliance forms to include with a TBP submittal: PROJ-SUM, ENV-CHK, LTG-EXT, LTG-CHK, and a MECH forms except MECH-ECONO and MECH-VENT (pending).						
coolers and f	reezers s	They shall compl hall also comply v	y with the envelope an with the envelope requ	nd refrigeration equipment requirer	ments in Section C410. Warehouse ecedent for overlapping requirements.			

Note 2 - Semi-heated Spaces - If heated with equipment other than electric resistance may take an exemption for wall insulation. All other envelope assemblies shall comply with the thermal envelope provisions.
 Note 3 - Exemptions For Low Energy Spaces - Low Energy spaces are exempt from all provisions in WSEC Section C402 Building Envelope, however all other applicable provisions in the Code do apply including lighting, mechanical, service water heating, etc.
 Note 4 - Eligible Space Conditioning For Low Energy Greenhouses - Greenhouses are defined as spaces that maintain a specialized sunlit environment that is used exclusively for cultivation, protection and maintenance of plants. Cooling with outside air and/or every or or or cooling, and any form of heating equipment, are allowed under the Low Energy Greenhouse category. Greenhouses with cooling equipment that requires a condensing unit are NOT eligible.

	for Commercial Buildings including R2, R3, & R4 over 3 stories and all R1		Revised Oct 2017
General Info Project	Title: UPS BFI Gateway Project	Date	10/30/2019
C406 Additional	Building level efficiency options:	Current Scope	Previous Projects
Efficiency Package	C406.8 Enhanced envelope performance		
Options Summary	C406.9 Reduced air infiltration	✓	
A minimum of two Options are required for new construction.	C406.5 On-site renewable energy		
and change in space conditioning or occupancy	Building area level efficiency options		
projects. Select all Options included in	C406.2 More efficient HVAC equipment		
the current project scope. Also select Options complied	C406.6 Dedicated outside air systems (DOAS)	\checkmark	
with under previous projects (shell and core, other tenant	C406.7 Reduced energy use in service water heating		
spaces in building, etc) Buildings with multiple tenant	C406.3 Reduced lighting power		
spaces may comply with different options (mix &	C406.4 Enhanced digital lighting controls		
match).	C406 Comments:		
Options are required for all space conditioning categories.			
Include discipline specific information for C406 options in ENV-SUM, LTG-SUM and			
Refer to SBCC website for official interpretations regarding C406 provisions.			

Envelope S			ENV-SUM				
	T	al Buildings including R2, R3, & R4 over 3 stories and all R1	Revised Oct 2017				
Project Info	Project Title:	UPS BFI Gateway Project	Date 10/30/2019				
Applicant Info. Provide contact	Company Name:	Design West Engineering	For Building Department Use				
information for	Company Address:	110 James Street, Suite 106, Edmonds, WA 98020	4				
individual who can respond to inquiries	Applicant Name:	Liesbet Hess	4				
about information provided.	Applicant Phone:	425-458-9700 x256					
provided.	Applicant Email:	Ihess@designwesteng.com					
Project Descrip	otion	✓ New Building	ation No Envelope Scope				
Envelope Proje	ect Scope	All Commercial 🔲 Group R - Commercial 🗌 Mixed	l Use - Commercial + Group R				
Select all that apply.							
		Semi-heated Refrigerated Cooler Refrig	gerated Freezer 🔝 Equipment Buildin				
Envelope Desc	ription						
Provide brief descripti relevant supporting do							
If project includes mul Allowance areas, and compliance as an Ado Alteration + Existing, o Addition + Alteration	Vor is demonstrating dition + Existing, or + Existing project,						
provide a brief summa whole building complia							
Air Barrier Tes	ting	Air barrier testing per Section C402.5.1.2 included in p	roject scope				
Air barrier testing is re							
construction projects. cfm/ft ² under test pres	Testing criteria is 0.40	Additional Efficiency Package Option - C406.9 Reduced Air Infiltration					
To comply with C406. measured air leakage	.9, demonstrate that	Testing not required. Explanation					
Compliance Do	ocumentation So	cope and Method					
Scope of This (Calculation	Vew Building Addition	ation No Envelope Scope				
Target Insulati	on Allowance	Fully Conditioned - Commercial, Group R, Mixed Use					
Sets the title and cald							
compliance forms. Se to enable forms.	election required	Semi-heated Refrigerated Cooler Refrigerated Freezer					
lo chable lonna.		If project includes more than one Target Insulation Allowance area, and/or if project includes addition and alteration areas complying independently, for each area complete an ENV-SUM form Rows 16-46 and either an ENV-PRESCRIPTIVE form, or ENV-UA + ENV-SHGC forms if demonstrating compliance via component performance.					
Envelope Com	1	Prescriptive Component Performance					
Component Per	rformance	Change of Occupancy (C503.2) / Conditioning (C505)	- 10% higher UA allowed				
Calculation Ad	ljustments	Additional Efficiency Package Option - C406.8 Enhance	ced Envelope - 15% lower UA required				
Additions		Addition stand alone Addition + Existing					
fenestration and sky 30% and/or SSR ex performance, compl	vlight areas as EXISTING aceeds 5%, refer to C502 lete ENV-UA per instruct	Fenestration and Skylight Area Calculation. Enter total existin G. Enter total addition envelope assembly areas as NEW. If i 2.2.1 and C502.2.2 for prescriptive compliance alternatives. I tions for addition stand alone projects. er instructions for addition + existing projects.	resulting total building WWR exceeds				
	g - complete ENV-OA pe	Replacement windows only or resulting					
Alterations -		total building WWR ≤ original WWR	I building WWR increased by				
Fenestration ar	nd Skylight		I building SRR increased by alteration				
WWR and/or SRR i fenestration and sky 30% and/or SSR ex	increased - Complete V vlight areas as EXISTING cceeds 5%, refer to C503	enestration and Skylight Area Calculation not required. ertical Fenestration and Skylight Area Calculation. Enter tota G. Enter total altered envelope assembly areas as NEW. If re 3.3.2 and C503.3.3 for prescriptive compliance alternatives. I tions for alteration + existing projects.	esulting total building WV <u>{</u> exceed.				

•••••

Envelope Summary, p	g. 2				ENV-SUM	
2015 WSEC Compliance Forms for Commercia		g R2, R3, & R4 over ∶	3 stories and all R1		Revised Oct 2017	
Project Title: UPS BFI Gateway Pro	ject			Date	10/30/2019	
Vertical Fenestration and Skylight Area Calculation	Total Vertical Fenestration Area (rough opening)		NET Exterior Above Grade Wall Area	Total Skylight Area (rough opening)	NET Exterior Roof Area	
Prescriptive Path - Enter envelope sf values directly into this section of ENV-SUM	New	3,138	20,468	0	0	
for vertical fenestration, skylights, net walls and roof. For Additions and Alterations, refer	Existing	0	0	0	0	
to these sections in ENV-SUM for further instructions.	Total	3,138	20,468	0	0	
Component Performance - When this Envelope Compliance Path is selected, write-protection of this section is enabled. Enter envelope sf values for all assemblies into the ENV-UA form. Envelope information from ENV-UA will auto-fill into this section of		Vertical Fenestration-to- 13.3% Wall Ratio (WWR)				
Vertical Fenestration Area Compliance	VERTICAI	L FENESTRATION A	AREA COMPLIES V	VITH MAXIMUM ALI	OWANCE	
Skylight Area Compliance						
Vertical Fenestration	◯ High performa	ince fenestration U-fa	actors and SHGC pe	er C402.4.1.3		
Alternates	 Dedicated out 	door air system per	C402.4.1.4 and C40	3.6		
Show locations of qualifying daylight zone (DLZ) areas and ft ² on project plans. For Daylight Zone Area Calculations - a) Sidelight areas include primary +	-	3 stories, 25% or mo 3 stories, 50% or mo Dayli		D f loor area is within		
 a) Sidelight areas include primary f secondary daylight zone areas. b) Include overlapping toplight and sidelight daylight zone areas under Toplight. c) Net floor area definition in Chapter 2. 		No Calculations uired	Toplight Daylight Zone Area	Percent Daylight Zone Area		
Spaces in Single Story Building Requiring Skylights		paces that exceed 2, ed to comply with thi				
In these spaces a minimum of 50% of the	Space	Space Area (ft ²)	DLZ Area (ft ²)	SRR or Aperture	Exception	
floor area shall be within a skylight daylight zone (DLZ). Refer to C402.4.2 for						
requirements. SRR = Skylight to roof ratio						
Envelope Exemptions		es per C402.1.1 Item	1 are exempt from	the thermal envelop	o provisiono	
Low Energy and Semi-heated Spaces	Semi-heated spac insulation provisio Complete Low En	ces heated by system on only per C402.1.1 ergy and Semi-Heat heating and cooling	ns other than electri .1. ed Spaces table in I	c resistance are exe	mpt from wall	
Equipment Buildings			Wall Insulation R-Value	Roof Insulation R-Value	Overall Average U-Factor	
Equipment buildings are exempt from the	Equipment Bui	ilding Envelope				
The following shall be met to be eligible: building size ≤ 500 sf, average wall/roof U- factor $\leq U$ -0.20, electronic equipment load \geq 7 watts/sf, heating system output capacity \leq 17,000 btu/h. Cooling system capacity not	Electronic equipment power (watts/sf) Heating system output capacity (Btu/hr) Cooling capacity (Yes/No)					
limited.						

• • • • • •

		escriptive Path, pg. 1				ENV-PF	RESCRIPTIVE
-		VSEC Compliance Forms for Commercial Buildings incl	Data	Revised Oct 2017			
_	-	t Title: UPS E		Date For Building [10/30/2019 Department Use		
1	arg	get Insulation Allowance Fully Conditioned Space - Commercial, Group R,	Mixed Use			l of Dullaring I	
F	ene	estration Area as % gross above-grade wall area		Max. Target:	30.0%		
S	ky	light Area as % gross roof area		Max. Target:	5.0%		
V	er	ical Fenestration Alternates:		None Select	ted on ENV-SUM	User Note	
	esci ctors	iptive compliance of envelope assemblies may be accom	nplished by pro	viding insulat	ion R-values per 1	Table C402.1.3	3 or U-factors / F-
		, bles C402.1.4 and C402.4. A single project may comply	via R-values fo	or some envel	ope assemblies a	nd U-factors /	F-factors for others.
B	uil	ding Component	R-Value Meth		ptive Compliance		or/F-Factor Method for criptive Compliance
			Cavity Ins.	Ins. (CI)	% Area of Metal Penetrations	Assembly	
		Provide plan/detail # of assembly and description	R-Value	R-Value ¹	in Cl ²	U-Factor	U-Factor Source ³
	Ŕ	A000 Detail 10 & 11		38.0			
	Deck						
	3Id ⁴						
ofs	Mtl Bld ⁴						
Roofs	Rftr						
	Joist/Rftr						
	Oth						
	Attic/Oth						
	ē	A000 Details 1A , 1B, 3A, 3B and 5	30.0				
	Steel						
e ¹⁵	.bĭ						
Grad	Mtl Bld.						
alls - Above Grade ¹⁵	th ⁵						
s - Al	Wood/Oth ⁵						
Wall	Ň						
Opaque W	Mass ⁶						
Opa							
	Transfer ⁷						
	Trar						
alls ¹⁵	Steel						
× ≥	0						
Group R_Walls ¹⁵	Mass						
e Wa	Comm						
Grad	Ъ						
Below Grade Walls	Group R						
SIC	Mass						
Floors	Framed ⁸						

•••••

Prescriptive Path, pg. 2					RESCRIPTIVE	
2015 WSEC Compliance Forms for Commercial Buildings incli Project Title: UPS E	uding R2, R3, BFI Gateway F		ories and all R1		Revised Oct 2017 10/30/2019	
Fenestration Area as % gross above-grade wall area		Max. Target:	30.0%	For Building Department Use		
Skylight Area as % gross roof area	101070	Max. Target:	5.0%	4		
If vertical fenestration or skylight area exceeds maximum allow		.1, then the pr		-		
comply via Component Performance and provide ENV-UA and		orms. -Value Metho	d for	U-Facto	or/F-Factor Method for	
Building Component		scriptive Com	oliance	Pres	criptive Compliance	
Provide plan/detail # of assembly and description	Perim. Ins. R-Value	Full Slab Cl R-Value		F-Factor	F-Factor Source ¹⁰	
a	10.0	TT Value				
Radeo Heated Chheated						
aate						
on 王						
Provide ID from door schedule and description	Ins.			Assembly	U-Factor Source ¹¹	
	R-Value			U-Factor 0.370		
ຍີ A101, D120 & D121 ຍີ່ ເອັ						
Rapid Overhead doors, A005				*Quick		
				acting doors		
Rapid Overhead doors, A005				close rapidly		
				to improve energy		
				compliance		
	Solar Hea	at Gain Coeffic	ient (SHGC)	U-Factor fo	r Prescriptive Compliance	
	Projection Factor (PF)	Orientation (N or	Assembly	Assembly		
Provide ID from window schedule and description	if applicable ¹²	SEW) ¹³	SHGC ¹⁴	Assembly U-Factor	U-Factor Source ¹⁴	
Non-Metal						
Z						
틸 핑 A102, 100 through 210		N	0.40	0.38		
[편] 또 A102, 100 through 210		SEW	0.40	0.38		
A102, 100 through 210 A102, 100 through 210 A102, 100 through 210 A102, 100 through 210						
A102, 100 through 210 A102, 100 through 210 A102, 100 through 210 do						
≥ ≥						
l entry						
derriation a slab-on-grade or exposed floor, this floor shall be th	nermally broke	n from the sur	rounding floor a	rea with the san	ne amount of insulation as re	
All Types						
Miscellaneous - Refrigerated Spaces				-		
	Ins.			Assembly	Li Foster Saura	
Provide plan/detail # of assembly and description	R-Value			U-Factor	U-Factor Source	
Freezer Floor ¹⁷						
ະ ະ						
Provide ID from window cohodule and description	Cooler /	Double	Triple Pane	Inert Gas	Heat Reflective	
Provide ID from window schedule and description	Freezer	Pane Glass	Glass	Filled	Treated as	
azing ^{16,17} I In Door					てーノ	
년						
		1 I		I	DESIGN WEST ENGINE	

Project Sur					PROJ-SUM			
•				R3, & R4 over 3 stories and all R				
General Info	Project		UPS BFI Gateway P	-	Date 10/30/2019			
PROJ-SUM form shall be provided as		Street Address:	7300 Perimeter Road		For Building Department Use			
a cover sheet for all	-	City, County, Zip:	Seattle, WA 98108					
compliance form submittals. Project	-	Owner or Rep:	UPS					
Title shall match project plans title block.	Jurisdict	ion:	King County					
	tion	New Operation (
Project Descrip		_	on and Additions					
Select all that apply to scope of project.	otne	└ <u>✓</u> New Buil	ding	Building Addition				
Select Addition + Exis or Alteration + Existin		Existing Buildin	g Retrofit					
the existing building w combined with the ad	vill be dition	Alteration	ו	Change of Occupancy	Change in Space Conditioning			
or alteration to demor compliance per Sectio C502.1 or C503.1.		Historic	Building					
		Building Eleme	nts Scope - Select all	that apply				
		✓ All		Building Envelope	Mechanical Systems			
		Service I	Hot Water Systems	Lighting Systems	Electrical Systems			
		All Comr	nercial	Group R - R2, R3, & R4 over 3 stories and all R1	O Mixed Use			
Occupancy Typ	e	<i>Mixed Use -</i> Building is greater than three stories above grade and it has both Commercial and Group R occupancies.						
	-	Mixed Occupancy - Building is three stories or less above grade and it has both Commercial and Group R2, R3 or R4 occupancies. Select All Commercial to document compliance for the commercial areas of the building. The residential spaces shall comply with the WSEC Residential Provisions.						
		Select all that a	pply to the scope of p	roject				
		✓ Fully Conditioned Semi-heated ²			Refrigerated Spaces			
See a Canditia			rgy Space Category ³	_	(Warehouse and/or Walk-in ¹)			
Space Conditio Categories	ning	Eligible Low En	erav Spaces					
Caregoines		Uncondit	0, 1	Low energy heating/cooling	g capacity			
		Wireless equipme	service nt shelter	Greenhouse ⁴	Equipment building			
Floor Area and		Floors Above Grade	Building Gro	ss Conditioned Floor Area	Project Gross Conditioned Floor Area			
Stories		1		9,750	63,370			
		Compliant	nce Method 1 - Gener	al Compliance M	lethod 2 - Total Building			
General Compl	iance	Compliance Method 1 - Projects shall demonstrate compliance with all applicable mandatory and prescriptive requirements of this code. Refer to C401.2. Item 1 for more information. Compliance forms to						
Path		of results from applicable ma Compliance fo	a whole building ene ndatory provisions in t	nance (TBP) shall include a summary hall demonstrate compliance with all 2, Item 2 for more information. CHK, LTG-EXT, LTG-CHK, and all				
coolers and f	reezers s	hall also comply v	with the envelope requ		ments in Section C410. Warehouse ecedent for overlapping requirements. nption for wall insulation. All other			

Note 2 - Semi-neated spaces - In neated with equipment other transference intervisional may take an exemption for wall institution. All other envelope assemblies shall comply with the thermal envelope provisions.
 Note 3 - Exemptions For Low Energy Spaces - Low Energy spaces are exempt from all provisions in WSEC Section C402 Building Envelope, however all other applicable provisions in the Code do apply including lighting, mechanical, service water heating, etc.
 Note 4 - Eligible Space Conditioning For Low Energy Greenhouses - Greenhouses are defined as spaces that maintain a specialized sunlit environment that is used exclusively for cultivation, protection and maintenance of plants. Cooling with outside air and/or exploring equipment, are allowed under the Low Energy Greenhouse category. Greenhouses with cooling equipment that requires a condensing unit are NOT eligible.

	for Commercial Buildings including R2, R3, & R4 over 3 stories and all R1		Revised Oct 2017
General Info Project	Title: UPS BFI Gateway Project	Date	10/30/2019
C406 Additional	Building level efficiency options:	Current Scope	Previous Projects
Efficiency Package	C406.8 Enhanced envelope performance		
Options Summary	C406.9 Reduced air infiltration	✓	
A minimum of two Options are required for new construction.	C406.5 On-site renewable energy		
and change in space conditioning or occupancy	Building area level efficiency options		
projects. Select all Options included in	C406.2 More efficient HVAC equipment		
the current project scope. Also select Options complied	C406.6 Dedicated outside air systems (DOAS)	\checkmark	
with under previous projects (shell and core, other tenant	C406.7 Reduced energy use in service water heating		
spaces in building, etc) Buildings with multiple tenant	C406.3 Reduced lighting power		
spaces may comply with different options (mix &	C406.4 Enhanced digital lighting controls		
match).	C406 Comments:		
Options are required for all space conditioning categories.			
Include discipline specific information for C406 options in ENV-SUM, LTG-SUM and			
Refer to SBCC website for official interpretations regarding C406 provisions.			

Envelope S			ENV-SUM				
	T	al Buildings including R2, R3, & R4 over 3 stories and all R1	Revised Oct 2017				
Project Info	Project Title:	UPS BFI Gateway Project	Date 10/30/2019				
Applicant Info. Provide contact	Company Name:	Design West Engineering	For Building Department Use				
information for	Company Address:	110 James Street, Suite 106, Edmonds, WA 98020	4				
individual who can respond to inquiries	Applicant Name:	Liesbet Hess	4				
about information provided.	Applicant Phone:	425-458-9700 x256					
provided.	Applicant Email:	Ihess@designwesteng.com					
Project Descrip	otion	✓ New Building	ation No Envelope Scope				
Envelope Proje	ect Scope	All Commercial 🔲 Group R - Commercial 🗌 Mixed	l Use - Commercial + Group R				
Select all that apply.							
		Semi-heated Refrigerated Cooler Refrig	gerated Freezer 🔝 Equipment Buildin				
Envelope Desc	ription						
Provide brief descripti relevant supporting do							
If project includes mul Allowance areas, and compliance as an Ado Alteration + Existing, o Addition + Alteration	Vor is demonstrating dition + Existing, or + Existing project,						
provide a brief summa whole building complia							
Air Barrier Tes	ting	Air barrier testing per Section C402.5.1.2 included in p	roject scope				
Air barrier testing is re							
construction projects. cfm/ft ² under test pres	Testing criteria is 0.40	Additional Efficiency Package Option - C406.9 Reduced Air Infiltration					
To comply with C406. measured air leakage	.9, demonstrate that	Testing not required. Explanation					
Compliance Do	ocumentation So	cope and Method					
Scope of This (Calculation	Vew Building Addition	ation No Envelope Scope				
Target Insulati	on Allowance	Fully Conditioned - Commercial, Group R, Mixed Use					
Sets the title and cald							
compliance forms. Se to enable forms.	election required	Semi-heated Refrigerated Cooler Refrigerated Freezer					
lo chable lonna.		If project includes more than one Target Insulation Allowance area, and/or if project includes addition and alteration areas complying independently, for each area complete an ENV-SUM form Rows 16-46 and either an ENV-PRESCRIPTIVE form, or ENV-UA + ENV-SHGC forms if demonstrating compliance via component performance.					
Envelope Com	1	Prescriptive Component Performance					
Component Per	rformance	Change of Occupancy (C503.2) / Conditioning (C505)	- 10% higher UA allowed				
Calculation Ad	ljustments	Additional Efficiency Package Option - C406.8 Enhance	ced Envelope - 15% lower UA required				
Additions		Addition stand alone Addition + Existing					
fenestration and sky 30% and/or SSR ex performance, compl	vlight areas as EXISTING aceeds 5%, refer to C502 lete ENV-UA per instruct	Fenestration and Skylight Area Calculation. Enter total existin G. Enter total addition envelope assembly areas as NEW. If i 2.2.1 and C502.2.2 for prescriptive compliance alternatives. I tions for addition stand alone projects. er instructions for addition + existing projects.	resulting total building WWR exceeds				
	g - complete ENV-OA pe	Replacement windows only or resulting					
Alterations -		total building WWR ≤ original WWR	I building WWR increased by				
Fenestration ar	nd Skylight		I building SRR increased by alteration				
WWR and/or SRR i fenestration and sky 30% and/or SSR ex	increased - Complete V vlight areas as EXISTING cceeds 5%, refer to C503	enestration and Skylight Area Calculation not required. ertical Fenestration and Skylight Area Calculation. Enter tota G. Enter total altered envelope assembly areas as NEW. If re 3.3.2 and C503.3.3 for prescriptive compliance alternatives. I tions for alteration + existing projects.	esulting total building WV <u>{</u> exceed.				

•••••

Envelope Summary, p	g. 2				ENV-SUM		
2015 WSEC Compliance Forms for Commercia		g R2, R3, & R4 over ∶	3 stories and all R1		Revised Oct 2017		
Project Title: UPS BFI Gateway Pro	ject			Date	10/30/2019		
Vertical Fenestration and Skylight Area Calculation		Total Vertical Fenestration Area (rough opening)	NET Exterior Above Grade Wall Area	Total Skylight Area (rough opening)	NET Exterior Root Area		
Prescriptive Path - Enter envelope sf values directly into this section of ENV-SUM	New	537	12,800	0	0		
for vertical fenestration, skylights, net walls and roof. For Additions and Alterations, refer	Existing	0	0	0	0		
to these sections in ENV-SUM for further instructions.	Total	537	12,800	0	0		
Component Performance - When this Envelope Compliance Path is selected, write-protection of this section is enabled. Enter envelope sf values for all assemblies into the ENV-UA form. Envelope information from ENV-UA will auto-fill into this section of		Vertical Fenestration-to- 4.0% Wall Ratio (WWR)			Skylight-to-Roof Ratio (SRR)		
Vertical Fenestration Area Compliance	VERTICA	L FENESTRATION A	AREA COMPLIES V	VITH MAXIMUM ALI	OWANCE		
Skylight Area Compliance							
Vertical Fenestration	High performance fenestration U-factors and SHGC per C402.4.1.3						
Alternates	 Dedicated out 	door air system per	C402.4.1.4 and C40	3.6			
Show locations of qualifying daylight zone (DLZ) areas and ft ² on project plans. For Daylight Zone Area Calculations - a) Sidelight areas include primary +	-	3 stories, 25% or mo 3 stories, 50% or mo Dayli		D f loor area is within			
 b) Include overlapping toplight and sidelight daylight zone areas under Toplight. c) Net floor area definition in Chapter 2. 	Not Selected. No Calculations Required Sidelight Daylight Zone Area			Toplight Daylight Zone Area	Percent Daylight Zone Area		
Spaces in Single Story Building Requiring Skylights		aces that exceed 2, ed to comply with thi					
In these spaces a minimum of 50% of the	Space	Space Area (ft ²)	DLZ Area (ft ²)	SRR or Aperture	Exception		
floor area shall be within a skylight daylight zone (DLZ). Refer to C402.4.2 for							
requirements. SRR = Skylight to roof ratio							
Envelope Exemptions	Low energy space	es per C402.1.1 Item	1 are exempt from	the thermal envelop	e provisions		
Low Energy and Semi-heated Spaces	Semi-heated space insulation provision Complete Low En	ces heated by system on only per C402.1.1 ergy and Semi-Heat heating and cooling	ns other than electri .1. ed Spaces table in l	c resistance are exe	mpt from wall		
Equipment Buildings			Wall Insulation R-Value	Roof Insulation R-Value	Overall Average U-Factor		
Equipment buildings are exempt from the	Equipment Bu	ilding Envelope					
The following shall be met to be eligible: building size $\leq 500 \text{ sf}$, average wall/roof U- factor $\leq U$ -0.20, electronic equipment load \geq 7 watts/sf, heating system output capacity \leq 17,000 btu/h. Cooling system capacity not	Electronic equipment power (watts/sf) Heating system output capacity (Btu/hr) Cooling capacity (Yes/No)						
limited.							

• • • • • •

		escriptive Path, pg. 1				ENV-PF	RESCRIPTIVE
-		NSEC Compliance Forms for Commercial Buildings incl	uding R2, R3, BFI Gateway P		tories and all R1	Date	Revised Oct 2017
_	-			10/30/2019 Department Use			
	arg	get Insulation Allowance Fully Conditioned Space - Commercial, Group R,	Mixed Use			l of Dunung I	
F	en	estration Area as % gross above-grade wall area		Max. Target:	30.0%		
S	ky	light Area as % gross roof area		Max. Target:	5.0%		
\mathbf{V}	er	tical Fenestration Alternates:		None Select	ted on ENV-SUM	User Note	
	esci ctor:	riptive compliance of envelope assemblies may be accor	nplished by pro	oviding insulat	ion R-values per 1	Table C402.1.	3 or U-factors / F-
		bles C402.1.4 and C402.4. A single project may comply	via R-values fo	or some envel	lope assemblies a		
B	ui	ding Component	R-Value Meth		ptive Compliance		or/F-Factor Method for criptive Compliance
			Cavity Ins.	Ins. (CI)	% Area of Metal Penetrations	Assembly	
		Provide plan/detail # of assembly and description	R-Value	R-Value ¹	in Cl ²	U-Factor	U-Factor Source ³
	Deck	A000 Detail 10 & 11		38.0			
	طّ						
	3Id ⁴						
Roofs	MtI BId ⁴						
Roc	Joist/Rftr						
	Joist						
	Attic/Oth						
	Attic						
	Steel	A000 Details 1A , 1B, 3A, 3B and 5	30.0				
	Ste						
Grade ¹⁵	Mtl Bld.						
Above	⊃th5						
alls - ⊿	σ						
≥							
Opaque	Mass ⁶						
ð							
	Transfer ⁷						
Walls ¹⁵	Steel						
Group R	Mass						
Below Grade Walls	Comm						
irade	с К						
o M O	Group R						
Bel	Ğ						
	Mass						
Floors							
Ť	Framed ⁸						
	Fra						

•••••

		escriptive Path, pg. 2		0 D4			ESCRIPTIVE
-		VSEC Compliance Forms for Commercial Buildings incl t Title: UPS I	BFI Gateway F		ones and all R I	1	Revised Oct 2017
F	ene	estration Area as % gross above-grade wall area		Max. Target:	30.0%	For Building D	epartment Use
		light Area as % gross roof area		Max. Target:	5.0%		
		cal fenestration or skylight area exceeds maximum allow / via Component Performance and provide ENV-UA and			oject must		
B	uil	ding Component		-Value Metho scriptive Com			/F-Factor Method for riptive Compliance
		Provide plan/detail # of assembly and description	Perim. Ins. R-Value	Full Slab Cl R-Value		F-Factor	F-Factor Source ¹⁰
arade ⁹	nheated	A000 Detailss 15 & 16	10.0	11-Value			
Slab-on-drade ⁹	Heated Unheated						
		Provide ID from door schedule and description	Ins. R-Value			Assembly U-Factor	U-Factor Source ¹¹
Doors	Swinging	A401, D400, D401, D402, D403 & D404				0.370	
Opague Doors	Other 5	Overhead doors, A401, D, E & F	4.8				
				at Gain Coeffic	ient (SHGC)	U-Factor for	Prescriptive Compliance
		Provide ID from window schedule and description	Projection Factor (PF) if applicable ¹²	Orientation (N or SEW) ¹³	Assembly SHGC ¹⁴	Assembly U-Factor	U-Factor Source ¹⁴
	Non-Metal						
tion	ed	A401, 401		N	0.40	0.38	
ical Fenestration	Metal, fixed	A401, 402, 403, 404, 405 & 406		SEW	0.40	0.38	
Vertical	Metal, op.						
	tl entry				i. a		
Skylights B		th a slab-on-grade or exposed floor, this floor shall be th	nermally broke	n from the sur	rounding floor a	rea with the same	e amount of insulation as r
		cellaneous - Refrigerated Spaces					
		Provide plan/detail # of assembly and description	Ins. R-Value			Assembly U-Factor	U-Factor Source
roozor	Floor ¹⁷		R-value			U-Pactor	
Ц		Provide ID from window schedule and description	Cooler / Freezer	Double Pane Glass	Triple Pane Glass	Inert Gas Filled	Heat Reflective Treated Glass
Glazing ^{16,17}	In Door						
Glazin	Reach In						

•

Project Sur					PROJ-SUM		
			uildings including R2,	R3, & R4 over 3 stories and all R ²			
General Info	Project		UPS BFI Gateway P	roject	Date 10/30/2019		
PROJ-SUM form	,	Street Address:	7300 Perimeter Road	1	For Building Department Use		
shall be provided as a cover sheet for all	-	City, County, Zip:	Seattle, WA 98108				
compliance form submittals. Project	Project (Owner or Rep:	UPS				
Title shall match project plans title	Jurisdict	ion:	King County				
block.							
Project Descrip	tion	New Constructi	on and Additions				
Select all that apply to scope of project.		✓ New Bui	ding	Building Addition			
Select Addition + Exis	ting	Existing Buildin	g Retrofit				
or Alteration + Existing the existing building w combined with the add	vill be	Alteration	-	Change of Occupancy	Change in Space Conditioning		
or alteration to demon compliance per Sectio C502.1 or C503.1.		Historic	Building				
		Building Eleme	nts Scope - Select all	that apply			
		✓ All		Building Envelope	Mechanical Systems		
		Service I	Hot Water Systems	Lighting Systems	Electrical Systems		
		All Comr	nercial	Group R - R2, R3, & R4 over 3 stories and all R1	O Mixed Use		
О <i>линала</i> Т		Mixed Use - Building is greater than three stories above grade and it has both Commercial and Group					
Occupancy Typ	e	R occupancies.					
		Group R2, R	3 or R4 occupancies. 3	ee stories or less above grade and Select All Commercial to documen al spaces shall comply with the WS	t compliance for the commercial		
		Select all that a	pply to the scope of p	roject			
		✓ Fully Co	nditioned	Semi-heated ²	Refrigerated Spaces		
					(Warehouse and/or Walk-in ¹)		
Space Conditio	ning	Low Energy Space Category ³					
Categories	0	Eligible Low En	ergy Spaces				
8		Uncondit	ioned	Low energy heating/cooling	g capacity		
		 ── Wireless		 Greenhouse⁴			
			nt shelter		Equipment building		
Floor Area and		Floors Above	Building Gro	ss Conditioned Floor Area	Project Gross Conditioned Floor Area		
Stories		Grade					
501103		1		1,250	63,370		
		Compliant	nce Method 1 - Genera	al 🛛 Compliance M	lethod 2 - Total Building		
General Compliance Path		Compliance Method 1 - Projects shall demonstrate compliance with all applicable mandatory and					
		prescriptive requirements of this code. Refer to C401.2, Item 1 for more information. Compliance forms to include with a Prescriptive submittal: All applicable ENV, LTG, and MECH.					
		Compliance Method 2 - Projects complying via total building performance (TBP) shall include a summary of results from a whole building energy model per Section C407 and shall demonstrate compliance with all applicable mandatory provisions in this Code. Refer to Section C401.2, Item 2 for more information. Compliance forms to include with a TBP submittal: PROJ-SUM, ENV-CHK, LTG-EXT, LTG-CHK, and all MECH forms except MECH-ECONO and MECH-VENT (pending).					
coolers and f	reezers s	hall also comply v	with the envelope requ		nents in Section C410. Warehouse ecedent for overlapping requirements. notion for wall insulation. All other		

Note 2 - Semi-neated spaces - In neated with equipment other transference intervisional may take an exemption for wall institution. All other envelope assemblies shall comply with the thermal envelope provisions.
 Note 3 - Exemptions For Low Energy Spaces - Low Energy spaces are exempt from all provisions in WSEC Section C402 Building Envelope, however all other applicable provisions in the Code do apply including lighting, mechanical, service water heating, etc.
 Note 4 - Eligible Space Conditioning For Low Energy Greenhouses - Greenhouses are defined as spaces that maintain a specialized sunlit environment that is used exclusively for cultivation, protection and maintenance of plants. Cooling with outside air and/or exploring equipment, are allowed under the Low Energy Greenhouse category. Greenhouses with cooling equipment that requires a condensing unit are NOT eligible.

2015 WSEC Compliance Forms for Commercial Buildings including R2, R3, & R4 over 3 stories and all R1				
General Info Project	Title: UPS BFI Gateway Project	Date	10/30/2019	
C406 Additional	Building level efficiency options:	Current Scope	Previous Projects	
Efficiency Package	C406.8 Enhanced envelope performance			
Options Summary	C406.9 Reduced air infiltration	✓		
A minimum of two Options are required for new construction.	C406.5 On-site renewable energy			
and change in space conditioning or occupancy	Building area level efficiency options			
projects. Select all Options included in	C406.2 More efficient HVAC equipment			
the current project scope. Also select Options complied	C406.6 Dedicated outside air systems (DOAS)	\checkmark		
with under previous projects (shell and core, other tenant	C406.7 Reduced energy use in service water heating			
spaces in building, etc) Buildings with multiple tenant	C406.3 Reduced lighting power			
spaces may comply with different options (mix &	C406.4 Enhanced digital lighting controls			
match).	C406 Comments:			
Options are required for all space conditioning categories.				
Include discipline specific information for C406 options in ENV-SUM, LTG-SUM and				
Refer to SBCC website for official interpretations regarding C406 provisions.				

Envelope S			ENV-SUM				
	T	al Buildings including R2, R3, & R4 over 3 stories and all R1	Revised Oct 2017				
Project Info	Project Title:	UPS BFI Gateway Project	Date 10/30/2019				
Applicant Info. Provide contact	Company Name:	Design West Engineering	For Building Department Use				
information for	Company Address:	110 James Street, Suite 106, Edmonds, WA 98020	4				
individual who can respond to inquiries	Applicant Name:	Liesbet Hess	4				
about information provided.	Applicant Phone:	425-458-9700 x256					
provided.	Applicant Email:	Ihess@designwesteng.com					
Project Descrip	otion	✓ New Building	ation No Envelope Scope				
Envelope Proje	ect Scope	All Commercial 🔲 Group R - Commercial 🗌 Mixed	l Use - Commercial + Group R				
Select all that apply.							
		Semi-heated Refrigerated Cooler Refrig	gerated Freezer 🔝 Equipment Buildin				
Envelope Desc	ription						
Provide brief descripti relevant supporting do							
If project includes mul Allowance areas, and compliance as an Ado Alteration + Existing, o Addition + Alteration	Vor is demonstrating dition + Existing, or + Existing project,						
provide a brief summa whole building complia							
Air Barrier Tes	ting	Air barrier testing per Section C402.5.1.2 included in p	roject scope				
Air barrier testing is re							
construction projects. cfm/ft ² under test pres	Testing criteria is 0.40	Additional Efficiency Package Option - C406.9 Reduced Air Infiltration					
To comply with C406. measured air leakage	.9, demonstrate that	Testing not required. Explanation					
Compliance Do	ocumentation So	cope and Method					
Scope of This (Calculation	✓ New Building Addition Altera	ation No Envelope Scope				
Target Insulati	on Allowance	Fully Conditioned - Commercial, Group R, Mixed Use					
Sets the title and cald							
compliance forms. Se to enable forms.	election required	Semi-heated Refrigerated Cooler Refrigerated Freezer					
lo chable forms.		If project includes more than one Target Insulation Allowance area, and/or if project includes addition and alteration areas complying independently, for each area complete an ENV-SUM form Rows 16-46 and either an ENV-PRESCRIPTIVE form, or ENV-UA + ENV-SHGC forms if demonstrating compliance via component performance.					
Envelope Com	1	Prescriptive Component Performance					
Component Per	rformance	Change of Occupancy (C503.2) / Conditioning (C505)	- 10% higher UA allowed				
Calculation Ad	ljustments	Additional Efficiency Package Option - C406.8 Enhance	ced Envelope - 15% lower UA required				
Additions		Addition stand alone Addition + Existing					
fenestration and sky 30% and/or SSR ex performance, compl	vlight areas as EXISTING aceeds 5%, refer to C502 lete ENV-UA per instruct	Fenestration and Skylight Area Calculation. Enter total existin G. Enter total addition envelope assembly areas as NEW. If i 2.2.1 and C502.2.2 for prescriptive compliance alternatives. I tions for addition stand alone projects. er instructions for addition + existing projects.	resulting total building WWR exceeds				
	g - complete ENV-OA pe	Replacement windows only or resulting					
Alterations -		total building WWR ≤ original WWR	I building WWR increased by				
Fenestration ar	nd Skylight		I building SRR increased by alteration				
WWR and/or SRR i fenestration and sky 30% and/or SSR ex	increased - Complete V vlight areas as EXISTING cceeds 5%, refer to C503	enestration and Skylight Area Calculation not required. ertical Fenestration and Skylight Area Calculation. Enter tota G. Enter total altered envelope assembly areas as NEW. If re 3.3.2 and C503.3.3 for prescriptive compliance alternatives. I tions for alteration + existing projects.	esulting total building WV <u>{</u> exceed.				

•••••

Envelope Summary, p	g. 2				ENV-SUM
2015 WSEC Compliance Forms for Commercia		g R2, R3, & R4 over ∶	3 stories and all R1		Revised Oct 2017
Project Title: UPS BFI Gateway Pro	ject			Date	10/30/2019
Vertical Fenestration and Skylight Area Calculation		Total Vertical Fenestration Area (rough opening)	NET Exterior Above Grade Wall Area	Total Skylight Area (rough opening)	NET Exterior Roof Area
Prescriptive Path - Enter envelope sf values directly into this section of ENV-SUM	New	382	2,272	0	0
for vertical fenestration, skylights, net walls and roof. For Additions and Alterations, refer	Existing	0	0	0	0
to these sections in ENV-SUM for further instructions.	Total	382	2,272	0	0
Component Performance - When this Envelope Compliance Path is selected, write-protection of this section is enabled. Enter envelope sf values for all assemblies into the ENV-UA form. Envelope information from ENV-UA will auto-fill into this section of		Vertical Fenestration-to- 14.4% Wall Ratio (WWR)		Skylight-to-Roof Ratio (SRR)	
Vertical Fenestration Area Compliance	VERTICA	L FENESTRATION A	AREA COMPLIES V	VITH MAXIMUM ALI	OWANCE
Skylight Area Compliance					
Vertical Fenestration	High performa	ince fenestration U-fa	actors and SHGC pe	er C402.4.1.3	
Alternates	 Dedicated out 	door air system per	C402.4.1.4 and C40	3.6	
Show locations of qualifying daylight zone (DLZ) areas and ft ² on project plans. For Daylight Zone Area Calculations - a) Sidelight areas include primary +	 ○ In buildings ≥ 3 stories, 25% or more of NET floor area is in DLZ per C402.4.1.1 ○ In buildings < 3 stories, 50% or more of CONDITIONED floor area is within DLZ per C402.4.1.1 ○ Daylight Zone Calculations 				
 b) Include overlapping toplight and sidelight daylight zone areas under Toplight. c) Net floor area definition in Chapter 2. 	Not Selected. No Calculations Sidelight Daylight Zone Area			Toplight Daylight Zone Area	Percent Daylight Zone Area
Spaces in Single Story Building Requiring Skylights		aces that exceed 2, ed to comply with thi			
In these spaces a minimum of 50% of the	Space	Space Area (ft ²)	DLZ Area (ft ²)	SRR or Aperture	Exception
floor area shall be within a skylight daylight zone (DLZ). Refer to C402.4.2 for					
requirements. SRR = Skylight to roof ratio					
Envelope Exemptions	Low energy space	es per C402.1.1 Item	1 are exempt from	the thermal envelop	e provisions
Low Energy and Semi-heated Spaces	Semi-heated space insulation provision Complete Low En	ces heated by system on only per C402.1.1 ergy and Semi-Heat heating and cooling	ns other than electri .1. ed Spaces table in l	c resistance are exe	mpt from wall
Equipment Buildings			Wall Insulation R-Value	Roof Insulation R-Value	Overall Average U-Factor
Equipment buildings are exempt from the	Equipment Bu	ilding Envelope			
The following shall be met to be eligible: building size ≤ 500 sf, average wall/roof U- factor $\leq U$ -0.20, electronic equipment load \geq 7 watts/sf, heating system output capacity \leq 17,000 btu/h. Cooling system capacity not			Heating system out	nent power (watts/sf) put capacity (Btu/hr) ng capacity (Yes/No)	
limited.					

• • • • • •

		escriptive Path, pg. 1				ENV-PF	RESCRIPTIVE
-		NSEC Compliance Forms for Commercial Buildings incl	-		tories and all R1	Data	Revised Oct 2017
_	-		BFI Gateway P	roject		Date For Building I	10/30/2019 Department Use
I	arg	get Insulation Allowance Fully Conditioned Space - Commercial, Group R,	Mixed Use			r or Dunung i	
F	ene	estration Area as % gross above-grade wall area		Max. Target:	30.0%		
S	ky	light Area as % gross roof area		Max. Target:	5.0%		
\mathbf{V}	er	tical Fenestration Alternates:		None Select	ted on ENV-SUM	User Note	
	esci ctors	iptive compliance of envelope assemblies may be accor	nplished by pro	oviding insulat	ion R-values per T	Table C402.1.	3 or U-factors / F-
		bles C402.1.4 and C402.4. A single project may comply	via R-values fo	or some envel	lope assemblies a	nd U-factors /	F-factors for others.
B	uil	ding Component	R-Value Meth		ptive Compliance		or/F-Factor Method for criptive Compliance
			Cavity Ins.	Continuous Ins. (CI)	% Area of Metal Penetrations	Assembly	
		Provide plan/detail # of assembly and description	R-Value	R-Value ¹	in Cl ²	U-Factor	U-Factor Source ³
	ъ	A000 Detail 10 & 11		38.0			
	Deck						
	3Id ⁴						
ofs	MtI BId ⁴						
Roofs	/Rftr						
	Joist/Rftr						
	Attic/Oth						
	Attic/						
	el	A000 Details 1A , 1B, 3A, 3B and 5	30.0				
	Steel						
de ¹⁵	3Id.						
Grade ¹⁵	Mtl Bld.						
Above	∂th5						
alls - A	Wood/Oth ⁵						
\geq							
Opaque	Mass ⁶						
Ő							
	Transfer ⁷						
Walls ¹⁵	Steel						
Group R	Mass						
de Wá	Comm						
Grac	SВ						
Below Grade Walls	Group R						
Ē							
Floors	Mass						
Ρlο	Framed ⁸						
Í	Frai						

		escriptive Path, pg. 2				ENV-PR	ESCRIPTIVE
_		VSEC Compliance Forms for Commercial Buildings incl t Title: UPS E	uding R2, R3, BFI Gateway F		ories and all R1	Date	Revised Oct 2017
		estration Area as % gross above-grade wall area		Max. Target:	30.0%	For Building D	
		light Area as % gross roof area		Max. Target:	5.0%		
		cal fenestration or skylight area exceeds maximum allow / via Component Performance and provide ENV-UA and			oject must		
B	uil	ding Component		R-Value Metho scriptive Com		-	/F-Factor Method for riptive Compliance
		Provide plan/detail # of assembly and description	Perim. Ins. R-Value	Full Slab Cl R-Value		F-Factor	F-Factor Source ¹⁰
Slab-on-grade ⁹	Heated Unheated	A000 Details 15 & 16	10.0	T-Value			
Slab-or	Heated		Ins.			Assembly	
		Provide ID from door schedule and description	R-Value			U-Factor	U-Factor Source ¹¹
Opaque Doors	Swinging	A501, D500, D501, D502, D503, D504, D505 & D506				0.370	
Opadu	Other						
			Solar Hea Projection	at Gain Coeffic	ent (SHGC)	U-Factor for	Prescriptive Compliance
		Provide ID from window schedule and description	Factor (PF) if applicable ¹²	(N or SEW) ¹³	Assembly SHGC ¹⁴	Assembly U-Factor	U-Factor Source ¹⁴
	Non-Metal						
tion	ed	A501, 501 & 505		Ν	0.40	0.38	
iical Fenestration	Metal, fixed	A501, 502, 503, 504		SEW	0.40	0.38	
Vertical							
de	tl entry	th a slab-on-grade or exposed floor, this floor shall be th	ermally broke	n from the sur	rounding floor a	rea with the sam	e amount of insulation as r
Skylights ⁵							
N	lis	cellaneous - Refrigerated Spaces					
		Provide plan/detail # of assembly and description	Ins. R-Value			Assembly U-Factor	U-Factor Source
Ereezer	Floor ¹⁷						
		Provide ID from window schedule and description	Cooler / Freezer	Double Pane Glass	Triple Pane Glass	Inert Gas Filled	Heat Reflective Treated Glass
Glazing ^{16,17}	Reach In In Door						
Glazii	Reach In						

•

Mechanical Summa		MECH-SUM				
	npliance Forms for Commercial Buildings including R2 & R3 over 3 stories and all R1	Revised January 2017				
Project Information	Project Title: UPS BFI Gateway Project	Date 10/30/2019 For Building Dept. Use				
	Applicant Information. Provide contact information for individual who can respond to inquiries about compliance form information provided.	For Building Dept. Use				
	Company Name: Design West Engineering					
	Company Address: 110 James Street, Suite 106, Edmonds, WA 98020					
	Applicant Name: Liesbet Hess					
	Applicant Phone: 425-458-9700 x256					
Project Description Briefly describe mechanical systems in the text box provided	✓ New Building	n Retrofit 🛛 No System Changes				
Total Bldg Performance (TBP)						
This path includes all mandatory provisions per C401.2 Option 2. MECH-SUM, MECH-CHK, and C407 Energy Analysis forms required.						
	✓ Load calculation summary					
Design Load Calculations	Provide design load calculations for all mechanical systems and equipment servir, ventilating needs. If a load calculation summary is provided with the permit docurr compliance information then the MECH-LOAD-CALC form is not required.	ng the building heating, cooling or nents that includes all applicable				
	Mechanical Plans MECH-EQ Forms (TBD)					
Mechanical Schedules	Indicate location of equipment compliance information. If provided on plans then I however, include on plans all applicable compliance information listed in MECH-E					
	✓ DOAS is required per C403.6 effective July 1, 2017 (office, retail, education, li	brany and fire station occupancies)				
	All occupied, conditioned areas shall be served by a DOAS that delivers required not require space conditioning fan operation. Space conditioning fans cycled off w Ventilation provided via natural ventilation per 2015 IMC in lieu of DOAS (ventilation air in a manner that does when no heating or cooling is required.				
Dedicated Outdoor Air	Ventilation and space conditioning provided by a HEVAV system per C40.					
System Requirements and	2)					
High Efficiency VAV	DOAS included in project, although not required (occupancy not office, retail, education, library or fire station)					
Alternate	DOAS related allowances included in project:					
	 Prescriptive vertical fenestration maximum area allowance increased to 4 conditioned floor area in building served by DOAS. Exception to air economizer per C403.3 Exception 1, include MECH-ECO 					
	Project includes HVAC air distribution systems that provide heating and/or cool If yes, provide a MECH-FANSYS -SUM form.	bling				
Fan Power	For one or more systems, the total fan motor nameplate hp of all fans in HVAC If yes, provide a seperate MECH-FANSYS form for each HVAC system excee Refer to Section C403.2.11 and MECH-FANSYS-DOC for requirements and of	eding the 5 horsepower threshold.				
	Hydronic chilled water Water-loop heat pump	✓ No hydronic systems				
HVAC Hydronic Systems	Hydronic heating water					
C406 Additional Efficiency Options - Mechanical	 C406.2 More efficient HVAC equipment and fan systems Requires 90% of heating and cooling capacity to be equipment listed in tables pumps and heat recovery chillers. All equipment listed in tables C403.2.3(1)-(7 minimum requirements. All stand alone supply, return, and exhaust fans over selected within 10% of maximum total or static pressure. C406.6 Dedicated outdoor air system (DOAS) Requires 90% of conditioned floor area to be served by a DOAS per C403.6 th manner that does not require space conditioning fan operation. C406.7 Reduced energy in service water heating Requires 90% of floor area be in occupancy types listed in C406.7.1 and that 	7) must be 15% more efficient than 1hp must have FEQ ≥ 71 and must be hat delivers required ventilation air in a				
	be provided by heat pump, waste heat recovery or solar water-heating system					

	hington State Energy Code Con		I Buildings includ	ing R2 & R3 over	3 stories and all	R1		CH-SUM ised January 2017
	Equipment Type (s) Image: Constraint of the start of the				No servic	e water systems		
Commissioning Commissioning is required for: Image: Commissioning is required for: Image: Commissioning is required for: Image: Commissioning is required, commissioning shall be performed for all applicable systems regardless of individual equipments: Image: Commissioning requirements: Image: Total output capacity of all mechanical space conditioning systems in the building do not exceed 240,000 Image: Commissioning or 300,000 Btu/h heating. Mechanical systems commissioning not required. Image: Commissioning of all mechanical systems in building does not exceed 200,000 Btu/h. Service was systems commissioning not required.				,000 Btu/h				
Low E	nergy and Semi-Hea	ted Spaces	(Note 6 and 7	<i>"</i>)				
Space Type	Location in Plan(s)	Space(s) Served	Area Served, square feet	Heating Capacity, Btu/h (Note 4)	Cooling Capacity, Btu/h (Note 5)	Peak Space Conditioning Capacity, Btu/h-sf	Compliance Check	Notes
Note 5 - 1 Note 6 - 1 Note 7 - 1	Provide total installed heating ou Provide total installed cooling ca Refer to Section C402.1.1 Low & Refer to Section C402.1.1.1 and electric resistance heating and r	pacity of system serving Low Energy Building. Intalled peak I Semi-Heated Space definition	Energy space(s) space conditionin n in Chapter 2. To	in Btu/h. Not allou ng capacity, heati otal heating outpu	wed for semi-hea ng or cooling, ma It capacity may r	ay not exceed :	3.4 Btu/h*sf.	-

Air System Information

Air System Name	Level 1- Whole System
Equipment Class	UNDEF
Air System Type	SZCAV

Sizing Calculation Information

Calculation Months	Jan to Dec
Sizing Data	Calculated

Central Cooling Coil Sizing Data

Total coil load	9.9	Tons
Total coil load	. 118.4	MBH
Sensible coil load	116.8	MBH
Coil CFM at Jul 1700	6551	CFM
Max block CFM	6551	CFM
Sum of peak zone CFM	. 6551	CFM
Sensible heat ratio	. 0.987	
CFM/Ton	664.2	
ft²/Ton	. 697.0	
BTU/(hr·ft ²)	17.2	
Water flow @ 10.0 °F rise		gpm

Central Heating Coil Sizing Data

Max coil load	63.9	MBH
Coil CFM at Des Htg	6551	CFM
Max coil CFM	6551	CFM
Water flow @ 20.0 °F drop	6.40	gpm

Supply Fan Sizing Data

Actual max CFM	CFM
Standard CFM	CFM
Actual max CFM/ft ² 0.95	CFM/ft ²

Outdoor Ventilation Air Data

Design airflow CFM673	CFM
	CFM/ft ²

Number of zones	1	
Floor Area		ft²
Location	Seattle IAP, Washington	

Zone CFM Sizing	Sum of space airflow rates
Space CFM Sizing	Individual peak space loads

Load occurs at	ul 1700	
OA DB / WB	2 / 64.4	°F
Entering DB / WB	9 / 64.9	°F
Leaving DB / WB	1 / 59.0	°F
Coil ADP		°F
Bypass Factor	0.100	
Resulting RH	55	%
Design supply temp.		°F
Zone T-stat Check	.1 of 1	OK
Max zone temperature deviation	0.0	°F

Load occurs at Des Htg	
BTU/(hr·ft ²)	
Ent. DB / Lvg DB	°F

Fan motor BHP	0.00	BHP
Fan motor kW	0.00	kW
Fan static	0.00	in wg

CFM/person	17.70	CFM/person
------------	-------	------------

Air System Information Air System Name

•

Air System Name	Level 1- Whole System	Number of zones	1	
Equipment Class	UNDEF	Floor Area		ft²
Air System Type	SZCAV	Location		
			-	

Sizing Calculation Information

enzing eareananen mennanen			
Calculation Months	Jan to Dec	Zone CFM Sizing	Sum of space airflow rates
Sizing Data	Calculated		Individual peak space loads

Zone Terminal Sizing Data

Zone Name	Design Supply Airflow (CFM)	Minimum Supply Airflow (CFM)	Zone CFM/ft²	Reheat Coil Load (MBH)	Reheat Coil Water gpm @ 20.0 °F	Zone Htg Unit Coil Load (MBH)	Zone Htg Unit Water gpm @ 20.0 °F	Mixing Box Fan Airflow (CFM)
Zone 1	6551	6551	0.95	0.0	0.00	0.0	0.00	0

Zone Peak Sensible Loads

	Zone		Zone	Zone
	Cooling	Time of	Heating	Floor
	Sensible	Peak Sensible	Load	Area
Zone Name	(MBH)	Cooling Load	(MBH)	(ft²)
Zone 1	116.7	Jun 1700	29.9	6875.0

Space Loads and Airflows

Zone Name / Space Name	Mult.	Cooling Sensible (MBH)	Time of Peak Sensible Load	Air Flow (CFM)	Heating Load (MBH)	Floor Area (ft²)	Space CFM/ft ²
Zone 1							
110 Break Room	1	16.3	Jun 1700	903	6.3	960.0	0.94
111 IT Storage	1	1.9	Jun 1400	104	0.1	100.0	1.04
112 Server	1	8.9	Jun 1600	495	0.8	380.0	1.30
113 Women's Restroom	1	2.0	Jun 1500	108	0.7	360.0	0.30
114 Men's Restroom	1	2.0	Jun 1500	108	0.7	360.0	0.30
115 Part Time Supervisor	1	29.6	Jun 1700	1637	5.9	1030.0	1.59
116 Conference Room	1	19.0	Jun 1700	1051	2.9	630.0	1.67
117 Hall	1	1.6	Jun 1400	86	0.8	290.0	0.30
118 Janitor	1	1.4	Jul 1700	79	0.5	270.0	0.29
120 Storage	1	0.2	Jan 2300	10	0.0	55.0	0.19
121 Customs	1	2.6	Sep 1600	142	0.2	105.0	1.35
123 Crew Lounge	1	3.5	Jul 1500	195	1.4	210.0	0.93
124 Hall	1	3.2	Jun 1400	179	0.7	630.0	0.28
125 Crew Ready	1	4.6	Jul 1500	254	1.6	230.0	1.10
126 On Road Supervisor	1	1.9	Jul 1500	107	0.8	125.0	0.85
127 OMS ODC	1	2.0	Jul 1500	108	0.9	125.0	0.86
128 Full Time Supervisor	1	10.9	Jul 1500	602	2.2	305.0	1.97
129 Flight Records	1	2.4	Jun 1400	133	0.2	205.0	0.65
130 Scanners	1	2.7	Jul 1500	151	2.0	280.0	0.54
132 Electrical Room	1	1.8	Jul 1500	98	1.2	225.0	0.43

	DES	IGN COOLING		DES	SIGN HEATING	
	COOLING DATA A	T Jul 1500		HEATING DATA AT DES HTG HEATING OA DB / WB 23.0 °F / 19.2 °F		
	COOLING OA DB	/WB 85.0 °F /	65.0 °F			
		Sensible	Latent		Sensible	Latent
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr)
Window & Skylight Solar Loads	780 ft ²	22527	-	780 ft ²	-	-
Wall Transmission	1114 ft ²	1374	-	1114 ft ²	2087	-
Roof Transmission	6445 ft ²	10485	-	6445 ft²	7609	-
Window Transmission	780 ft ²	1573	-	780 ft ²	10998	-
Skylight Transmission	0 ft ²	0	-	0 ft ²	0	-
Door Loads	42 ft ²	104	-	42 ft ²	730	-
Floor Transmission	6875 ft²	0	-	6875 ft²	0	-
Partitions	1520 ft ²	2524	-	1520 ft ²	8475	-
Ceiling	0 ft ²	0	-	0 ft ²	0	-
Overhead Lighting	6875 W	23457	-	0	0	-
Task Lighting	1650 W	5630	-	0	0	-
Electric Equipment	9200 W	31390	-	0	0	-
People	38	9310	7790	0	0	0
Infiltration	-	0	0	-	0	0
Miscellaneous	-	0	0	-	0	0
Safety Factor	0% / 0%	0	0	0%	0	0
>> Total Zone Loads	-	108374	7790	-	29899	0
Zone Conditioning	-	106331	7790	-	30440	0
Plenum Wall Load	0%	0	-	0	0	-
Plenum Roof Load	0%	0	-	0	0	-
Plenum Lighting Load	0%	0	-	0	0	-
Return Fan Load	6551 CFM	0	-	6551 CFM	0	-
Ventilation Load	673 CFM	6383	-7112	673 CFM	33488	0
Supply Fan Load	6551 CFM	0	-	6551 CFM	0	-
Space Fan Coil Fans	-	0	-	-	0	-
Duct Heat Gain / Loss	0%	0	-	0%	0	-
>> Total System Loads	-	112714	678	-	63928	0
Central Cooling Coil	-	112714	696	-	0	0
Central Heating Coil	-	0	-	-	63928	-
>> Total Conditioning	-	112714	696	-	63928	0
Key:		values are clg l values are htg			values are htg lo values are clg lo	

Air System Information Air System Name

Air System Name	Level 2 - Whole System
Equipment Class	UNDEF
Air System Type	SZCAV

Sizing Calculation Information

Calculation Months	Jan to Dec
Sizing Data	Calculated

Central Cooling Coil Sizing Data

Total coil load	9.0	Tons
Total coil load	07.6	MBH
Sensible coil load	06.7	MBH
Coil CFM at Jul 1600	6330	CFM
Max block CFM	6330	CFM
Sum of peak zone CFM	6330	CFM
Sensible heat ratio).992	
CFM/Ton	705.7	
ft²/Ton	311.0	
BTU/(hr·ft²)	38.6	
Water flow @ 10.0 °F rise	21.54	gpm

Central Heating Coil Sizing Data

Max coil load	. 54.6	MBH
Coil CFM at Des Htg	6330	CFM
Max coil CFM	6330	CFM
Water flow @ 20.0 °F drop	5.46	gpm

Supply Fan Sizing Data

Actual max CFM 6330	CFM
Standard CFM	CFM
Actual max CFM/ft ² 2.27	CFM/ft ²

Outdoor Ventilation Air Data

Design airflow CFM	CFM
	CFM/ft ²

Number of zones	1	
Floor Area		ft²
Location	Seattle IAP, Washington	

Zone CFM Sizing	Sum of space airflow rates
Space CFM Sizing	Individual peak space loads

Load occurs at	1600	
OA DB / WB	64.8	°F
Entering DB / WB	65.1	°F
Leaving DB / WB	59.6	°F
Coil ADP		°F
Bypass Factor).100	
Resulting RH	56	%
Design supply temp.		°F
Zone T-stat Check 1	of 1	OK
Max zone temperature deviation	0.0	°F

Load occurs at Des Htg	
BTU/(hr·ft ²)	
Ent. DB / Lvg DB	°F

Fan motor BHP	0.00	BHP
Fan motor kW	0.00	kW
Fan static	0.00	in wg

CFM/person	15.15	CFM/person
------------	-------	------------

Air System Information Air System Name

•

Air System Name	Level 2 - Whole System	Number of zones	1	
Equipment Class	UNDEF	Floor Area		ft²
Air System Type	SZCAV	Location	Seattle IAP, Washington	

Sizing Calculation Information

Calculation Months	Jan to Dec	Zone CFM Sizing	Sum of space airflow rates	
Sizing Data	Calculated	Space CFM Sizing	Individual peak space loads	

Zone Terminal Sizing Data

Zone Name	Design Supply Airflow (CFM)	Minimum Supply Airflow (CFM)	Zone CFM/ft²	Reheat Coil Load (MBH)	Reheat Coil Water gpm @ 20.0 °F	Zone Htg Unit Coil Load (MBH)	Zone Htg Unit Water gpm @ 20.0 °F	Mixing Box Fan Airflow (CFM)
Zone 1	6330	6330	2.27	0.0	0.00	0.0	0.00	0

Zone Peak Sensible Loads

	Zone		Zone	Zone
	Cooling	Time of	Heating	Floor
	Sensible	Peak Sensible	Load	Area
Zone Name	(MBH)	Cooling Load	(MBH)	(ft²)
Zone 1	107.6	Jul 1600	44.0	2790.0

Space Loads and Airflows

Zone Name / Space Name	Mult.	Cooling Sensible (MBH)	Time of Peak Sensible Load	Air Flow (CFM)	Heating Load (MBH)	Floor Area (ft²)	Space CFM/ft²
Zone 1							
150 Center Manager	2	5.3	Jun 1700	293	2.5	200.0	1.46
151 Center Manager	1	4.9	Jun 1700	274	1.6	190.0	1.44
152 Div Manager	1	5.0	Sep 1100	276	1.8	160.0	1.73
153 Hall	1	0.5	Jul 1400	30	0.4	100.0	0.30
154 Flight Control Dispa	1	73.5	Aug 1600	4068	26.7	820.0	4.96
155 Restroom	1	0.8	Jul 1400	45	0.4	105.0	0.43
156 IE Manager	1	5.1	Jun 1700	285	2.1	170.0	1.67
157 Hall	1	2.5	Jul 1400	136	1.8	445.0	0.31
158 Staff/Vistor Manager	1	7.3	Sep 1100	403	2.5	150.0	2.69
159 Ind. Engineers	1	4.1	Jun 1400	227	1.8	250.0	0.91

	DE	ESIGN COOLIN	G	DI	ESIGN HEATING	
	COOLING DATA	AT Jul 1500		HEATING DATA AT DES HTG		
	COOLING OA DI	3/WB 85.0°F	/ 65.0 °F	HEATING OA DE	B/WB 23.0 °F/	19.2 °F
		Sensible	Latent		Sensible	Latent
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr)
Window & Skylight Solar Loads	1235 ft²	67217	-	1235 ft ²	-	-
Wall Transmission	914 ft²	835	-	914 ft ²	1712	-
Roof Transmission	2735 ft²	4449	-	2735 ft ²	3229	-
Window Transmission	1235 ft ²	4881	-	1235 ft ²	34130	-
Skylight Transmission	0 ft ²	0	-	0 ft ²	0	-
Door Loads	21 ft ²	52	-	21 ft ²	365	-
Floor Transmission	1955 ft ²	657	-	1955 ft ²	4594	-
Partitions	0 ft ²	0	-	0 ft ²	0	-
Ceiling	0 ft ²	0	-	0 ft ²	0	-
Overhead Lighting	2790 W	9519	-	0	0	-
Task Lighting	750 W	2559	-	0	0	-
Electric Equipment	3000 W	10236	-	0	0	-
People	16	3920	3280	0	0	0
Infiltration	-	0	0	-	0	0
Miscellaneous	-	0	0	-	0	0
Safety Factor	0% / 0%	0	0	0%	0	0
>> Total Zone Loads	-	104327	3280	-	44031	0
Zone Conditioning	-	102410	3280	-	42617	0
Plenum Wall Load	0%	0	-	0	0	-
Plenum Roof Load	0%	0	-	0	0	-
Plenum Lighting Load	0%	0	-	0	0	-
Return Fan Load	6330 CFM	0	-	6330 CFM	0	-
Ventilation Load	242 CFM	2289	-2472	242 CFM	11959	0
Supply Fan Load	6330 CFM	0	-	6330 CFM	0	-
Space Fan Coil Fans	-	0	-	-	0	-
Duct Heat Gain / Loss	0%	0	-	0%	0	-
>> Total System Loads	-	104699	808	-	54576	0
Central Cooling Coil	-	104699	817	-	0	0
Central Heating Coil	-	0	-	-	54576	-
>> Total Conditioning	-	104699	817	-	54576	0
Кеу:		e values are clg e values are htg			e values are htg l e values are clg	

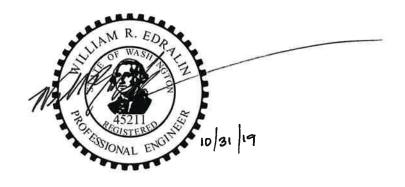
UPS BFI GATEWAY EXPANSION

Surface Water Technical Information Report

Permit Submittal

Prepared for: United Parcel Service Omaha, Nebraska

Prepared by:


3131 Elliott Ave Suite 400 Seattle, WA 98121 (206) 286-1640

October 2019

This document has been prepared under the supervision of a registered professional engineer.

8

×.

1.	Project Overview	1
1.1 1.2 1.3 1.4 1.5	Project Description Design Standards and Available KCIA Resources Existing Site Proposed Project Proposed Site Conditions	1 3 4
2.	Conditions and Requirements Summary	6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 2.1 Core Requirement 1 – Discharge at the Natural Location	6 7 7 7 8 8 8 8 8 9 9 9
3. 4.	Upstream and Downstream Analysis Flow Control and Water Quality Facility Design; and Flow Control BMPs	
4 4 4 4 4	Flow Control Facility	11 11 12 12 12 12 13 13 13
5.	Conveyance System Analysis and Design	
6. 7	Special Reports and Studies	
7. 8.	Other Permits Construction Stormwater Pollution Prevention	
o. 8.1 8.1	Erosion and Sediment Control Plan Analysis & Design	14

TIR

8.2	Stormwater Pollution Prevention and Spill Plan	.16
9.	Bond Quantities, Facility Summaries, and Declaration of Covenant	.16
10.	Operations and Maintenance Manual	.16
11.	References	.17

TABLES

Table 1 – Existing Conditions	4
Table 2 – Proposed Conditions	5
Table 3 – Project Area Summary	6
Table 4 – Wetvault Sizing Summary	11

FIGURES

Figure 1 – Vicinity Map
Figure 2 – Existing Conditions Map
Figure 3 – Proposed Conditions Map
Figure 4 – Downstream Map

Figure 5 – Targeted Areas Map

APPENDICES

- A TIR Worksheets & King County Blanket Adjustment No.1 for KCIA
- B Design Calculations & Figures
- C Conveyance Analysis
- D KC CSWPP Worksheet Form
- E KCSWDM Operation & Maintenance Checklist
- F Department of Ecology Industrial Stormwater General Permit

1. Project Overview

1.1 Project Description

The United Parcel Services / Boeing Field International (UPS BFI) Gateway Expansion will redevelop the existing UPS facility located on a tenant leasehold at the King County International Airport (KCIA). KCIA is an unincorporated King County area located in Seattle, Washington approximately five miles south of the city center between I-5 and the Duwamish Waterway. The Airport is bordered by Albro Place and South Norfolk Street on the north and south, respectively, and Airport Way South and East Marginal Way South to the east and west, respectively. The project site is located at 7300 Perimeter Road S that UPS (tenant) currently occupies and will continue to operate from during construction. The project location is shown on Figure 1 – Vicinity Map.

The tenant leasehold area consist of the primary leasehold (13.8 acres) and aircraft ramp leasehold (5.5 acres). Both leasehold areas will be redeveloped as a part of this project. 1.2 acres of the main leasehold area will not be redeveloped and will remain as a staging area and/or overflow parking for tenant operations, but may be used for construction staging.

The primary leasehold area contains the "landside operations" which will include a new main sorting facility with supporting buildings for operations and maintenance, a security building, a caster deck, equipment staging areas with rehabilitated pavements, and an improved driveway with turnaround, and employee parking lot. Pavement replacement will occur around the new buildings and equipment staging areas.

The aircraft ramp leasehold area has five aircraft gates referred to as the "airside operations" that consists of existing impervious surfaces located in the airfield that will be rehabilitated for aircraft and heavy equipment which will include reinforced concrete hardstands that are bound by asphalt pavement overlay. The caster deck will extend into the ramp area at each gate to fixed locating equipment. This section of caster deck is referred to as "fingers".

The proposed project is adjacent to KCIA's Large Aircraft Parking (LAP) Project that is currently in design. Coordination between the two projects is ongoing to accommodate the UPS BFI project construction schedule.

1.2 Design Standards and Available KCIA Resources

Surface water management and storm drainage design requirements for redevelopment projects at King County International Airport (KCIA) are subject to the surface water requirements of the 2016 King County Surface Water Design Manual (KCSWDM) outlined in Section 2 of this report. In addition to the KCSWDM, KCIA and its tenants are subject to a Washington State Department of Ecology Industrial Stormwater General Permit in accordance to the State's National Pollutant Discharge Elimination Permit (NPDES Permit). KCIA staff has provided other technical resources as design guidelines at the airport.

Blanket Adjustments and Clarifications

A King County document dated July 26, 2016 provides four blanket adjustments to the KCSWDM specific to King County International Airport. KCIA experiences repeated surface drainage manual adjustment requests for the same drainage issues proposed by KCIA and their tenants. Therefore, Blanket Adjustment No. 1 addressed the common requests that serve the public interest by reducing the permit times and costs (for redevelopment), while achieving the required environmental protection and compliance with the KCSWDM. A copy of Blanket Adjustment No. 1 is included in Appendix A.

Washington State Department of Ecology, Industrial Stormwater General Permit

The leasehold area is categorized or zoned as an industrial site and is subject to federal regulations outlined in the Washington State Department of Ecology's Industrial Stormwater General Permit (Permit No. WAR000434). KCIA also maintains an Industrial Stormwater General Permit (Permit No. WAR000343). Both permits went into effect on January 2, 2015 and expires on December 31, 2019. Both permits are in the process of being updated and renewed. The permit requires industrial sites to monitor, measure, and reduce stormwater pollution leaving the site. The redeveloped site will maintain the current use of the site and will improve water quality by the addition treatment facilities that do not currently exist on the leasehold.

Available KCIA Resources

As stated in Blanket Adjustment No. 1, KCIA maintains a robust inspection and maintenance program for the entire KCIA storm system, including leaseholds as the performance of the system is critical to maintaining airport operations. KCIA can respond in a timely manner to any issues due to its underlying ownership and maintenance relationship with its leasehold. Throughout the design process, the UPS BFI design team and KCIA has conducted weekly coordination meetings as well as review of project plans. KCIA plans to redevelop the existing Main Terminal under the Large Aircraft Parking (LAP) project. The project is currently in design with coordination between the LAP and UPS BFI design teams. KCIA has provided the following documents for the stormwater design:

- 1. "Available Drainage Requirements" is an informal document that provided the design team with the general requirements for redevelopment at KCIA as well as the LAP project.
- "2016 Composite Utility" drawing in CAD (.dwg) format that provides the most current inventory of KCIA's utility infrastructure. The drawing includes the current stormwater facilities within the project site, other recently improved tenant leaseholds and the downstream system that discharges into the Duwamish Waterway.
- 3. "King County International Airport Stormwater Capacity Study (Phase II)" by AECOM (consultant) dated August 24, 2018 is a report that provides a comprehensive assessment of potential capacity constraints within KCIA's existing stormwater drainage system.

- 4. "Taxiway Alpha Rehabilitation and Related Work" conformed construction drawings dated May 20, 2011. The drawings provide a basis of design for airfield operations, additional stormwater mapping, and water quality treatment vault design.
- 5. "Taxiway Alpha Rehabilitation Technical Information Report" by URS (consultant) dated February 24, 2010 is a report submitted and approved for permit that provided a basis of design and template for the development of the project TIR.

1.3 Existing Site

The existing project site consists of the airfield and current tenant operations with the landside of the leasehold area. The site is bound to the west by the taxiway, to the north by the KCIA Main Terminal Building (future LAP Project), to the east by Airport Way South and to the south by South Portland Street. The site is generally flat with a gentle slope from east to west. The site is fully developed and a composite of existing developments that occurred on the site from previous tenants. The current site has four main buildings and consists of 97% impervious surface areas that consist of concrete foundations that still exist from demolished aircraft hangers, and associated concrete, asphalt pavement, and compacted gravel (overgrown with vegetation). Pervious areas exist along the east border of the site, tree wells within the employee parking areas and along the frontage of Perimeter Road South, a private KCIA road that divides the leasehold area. The drainage systems are remnants for existing buildings that have been demolished. Most existing drainage systems will be removed. Surface flows are ultimately conveyed west via pipes and discharge into the Duwamish Waterway through the KCIA pump stations. There is one known oil-water separator on-site. See Table 1 for existing project areas.

KCIA has four major drainage basins. The project area spans KCIA's Storm Drainage Basin #1 and #2. The existing site conditions are described in the following subsections and illustrated on Figure 2.

1.3.1 Storm Drainage Basin #1

Storm Drainage Basin (Basin) #1 has a total area of approximately 280 acres. It is located in the northern portion of the airfield. The basin is generally level and consists of a piped drainage system that conveys surface water by gravity to a pump station, which eventually discharges to the Duwamish River via a 60-inch storm drain known as Outfall #1. The project site located in Basin #1 is 4.47 acres and consists of northern 2 aircraft gates located in the airfield and northern area of the project site.

1.3.2 Storm Drainage Basin #2

Basin #2 has a total area of approximately 200 acres that covers the middle section of the airfield. The basin is generally level and consists of a piped drainage system that conveys surface water by gravity to a pump station, which eventually discharges to the Duwamish River via a 48-inch storm drain known as Outfall #2. The project site located in Basin #2 is 14.83 acres and consists of the southern 3 aircraft gates and the central and southern portions of the project site.

Threshold discharge areas (TDAs) are defined for projects with multiple storm drainage discharge points. A TDA is defined as an onsite area that drains to a single natural discharge location, or multiple natural discharge locations that combine within one-quarter mile downstream (as determined by the shortest flow path). The TDA is used to determine the applicability of the core and special requirements of the 2016 KCSWDM.

The UPS/BFI Project site is comprised of a two TDAs, referred to as TDA 1 and TDA 2 that correspond to the storm drainage basins described above. The defined TDA onsite boundaries are based on the existing topography, and storm drainage systems that have been mapped for the project and field visits.

	TDA 1	TDA 2	Total
Total Area (Main & Ramp Leasehold)	125,014 sf	645,337 sf	840,745 sf
	2.87 ac	14.81 ac	19.3 ac
Pervious Surfaces	0	29,163 sf	29,163 sf
		0.67 ac	0.67 ac
Impervious Surface Pavement	125,014 sf	549,679 sf	744,014 sf
	2.87 ac	12.62 ac	17.08 ac
Impervious Surface Buildings	0	35,304sf	35,304 sf
		0.81 ac	0.82 ac
Impervious Surface Compacted Gravel	0	32,264 sf	32,264 sf
		0.74 ac	0.74 ac
Total Existing Impervious Surface	125,014 sf	686,541 sf	811,555 sf
	2.87 ac	15.77 ac	18.64 ac

Table 1 – Existing Conditions

1.4 Proposed Project

The proposed project improvements are shown on Figure 3, and are summarized in the following sections. Replaced impervious surfaces are reconstructed pavement that includes the removal of asphalt concrete (AC) or Portland cement concrete (PCC) down to the subgrade and placing new foundations for the proposed pavement. Existing pavement area that will be graded lower, are defined as replaced impervious surfaces. Existing pavement area that will be graded higher will be milled and overlaid with new asphalt pavement and is not defined as replaced impervious surfaces.

1.4.1 Storm Drainage Basin #1 (TDA 1)

Project work within TDA 1 includes the following:

- Construction of the operation and maintenance building;
- Construction of the caster deck;
- Construction of two aircraft hardstands and fingers;
- Reconstruction of AC pavement and PCC;
- Milling and overlay of AC pavement;
- Construction of utilities and stormwater collection, conveyance and treatment facilities which include one pump station, a coalescing oil-water separator and a water quality wetvault.

1.4.2 Storm Drainage Basin #2 (TDA 2)

Project work within TDA 2 includes the following:

- Construction of the main sorting building and security building;
- Construction of the caster deck;
- Construction of three aircraft hardstands and fingers;
- Construction of the employee parking lot;
- Reconstruction of AC pavement and PCC;
- Milling and overlay of AC pavement;
- Construction of utilities and stormwater collection, conveyance and treatment facilities which include two pump stations, two coalescing oil-water separator and two water quality wetvaults.

1.5 **Proposed Site Conditions**

The redevelopment project includes reconstructing, adding, and removing existing impervious surfaces for the work described above as well as landscaped areas. Total areas of impervious and pervious surfaces for each TDA are presented in Table 2.

	TDA 1	TDA 2	Total
Total Area (Primary & Ramp Leasehold)	121,682 sf	719,063 sf	840,745 sf
	2.79 ac	16.51 ac	19.3 ac
Pervious Surfaces (Landscape)	0	36,432 sf	36,432 sf
		0.84 ac	0.84 ac
Impervious Surface Pavement NPGIS	12,560 sf	77,494 sf	90,054 sf
	0.29 ac	1.78 ac	2.07 ac
Impervious Surface Pavement PGIS	95,915 sf	514,427 sf	610,342 sf
	2.20 ac	11.81 ac	14.01 ac
Impervious Surface Buildings	13,153 sf	90,710 sf	103.863 sf
	0.30 ac	2.08 ac	2.38 ac
Total Proposed Impervious Surface	121,682 sf	682,631 sf	804,313 sf
	2.79 ac	15.67 ac	18.46 ac

Table 2 – Proposed Conditions

2. Conditions and Requirements Summary

2.1 Applicability of Drainage Requirements

The type of drainage review and the applicability of the Core and Special Requirements of the 2016 KCSWDM is dependent on the size and type of project. Per Figure 1.1.2.A of the KCSWDM, Flow Chart For Determining Type of Drainage Review Required, the project is subject to Full Drainage Review because it will result in greater than 2,000 square feet of new and/or replaced impervious surface, yet is not a single family residence, agricultural, or urban planned development project. Full Drainage Review, requires compliance with Core Requirements #1 - 9 and Special Requirements #1 - 5 of the KCSWDM.

Table 1 below contains project-specific TDA information used to determine the applicability of drainage requirements for the redevelopment project.

	TDA 1	TDA 2	Total
Total Project Site Area	121,682 sf	719,063 sf	840,745 sf
	2.79 ac	16.51 ac	19.3 ac
Total New Impervious Surface	0	24,005 sf 0.55 ac	24,005 sf 0.55 ac
Total Replaced Impervious Surfaces	66,999 sf	585,682 sf	652,681 sf
	1.54 ac	13.44 ac	14.98 ac
New and Replaced NPGIS	24,843 sf	144,199 sf	169,042 sf
	0.57 ac	3.31 ac	3.88 ac
New and Replaced PGIS	42,156 sf	441,483 sf	483,639 sf
	0.97 ac	10.14 ac	11.10 ac
Existing PGIS Surface Area	53,757 sf	72,944 sf	127,627 sf
	1.26 ac	1.67 ac	2.93 ac
Existing "Replaced" Pervious Surface	0	18,059 sf 0.41 ac	18,059 sf 0.41 ac
Existing Impervious Surface	0	18,373 sf	18,373 sf
Converted to Landscape Area		0.42 ac	0.42 ac

Table 3 – Project Area Summary

2.2 Core and Special Requirements

Following is a description of how each of the Core and Special Requirements of the 2016 KCSWDM is being addressed for this project.

2.2.1 Core Requirement 1 – Discharge at the Natural Location

Within the leasehold area, stormwater runoff from the project area will be connected to the existing stormwater conveyance systems within Storm Drainage Basin #1 and #2 and discharge to the Duwamish Waterway through Outfalls #1 and #2. The project will maintain existing drainage patterns by connecting into the KCIA's existing piped drainage system within the KCIA parcel. See Figure 4.

2.2.2 Core Requirement 2 – Offsite Analysis

An analysis of upstream drainage areas and downstream conditions is discussed in Section 3. There is upstream flows that are conveyed through the site which consists of runoff from S Portland Street, Airport Way South and the Main Terminal Parking Area. New conveyance systems have been designed to maintain these pipe flows to the downstream conveyance system. The KCIA drainage system downstream of the project consists of manmade stormwater conveyance systems, which connect to Outfalls #1 and #2. No conveyance system nuisance problems, severe erosion problems, or severe flooding problems are expected to be created or aggravated by the project.

2.2.3 Core Requirement 3 – Flow Control

The project is exempt from flow control per direct discharge criteria, KCSWDM 1.2.3.1. Outfalls #1 and #2 discharge directly to the Duwamish River below River Mile 6 is a major receiving waterbody. The existing conveyance systems connecting the project areas to the outfall locations are completely comprised of manmade elements. No flows from the project will be diverted to or from and existing wetland or stream sufficient to cause an adverse impact. Under King County Blanket Adjustment #1 for KCIA, Item No. 3 the adjustment exempts projects located at the KCIA from the one-quarter mile distance provision of Criteria A for the Direct Discharge Exemption.

In addition, flow control is not required because the downstream conveyance systems and pump stations have adequate capacity per existing KCIA storm system analysis documentation.

2.2.4 Core Requirement 4 – Conveyance System

The project is located in drainage basin with existing stormwater systems; therefore, the project must be in accordance with the conveyance requirements for existing systems with a change in flow characteristics per KCSWDM Section 1.2.4.2 due to the proposed additional impervious areas. Peak flows within Basin #1 and #2 may increase slightly from current conditions as a result of the addition of impervious area and attenuated within the proposed treatment vaults. The increases in peak flows are not expected to be significant or impact the size of the existing conveyance elements downstream.

The new pipe systems that are onsite are required to be designed with sufficient capacity to convey and contain the 25-year peak flow. In addition, overflows resulting from the 100-year runoff event will be analyzed to verify that any such overflows will not create or aggravate a severe flooding problem or severe erosion problem. The project will consists of new catch basins and pipe conveyance to accommodate the proposed improvement that will connect into the existing downstream system. Other conveyance systems will maintain upstream flows through the site. The on-site conveyance system will also consist of flow splitters that are sized to bypass flows that are higher than the calculated water quality treatment flow rate around the three proposed oil-water separators and water quality wetvaults. Stormwater pump stations have also been designed to lift stormwater to the wetvaults. The design and analysis of the conveyance systems are discussed in Section 5.

2.2.5 Core Requirement 5 – Erosion and Sediment Control

Erosion and sediment control measures proposed for this project are described in Section 8 of this report and included in the project plans to be implemented and maintained during the construction phase. The construction contractor will designate an erosion and sediment control supervisor and will be responsible for modifying the plan to accommodate changing site conditions and to ensure site discharges are in accordance with the State of Washington Construction Stormwater General Permit. A Construction Stormwater Pollution Prevention Plan (CSWPPP) will be prepared for this project using the Department of Ecology's template.

2.2.6 Core Requirement 6 – Maintenance and Operations

All drainage facilities will be maintained by the tenant or by KCIA per their agreement and in accordance to existing operation and maintenance procedures for tenant site as well and Industrial Stormwater General Permit. Appendix E contains standard O&M practices for the treatment facilities

2.2.7 Core Requirement 7 – Financial Guarantees and Liability

Financial guarantee and liability requirements are determined in the leasehold agreement between KCIA and UPS. Financial requirements will be met prior to permit issuance. KCIA and UPS will continue to be responsible for the planned improvements, site stabilization, and current maintenance of the existing systems.

2.2.8 Core Requirement 8 – Water Quality Facilities

Water quality treatment is required for the project's new and replaced pollution-generating surfaces, consisting of mostly replaced impervious surfaces as listed in Table 3. Replaced PGIS is a required target surface since the parcel redevelopment project adds more than 5,000 square feet of new and replaced impervious surface and the valuation of the proposed improvements (including interior improvements and excluding required mitigation improvements) will succeed 50% of the assessed value of the existing site improvements. Since the project meets the Direct Discharge Exemption for flow control as discussed in Section 2.2.3, the Basic Water Quality Menu is only required. This is also consistent with recent redevelopment projects at KCIA as well as the KCIA Taxiway Rehabilitation Project. The project proposes three water quality wetvaults and coalescing oil water separators. The design of the wetvaults are discussed in Section 3.2.

Furthermore, the leasehold site will maintain their Washington State Department of Ecology Industrial Stormwater General Permit, that provides water quality benchmarks based on site use that is monitored and reported quarterly.

2.2.9 Core Requirement 9 – Flow Control BMPs

The project is subject to the requirement of Large Lot BMP's per Section 1.2.9.2.2 of the KCSWDM. King County Blanket Adjustment No. 1 for KCIA, Item 2 does not require a reduced

footprint or native growth retention. Target surfaces for application of Core Requirement #9 include new impervious surfaces, new pervious surfaces, replaced impervious surfaces, and any existing impervious surfaces added on or after January 8, 2001 not already mitigated with an approved flow control BMP or flow control facility.

An evaluation of the feasibility of onsite flow control BMPs has been included in Section 4.3 of this report. No Flow Control BMPs are proposed due to the infeasibility criteria outlined in Appendix C of the KCSWDM.

2.2.10 Special Requirement 1 – Other Adopted Area-Specific Requirements

The Washington State Department of Ecology's Stormwater Industrial General Permit for the UPS facility provides benchmarks for water quality standards based on potential sources of pollution and storage of materials that are consistent with site use. A State Environmental Police Act (SEPA) and National Environmental Policy Act (NEPA) determination has been submitted.

2.2.11 Special Requirement 2 – Flood Hazard Area Delineation

The project area is not located within a FEMA-mapped floodplain (FEMA Flood Insurance Rate Map FIRM No. 53033C0645F) or not located within the 100-year flood plain.

2.2.12 Special Requirement 3 – Flood Protection Facilities

Special Requirement 3 does not apply to this project because the project is not located within the 100-year flood plan; or will not rely on or modify an existing flood protection facility.

2.2.13 Special Requirement 4 – Source Control

KCIA and its leaseholders are subject to the Washington State Department of Ecology's Industrial Stormwater General Permit. Temporary ESC measures during construction a have been designed to reduce pollutants based on site construction activities from entering the downstream conveyance system. All other sources of contaminants are located inside buildings where spill prevention measures are included particularly in the maintenance building. The aircraft gates will be subject to de-icing fluid. As a result, a diversion system has been designed to direct surface runoff that includes de-icing agents directly to the sanitary sewer system with the operation of inline, automated valve system. The conveyance system will be flushed and reverted back to the storm drainage system.

2.2.14 Special Requirement 5 – Oil Control

Coalescing plate oil-water separators has been designed for oil control in locations susceptible to oil. Outlet traps will also be included in all catch basins within the site that accept surface flows.

3. Upstream and Downstream Analysis

On-site field investigations were conducted throughout the design process. A full downstream analysis was not conducted due to the constraints of entering the secured Federal Aviation Administration, Air Operations Area (AOA) for the downstream assessment. As mentioned earlier in the TIR, KCIA maintains a current inventory and analysis of their existing drainage systems. Other than the "Available Drainage Requirements", KCIA has not recommended any further improvements within the leasehold areas or to the immediate downstream system. The following are documented information provided by KCIA to fulfill the Upstream and Downstream Analysis.

As stated in the "Taxiway Alpha Rehabilitation" Technical Information Report:

An outfall assessment report was completed for the airport (URS, 2009) to evaluate existing drainage and outfall systems for Outfalls #1, #2, #3, and #5. The purpose of the assessment was to identify potential impacts to KCIA during a flood event in the Duwamish River caused by the modified operations of the Howard Hanson Dam during the wet season of 2009/2010. The evaluation concluded that except for Outfall #5, the storm system draining KCIA is adequate and protected from high water in the Duwamish River. Resulting from this evaluation, a new storm drain line to divert runoff from Basin #5 to Basin #2 was designed and constructed in December 2009.

KCIA performs a thorough inventory and analysis of all drainage systems at the airport site. Conveyance analysis is an ongoing effort to maintain operations within the airport. KCIA's latest analysis is the "King County International Airport Stormwater Capacity Study (Phase II)" by AECOM (consultant) dated August 24, 2018. The report is the next phase of analysis that provides a comprehensive assessment of potential capacity constraints within KCIA's existing stormwater drainage system. This report recommends drainage improvements at current leasehold areas that are subject to future redevelopment, such as the UPS BFI project. The report does not provide any recommendation for improvement within the leasehold or in the downstream systems. The report provides recommendations to further analyze the drainage system within the existing parking lot of the Main Terminal Building which will be improved as a part of the KCIA LAP Project. This drainage system appears to enter the UPS BFI project site via a 12" storm drain underneath the existing 7300 Building. The project will maintain the current location and upsize the pipe to 18" diameter pipe to its downstream connection.

4. Flow Control and Water Quality Facility Design; and Flow Control BMPs

The applicability of flow control and water quality treatment requirements for this project are described in Sections 2.2.3, 2.2.8, and 2.2.9. The following sections document the analysis and design of the required facilities.

4.1 Flow Control Facility

A flow control facility is not required; since the project meets the criteria for the Direct Discharge Exemption per KCSWDM Section 1.2.3.1 and King County Blanket Adjustment No. 1, Item No. 3 as discussed in Section 2.2.3.

4.2 Water Quality Treatment Design

As discussed in Section 2.2.8, water quality treatment is required for all new and replaced PGIS. See Figure 5 and Table 4. Wetvaults are proposed from the Basic Water Quality Treatment Menu in Section 6.1.1 has been designed to meet the requirements for the project. The project has three wetvaults to treat runoff from areas described as the north, central, and south portions of the project site. A flow splitter structure with a diversion weir and orifice has been designed to limit water quality treatment flows to the coalescing oil-water separator vaults before discharging into the corresponding wetvault. Bypassed flows will be conveyed downstream of the vaults. The basis of design for the wetvaults was taken from the Taxiway Alpha Rehabilitation Project so that KCIA may ultimately provide the same operation and maintenance guidelines. Water quality treatment flow rates and volumes were calculated based on the target surface area and modeled in WWHM 2012, an approved continuous hydrologic modeling software. The wetvault and flow splitter calculations and drawings are included in Appendix B.

The project site is a large site that requires long pipe conveyance systems to each of the three wetvaults. Three pump stations are located downstream of the flow splitter and lift the water quality flows into the oil-water separator. By lifting the conveyance system, oil treatment may be provided as end of pipe treatment and will reduce the depth and overall footprint of the water quality vaults. The pump system will be proprietary based on the specifications provided in the construction documents as a packaged product which will include a duplex (alternating) pump system, equipped with a high alarm system. In the scenario of a pump failure, flows will bypass the pump station and immediately enter the downstream system via the flow splitting structures.

	North	Central	South
TDA	TDA 1	TDA 2	TDA 2
Target Surface Area:	42,156 sf	280,470 sf	161,013 sf
New & Replaced PGIS	0.97 ac	6.45 ac	3.70 ac
Water Quality Treatment Flow Rate (Offline 15 minute timesteps)	0.089 cfs	0.59 cfs	0.34 cfs
Water Quality Treatment Volume Required	5,200 CF	34,800 CF	19,800 CF
Water Quality Treatment Volume Provided	5,760 CF	38,400 CF	24,000 CF

Table 4 – Wetvault Sizing Summary

4.3 Flow Control BMPs

Flow control BMPs (FCBMPs) are required to be installed to the maximum extent feasible on projects within the Urban Growth Area per Section 1.2.9.1 of the 2016 KCSWDM. A FCBMP feasibility analysis has been prepared using the Large Lot BMP Requirement lists outlined in Section 1.2.9.2.2 of the 2016 KCSWDM and the design and infeasibility criteria for each FCBMP provided in KCSWDM Section C2.

Target surfaces for this analysis include new impervious surfaces, new pervious surfaces, and replaced impervious surfaces. For this project, the following surfaces must be evaluated for implementation of FCBMPs:

- New & replaced impervious surfaces for roofs
- New & replaced impervious surfaces for pavements
- New pervious surfaces

4.3.1 Full Dispersion

Full Dispersion is not feasible for this project because KCIA is a fully developed site and does not contain native vegetation for dispersal.

4.3.2 Full Infiltration of Roof Runoff

Infiltration is infeasible since the project site has known soil or ground water contamination. The project site was previously occupied with an airplane hangar (Hangar 5 Building), Standard Oil Co site, and the Boeing EMF Building. The site has undergone remediation. Monitoring wells are located throughout to site to record the known plumes that exist in the soils below the leasehold.

4.3.3 Infiltration BMPs

All target impervious surfaces not mitigated by Full Dispersion are required to be mitigated to the maximum extent feasible using one or more of the following BMPs: Full Infiltration, Limited Infiltration, Bioretention, or Permeable Pavement.

Infiltration BMPs are infeasible due to known contaminated soils underneath the leasehold area that is discussed in Section 4.3.2 of this report.

4.3.4 Basic Dispersion BMPs

Basic Dispersion is required for target impervious surfaces not mitigated by Full Dispersion, Infiltration, or Bioretention BMPs. Basic dispersion is not feasible at KCIA since the area lacks the required vegetated flow path for basic dispersion.

4.3.5 Reduced Impervious Surface Credit and Native Growth Retention Credit

The KCIA is exempt from requiring the reduced impervious surface credit and native growth retention credit per the King County Blanket Adjustment No. 1 for KCIA, Item No. 2.

4.3.6 Soil Quality Preservation

New pervious surfaces are required to comply with soil moisture holding requirements, requiring all pervious areas to have an 8-inch thickness of topsoil with 10% organic content in planting beds and 5% organic content in turf areas, and a pH from 6.8 to 8.0 or matching the pH of the undisturbed soil. Planting beds require a 2-inch mulch layer of organic material as specified in either the project plans or specifications for construction.

4.3.7 Roof Downspouts to Drainage Systems

Roof downspouts are required to have a perforated connection to the existing drainage systems. Infiltration is infeasible due to known contaminated soils underneath the leasehold area that is discussed in Section 3.3.2 of this report.

5. Conveyance System Analysis and Design

Most of the existing stormwater system will be removed and replaced with new conveyance pipe systems. The existing system contains remnants of existing drainage systems through multiple redevelopments of the leasehold site that ultimately discharge west to the Duwamish River via pump stations operated and maintained within the airport site.

Peak flow rates of the 25-year and 100-year storms were calculated in WWHM2012 (15-minute timesteps) for all tributary areas. The pipe systems were then modeled in XPStorm 2019, a hydrology and hydraulic analysis software. Offsite flow data was obtained from the "King County International Airport Stormwater Capacity Study (Phase II)."

New pipe systems have been designed with sufficient capacity to convey and contain the 25year peak flow for the developed conditions for onsite tributary areas and offsite tributary areas.

Pipe system structures may overtop for runoff events that exceed the 25-year design capacity, provided the overflow from a 100-year runoff event does not create or aggravate a severe flooding problem or severe erosion problem. Based on the analysis, the 100-year runoff event does not overtop the proposed system. See Appendix C,

6. Special Reports and Studies

A Geotechnical Engineering Report, prepared by TerraCon, Inc., dated 12/2/2018 is included separately as a part of the Commercial Building Permit submittal for this project.

7. Other Permits

The Full Drainage Review TIR has been completed for the Commercial Building Permit submittal package. A Pre-Issuance Construction Authorization (PICA) may also be submitted for the project for site preparation and utility relocation. The tenant will also maintain and modify their current Washington State Department of Ecology Industrial Stormwater General Permit. A Department of Ecology Construction Stormwater General Permit is also required for the project that will be submitted by the selected contractor.

8. Construction Stormwater Pollution Prevention

A Construction Stormwater Pollution Prevention Plan (CSWPPP) consists of two parts: an Erosion and Sediment Control (ESC) plan and a Stormwater Pollution Prevention and Spill (CWPPS) plan. Following is a summary of the CSWPPP elements relevant to this project. A draft CSWPPP has been prepared for this project using the Department of Ecology's template, and is bound separately. See Appendix D for the King County CSWPPP Worksheet Form to be completed by the contractor. The contractor will be able to adopt and modify the provided CSWPPP as needed or create a new document for review and submittal to the Department of Ecology.

8.1 Erosion and Sediment Control Plan Analysis & Design

Temporary erosion and sediment control plans have been prepared for this project and incorporated into the contract plans. Prior to construction, the contractor will be responsible to prepare a temporary erosion and sediment control plan (TESC) for the site. Both the TESC and CSWPPP are expected to include elements discussed in the following sections and required to be in compliance with FAA and foreign object debris (FOD) requirements. FOD requirements in the airfield are very stringent for the purpose of providing safe conditions within the AOA.

The contractor is required to designate an ESC Lead/ Supervisor who has a current Certificate of Training in Construction Site Erosion and Sediment Control from a course approved by the Washington State Department of Ecology. The ESC Lead/Supervisor is responsible for installing, inspecting, and maintaining BMPs included in the ESC Plan, and updating the ESC plan to reflect current field conditions.

The ESC Lead/Supervisor is also responsible for turbidity monitoring of discharges from the project site to comply with the State of Washington NPDES Construction Stormwater General Permit and the ESC Standard in Appendix D of the 2016 *KCSWDM*.

Although ESC plans have been prepared for this project, due to the variability in construction conditions and weather, the planned phasing of the project to provide the leasehold tenant to occupy designated areas, it will be necessary to supplement and modify the BMPs shown on the plans over the course of construction.

8.1.1 Erosion and Sediment Control Measures

The following categories of the ESC measures, as detailed in the King County Erosion and Sediment Control Standards (ESCS) and in compliance with the FOD requirements, will be incorporated into the design and construction of the rehabilitation project:

- Clearing Limits Clearing limits will be installed at the edges of all critical area buffers and any other areas required to be left uncleared. Clearing limits will be defined by the phasing plans included in in the construction documents. The areas provided allow the tenant to maintain operations. The current operations are within a secured fence, and perimeter fencing will be maintained throughout the project to define the areas of work.
- Cover Measures Permanent cover measures in the form of placing topsoil, seeding, and mulching will be provided to protect all areas to be converted to grass areas. Temporary cover measure will be needed if any excavated material is stockpiled on site.
- Perimeter Protection Perimeter protection to filter sediment from sheetwash will be located downslope of all disturbed areas and will be installed prior to upslope grading. Perimeter protection includes the use of vegetated strips as well as constructed measures such as silt fences fiber rolls, sand/gravel barriers, brush or rock filters, triangular silt dikes and other methods. All the proposed disturbed areas will sheet flow and quickly drain into concentrated flows in grassed swales and trenches. Perimeter protection will be provided by the combination of catch basin inserts, triangular silt dikes, and existing grass infields that are downgradient of planned disturbed areas.
- Traffic Area Stabilization In general, unsurfaced entrances, roads, and parking areas used by construction traffic will be stabilized to minimize erosion and tracking of sediment off site. If required, stabilized construction entrances will be installed as the first step in clearing and grading. Stabilized construction entrances and parking areas are not expected to be required for this project, because the areas of work are accessible by existing paved surfaces. Wheel washes may also be implemented at each egress location for both construction activity and tenant operations.
- Sediment Retention Surface water collection from distributed areas, within Storm will be routed through proprietary filtration systems as needed. Protection of catch basins will also be installed at inlets that are likely to be impacted by sediment generated by the project. Sediment retention facilities will be installed prior to grading of contributing area.
- Surface Water Collection Surface water from disturbed areas will be intercepted, conveyed to a proprietary filtration system as needed, and discharged downslope of disturbed areas. Surface water control will also be provided by check dams (triangular silt dikes), as necessary. Silt fence and check dams will be used as necessary to direct surface water to the temporary erosion control facilities.

TIR

• Dewatering Control – Runoff generated by dewatering will collected and filtered as necessary.

8.2 Stormwater Pollution Prevention and Spill Plan

The stormwater pollution prevention and spill plan must identify all activities that could contribute pollutants to surface and storm water during construction and apply BMPs applicable to these activities. The contractor will be required to prepare and submit a project-specific spill prevention, control and countermeasures plan in accordance with the requirements of the existing KCIA Spill Plan.

9. Bond Quantities, Facility Summaries, and Declaration of Covenant

Bond Quantities will be submitted with the plans for the Commercial Building Permit review . Water Quality Facility Summary Sheets, for the proposed wetvaults are included in Appendix B and will be added to the existing KCIA O&M manual and utility inventory. A facility schematic and details for the treatment facilities are also included in Appendix B. Upon approval of the TIR or issuance of the Commercial Building Permit, a Declaration of Covenant will be recorded and included in the Final Corrected TIR.

10. Operations and Maintenance Manual

Drainage facilities at KCIA will be privately maintained and coordinated between UPS or KCIA Maintenance staff in accordance with KCSWDM Appendix A: Maintenance Requirements of Flow Control, Conveyance and WQ Facilities. King County Maintenance Requirements will be used as the O&M manual for the wetvault systems and included in Appendix E. The tenant will coordinate with KCIA to update their existing O&M Manual to include the requirements for the proposed facilities if standard protocols do not exist. Additional O&M documentation is required by the selected supplier that will be included in the manual. The tenant is also responsible for operating and maintaining the facilities as required for their Washington State Department of Ecology's Industrial Stormwater General Permit.

11. References

King County International Airport, King County Department of Transportation. King County, Washington. Airport Drainage Requirements. January 2019

Terracon Consultants, Inc., King County Washington. Geotechnical Engineering Report for United Parcel Service Proposed Parcel Distribution Facility. December 20, 2018.

AECOM Seattle, Prepared for King County International Airport. King County, Washington. King County International Airport Stormwater Capacity Study (Phase II). August 24, 2018

King County, Department of Natural Resources. King County, Washington. Surface Water Design Manual (KCSWDM). April 2016

King County, Department of Natural Resources. King County, Washington. Blanket Adjustment No. 1 for King County International Airport Regarding Definition of "Site," Alternative Declaration of Covenant and Grant of Easement, Direct Discharge, and Flow Control BMP Requirements. July 26, 2016

URS, Prepared for King County International Airport. King County, Washington. King County International Airport Taxiway Alpha Rehabilitation. February 24, 2010.

United States Federal Emergency Management Agency, Flood Insurance Rate Map. King County, Washington and Incorporated Areas. Map Number 53033C0645 F. May 16, 1995.

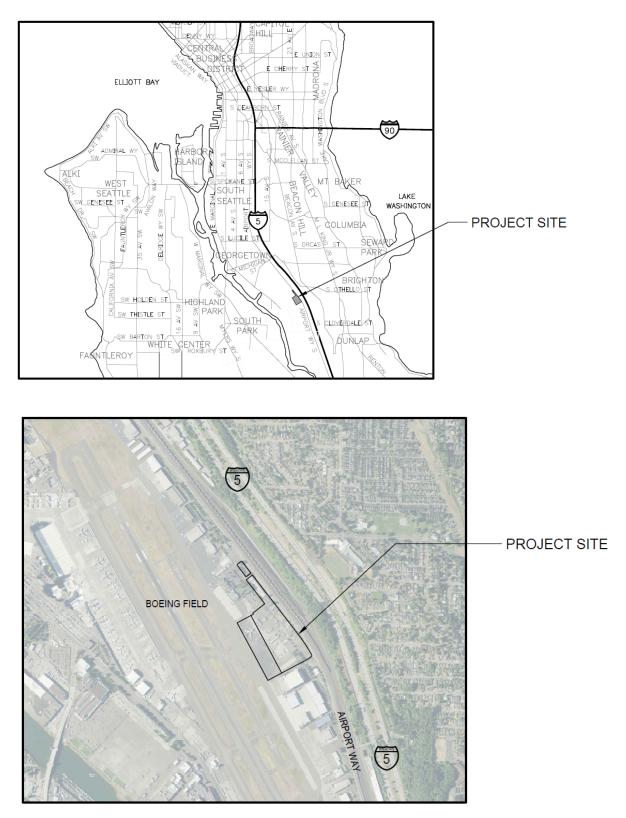
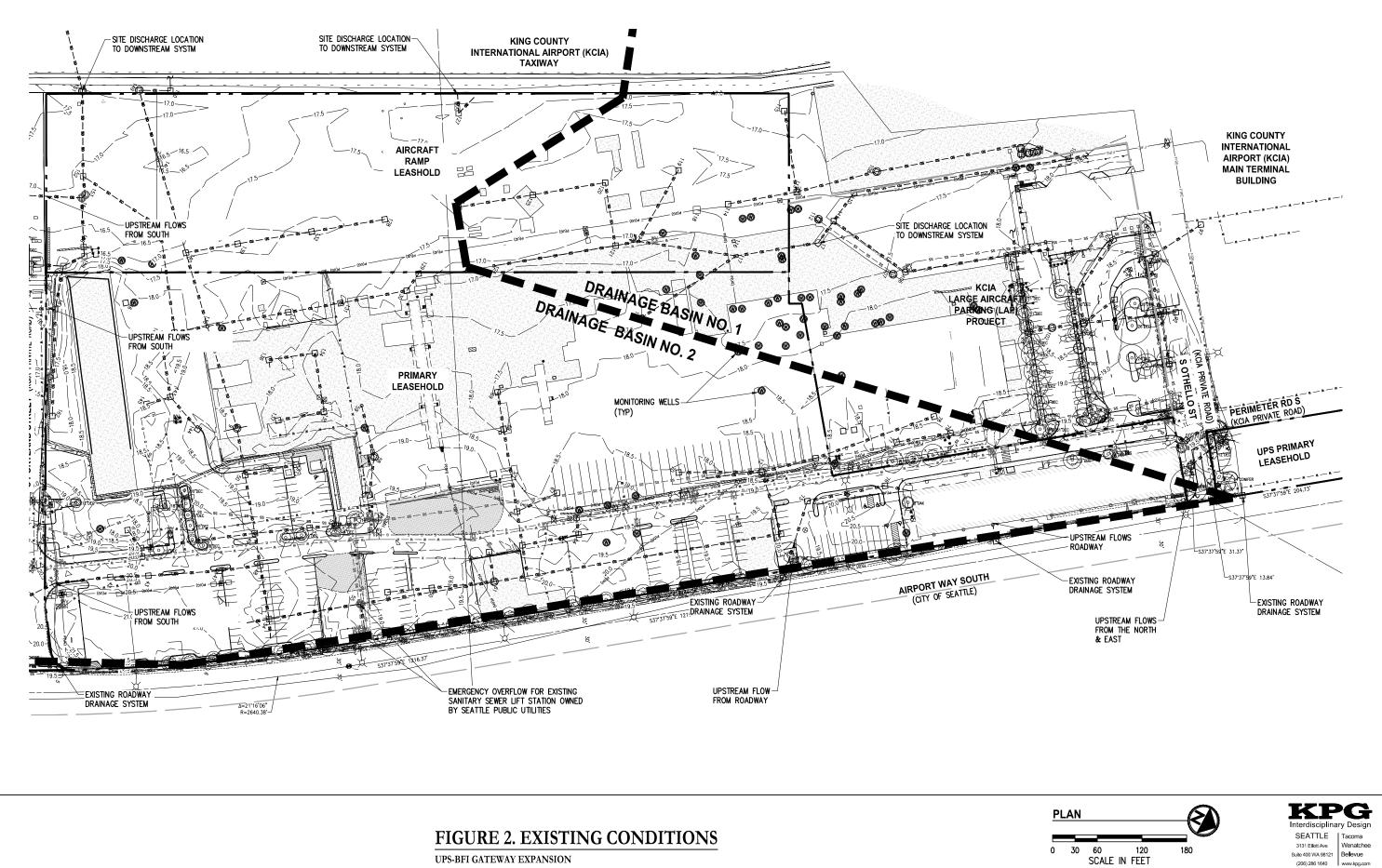
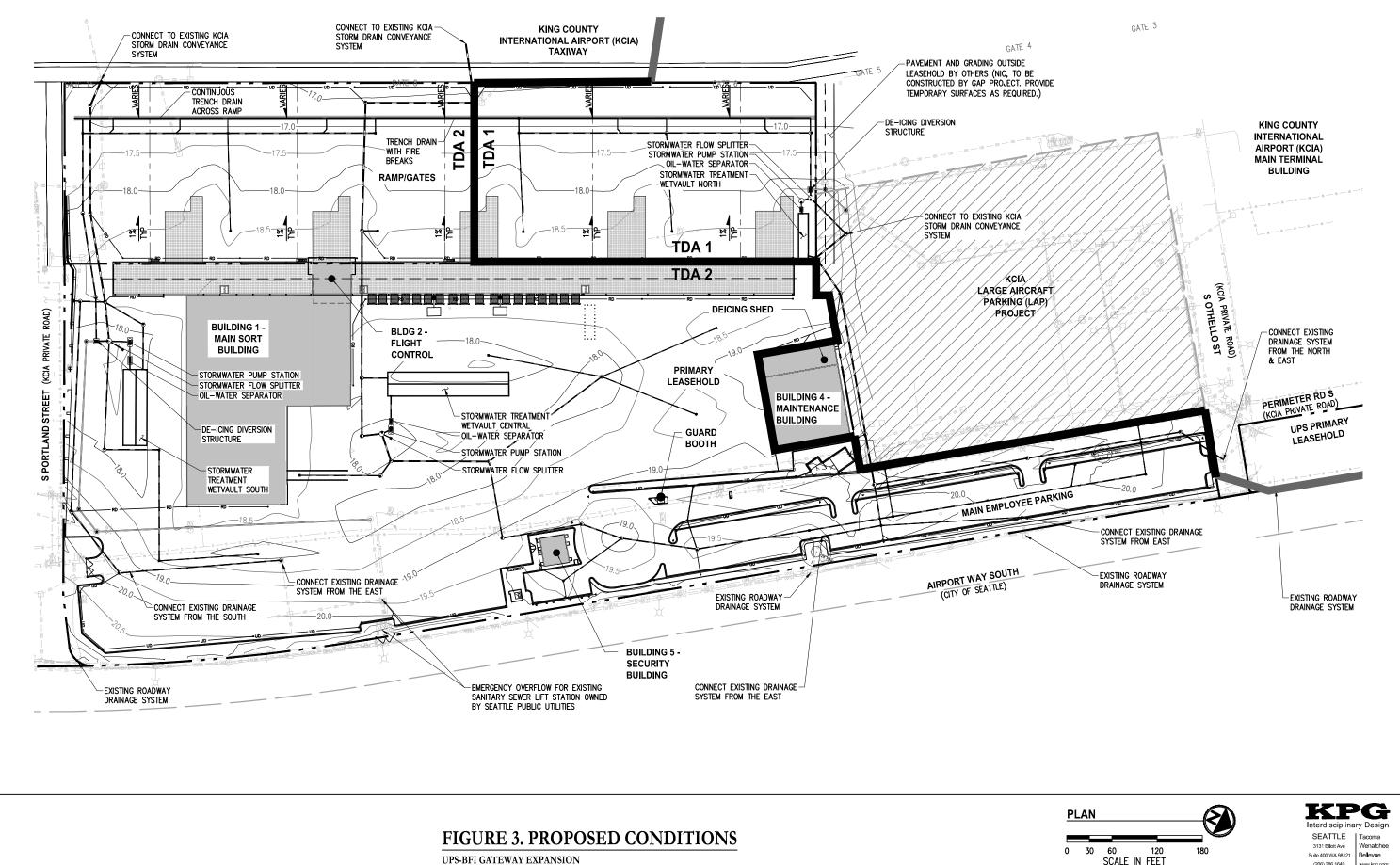
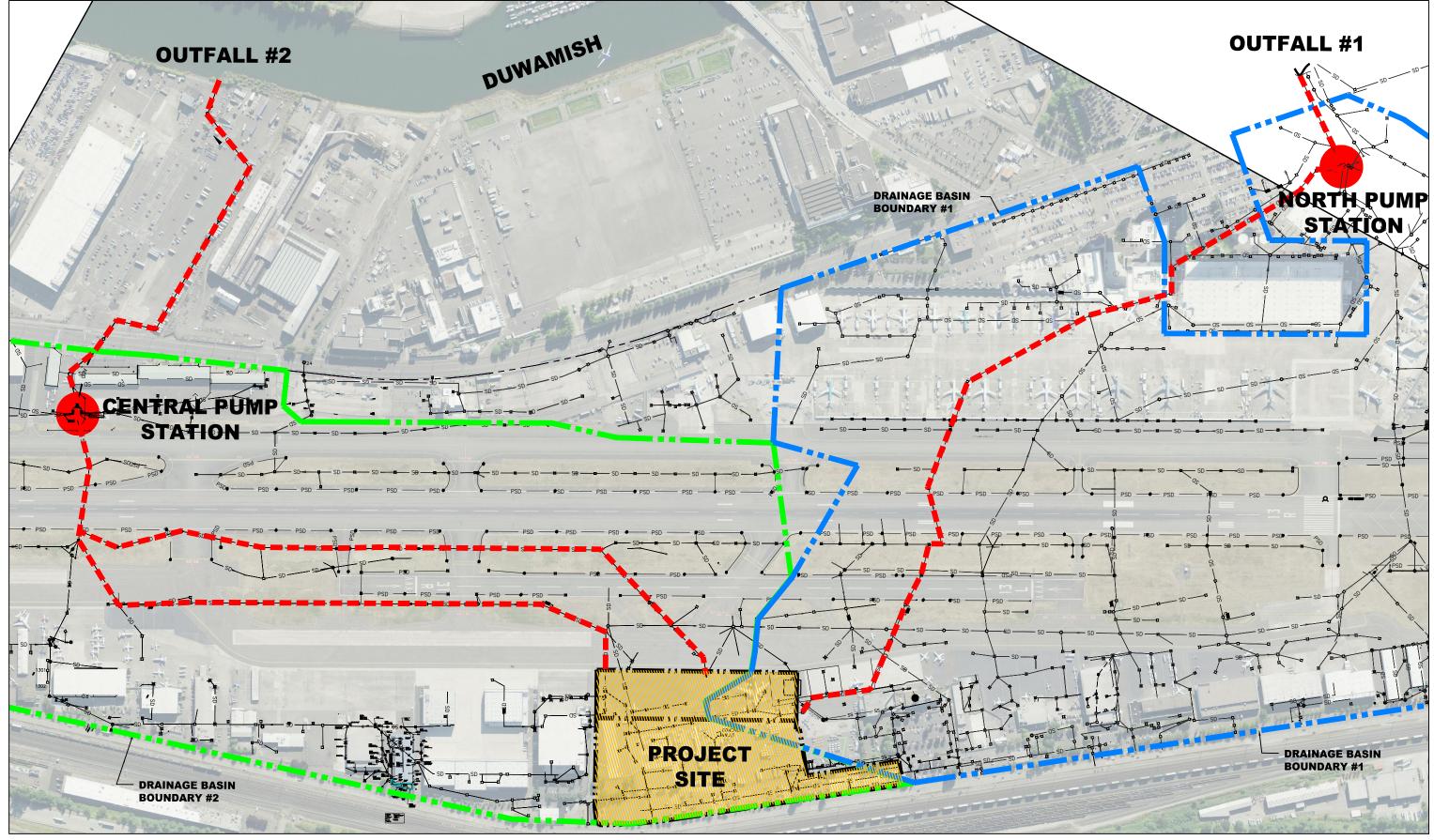




Figure 1 – Vicinity Map

UPS-BFI GATEWAY EXPANSION

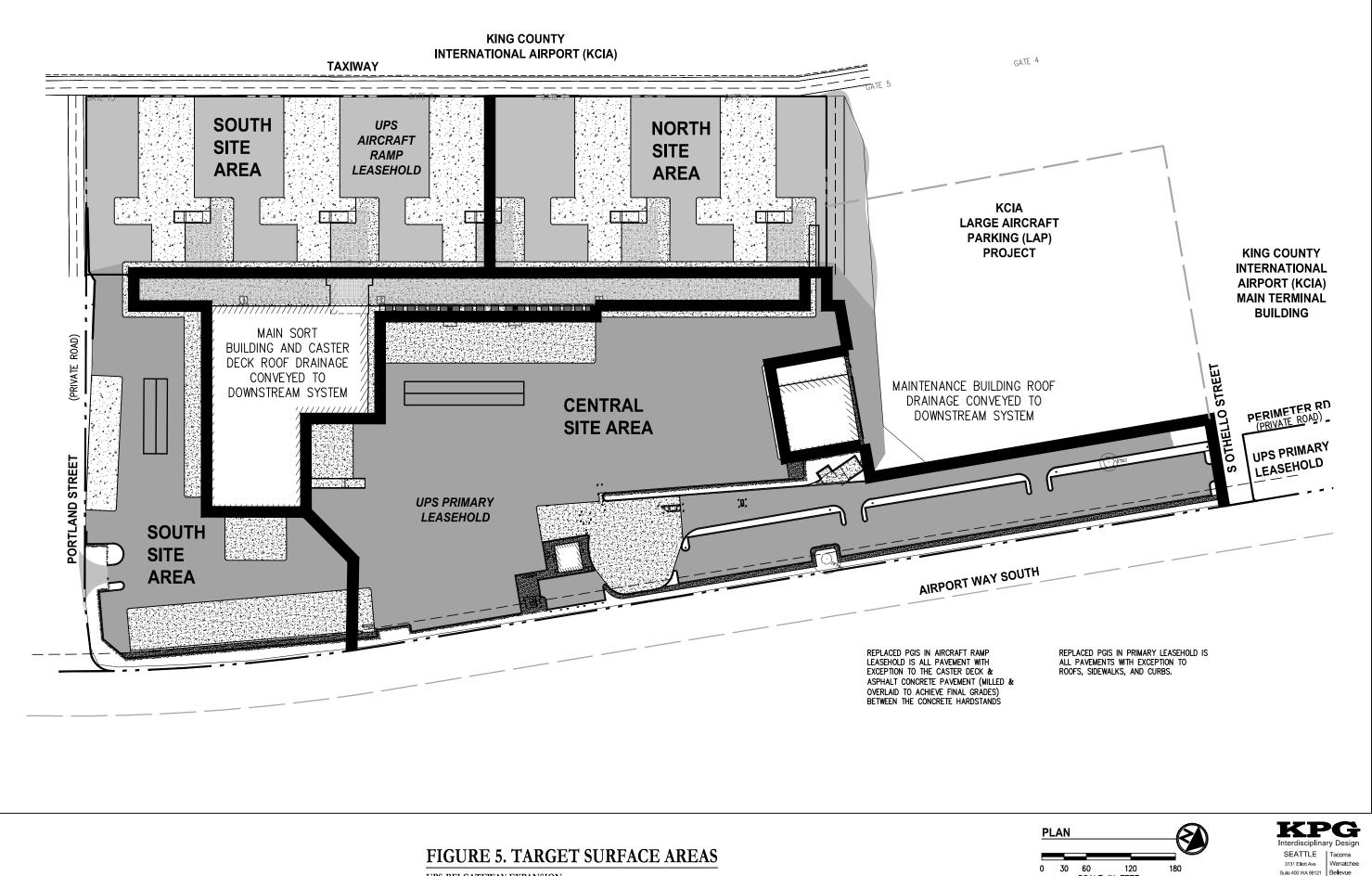


UPS-BFI GATEWAY EXPANSION

(206) 286 1640

www.kpg.com

FIGURE 4. DOWNSTREAM MAP


UPS-BFI GATEWAY EXPANSION

NOT TO SCALE

PLAN

SCALE IN FEET

(206) 286 1640 www.kpg.com

UPS-BFI GATEWAY EXPANSION

APPENDIX A

TIR Worksheets and King County Blanket Adjustment No. 1 for KCIA

Part 1 PROJECT OWNER AND PROJECT ENGINEER Project Owner UNITED PARCEL SERVICES Phone (720) 676 - 9580 Address UPS PLANT ENGINEERING 19500 E 23 ^{FP} ANE, AURORA CO 8001	Part 2 PROJECT LOCATION AND DESCRIPTION Project Name UP5-BF1 GATEWAY EXPANSION DPER Permit # Location Township 24 Range 4			
Project Engineer WH RAY EDRALIN PE Company KPIT, PS	Section 28 Site Address 7300 PERIMETER RP 5			
Phone <u>[204)</u> 824-6942	SEATLE, WA-			
Part 3 TYPE OF PERMIT APPLICATION	Part 4 OTHER REVIEWS AND PERMITS			
 Landuse (e.g.,Subdivision / Short Subd. / UPD) Building (e.g.,M/F / Commercial / SFR) Clearing and Grading Right-of-Way Use Other 	 DFW HPA COE 404 DOE Dam Safety FEMA Floodplain COE Wetlands Other ISWGP War Dom 434 			
Part 5 PLAN AND REPORT INFORMATION				
Technical Information Report	Site Improvement Plan (Engr. Plans)			
Type of Drainage Review (check one): Full Grainage Review (check one): Simplified Grainage Review (check one): Check one): Check one	Plan Type (check one):			
Date (include revision dates):	Date (include revision			
Date of Final:	Date of Final:			
Part 6 SWDM ADJUSTMENT APPROVALS				
Type (circle one): Standard / Experimental / Blanket Description: (include conditions in TIR Section 2) <u>KING COUNTY BLANKET ADJUSTMENT NO (FOR KCIA (JULY 20, 2010)</u>				
Approved Adjustment No	_ Date of Approval:			

Part 7 MONITORING REQUIREMENTS				
Monitoring Required:	Describe:			
Start Date:				
Completion Date:	Re: KCSWDM Adjustment No.			
Part 8 SITE COMMUNITY AND DRAINAGE BASIN				
Community Plan : มวงศ				
Special District Overlays: _৸০৸৮				
Drainage Basin: DUWAMISH PIVER BE	ilow Mile (0			
Stormwater Requirements: <u>NONE</u>				
Part 9 ONSITE AND ADJACENT SENSITIVE ARE	AS			
River/Stream DUWAMISH RIVER	General Steep Slope			
Lake	Erosion Hazard			
U Wetlands	Landslide Hazard			
Closed Depression	Coal Mine Hazard			
General Floodplain	Seismic Hazard			
• Other	Habitat Protection			
	CONTAMINATED SOUS			
Part 10 SOILS				
Soil Type Slope	es Erosion Potential			
Gal, Qyal FIAT				
"ALLUVAL DEPOSITS"				
High Groundwater Table (within 5 feet)	Sole Source Aquifer			
Other	Seeps/Springs			
Additional Sheets Attached				

Part 11 DRAINAGE DESIGN LIMITA	TIONS	
REFERENCE	LIMITATION / SITE CONSTRAINT	
🔽 Core 2 – Offsite Analysis	FAA RESTRICTED ACCESS	
Sensitive/Critical Areas		
ID Infeasibility	CONTAMINATED SOILS	
Other		
•		
Additional Sheets Attached		
Part 12 TIR SUMMARY SHEET (provide one TIR Summary Sheet per Threshold Discharge Area)	
Threshold Discharge Area: (name or description)	DA NO. 1 (KCIA DRAINAGE BASIN)	
Core Requirements (all 8 apply):	Number of Natural Discharge Locations:	
Discharge at Natural Location		
Offsite Analysis	Level: D 2 / 3 dated: II 2018 Level: 1 2 / 3 or Exemption Number Discrimentation	
Flow Control (include facility summary sheet)	Level: 1 / 2 / 3 or Exemption Number Discriticity Flow Control BMPs N/A	
Conveyance System	Spill containment located at: OUTLET TRAF AT EACH CB	
Erosion and Sediment Control /	CSWPP/CESCL/ESC Site Supervisor:	
Construction Stormwater Pollution Prevention	Contact Phone:	
	After Hours Phone:	
Maintenance and Operation	Responsibility (circle one): Provide / Public If Private, Maintenance Log Required: VSP / No	
Financial Guarantees and Liability	Provided: Ves>/ No	
Water Quality (include facility	Type (circle one): Basic / Sens. Lake / Enhanced Basic / Bog	
summary sheet)	or Exemption No.	
	Landscape Management Plan:	
Special Requirements (as applicable):		
Anna Canaifia Desinana	Type: CDA / SDO / MDP / BP / LMP / Shared Fac. / Hoffe Name:N/A	
Area Specific Drainage Requirements		

Part 12 TIR SUMMARY SHEET (p	provide one TIR Summary Sheet per Threshold Discharge Area)
Source Control (commercial / industrial land use)	Describe land use: SORTING FACILITY COURIER SERVICES Describe any structural controls: AT AIRPORT
Oil Control Other Drainage Structures Describe:	High-use Site: X / No Treatment BMP: C / No Maintenance Agreement: X / No with whom? KCIA
Part 13 EROSION AND SEDIMENT O MINIMUM ESC REQUIREMENT DURING CONSTRUCTION Clearing Limits Cover Measures Perimeter Protection	
 Traffic Area Stabilization Sediment Retention Surface Water Collection Dewatering Control Dust Control Flow Control Protection of Flow Control BMP Fa 	 operation of Permanent Facilities, restore operation of Flow Control BMP Facilities as necessary Flag limits of SAO and open space preservationareas Other

Tait if of of the analysis of				
Flow Control	Type/Description		Water Quality	Type/Description
Detention			Vegetated Flowpath	
			Wetpool	METVANUTS
Regional Facility			Filtration	
Shared Facility			Oil Control	PLATE
Flow Control BMPs			Spill Control	OUTLET TRAPS
Other			Flow Control BMPs	
			Other	

Part 11 DRANAGE DESIGN LIMITA	TIONS
REFERENCE Core 2 - Offsite Analysis Sensitive/Critical Areas SEPA LID Infeasibility Other Additional Sheets Attached	
Part 12 TIR SUMMARY SHEET (provide one TIR Summary Sheet per Threshold Discharge Area)
Threshold Discharge Area: (name or description)	TDA NO. 2 (KCIA DRAINAGE BASIN) NO. 2
Core Requirements (all 8 apply):	
Discharge at Natural Location	Number of Natural Discharge Locations: 2
Offsite Analysis	Level: 12/3 dated: 11/2018
Flow Control (include facility summary sheet)	Level: 1 / 2 / 3 or Exemption Number
Conveyance System	Spill containment located at: OUTLET TRAP AT EACH CB
Erosion and Sediment Control / Construction Stormwater Pollution Prevention	CSWPP/CESCL/ESC Site Supervisor: Contact Phone: After Hours Phone:
Maintenance and Operation	Responsibility (circle one): Private / Public If Private, Maintenance Log Required: Yes No
Financial Guarantees and Liability	Provided: No
Water Quality (include facility summary sheet)	Type (circle one): Bester / Sens. Lake / Enhanced Basic / Bog or Exemption No Landscape Management Plan: Yes / Nor
Special Requirements (as applicabl	e):
Area Specific Drainage Requirements	Type: CDA / SDO / MDP / BP / LMP / Shared Fac. / None Name:
Floodplain/Floodway Delineation	Type (circle one): Major / Minor / Exemption / None
Flood Protection Facilities	Describe:

Part 12 TIR SUMMARY SHEET	provide one TIR Summary Sheet per Thresho	ld Discharge Area)	
Source Control	Describe land use: Courter Sort	NOT FACILITY WT	
(commercial / industrial land use) Describe any structural controls:			
OWS - WETVALLT			
Oil Control	High-use Site: Yes>/ No		
Treatment BMP: Maintenance Agreement:			
with whom?			
Other Drainage Structures			
Describe:			
Part 13 EROSION AND SEDIMENT			
MINIMUM ESC REQUIREMEN DURING CONSTRUCTION		-	
Clearing Limits	Stabilize exposed sur	faces	
Cover Measures		Temporary ESC Facilities	
Perimeter Protection Clean and remove all silt and debris, ensure operation of Permanent Facilities, restore			
peration of Flow Control BMP Facilities as			
Sediment Retention necessary			
Surface Water Collection Flag limits of SAO and open space preservation areas			
Dewatering Control Dust Control	• Other		
Flow Control			
Protection of Flow Control BMP F	acilities		
(existing and proposed)	All and and a second		
Maintain BMPs / Manage Project	and the second definition of the second defini	J.	
Part 14 STORMWATER FACILITY D	ESCRIPTIONS (Note: Include Facility Su	mmary and Sketch)	
Flow Control	scription Water Quality	Type/Description	
Detention	Vegetated Flowpath	a <u></u> 2	
	Wetpool	0 	
Regional Facility	Filtration		
Shared facility	Oil Control		
Flow Control BMPs	Spill Control	·	
Other	Flow Control BMPs		
	Other		

Part 15 EASEMENTS/TRACTS	Part 16 STRUCTURAL ANALYSIS		
Drainage Easement	 Cast in Place Vault Retaining Wall 		
Native Growth Protection Covenant	Rockery > 4' High		
Tract	Structural on Steep Slope		
Other	Other PRECINST VAULT		
Part 17 SIGNATURE OF PROFESSIONAL ENGINEER			
I, or a civil engineer under my supervision, have visited the site. Actual site conditions as observed were incorporated into this worksheet and the attached Technical Information Report. To the best of my knowledge the information provided here is accurate. $\frac{10/31}{2019}$			

Water and Land Resources Division

Department of Natural Resources and Parks King Street Center 201 South Jackson Street, Suite 600 Seattle, WA 98104-3855 **206-477-4800** Fax 206-296-0192

TTY Relay: 711

July 26, 2016

- TO: Scott Smith, Principal Engineer, Department of Permitting and Environmental Review (DPER)
- FM: Curt W. Crawford, Manager, Stormwater Services Section, Water and Land Resources (WLR) Division, Department of Natural Resources and Parks
- RE: Blanket Adjustment #1 for King County International Airport Regarding Definition of "Site," Alternative Declaration of Covenant and Grant of Easement, Direct Discharge, and Flow Control BMP Requirements

Background

King County International Airport (KCIA) experiences repeated surface water drainage manual adjustment requests for the same drainage issues proposed by KCIA and their tenants. A blanket adjustment that addresses these common requests will serve the public interest by reducing permit times and costs, while achieving required environmental protection and compliance with the Surface Water Design Manual (SWDM).

List of Specific Adjustment Items and Discussion

1. Use the 2016 SWDM definition (Chapter 1, Key Terms) of "site" for application of requirements for development proposals vested to earlier versions of the SWDM.

Findings/Justification

Earlier versions of the SWDM defined "site" in a manner that treated the entire airport "parcel" as the "site," which resulted in individual leaseholds being required to take actions or having requirements based on areas outside of their leasehold and scope of control. The main airport parcel (282404-9007) constitutes approximately 92 percent of the 600 airport acres and contains approximately 150 tenants and 40+ separate leaseholds. Tenant leaseholds have no control of the remaining parcel and do not own the property that they occupy. The "site" definition has been updated in the 2016 SWDM to address leaseholds (see underlined portion of definition) as follows: "means a single parcel; or, two or more contiguous parcels that are under common ownership or documented legal control; or a portion of a single parcel under documented legal control separate from the remaining parcel, used as a single parcel for a proposed project for purposes of applying for authority from King County to

carry out a proposed project. For projects located primarily within dedicated rights-of-way, the length of the project site and the right-of-way boundaries define the site."

Conditions of Approval

KCIA projects vested under the 2009 SWDM must use/adopt the revised 2016 SWDM site definition completely and consistently for application of the 2009 manual's requirements.

 For development/redevelopment projects located at KCIA, eliminate the requirement to implement flow control best management practices (BMPs) to cited minimum levels for individual lots as described in the 2009 and 2016 SWDMs. These minimum levels are specified in 2009 SWDM requirement #3 of Section 5.2.1.1, "Small Lot BMP Requirements," 2009 SWDM requirement #2 of Section 5.2.1.3, "Large Lot High Impervious BMP Requirements," 2016 SWDM requirement #5 of Section 1.2.9.2.1, "Small Lot BMP Requirements," and 2016 SWDM requirement #5 of Section 1.2.9.2.2, "Large Lot BMP Requirements," and 2016 SWDM requirement #5 of Section 1.2.9.2.2, "Large Lot BMP Requirements."

Findings/Justification

The 2009 SWDM requires flow control BMPs be applied to a project's targeted surfaces based on the project's size and impervious coverage. These minimum BMP implementation levels were intended to capture "practicable" levels of BMPs, which have been found to be difficult to achieve at KCIA given its unique function and highly impervious footprint.

The 2016 SWDM requires flow control BMPs be applied to an urban located project's targeted surfaces to the "maximum extent feasible" while also requiring the same 2009 SWDM minimum BMP implementation levels be achieved. Where standard infiltrative BMPs are not feasible and cannot achieve the required minimums, the reduced footprint BMP, native growth retention BMP, and/or a fee in lieu of (if the WLR Division has a program for retrofits within the site's basin) may be used for compliance.

The requirement to provide these minimum levels of BMP implementation to be achieved by using either reduced footprint, native growth retention, and/or a fee in lieu of does not apply to road improvement projects in the 2016 SWDM since it is recognized that going beyond the "maximum extent feasible" approach on these projects is neither practicable nor in the public interest. This is because limited right-of-way areas restrain the use of native vegetation and reduced footprint BMPs and it is in the public interest to not displace or reduce the prescribed size of critical transportation infrastructure. This same reasoning applies to projects located at KCIA. This proposal to eliminate the minimum BMP implementation levels for the King County Airport is consistent with the Washington State Department of Ecology Stormwater Management Manual for Western Washington (SWMWW), which only requires implementation of the "maximum extent feasible" approach described earlier.

Conditions of Approval

For KCIA projects vested to the 2016 SWDM, all other provisions of Core Requirement 9 (FCBMPs) of the 2016 SWDM not addressed by this adjustment must be met. For projects vested to the 2009 SWDM, all the provisions of Core Requirement 9 of the 2016 SWDM (FCBMP requirements and implementation approach) must be met, except as otherwise allowed by this adjustment.

3. Exempt projects located at the KCIA from the distance provision of criteria (a) of the Direct Discharge Exemption (described in Section 1.2.3 of the 2009 and 2016 SWDMs) that states that "The flow path from the project site discharge point to the edge of the 100-year floodplain of the major receiving water will be no longer than the ¹/₄ mile."

Findings/Justification

Beyond addressing any identified capacity issues for KCIA internal conveyance systems, (which is addressed explicitly by criteria (c) of the Direct Discharge Exemption), requiring flow control facilities for KCIA properties beyond ¹/₄ mile provides no predictable benefit to the downstream major receiving water (Duwamish River).

Ecology's 2014 SMMWW allows the direct discharge exemption from flow control to Duwamish/Green River Downstream of River Mile 6 (South Boeing Access Road) and does not include a ¹/₄-mile distance provision/requirement.

KCIA maintains a robust inspection and maintenance program for the entire KCIA storm system, including leaseholds as the performance of the system is critical to maintaining airport operations. KCIA can respond in a timely matter to any issues due to its underlying ownership and maintenance relationship with its leaseholders.

King County has approved individual SWDM adjustments at the KCIA addressing this issue. In particular, VARD14-0019 (KCIA AARF) is a previously approved SWDM adjustment that allowed a KCIA project to utilize the direct discharge exemption for a project site beyond the ¼ mile specified in Direct Discharge Exemption criteria (a). Key excerpts: "*The flow path from the project site discharge point to the edge of the 100-year floodplain of the Duwamish River is longer than* ¼ *mile. Therefore, the engineer is submitting a variance to allow direct discharge proposal for a flowpath that is greater than* ¼ *mile. Their proposed request is based on the following findings:*

- The project site discharges to the Lower Duwamish River through a manmade (comprised of storm drainage pipes, a pump station, and a tide gate at the outfall to the River) conveyance system.
- The downstream system for the project was analyzed by URS Corporation as part of the KCIA Outfalls Assessment in November 2009. The outfall Assessment Report found no downstream conveyance issues related to the discharge system for this project site."

Conditions of Approval

This adjustment applies to KCIA located projects and addresses only the ¹/₄-mile distance provision of criteria (a) of the Direct Discharge Exemption. All other criteria for Direct Discharge Exemption must be achieved.

4. Allow the following modifications to the standard declaration of covenant and grant of easement for inspection and maintenance of stormwater facilities and FCBMPs that are within KCIA:

Replace standard paragraph #2 with the following text:

"King County WLR Division personnel with prior arrangement and accompanied by FAAmandated escort shall have the right to ingress and egress over those portions of the Property necessary to perform inspections of the stormwater facilities and BMPs and conduct other activities specified in this Declaration of Covenant and in accordance with King County Code ("KCC") 9.04.120 or relevant municipal successor's codes as applicable."

Replace standard paragraph #3 with the following text:

If King County WLR Division personnel determine that maintenance or repair work is required to be done to any of the stormwater facilities or BMPs, the Director of the WLR Division (Director) or its municipal successor in interest shall give notice of the specific maintenance and/or repair work required pursuant to KCC 9.04.120 or relevant municipal successor's codes as applicable. The Director shall also set a reasonable time in which such work is to be completed by the Owners. If the above required maintenance or repair is not completed within the time set by the Director, the County may perform the required maintenance or repair, and hereby is given access to the Property, subject to the stipulation for prior arrangement and accompaniment by an FAA-mandated escort stated in Paragraph 2 above, for such purposes. Written notice will be sent to the Owners stating the County's intention to perform such work. This work will not commence until at least seven (7) days after such notice is mailed. If, within the sole discretion of the Director, there exists an imminent or present danger, the seven (7) day notice period will be waived and maintenance and/or repair work will begin immediately.

Findings/Justification

Standard declaration of covenant and grant of easement documents for inspection and maintenance of stormwater facilities and FCBMPs are contained in Reference 8-J of the SWDM. In the standard declaration of covenant and grant of easement, "King County" is generically cited as the grantee and inspecting authority. The modified declaration of covenant and grant of easement provides clarity that the King County WLR Division is the inspecting authority as distinguished from onsite KCIA staff (also "King County"). The modified declaration of covenant and grant of easement addresses Federal Aviation Authority (FAA) requirements that visitors (for example, WLR Division inspector) to the

> "airside" portion of the KCIA be escorted by authorized KCIA staff and formalizes notice requirements to ensure KCIA staff are available. Modified declaration of covenant and grant of easements have previously been recorded at the KCIA that address these issues.

Conditions of Approval

DPER staff will review proposed modified declaration of covenant and grant of easements for KCIA projects to ensure changes are limited to those specified above.

Please note that approval of this adjustment does not relieve applicants from other county, state, or federal requirements, including any requirements imposed through the SEPA process. Individual designs proposing use of this adjustment will be reviewed and approved during plan review to ensure that compliance with the conditions stated herein is achieved. If you have any questions, please call Mark Wilgus, Engineer IV with the Stormwater Services Section, at 206-477-4848.

Approved by the WLR Division and DPER as follows:

Curt W. Crawford, Manager

Curt W: Clawford, Manager Stormwater Services Section King County WLR Division

Scott Smith, Principal Engineer King County DPER

8/10/2016

Date

CC:MW:bgD01

cc: Mark Bergam, Engineer IV, Airport Division, Department of Transportation Mark Wilgus, Engineer IV, Stormwater Services Section, Water and Land Resources Division, Department of Natural Resources and Parks

APPENDIX B Facility Design Documents & Worksheets

35% % of Total **TREATMENT SUMMARY FOR TOTAL IMPERVIOUS SURFACES** yes 🗆 no 🗆 9 PROVIDE FACILITY DETAILS AND FACILITY SKETCH FOR EACH FACILITY ON REVERSE. USE ADDITIONAL SHEETS AS NEEDED FOR ADDITIONAL FACILITIES Recording No. $ilde{ heta}$ Ø 8 2.79 K 0.9740 42,300 Area Project includes Landscape Management Plan? 7010 Ø Ø Ø pervious surface absorption (sq ft) DPER Permit No. NPDES Permit No. Impervious surface served by approved water quality facility(ies) (sq ft) (include copy with TIR as Appendix) Landscape Management Plan flow control facility(ies) (sq ft) (Applies to Commercial parcels only) **Declarations of Covenant** Date control facility(ies) designed Total impervious surface served by mpervious surface served by flow Impervious Surface Limit Total Impervious Acreage (ac) Retired Parcel No. Parcel No. mpervious surface served by Flow Control BMPs 1990 or later (sq ft) Leachable Metals Drainage Facility **Clearing Limit** Total Acreage (ac) provide one Stormwater Facility Summary Sheet per Natural Discharge Location) Flood Problem Conservation Performance Std Flow Control NOTATION I Flow control provided in regional/shared facility per approved Basic ていいてきると Cost Exemption for Parcel Redevelopment projects Project qualifies for KCSWDM Exemption (KCSWDM 1.2.3): mmediate Basin Name Keit Draintage BASIN NO Impervious Surface Exemption for Transportation Project qualifies for 0.1 cfs Exception per KCSWDM 1.2.3 No flow control required (other, provide justification): # of facilities V STORMWATER FACILITY SUMMARY SHEET 1 2 1 Per-yeren Ro Water Quality GATEWAY KCSWDM Adjustment No. No flow control required per approved approved KCSWDM Adjustment No. **K**QA Direct Discharge Exemption Redevelopment projects HSIMANUC Ponds Vaults Tanks Shared Facility Name/Location: Type If no flow control facility, check one: **GENERAL FACILITY INFORMATION: Basic Exemption** UPS-BFI Downstream Drainage Basins: # of Infiltration 7300 renches Туре Ponds Tanks Other _ **Major Basin Name** Project Location 汝 □ **Project Name** to # Detention OVERVIEW: Ponds Tanks Vaults Type

(1)(a) \$

4/24/2016 Page 1

2016 KING COUNTY SURFACE WATER DESIGN MANUAL, REFERENCE D

A Immediate Basin Name KCIA- DRAINA 475 BASIN Dam Safety Regulations (WA State Dept of □ ac.ft. □ cu.ft. of Total Project Impervious Farm management plan Facility Summary Sheet Sketch: All detention, infiltration and water quality facilities must include a detailed sketch (11"x17" reduced size plan sheets preferred). (f) High flow bypass structure (e.g., flow-splitter catch basin) Acres Served Acres Served Z coalescing plate 5200 0.081 roject Impervious No. of Lots Served 0 Ecology) Major Basin Name DUWANISH above natural grade above natural grade **Downstream Drainage Basins: Depth of Reservoir** Pre-settling structure (Manufacturer<u>:</u> Reservoir Volume Water Quality treated volume (sandfilter) (cu.ft.) Catch basin inserts (Manufacturer: Water Quality storage volume (wetpool) (cu.ft.) % 🗆 baffle Landscape management plan **Oil/water separator** Water Quality design flow (cfs) Source controls Storm filter Existing Facility New Facility Design Information Volume Factor 'provide one Stormwater Facility Summary Sheet per Natural Discharge Location) of Safety If so, what marker is used above liner? No.2 No.3 No.4 No.1 X 0111425 combined w/detention EXPANSION (numbered starting with lowes Size of Orifice/Restriction (in.) Sand bed depth Ń Indicate no. of water quality facilities/BMPs for each type: No. of Orifices/Restrictions (inches in decimal format) (inches) □ regular, □ wet or Live Storage Depth (ft) □ continuous inflow 22 orifice): 120 combined w/detention Basin: Lean eren STORMWATER FACILITY SUMMARY SHEET GARTEWAY R14 □ large ac.ft. cu.ft. 🗆 vault 🗆 large □ yes □ no **UIC Site ID:** \Box basic 🗆 linear 178 - 241 Stormwater wetland WATER QUALITY FACILITIES \Box basic Control Structure location: **Biofiltration swale** 7300 FLOW CONTROL FACILITY: ype of Control Structure Pre-settling pond Flow dispersion umber Riser in Type II CB Weir in Type II CB 🗆 regular ou Is facility lined? Filter strip Sand filter Wetpond Wetvault Riser in vault **Project Location** Facility Name/N Facility Locatio **Project Name** UIC?

yes Live Storage Volume Х

DPER Permit No.

Page 2 4/24/2016

2016 KING COUNTY SURFACE WATER DESIGN MANUAL, REFERENCE D

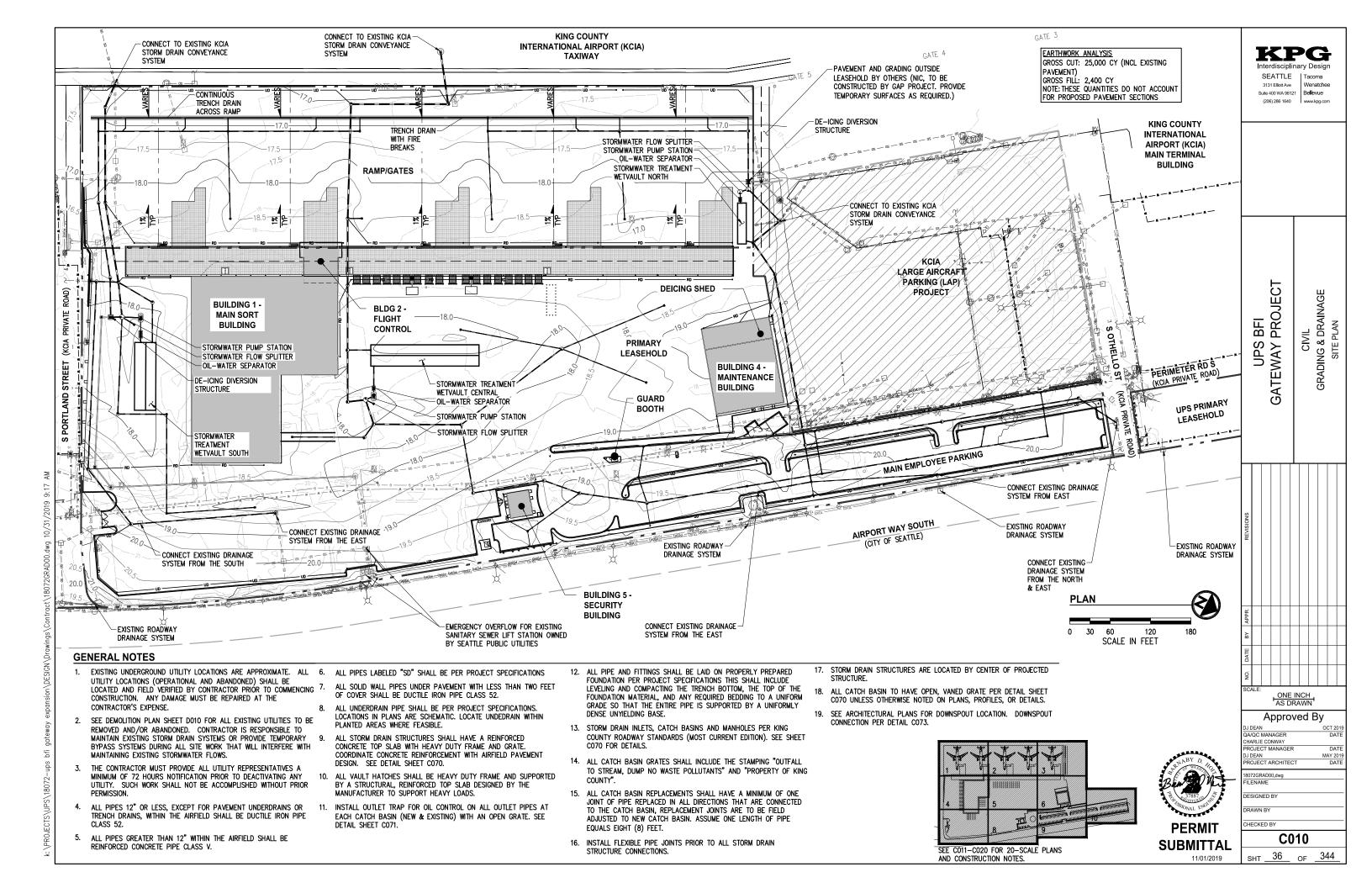
% of Total 626 **TREATMENT SUMMARY FOR TOTAL IMPERVIOUS SURFACES** 100 % yes 🗆 no D PROVIDE FACILITY DETAILS AND FACILITY SKETCH FOR EACH FACILITY ON REVERSE. USE ADDITIONAL SHEETS AS NEEDED FOR ADDITIONAL FACILITIES Recording No. Ø Q COL' 44 Area Project includes Landscape Management Plan? 10.14 15.67 Ø Ø \mathcal{O} pervious surface absorption (sq ft) DPER Permit No. NPDES Permit No. Impervious surface served by approved water quality facility(ies) (sq ft) (include copy with TIR as Appendix) Landscape Management Plan flow control facility(ies) (sq ft) (Applies to Commercial parcels only) **Declarations of Covenant** control facility(ies) designed Date Total impervious surface served by Impervious surface served by flow Impervious Surface Limit Total Impervious Acreage (ac) Parcel No. Impervious surface served by Retired Parcel No. Flow Control BMPs 1990 or later (sq ft) Leachable Metals Drainage Facility **Clearing Limit** Total Acreage (ac) provide one Stormwater Facility Summary Sheet per Natural Discharge Location) Flood Problem Conservation **Performance Std** Flow Control Flow control provided in regional/shared facility per approved 2011-202 Basic Immediate Basin Name KCIN- DRHINKITE BASIN NO. 2 Project qualifies for KCSWDM Exemption (KCSWDM 1.2.3): Cost Exemption for Parcel Redevelopment projects Impervious Surface Exemption for Transportation Project qualifies for 0.1 cfs Exception per KCSWDM 1.2.3 No flow control required (other, provide justification): LOISTACXI À # of facilities STORMWATER FACILITY SUMMARY SHEET Water Quality 3 N KCSWDM Adjustment No. No flow control required per approved approved KCSWDM Adjustment No. GATEWAY T300 PERHATEN **Direct Discharge Exemption** DUWANISH Redevelopment projects Ponds Vaults Tanks Shared Facility Name/Location: Type If no flow control facility, check one: **GENERAL FACILITY INFORMATION: Basic Exemption Downstream Drainage Basins:** fo # Infiltration BEI renches Tanks Type Ponds Other UP5 Major Basin Name **Project Location Project Name** fo # Detention OVERVIEW: Vaults_ Ponds Tanks X Type

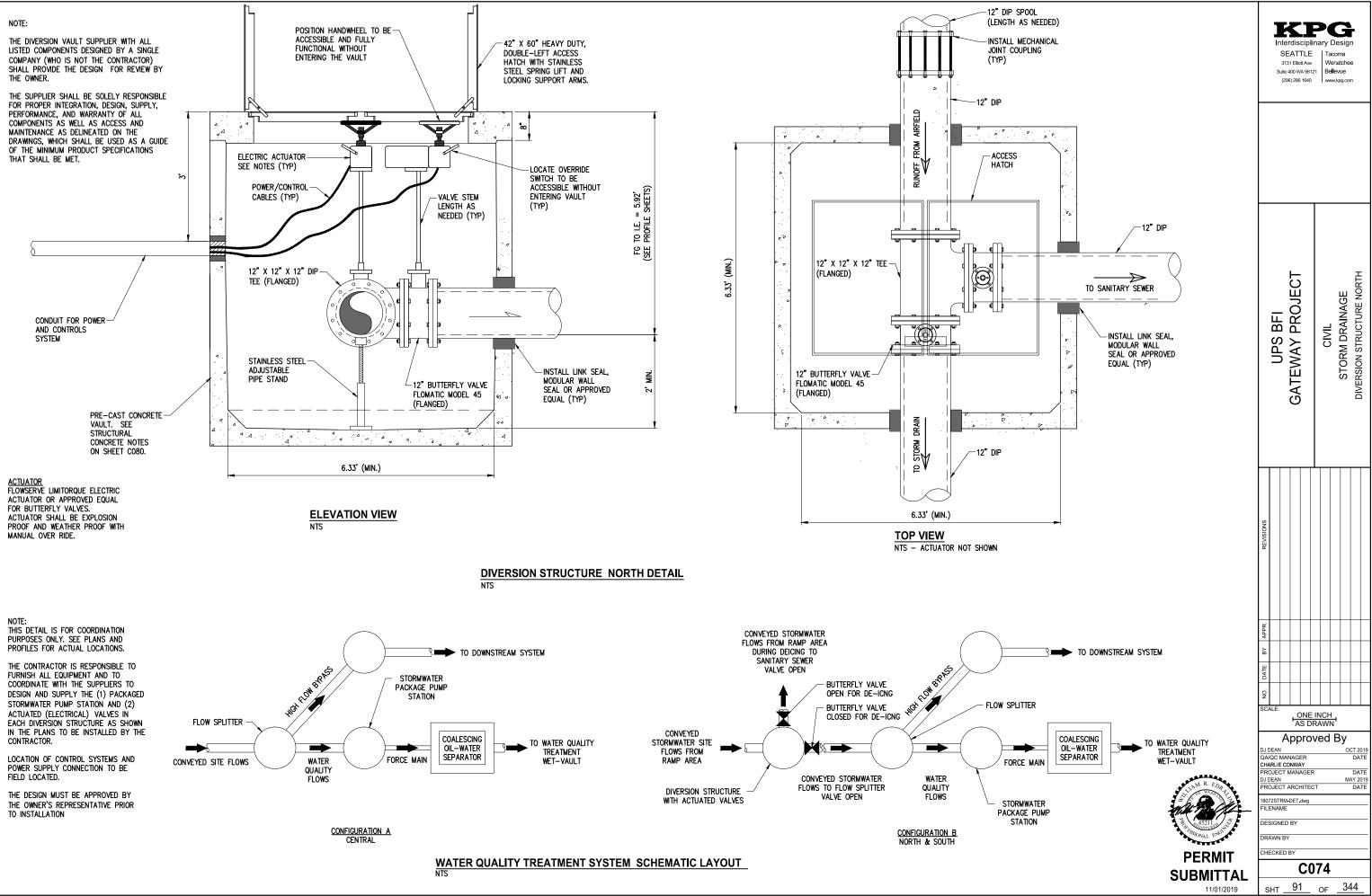
4/24/2016 Page 1

2016 KING COUNTY SURFACE WATER DESIGN MANUAL, REFERENCE D

4/2

STORMWATER FACILITY SUMMARY SHEET

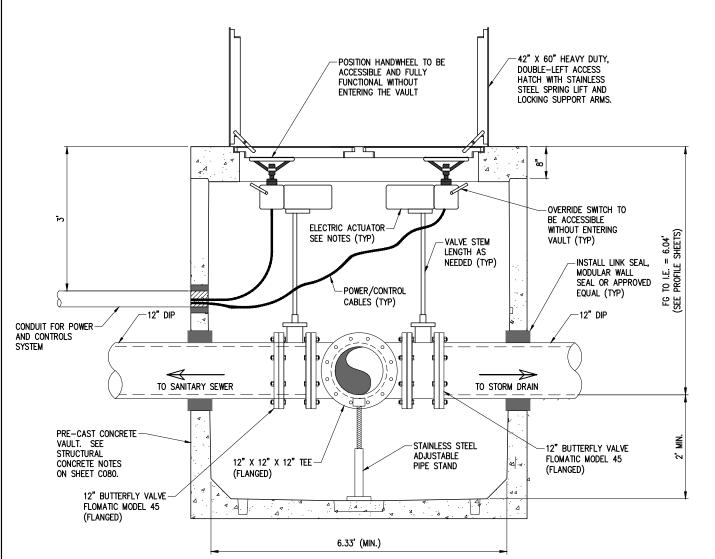

(provide one Stormwater Facility Summary Sheet per Natural Discharge Location)

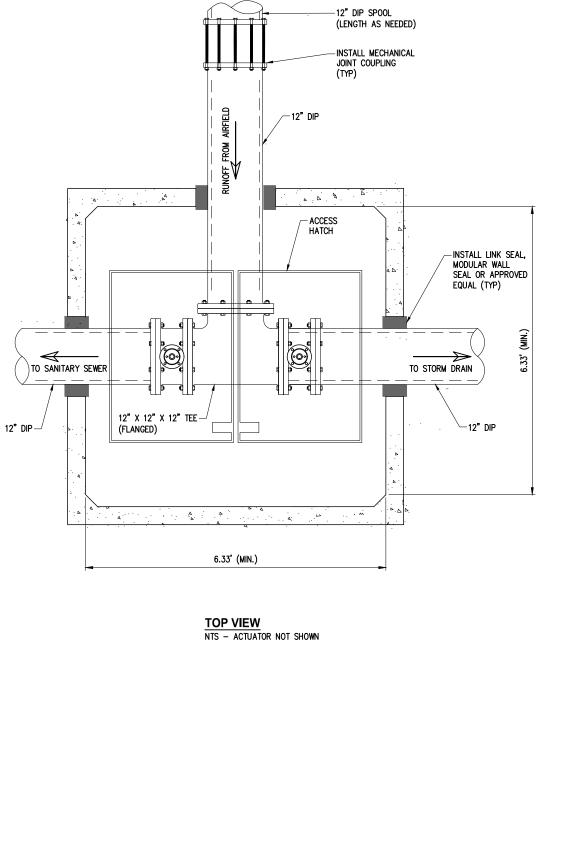

DPER Permit No.

C NISKA Dam Safety Regulations WA State Dept of □ ac.ft. 🗆 cu.ft. otal Project Impervious Farm management plan Immediate Basin Name Kolk DRAINAGE (£ Facility Summary Sheet Sketch: All detention, infiltration and water quality facilities must include a detailed sketch (11"x17" reduced size plan sheets preferred). High flow bypass structure (e.g., flow-splitter catch basin) pres Served Acres Served **Ecoalescing plate** 54,590 0.02 Project Impervious No. of Lots Served オシーをろうし Ecology): above natural grade above natural grade **Downstream Drainage Basins: Depth of Reservoir** Pre-settling structure (Manufacturer<u>:</u> **Reservoir Volume** % of 1 Water Quality treated volume (sandfilter) (cu.ft.) Catch basin inserts (Manufacturer<u>+</u> Water Quality storage volume (wetpool) (cu.ft.) □ baffle Major Basin Name Landscape management plan Oil/water separator Water Quality design flow (cfs) Source controls **Evisting Facility** Storm filter New Facility Volume Factor **Design Information** of Safety If so, what marker is used above liner? No.3 No.4 No.2 X No.1 X combined w/detention IXPANSION (numbered starting with lowes Size of Orifice/Restriction (in Sand bed depth No. of Orifices/Restrictions Indicate no. of water quality facilities/BMPs for each type: (inches in decimal format) (inches) Live Storage □ wet or N Depth (ft) continuous inflow orifice): combined w/detention Basin: AL2X Ą GATEWAY 🗆 regular, 7300 PERIMETER ac.ft. 🗆 large cu.ft. □ vault 🗆 large □ ves □ no □ basic **UIC Site ID:** linear BFI Stormwater wetland WATER QUALITY FACILITIES \Box basic **Biofiltration swale** Control Structure location: FLOW CONTROL FACILITY Pre-settling pond Structur Flow dispersion Riser in Type II CB Weir in Type II CB Facility Name/Numb 🗆 regular 50 Filter strip Wetpond Is facility lined? UIC? _ yes _ no Sand filter Wetvault Project Location ⁻acility Location Riser in vau Type of Control **Project Name** Live Storage Volume

4/24/2016 Page 2

2016 KING COUNTY SURFACE WATER DESIGN MANUAL, REFERENCE D





2019 10/31/ 6M

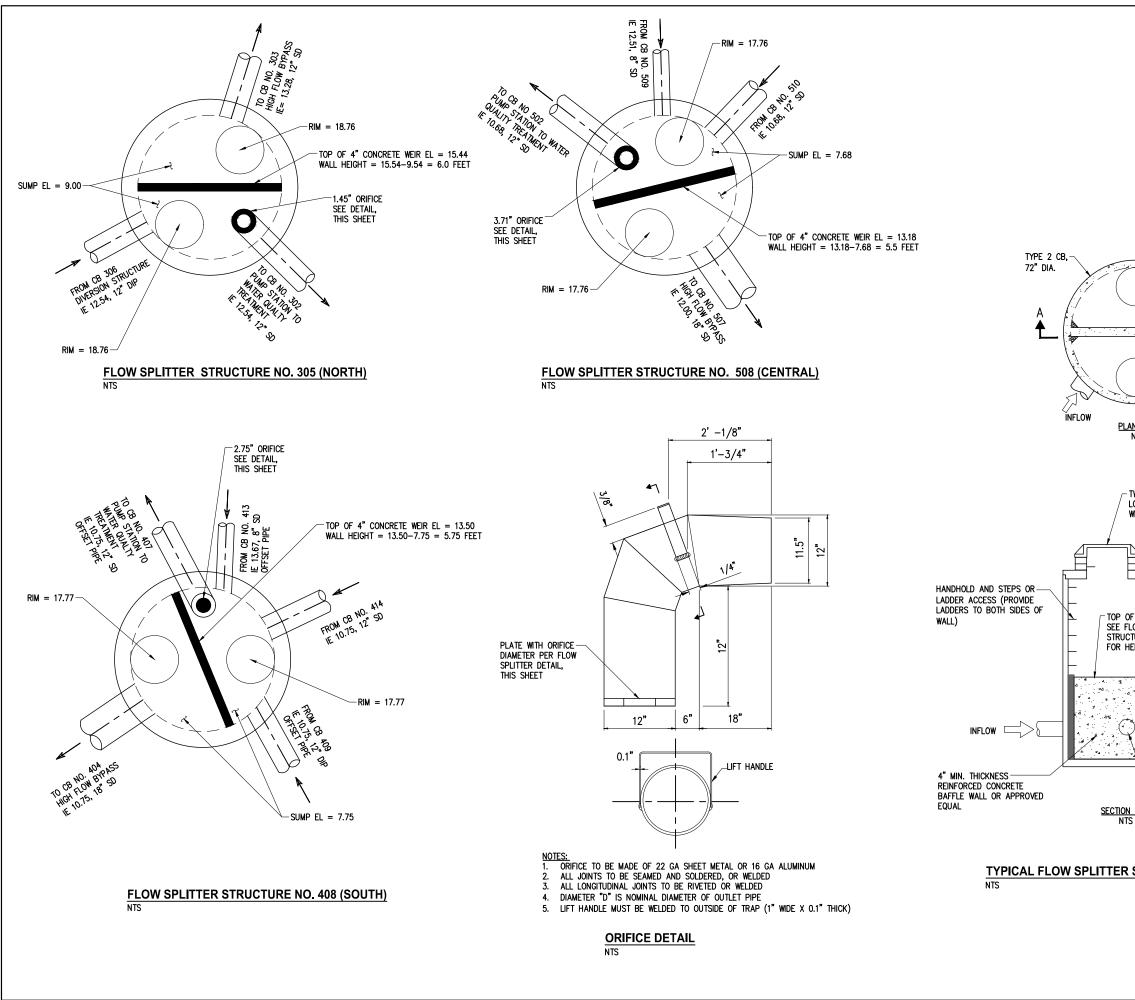
AM

9:17

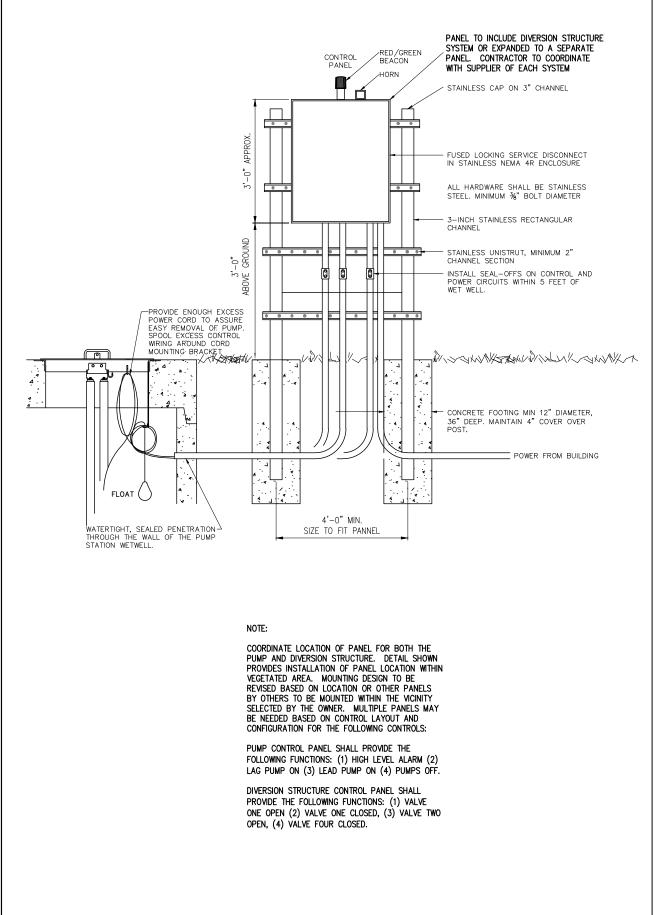
<u>actuator</u> Flowserve limitorque electric ACTUATOR OR APPROVED EQUAL FOR BUTTERFLY VALVES. ACTUATOR SHALL BE EXPLOSION PROOF AND WEATHER PROOF WITH MANUAL OVER RIDE.

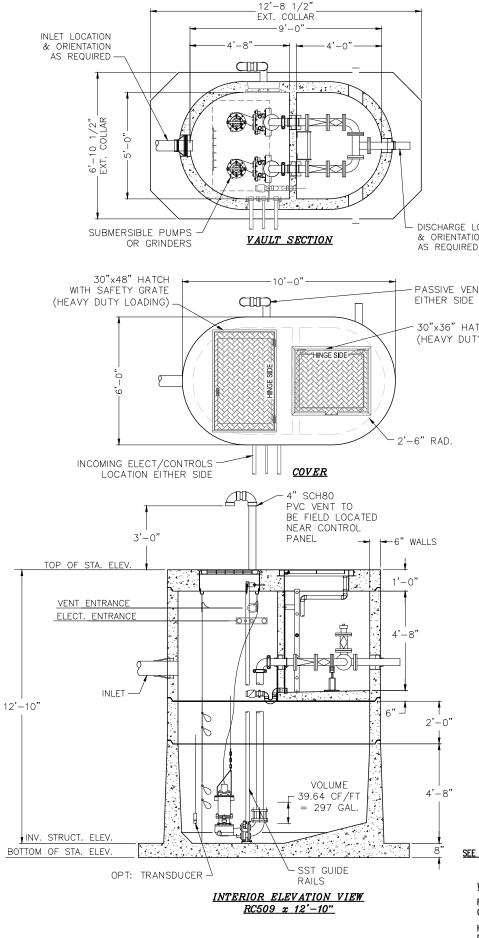
NOTE:

THE DIVERSION VAULT SUPPLIER WITH ALL LISTED COMPONENTS DESIGNED BY A SINGLE COMPANY (WHO IS NOT THE CONTRACTOR) SHALL PROVIDE THE DESIGN FOR REVIEW BY THE OWNER.


THE SUPPLIER SHALL BE SOLELY RESPONSIBLE FOR PROPER INTEGRATION, DESIGN, SUPPLY, PERFORMANCE, AND WARRANTY OF ALL COMPONENTS AS WELL AS ACCESS AND MAINTENANCE AS DELINEATED ON THE DRAWINGS, WHICH SHALL BE USED AS A GUIDE OF THE MINIMUM PRODUCT SPECIFICATIONS THAT SHALL BE MET.

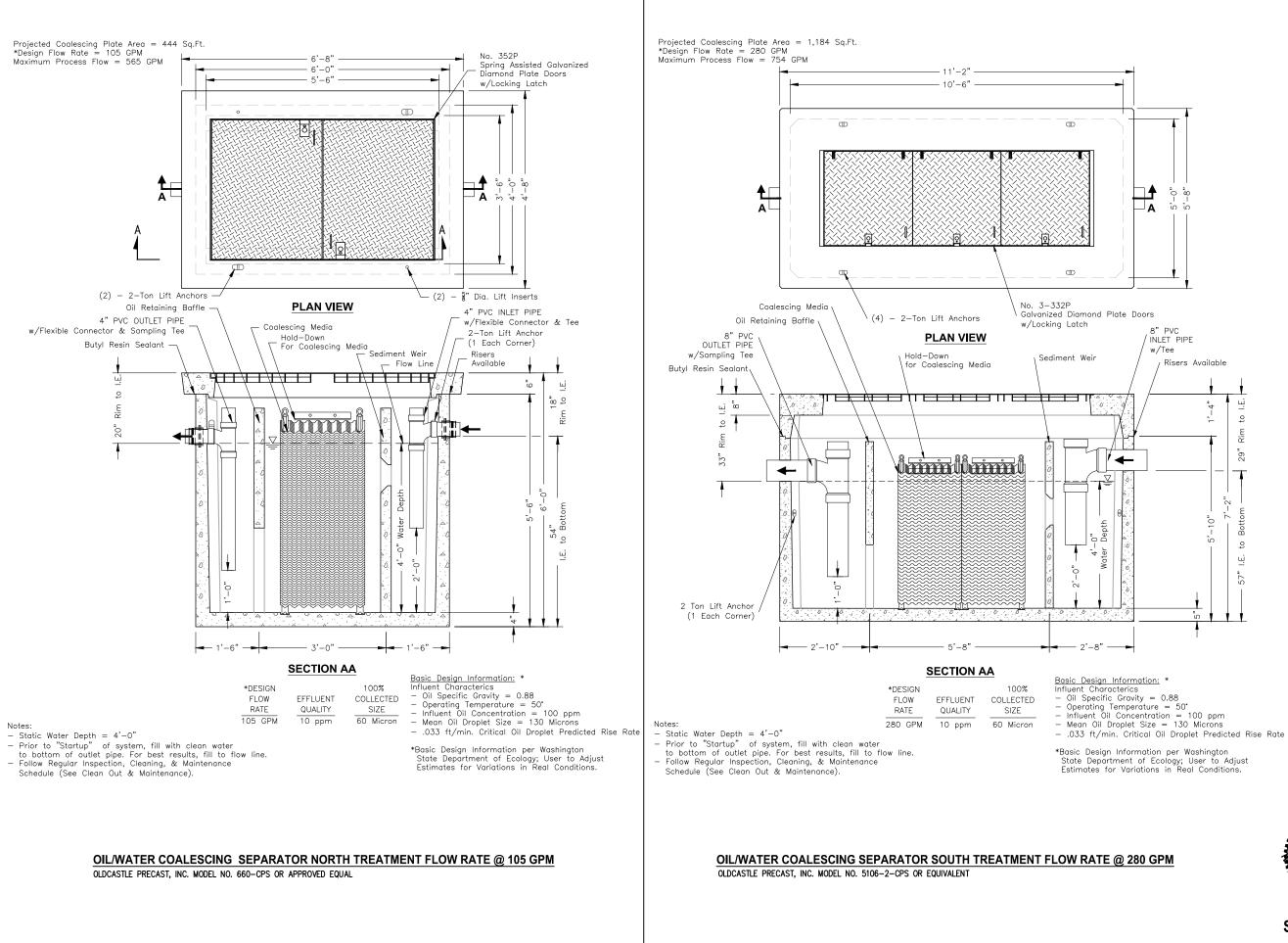
ELEVATION VIEW NTS - ACTUATOR NOT SHOWN


DIVERSION STRUCTURE SOUTH DETAIL NTS


AM 10/31 gwb -DET þfi

			SE 313 ⁻ uite 4	rdis AT 1 Ellid 00 W	TLE Itt Avi /A 98	E 9 121	Ta W Be	acor /ena allev	tche	e	
		IIPS RFI	5	I GATEWAY PROJECT			CIMI		STORM DRAINAGE	DIVERSION STRUCTURE SOLITH	
	REVISIONS										
	APPR.										
	ΒY										
	DATE										
	ÖZ SC/	ALE:									
			A	pp					v		
	QA/ CH/			iagi NW#	ER					DA	TE
NIAM R. EDR	PR(DJ [DJE(DEAN DJE(CT N	1AN	AGE				M/	DA AY 2 DA	019
	FILI	72ST ENA	ME		dwg						_
C 45211 STEELE		SIGN		BY							-
PERMIT	СН	ECK	ED E			07	75				_
SUBMITTAL 11/01/2019	s	нт	_	92			OF		34	14	

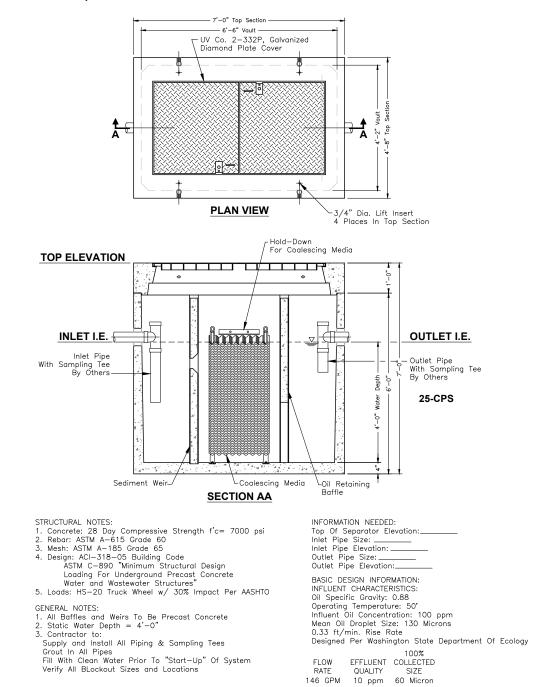
										٦
		Su	SE. 3131 Jite 4	AT 1 Elliot 00 W/	Cipli TLE tt Ave A 9812 1640	21	ry D Taco Wer Belle	oma hatche evue	e	
TO BYPASS CONVEYANCE SYSTEM OR DETENTION POND		UPS BFI		GATEWAY PROJECT			CIML	STORM DRAINAGE	FLOW SPLITTER DETAILS	
WO ROUND SOLID LIDS DCATE ON BOTH SIDES OF EIR WALL										
6' WDE WEIR DW SPLITER URE DETAIL IGHT	REVISIONS									
	DATE BY APPR.									
BYPASS PIPE	Ö SCA						CH WN			
STRUCTURE DETAIL	DJ D PRC		MAN CO CT M CT A RM-L ME	IAGE NWA IANA RCH	ER IY AGEF HITEC	२	ed I	c	DAT DAT DAT DAT DAT	TE TE 119
PERMIT SUBMITTAL 11/01/2019	CHE	CKE					6 DF	3	44	_



TYPICAL POWER AND CONTROL SYSTEM LAYOUT DETAIL

PACKAGE PUMP STATION DETAIL OLDCASTLE PRECAST ONELIFT PUMP STATION MODEL NO. RC509 OR APPROVED EQUAL

۱	NOTE:	:										
	1.	THE PACKAGE PUMP S LISTED COMPONENTS D BY A SINGLE COMPAN' CONTRACTOR) SHALL D ALL CIVIL, MECHANICAL CONTROL STRUCTURES	ESIGNED AND SUPPLIED ((WHO IS NOT THE DESIGN AND SUPPLY , ELECTRICAL, AND		Su	SEA 3131 E iite 400	isci TTL Elliott A 9 WA 9 286 16	.E .ve 18121	Tao We Bel	G Desig coma natche levue	ee	
001701	2. 3.		PONSIBLE FOR PROPER SUPPLY, PERFORMANCE, L PACKAGE PUMP DELINEATED ON THE LL BE USED AS A M PRODUCT SHALL BE MET. ER SHALL PROVIDE QUIPMENT IREMENTS, AND									
OCATION DN)	4.	EACH PUMP STATION S WITH RAIL SYSTEM ANI SEALING FLANGE WITH DISCONNECT ELBOW, LI FRAME AND DOOR, FLO) Discharge Elbow, Rail Guide, FTING Chain, access Dat Mounting									
IT LOCATION	5.	BRACKET, AND GUIDE ALL EQUIPMENT SHALL AND RATED FOR CLASS ENVIRONMENT.	BE EXPLOSION-PROOF			ΓCL			ш	ш		
Y LOADING)	6.	Core drill wetwell f Verifying Pipe Layou			BFI		52		INAG	INAG	ATION	
	7.	CONTRACTOR SHALL BI OBTAINING ALL PERMIT CONSTRUCTION AND CO INSPECTIONS.			UPS B				STORM DRAINAGE	STORM DRAINAGE	PACKAGE PI IMP STATION DETAI	
		PUMP STATION NORTH SUBMERSIBLE DUPLEX 1305S-2X.263E.S68 O FLOW RATE: 103 GPM	PUMP MODEL: FLYGT			(5				ΡΔC	-
		HEAD: 14.2 FT										
		POWER: 460V, 3 HP, 0	60 H 7									
		DISCHARGE DIAMETER:										
		PUMP STATION CENTRA	<u>AL</u>									
		SUBMERSIBLE DUPLEX 3085 MT3, ADAPTIVE EQUAL.	PUMP MODEL: FLYGT NP 456 OR APPROVED	SNOISI								
		FLOW RATE: 389 GPM		REV								
		HEAD: 17.1 FT										
		POWER: 460V, 3 HP, 0 DISCHARGE DIAMETER:										
		PUMP STATION SOUTH SUBMERSIBLE DUPLEX 3085 SH3, ADAPTIVE	PUMP MODEL: FLYGT NP	APPR.								
		EQUAL.	ISS ON ALL NOTED	BY /				1		\top	\top	
		FLOW RATE: 164 GPM			\vdash	+	+	+	\vdash	+	-	\vdash
		HEAD: 10.2 FT		DATE								
		POWER: 460V, 3 HP, DISCHARGE DIAMETER:		ÖN	ALE:							
		ATS NECESSARY TO OPE IP STATION TO OPERATI		00,	166.	ŀ	ON AS	IE IN DR/		1		
EFFICIENCY.	INCL	UDE FLOAT FOR HIGH L CATE PUMP SYSTEM MAI	EVEL		DEAN	•			əd	By	DCT 2 DA	
PROFILES FOR I	NLET	AND DISCHARGE ELEVA	TIONS	CHA PRO DJ D	ARLIE DJEC DEAN	CON T MA	WAY NAG	ER		N	DA MAY 2	TE 019
WETWELL DESIGN			ALL LANGE WASSING RAVE	_			CHIT				DA	IE
FOR CONCRETE V	- Netw		45211 S.S.	FILI	ENAM			JWY				=
		B DESIGN FOR HEAVY	TOPIONAL ENGINE	DR	AWN	BY						-
DUTY LOADING			PERMIT	СН	ECKE	D BY	<u></u>					_
			SUBMITTAL				С	07	7			
			11/01/2019	s	нт	Ę	94		OF	_3	44	
				·								

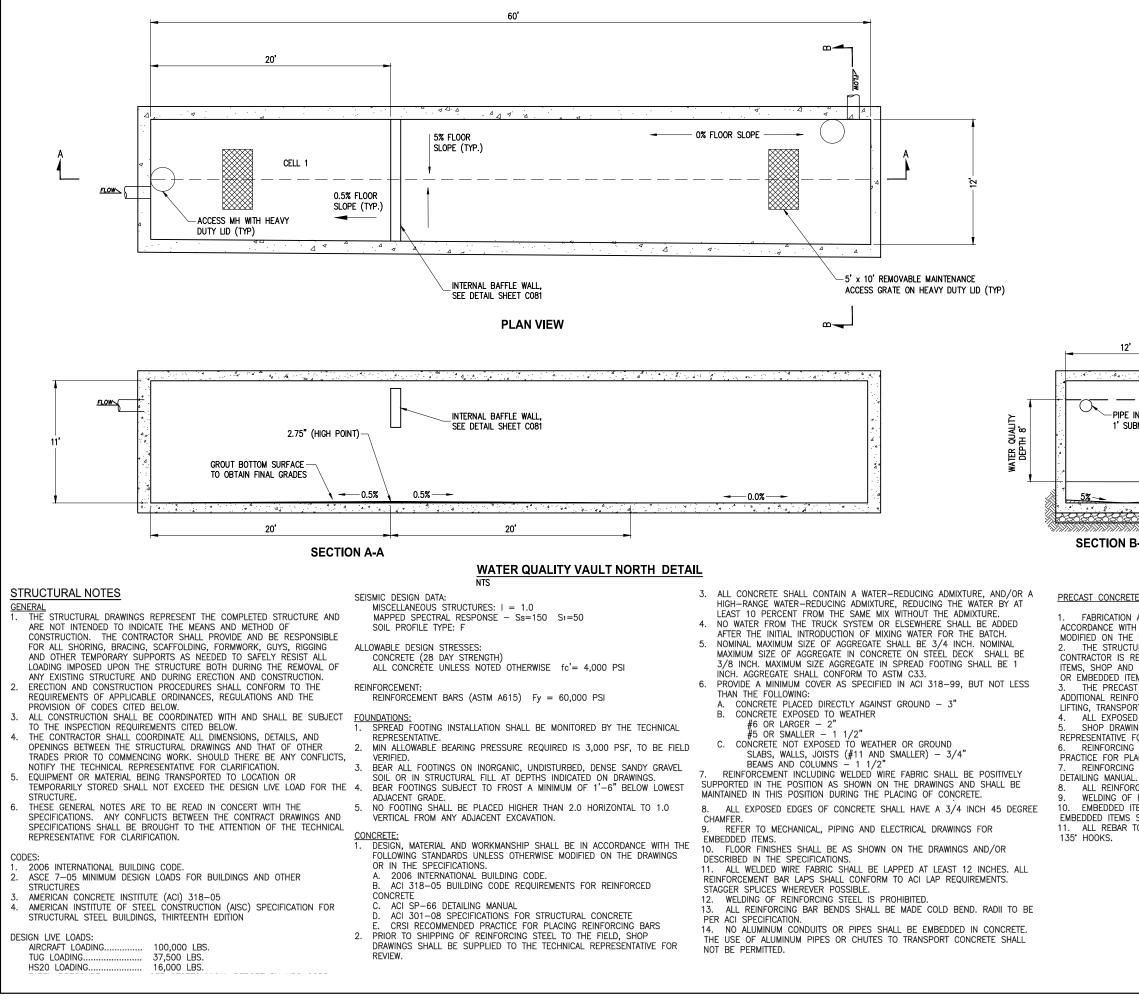


JULAN R. EDR
na Robert
Terrent AS211
PERMIT
SUBMITTAL
11/01/2019

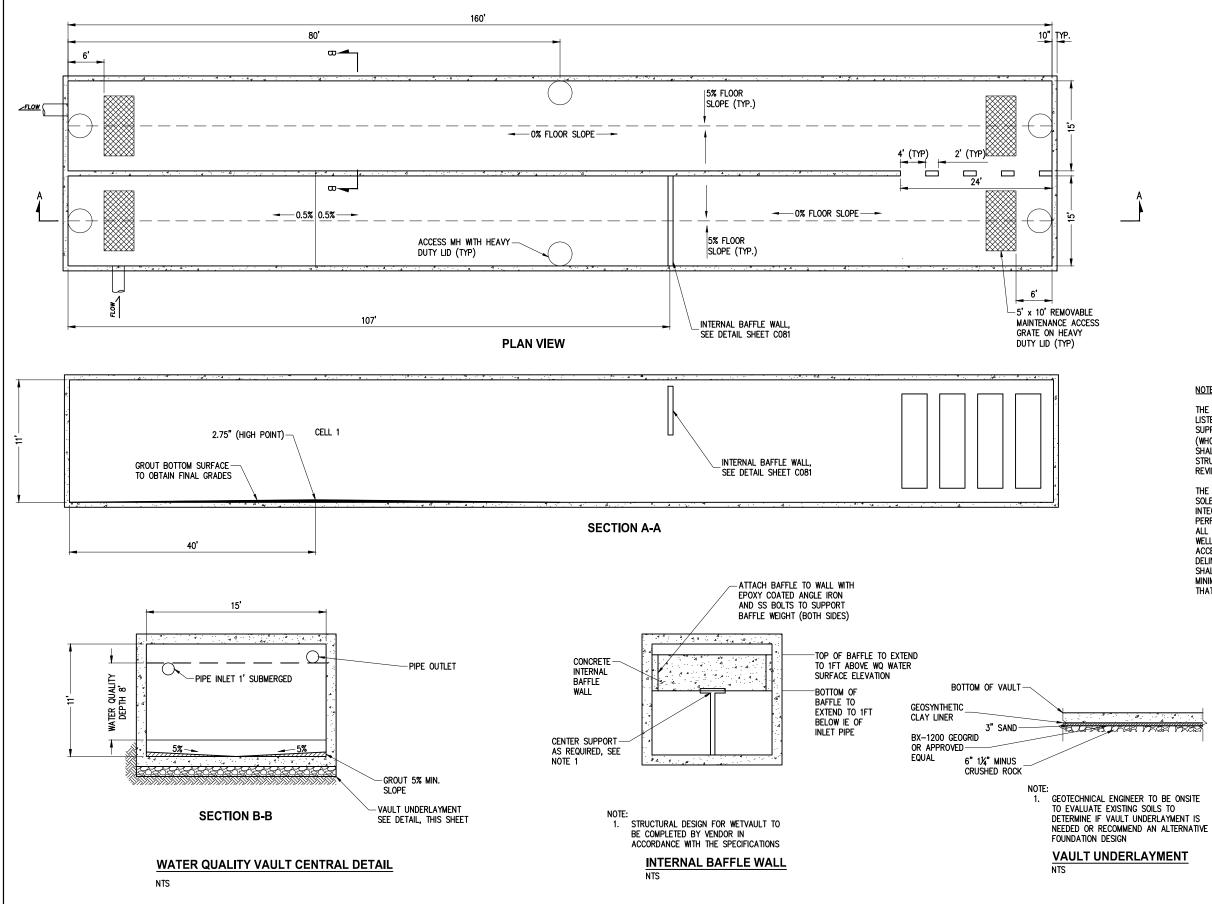
		SE 313 ⁻ uite 4	rdis AT 1 Ellic 00 W	TLE Itt Avi A 98	E 9	W Be	acon /ena allev	na tche	е	
	I I PS RFI)	GATEWAY PROJECT			CIVII		STORM DRAINAGE	OIL-WATER SEPARATOR NORTH & SOLITH	
REVISIONS										
APPR.										
BY A		-			-	\vdash		-		
DATE						\vdash				
ON						F				
SC/	ALE:		Ļ	DNE						
_		A				ed		v		_
QA/ CHA PRO DJ D	OEAN QC I ARLIE DJEO DEAN DJEO			ER NY AGE	R		_	0	DA DA DA AY 2 DA	TE TE 019
1807 FILE	72ST ENA	RM-	DET.	dwg						_
	SIGN		BY							
	AWN		3Y							_
				C	07	78				
s	нт	_	95			OF	_	34	14	

Project Plate Area = 592 Sq/ft

Maximum Process Flow = 555 GPM



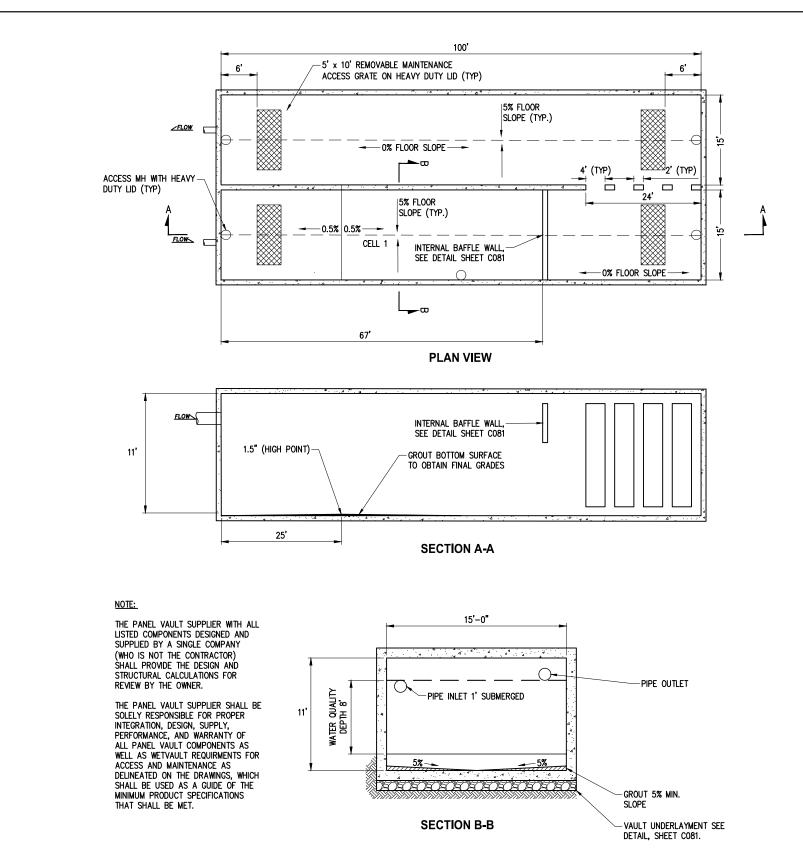
OIL/WATER COALESCING SEPARATOR CENTRAL TREATMENT FLOW RATE @ 555 GPM


OLDCASTLE PRECAST, INC. MODEL NO. 577-CPS OR APPROVED EQUAL

			SE 313 ⁻ uite 4	AT 1 Ellic 00 W	Cip TLE htt Ave A 98 5 1640	∎ ∋ 12'		Ta W Be	acor 'ena silev	itche	e	
						-						
		IIPS RFI	5	GATEWAY PROJECT				CIVIL		STORM DRAINAGE	OII -WATER SEPARATOR CENTRAL	
	REVISIONS											
	APPR.											
	ΒY											
	DATE						_					
	OZ SC/	ALE:				_	N		4			
			Α		S C					3v		_
	QA CH PR DJ D	OEAN QC I ARLIE DJEO DEAN DJEO	I MAN E CO CT N	iag NW/	ER AY AGE	R				0	DA DA DA AY 2 DA	TE TE 019
~	FILI DE: DR/	72ST ENA SIGN	ME IED I BY	BY	.dwg							
	СНІ	ECK	ED E		C	n	7	<u>'9</u>				_
•	s	нт		96				J DF		34	14	

NOTE: THE PANEL VAULT SUPPLIER WITH ALL LISTED COMPONENTS DESIGNED AND SUPPLIED BY A SINGLE COMPANY (WHO IS NOT THE CONTRACTOR) SHALL PROVIDE THE DESIGN AND STRUCTURAL CALCULATIONS FOR REVIEW BY THE OWNER.	Interdiscipli SEATTLE 3131 Elliott Ave Suite 400 WA 9812 (206) 286 1640	PCG nary Design Tacoma Wenatchee Bellevue www.kpg.com
THE PANEL VAULT SUPPLIER SHALL BE SOLELY RESPONSIBLE FOR PROPER INTEGRATION, DESIGN, SUPPLY, PERFORMANCE, AND WARRANTY OF ALL PANEL VAULT COMPONENTS AS WELL AS WETVAULT REQUIRMENTS FOR ACCESS AND MAINTENANCE AS DELINEATED ON THE DRAWINGS, WHICH SHALL BE USED AS A GUIDE OF THE MINIMUM PRODUCT SPECIFICATIONS THAT SHALL BE MET.		
PIPE OUTLET	UPS BFI GATEWAY PROJECT	CIVIL STORM DRAINAGE WATER QUALITY VAULT NORTH
CROUT 5% MIN. SLOPE VAULT UNDERLAYMENT SEE DETAIL SHEET CO81 E UNITS: AND ERECTION OF PRECAST CONCRETE UNITS SHALL BE IN I PCI DESIGN HANDBOOK, 7TH EDITION, UNLESS OTHERWISE STRUCTURAL DRAWINGS OR IN THE SPECIFICATIONS. IRAL DRAWINGS REPRESENT THE COMPLETED STRUCTURE. THE ESPONSIBLE FOR COORDINATING PLACEMENT OF EMBEDDED FIELD WELDING AND THE LOCATION OF ADDITIONAL OPENINGS MS. I CONCRETE MANUFACTURER IS RESPONSIBLE FOR PROVIDING SPCING AND EMBEDDED ITEMS THAT MAY BE REQUIRED FOR RTING AND INSTALLING THE COMPLETED PANEL. D EDGES SHALL HAVE A 3/4" 45' CHAMFER. MCS SHALL PE SUBMETED TO THE TECHNICAL	BY APPR. REVISIONS	
NGS SHALL BE SUBMITTED TO THE TECHNICAL OR APPROVAL PRIOR TO THE START OF FABRICATION. BARS SHALL BE INSTALLED PER CRSI RECOMMENDED ACING REINFORCING. SHALL BE DETAILED IN ACCORDANCE WITH ACI SP-66 CING BAR BENDS SHALL BE MADE COLD. REINFORCING BARS IS PROHIBITED. EMS SHALL BE FREE FROM DIRT, RUST AND/OR GREASE. SHALL NOT BE PAINTED. O HAVE 90' HOOKS UNLESS DETAILED WITH 180' HOOKS OR	-	INCH RAWN Ved By DATE DATE
PERMIT SUBMITTAL	DJ DEAN PROJECT ARCHITECT 18072STRM-DET.dwg FILENAME DESIGNED BY DRAWN BY CHECKED BY	MAY 2019 T DATE
11/01/2019	_ _{SHT} _ <u>97</u> _	_{OF} <u>344</u>

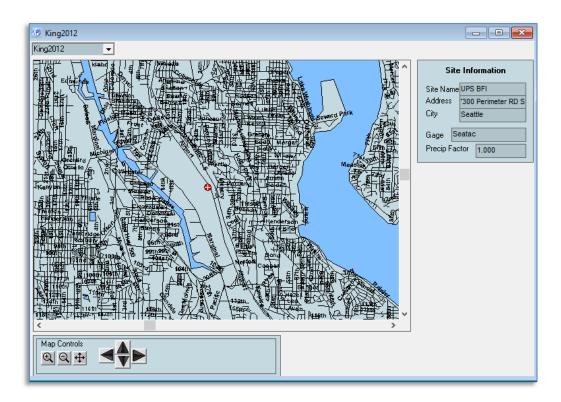
		SE 313 ⁻ uite 4	rdis AT 1 Ellico 00 W	TLE Itt Av /A 98	E 121	a	Ta W Be	acc 'en slle	esig ma atche vue	e	
	IIPS RFI		GATEWAY PROJECT				CIVIL	1	STORM DRAINAGE	WATER OUALITY VALIET CENTRAL	
REVISIONS											
č.											
Y APPR.											
DATE BY											
SC/	ALE:										
		^		S E					<u> </u>		
QAU CH/ PRO DJ I PRO 180	DEAN QC I ARLIE DJEO DEAN DJEO 72ST		NWA IAN	ER (Y AGE HITE	R		-0		0	DA DA DA AY 2 DA	TE TE 019
	ENA		BY								_
	AWN										_
СНІ	ECK	ÉD E		С	n	<u>ج</u>	1				
.9	нт		98) DF		34	44	
5	r11	_	~			(л				_


NOTE:

THE PANEL VAULT SUPPLIER WITH ALL LISTED COMPONENTS DESIGNED AND SUPPLIED BY A SINGLE COMPANY (WHO IS NOT THE CONTRACTOR) SHALL PROVIDE THE DESIGN AND STRUCTURAL CALCULATIONS FOR REVIEW BY THE OWNER.

THE PANEL VAULT SUPPLIER SHALL BE SOLELY RESPONSIBLE FOR PROPER INTEGRATION, DESIGN, SUPPLY, PERFORMANCE, AND WARRANTY OF ALL PANEL VAULT COMPONENTS AS WELL AS WETVAULT REQUIRMENTS FOR ACCESS AND MAINTENANCE AS DELINEATED ON THE DRAWINGS, WHICH SHALL BE USED AS A GUIDE OF THE MINIMUM PRODUCT SPECIFICATIONS THAT SHALL BE MET.

4



WATER QUALITY VAULT SOUTH DETAIL

NTS

			SE 313 ⁻ uite 4	AT 1 Ellic	Cip TLE htt Avi /A 98	E 9 121	ary Ta W Be	acor /ena allev	na tche	е	
		IIPS RFI	5	GATEWAY PROJECT			CINI		STORM DRAINAGE	WATER OUALITY VAULT SOUTH	
	REVISIONS										
	APPR.										
	те ву										
	NO. DATE						\vdash				
	z SC/	ALE:		Ļ				L			
	┝						ed		-		
	QA CH PR DJ D	DEAN QC I ARLIE DJEO DEAN DJEO	MAN E CO CT N	NW/ IAN	AY AGE					DA DA DA AY 2 DA	TE TE 019
~	180 FILI	72ST ENA	RM-I ME	DET.	dwg						_
		SIGN		BY							_
	сн	ECK	ED E		_	~					_
•	0	нт		99			82 OF		34	14	

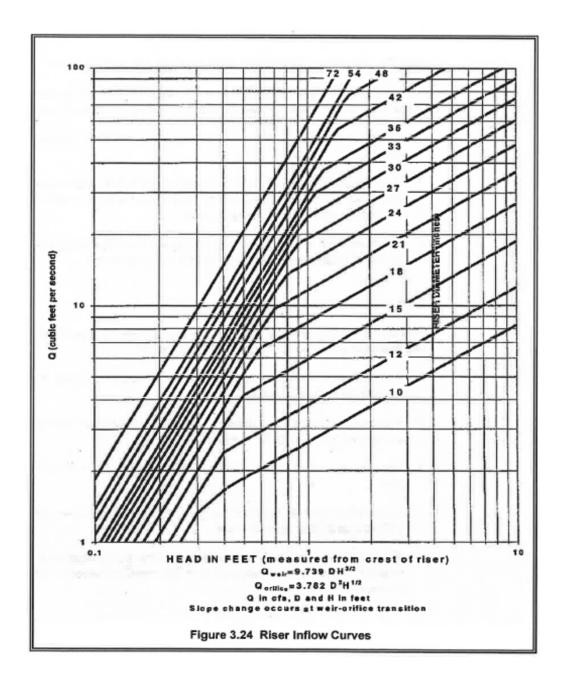
Timestep	Project Run Time
 5-Minute 15-Minute 30-Minute Hourly Daily Allow Multigage 	Start 1948/10/01 00:00 End 2009/09/30 24:00
Release Timestep	

١	Subbasin Name: North	Designate as Bypass for POC:
	Surface	Interflow Groundwater
	Flows To :	
	Area in Basin	Show Only Selected
	Available Pervious Acres	Available Impervious Acres
		ROADS/FLAT .97

Water Quality	
On-Line BMP	Off-Line BMP
24 hour Volume (ac-ft) 0.1193 Standard Flow Rate (cfs) 0.1576	Standard Flow Rate (cfs) 0.0890

Flow Frequency						
Flow(cfs) 0801 15m						
2 Year	=	0.3698				
5 Year	=	0.4671				
10 Year	=	0.5332				
25 Year	=	0.6190				
50 Year	=	0.6846				
100 Year	=	0.7519				

Subbasin Name: Central	Designate as Bypass for POC:
Surface Flows To :	Interflow Groundwater
Area in Basin	Show Only Selected
Available Pervious Acres C, Lawn, Flat	Available ImperviousAcresROADS/FLAT6.45


Water Quality	
On-Line BMP	Off-Line BMP
24 hour Volume (ac-ft) 0.7982 Standard Flow Rate (cfs) 1.0449	Standard Flow Rate (cfs) 0.5903

Flow Free	que	ency
Flow(cfs))	0802 15m
2 Year	=	2.4779
5 Year	=	3.1359
10 Year	=	3.5837
25 Year	=	4.1653
50 Year	=	4.6108
100 Year	=	5.0676

Subbasin Name: South	Designate as Bypass for POC:
Surface Flows To :	Interflow Groundwater
Area in Basin	Show Only Selected
Available Pervious Acres	Available ImperviousAcresROADS/FLAT3.7

Water Quality	
On-Line BMP	Off-Line BMP
24 hour Volume (ac-ft) 0.4550 Standard Flow Rate (cfs) 0.6011	Standard Flow Rate (cfs) 0.3396

Flow Freq	uency
Flow(cfs)	0803 15m
2 Year :	= 1.4107
5 Year =	= 1.7819
10 Year :	= 2.0340
25 Year :	= 2.3612
50 Year :	= 2.6115
100 Year :	= 2.8680

Equations

Equation No. 1

SOLVE FOR D, ORIFICE DIAMETER

$$D = \left(\frac{4Q_{WQ}}{C \pi (2gh)^{0.5}}\right)^{(1/2)}$$

where,

$$Q_{WQ} = WATER \ QUALITY \ PEAK \ FLOW$$

$$C = ORIFICE \ LOSS \ COEFFICIENT, \ 0.62$$

$$h = EFFECTIVE \ HEAD \ (TOTAL)$$

Equation No. 2

SOLVE FOR H, HYDRAULIC HEAD OVER WEIR

$$H = \left(\frac{3Q_{w_0}}{2C_{_D}(2g)^{0.5}L}\right)^{(2/3)}$$
where,

$$Q_{w_0} = WATER \ QUALITY \ PEAK \ FLOW$$

$$C_{_D} = COEFFICIENT \ OF \ DISCHARGE, \ 0.61$$

$$L = WEIR \ LENGTH$$

Procedure

- 1. Size orifice (Equation No. 1) based on water quality flow rate and weir height [Range] in structure
- 2. Check weir height at 100-year peak flow (Equation No. 2) with respect to potential overtopping
- 3. Check orifice at 100-year flow
- 4. Select weir height and orifice diameter based on existing system hydraulics and to not exceed 10% increase of flow from 100-year peak flow to water quality system
- 5. To size overflow riser, see Figure 3.24 Riser Inflow Curves (2005 Stormwater Manual for Western Washinton, Volume III p. 3-36) Calculate riser diameter based on the Q weir equation. Flow rate to WQ at 100-year flow rate is set to a maximum 10% exceedence Riser diameter is sized by using the remaining flow rate that is bypassed

Treatment Flow Rate (Qwq)=	0.59	CFS
----------------------------	------	-----

6.00 FT Weir Length (L) 100-year Flow = 5.07 cfs Weir Qwg **Orifice Qwg** h1 H² FREE BOARD⁵ Q³(Orifice) WSE⁴ WEIR Elev D D А L Q₁₀₀/Q_{wo} Notes FT FT FT IN SF FT FT CFS FT % FT 0.50 11.18 0.46 5.55 0.17 6.00 0.79 11.59 35% 6.17 0.41 0.58 11.26 0.44 0.77 11.67 30% 6.09 5.34 0.16 6.00 0.41 0.67 11.35 0.43 5.16 0.15 6.00 0.41 0.75 11.75 27% 6.01 0.75 11.43 0.42 0.14 0.41 0.73 11.84 24% 5.92 5.01 6.00 0.83 11.51 0.41 4.88 0.13 6.00 0.41 0.72 11.92 22% 5.84 0.92 11.60 0.40 4.77 0.12 6.00 0.41 0.71 12.00 20% 5.76 11.68 12.09 19% 1.00 0.39 4.66 0.12 6.00 0.41 0.70 5.67 5.59 1.08 11.76 0.38 4.57 0.11 6.00 0.41 0.69 12.17 17% 1.17 11.85 0.37 0.69 12.25 16% 5.51 4.49 0.11 6.00 0.41 1.25 11.93 0.37 4.41 0.11 12.34 15% 5.42 6.00 0.41 0.68 1.33 12.01 0.36 4.34 0.10 0.41 0.67 12.42 14% 5.34 6.00 1.42 12.10 0.36 4.27 0.10 6.00 0.41 0.67 12.50 13% 5.26 1.50 12.18 0.35 4.21 0.10 6.00 0.41 0.67 12.59 13% 5.17 1.58 12.26 0.35 4.16 0.09 6.00 0.41 0.66 12.67 12% 5.09 1.67 12.35 0.34 4.10 0.09 6.00 0.41 0.66 12.75 12% 5.01 1.75 12.43 0.34 4.05 0.09 6.00 0.41 0.65 12.84 11% 4.92 1.83 12.51 0.33 4.01 0.09 6.00 0.41 0.65 12.92 11% 4.84 1.92 12.60 0.65 13.00 10% 4.76 0.33 3.96 0.09 6.00 0.41 2.00 12.68 0.08 10% 4.67 0.33 3.92 6.00 0.41 0.65 13.09 2.08 12.76 0.32 3.88 0.08 6.00 0.41 0.64 13.17 9% 4.59 13.25 2.17 12.85 0.32 3.84 0.08 6.00 0.41 0.64 9% 4.51 2.25 12.93 0.32 3.81 0.41 0.64 13.34 9% 4.42 0.08 6.00 2.33 13.01 0.31 3.77 0.08 6.00 0.41 0.64 13.42 8% 4.34 2.42 13.10 0.31 3.74 0.08 6.00 0.41 0.64 13.50 8% 4.26 2.50 13.18 0.31 13.59 8% 4.17 SELECT* 3.71 0.07 6.00 0.41 0.64 2.58 13.26 0.31 3.68 0.07 6.00 0.41 0.63 13.67 8% 4.09 2.67 13.35 0.30 3.65 0.07 6.00 0.41 0.63 13.75 7% 4.01 2.75 13.43 0.30 3.62 0.07 6.00 0.41 0.63 13.84 7% 3.92 2.83 13.51 0.30 3.59 0.07 6.00 0.41 0.63 13.92 7% 3.84 2.92 13.60 0.30 3.57 0.07 6.00 0.41 0.63 14.00 7% 3.76 13.68 0.30 3.54 0.07 0.63 14.09 3.00 6.00 0.41 7% 3.67 14.17 6% 3.59 3.08 13.76 0.29 3.52 0.07 6.00 0.41 0.63 3.17 13.85 0.29 3.50 0.07 6.00 0.41 0.63 14.25 6% 3.51 3.25 13.93 0.29 3.47 0.07 6.00 0.41 0.63 14.34 6% 3.42 3.33 14.01 0.29 0.06 0.41 0.62 14.42 6% 3.34 3.45 6.00 3.42 14.10 0.29 3.43 0.06 6.00 0.41 0.62 14.50 6% 3.26 3.50 14.18 0.28 3.41 0.06 6.00 0.41 0.62 14.59 6% 3.17 3.58 14.26 0.28 3.39 0.06 6.00 0.41 0.62 14.67 6% 3.09 3.67 14.35 0.28 3.37 0.06 6.00 0.41 0.62 14.75 5% 3.01

1. h, effective head at water quality flow rate 0.59 cfs = height of weir wall with respect to invert out El 10.68 to water quality

2. H, Hydraulic Head over Weir, water surface elevation (WSE) above weir at 100-year flow

3. Q (Orifice), Flow through orifice at 100-year peak flow with effective head equal to h + H.

4. WSE, water surface elevation with respect to weir elevation

5. Free Board, to RIM EL 17.76 from WSE at 100 year peak flow

TIR

KPG, PS

Treatment Flow Rate (Qwq)=	0.34	CFS
----------------------------	------	-----

Wair Longth (L)

6 00 ET

Veir Length (L)		6.00	FT								
	Qwq	0	rifice Qw	q	100-year Flow = 2.88 cfs						
h1	WEIR Elev	D	D	Α	L	H ²	Q ³ (Orifice)	WSE ⁴	Q ₁₀₀ /Q _{wq}	FREE BOARD ⁵	Notes
FT	FT	FT	IN	SF	FT	FT	CFS	FT	%	FT	
0.50	11.25	0.35	4.21	0.10	6.00	0.28	0.42	11.53	25%	6.24	
0.58	11.33	0.34	4.05	0.09	6.00	0.28	0.41	11.61	22%	6.16	
0.67	11.42	0.33	3.92	0.08	6.00	0.28	0.40	11.70	19%	6.07	
0.75	11.50	0.32	3.80	0.08	6.00	0.28	0.40	11.78	17%	5.99	
0.83	11.58	0.31	3.70	0.07	6.00	0.28	0.39	11.86	16%	5.91	
0.92	11.67	0.30	3.62	0.07	6.00	0.28	0.39	11.95	14%	5.82	
1.00	11.75	0.29	3.54	0.07	6.00	0.28	0.38	12.03	13%	5.74	
1.08	11.83	0.29	3.47	0.07	6.00	0.28	0.38	12.11	12%	5.66	
1.17	11.92	0.28	3.41	0.06	6.00	0.28	0.38	12.20	11%	5.57	
1.25	12.00	0.28	3.35	0.06	6.00	0.28	0.38	12.28	11%	5.49	
1.33	12.08	0.27	3.29	0.06	6.00	0.28	0.37	12.36	10%	5.41	
1.42	12.17	0.27	3.24	0.06	6.00	0.28	0.37	12.45	9%	5.32	
1.50	12.25	0.27	3.20	0.06	6.00	0.28	0.37	12.53	9%	5.24	
1.58	12.33	0.26	3.16	0.05	6.00	0.28	0.37	12.61	8%	5.16	
1.67	12.42	0.26	3.12	0.05	6.00	0.28	0.37	12.70	8%	5.07	
1.75	12.50	0.26	3.08	0.05	6.00	0.28	0.37	12.78	8%	4.99	
1.83	12.58	0.25	3.04	0.05	6.00	0.28	0.36	12.86	7%	4.91	
1.92	12.67	0.25	3.01	0.05	6.00	0.28	0.36	12.95	7%	4.82	
2.00	12.75	0.25	2.98	0.05	6.00	0.28	0.36	13.03	7%	4.74	
2.08	12.83	0.25	2.95	0.05	6.00	0.28	0.36	13.11	6%	4.66	
2.17	12.92	0.24	2.92	0.05	6.00	0.28	0.36	13.20	6%	4.57	
2.25	13.00	0.24	2.89	0.05	6.00	0.28	0.36	13.28	6%	4.49	
2.33	13.08	0.24	2.86	0.04	6.00	0.28	0.36	13.36	6%	4.41	
2.42	13.17	0.24	2.84	0.04	6.00	0.28	0.36	13.45	6%	4.32	
2.50	13.25	0.23	2.81	0.04	6.00	0.28	0.36	13.53	5%	4.24	
2.58	13.33	0.23	2.79	0.04	6.00	0.28	0.36	13.61	5%	4.16	
2.67	13.42	0.23	2.77	0.04	6.00	0.28	0.36	13.70	5%	4.07	
2.75	13.50	0.23	2.75	0.04	6.00	0.28	0.36	13.78	5%	3.99	SELECT*
2.83	13.58	0.23	2.73	0.04	6.00	0.28	0.36	13.86	5%	3.91	
2.92	13.67	0.23	2.71	0.04	6.00	0.28	0.36	13.95	5%	3.82	
3.00	13.75	0.22	2.69	0.04	6.00	0.28	0.36	14.03	5%	3.74	
3.08	13.83	0.22	2.67	0.04	6.00	0.28	0.36	14.11	4%	3.66	
3.17	13.92	0.22	2.65	0.04	6.00	0.28	0.35	14.20	4%	3.57	
3.25	14.00	0.22	2.64	0.04	6.00	0.28	0.35	14.28	4%	3.49	
3.33	14.08	0.22	2.62	0.04	6.00	0.28	0.35	14.36	4%	3.41	
3.42	14.17	0.22	2.60	0.04	6.00	0.28	0.35	14.45	4%	3.32	
3.50	14.25	0.22	2.59	0.04	6.00	0.28	0.35	14.53	4%	3.24	
3.58	14.33	0.21	2.57	0.04	6.00	0.28	0.35	14.61	4%	3.16	
3.67	14.42	0.21	2.56	0.04	6.00	0.28	0.35	14.70	4%	3.07	

1. h, effective head at water quality flow rate 0.34 cfs = height of weir wall with respect to invert out El 10.75 to water qualit

2. H, Hydraulic Head over Weir, water surface elevation (WSE) above weir at 100-year flow

3. Q (Orifice), Flow through orifice at 100-year peak flow with effective head equal to h + H

4. WSE, water surface elevation with respect to weir elevatior

5. Free Board, to RIM EL 17.77 from WSE at 100 year peak flow

Treatment Flow Rate (Qwq)=	0.09	CFS
----------------------------	------	-----

6.00 FT Weir Length (L) 100-year Flow = 0.75 cfs Weir Qwg **Orifice Qwg** h1 H² FREE BOARD⁵ Q³(Orifice) WSE⁴ WEIR Elev D D А L Q_{100}/Q_{wa} Notes FT FT FT IN SF FT FT CFS FT % FT 0.50 13.44 0.18 2.17 0.03 6.00 0.100 13.55 11% 5.21 0.11 0.58 13.52 0.17 0.02 0.098 13.64 9% 5.12 2.08 6.00 0.11 0.67 13.61 0.17 2.02 0.02 6.00 0.11 0.097 13.72 8% 5.04 0.75 13.69 0.16 1.96 0.02 6.00 0.11 0.097 13.80 7% 4.96 0.83 13.77 0.16 1.91 0.02 6.00 0.11 0.096 13.89 7% 4.87 0.92 13.86 0.16 1.86 0.02 6.00 0.11 0.095 13.97 6% 4.79 1.00 13.94 0.15 0.095 14.05 6% 4.71 1.82 0.02 6.00 0.11 1.08 14.02 0.15 1.79 0.02 6.00 0.11 0.095 14.14 5% 4.62 1.17 14.11 0.15 1.75 0.02 0.11 0.094 14.22 5% 4.54 6.00 1.25 14.19 0.14 1.72 14.30 4% 4.46 0.02 6.00 0.11 0.094 1.33 14.27 0.14 1.69 0.02 6.00 0.11 0.094 14.39 4% 4.37 14.47 4.29 1.42 14.36 0.14 1.67 0.02 6.00 0.11 0.094 4% 1.50 14.44 0.14 1.65 0.01 6.00 0.11 0.093 14.55 4% 4.21 1.58 14.52 0.14 1.62 0.01 6.00 0.11 0.093 14.64 4% 4.12 1.67 14.61 0.13 1.60 0.01 6.00 0.11 0.093 14.72 3% 4.04 1.75 14.69 0.13 1.58 0.01 6.00 0.11 0.093 14.80 3% 3.96 1.83 14.77 0.13 1.57 0.01 6.00 0.11 0.093 14.89 3% 3.87 1.92 14.86 0.13 1.55 0.11 0.093 14.97 3% 3.79 0.01 6.00 2.00 14.94 0.13 1.53 0.093 3% 3.71 0.01 6.00 0.11 15.05 2.08 15.02 0.13 1.52 0.01 6.00 0.11 0.092 15.14 3% 3.62 2.17 15.11 0.13 1.50 0.01 6.00 0.11 0.092 15.22 3% 3.54 2.25 15.19 0.12 1.49 0.11 0.092 15.30 2% 3.46 0.01 6.00 2.33 15.27 0.12 1.47 0.01 6.00 0.11 0.092 15.39 2% 3.37 2.42 15.36 0.12 1.46 0.01 6.00 0.11 0.092 15.47 2% 3.29 2.50 15.44 0.12 2% 3.21 SELECT 1.45 0.01 6.00 0.11 0.092 15.55 2.58 15.52 0.12 1.44 0.01 6.00 0.11 0.092 15.64 2% 3.12 2.67 15.61 0.12 1.43 0.01 6.00 0.11 0.092 15.72 2% 3.04 2.75 15.69 0.12 1.41 0.01 6.00 0.11 0.092 15.80 2% 2.96 2.83 15.77 0.12 1.40 0.01 6.00 0.11 0.092 15.89 2% 2.87 2.92 15.86 0.12 1.39 0.01 6.00 0.11 0.092 15.97 2% 2.79 3.00 15.94 0.12 0.01 0.092 16.05 1.38 6.00 0.11 2% 2.71 0.092 16.14 2% 3.08 16.02 0.11 1.37 0.01 6.00 0.11 2.62 3.17 16.11 0.11 1.37 0.01 6.00 0.11 0.092 16.22 2% 2.54 3.25 16.19 0.11 1.36 0.01 6.00 0.11 0.092 16.30 2% 2.46 3.33 16.27 1.35 0.01 0.11 0.092 16.39 2% 2.37 0.11 6.00 3.42 16.36 0.11 1.34 0.01 6.00 0.11 0.091 16.47 2% 2.29 3.50 16.44 0.091 16.55 2% 2.21 0.11 1.33 0.01 6.00 0.11 3.58 0.091 2% 2.12 16.52 0.11 1.32 0.01 6.00 0.11 16.64 3.67 16.61 0.11 1.32 0.01 6.00 0.11 0.091 16.72 2% 2.04

1. h, effective head at water quality flow rate 0.09cfs = height of weir wall with respect to invert out El 12.94 to water quality

2. H, Hydraulic Head over Weir, water surface elevation (WSE) above weir at 100-year flow

3. Q (Orifice), Flow through orifice at 100-year peak flow with effective head equal to h + H.

4. WSE, water surface elevation with respect to weir elevation

5. Free Board, to RIM EL 18.76 from WSE at 100 year peak flow

UPS BFI Gateway Expansion

APPENDIX C Conveyance Calculations

NODE 10 103	AREA 7.02 0.32	10-YR PEAK FLOW CFS 3.86	25-YR PEAK FLOW CFS	100-YR PEAK FLOW CFS
10	7.02 0.32	FLOW CFS 3.86	FLOW CFS	
10	7.02 0.32	3.86		FLOW CFS
	0.32		4 4 9	
103			4.48	5.44
	4.40	0.1759	0.2042	0.248
113	1.13	0.6212	0.7211	0.8759
209	1.44	0.7916	0.9189	1.1162
214	1.76	0.9675	1.1231	1.3642
308	1.09	0.5992	0.6956	0.8449
404	0.45	0.2474	0.2872	0.3488
408	0.72	0.3958	0.4595	0.5581
414	0.73	0.4013	0.4659	0.5658
505	0.58	0.3188	0.3701	0.4496
506	0.29	0.1594	0.1851	0.2248
507	0.39	0.1979	0.2297	0.279
511	0.95	0.5223	0.6062	0.7364
512	0.68	0.3738	0.4339	0.5271
513	1.02	0.5607	0.6509	0.7906
515	0.69	0.3793	0.4403	0.5348
605	0.33	0.1814	0.2106	0.2558
613	0.73	0.4013	0.4659	0.5658
614	0.4	0.2199	0.2553	0.3101
712	0.41	0.2254	0.2616	0.3178
717	1.03	0.5662	0.6573	0.7984
814	0.36	0.1979	0.2297	0.279
815	0.11	0.0605	0.0702	0.0853
915	0.4	0.2199	0.2553	0.3101
917	0.4	0.2199	0.2553	0.3101
919	0.16	0.088	0.1021	0.124
921	0.2	0.1099	0.1276	0.155
020	0.41	0.2254	0.2616	0.3178
022	0.17	0.0935	0.1085	0.1318

Flows are applied to nodes as a constant calculated in WWHM2012, 15-minute timesteps

		Upstream	Downstream							Max Velocity
Name	Storm	Node Name	Node Name	Shape	Diameter ft	Length ft	Conduit Slope	Roughness	Max Flow cfs	ft/s
Link230	25-Year	102	101	Circular	1.50	37.05	0.50	0.012	4.57	2.54
Link229	25-Year	103	102	Circular	1.50	142.32	0.50	0.012	4.57	2.54
Link239	25-Year	111	410	Circular	1.00	112.92	0.50	0.012	1.95	2.46
Link238	25-Year	112	111	Circular	1.00	105.98	0.50	0.012	1.95	2.46
Link232	25-Year	113	112	Circular	1.00	192.66	0.50	0.012	1.95	2.47
Link210	25-Year	202	201	Circular	1.50	78.85	0.50	0.012	5.05	2.82
Link209	25-Year	203	202	Circular	1.50	144.56	0.46	0.012	5.05	2.83
Link208	25-Year	204	203	Circular	1.50	169.94	0.50	0.012	5.05	2.83
Link220	25-Year	209	308	Circular	1.00	196.00	0.50	0.012	0.92	2.92
Link231	25-Year	214	113	Circular	1.00	196.00	0.50	0.012	1.23	2.52
Link194	25-Year	304	303	Circular	1.50	50.53	0.25	0.012	4.48	4.08
Link223	25-Year	305	303	Circular	1.00	66.52	0.50	0.012	1.61	2.99
Link222	25-Year	307	305	Circular	1.00	86.60	0.50	0.012	1.61	1.99
Link221	25-Year	308	307	Circular	1.00	191.00	0.50	0.012	1.61	3.01
Link228	25-Year	404	103	Circular	1.50	119.89	0.50	0.012	4.37	2.43
Link237	25-Year	408	404	Circular	1.50	51.95	1.97	0.012	3.54	1.98
Link236	25-Year	409	408	Circular	1.00	16.90	6.04	0.012	1.95	2.45
Link235	25-Year	410	409	Circular	1.00	58.60	0.50	0.012	1.95	2.46
Link227	25-Year	411	404	Circular	1.00	32.87	0.50	0.012	0.54	0.67
Link243	25-Year	414	408	Circular	1.00	144.43	2.33	0.012	1.12	1.69
Link242	25-Year	415	414	Circular	1.00	72.79	0.75	0.012	0.66	2.54
Link207	25-Year	505	204	Circular	1.50	99.25	0.50	0.012	5.05	2.84
Link206	25-Year	506	505	Circular	1.50	96.47	0.50	0.012	6.72	3.99
Link205	25-Year	507	506	Circular	1.50	76.88	0.50	0.012	4.49	2.53
Link204	25-Year	508	507	Circular	1.50	26.77	0.50	0.012	4.26	2.40
Link203	25-Year	510	508	Circular	1.00	38.34	0.50	0.012	4.26	5.32
Link202	25-Year	511	510	Circular	1.50	130.29	0.50	0.012	3.82	2.14
Link216	25-Year	512	511	Circular	1.00	187.33	0.50	0.012	1.81	2.49
Link215	25-Year	513	512	Circular	0.67	153.29	0.50	0.012	0.65	2.36
Link214	25-Year	515	510	Circular	1.00	23.79	1.12	0.012	0.44	3.34
Link193	25-Year	605	304	Circular	1.50	57.35	0.20	0.012	4.48	3.71
Link192	25-Year	606	605	Circular	1.50	189.65	0.20	0.012	4.48	3.39
Link218	25-Year	613	512	Circular	0.67	135.03	1.29	0.012	0.47	2.86
Link217	25-Year	614	512	Circular	0.67	165.20	0.96	0.012	0.26	2.06
Link226	25-Year	712	411	Circular	1.00	279.24	0.50	0.012	0.44	0.56
Link225	25-Year	713	712	Circular	1.00	104.21	0.50	0.012	0.44	0.56
Link224	25-Year	714	713	Circular	1.00	215.01	0.50	0.012	0.44	0.56
Link241	25-Year	716	415	Circular	1.00	147.39	0.50	0.012	0.66	2.85
Link240	25-Year	717	716	Circular	1.00	131.39	0.50	0.012	0.66	2.90
Link201	25-Year	812	511	Circular	1.00	103.11	0.50	0.012	1.41	1.77
Link200	25-Year	813	812	Circular	1.00	107.18	0.50	0.012	1.41	1.77
Link199	25-Year	814	813	Circular	1.00	55.79	0.50	0.012	1.41	1.78
Link244	25-Year	815	814	Circular	0.67	95.55	1.79	0.012	0.07	2.40
Link191	25-Year	907	606	Circular	1.50	68.08	0.20	0.012	4.48	3.33
Link191 Link198	25-Year	915	814	Circular	1.00	101.17	0.50	0.012	1.11	1.84
Link190	25-Year	917	915	Circular	1.00	263.91	0.50	0.012	0.73	2.17
Link137	25-Year	919	917	Circular	0.67	64.14	2.58	0.012	0.10	1.97
Link211 Link213	25-Year	921	915	Circular	0.67	84.01	0.50	0.012	0.13	1.86
Link188	25-Year	010	009	Circular	1.50	66.82	0.20	0.012	4.48	3.27
Link100	25-Year	020	917	Circular	1.00	340.03	0.50	0.012	0.37	2.13
Link190	25-Year	020	020	Circular	0.67	65.56	0.50	0.012	0.11	1.95
Link195	25-Year	022	907	Circular	1.50	206.23	0.20	0.012	4.48	3.28
Link190 Link189	25-Year	009	008	Circular	1.50	206.23	0.20	0.012	4.48	3.28

KPC	G, PS

				Ground	Max Water	
		Ponding	Invert	Elevation at	Surface	Freeboard
Name	Storm	Туре	Elevation	Spill Crest	Elevation	ft
101	25-Year	None	8.23	17.03	14.36	2.67
102	25-Year	None	8.41	17.07	14.68	2.39
103	25-Year	None	9.13	18.28	14.58	3.70
111	25-Year	None	12.62	18.21	15.23	2.98
112	25-Year	None	13.15	17.37	15.49	1.88
113	25-Year	None	14.11	17.17	15.98	1.19
201	25-Year	None	8.60	15.92	13.25	2.67
202	25-Year	None	8.99	16.92	13.40	3.52
203	25-Year	None	9.66	16.95	13.68	3.27
204	25-Year	None	10.51	18.70	14.01	4.69
209	25-Year	None	14.92	17.17	15.32	1.85
214	25-Year	None	15.09	17.17	16.17	1.00
303	25-Year	None	12.95	18.23	13.76	4.47
304	25-Year	None	13.08	18.83	13.98	4.85
305	25-Year	None	12.54	18.76	13.92	4.84
307	25-Year	None	12.98	17.17	14.06	3.11
308	25-Year	None	13.94	17.17	14.56	2.61
404	25-Year	None	9.73	18.52	14.71	3.81
408	25-Year	None	10.75	17.77	14.76	3.01
409	25-Year	None	11.77	17.81	14.80	3.01
410	25-Year	None	12.06	18.53	14.94	3.59
411	25-Year	None	10.39	18.30	14.71	3.59
414	25-Year	None	14.12	17.94	14.86	3.08
415	25-Year	None	14.67	18.18	14.99	3.19
505	25-Year	None	11.01	18.74	14.20	4.54
506	25-Year	None	11.49	18.14	14.36	3.78
507	25-Year	None	11.87	17.91	14.48	3.43
508	25-Year	None	10.68	17.76	14.52	3.24
510	25-Year	None	10.86	18.06	14.97	3.09
511	25-Year	None	11.52	17.54	15.11	2.43
512	25-Year	None	13.65	17.52	15.52	2.00
513	25-Year	None	14.42	17.68	15.88	1.80
515	25-Year	None	14.67	18.20	14.94	3.26
605	25-Year	None	13.20	18.50	14.17	4.33
606	25-Year	None	13.57	18.96	14.63	4.33
613	25-Year	None	15.39	18.12	15.78	2.34
614	25-Year	None	15.24	18.25	15.62	2.63
712	25-Year	None	11.79	19.88	14.91	4.97
713	25-Year	None	12.31	19.48	14.95	4.53
714	25-Year	None	13.39	18.09	14.88	3.21
716	25-Year	None	15.41	18.52	15.75	2.77
717	25-Year	None	16.10	17.84	16.43	1.41
812	25-Year	None	12.04	19.22	15.25	3.98
012	23 1001	None	12.07	13.22	13.23	5.50

813	25-Year	None	12.58	19.43	15.38	4.05
814	25-Year	None	12.86	18.80	15.46	3.34
815	25-Year	None	16.71	19.30	16.80	2.50
907	25-Year	None	13.71	19.24	14.78	4.46
915	25-Year	None	13.37	19.20	15.54	3.66
917	25-Year	None	14.68	19.35	15.63	3.72
919	25-Year	None	16.34	18.79	16.44	2.35
921	25-Year	None	16.10	19.08	16.27	2.81
O10	25-Year	None	14.67	20.21	15.76	4.45
O20	25-Year	None	16.38	19.50	16.63	2.87
022	25-Year	None	17.01	18.51	17.14	1.37
008	25-Year	None	14.12	19.68	15.21	4.47
009	25-Year	None	14.54	19.19	15.63	3.56

		Upstream	Downstream							Max Velocity
Name	Storm	Node Name	Node Name	Shape	Diameter ft	Length ft	Conduit Slope	Roughness	Max Flow cfs	ft/s
Link230	100-Year	102	101	Circular	1.50	37.05	0.50	0.012	5.42	3.01
Link229	100-Year	102	101	Circular	1.50	142.32	0.50	0.012	5.42	3.01
Link239	100-Year	111	410	Circular	1.00	112.92	0.50	0.012	2.24	2.81
Link238	100-Year	112	111	Circular	1.00	105.98	0.50	0.012	2.24	2.82
Link232	100-Year	113	112	Circular	1.00	192.66	0.50	0.012	2.24	2.82
Link232 Link210	100-Year	202	201	Circular	1.50	78.85	0.50	0.012	6.13	3.43
Link209	100-Year	202	201	Circular	1.50	144.56	0.46	0.012	6.13	3.43
Link209	100-Year	203	202	Circular	1.50	169.94	0.50	0.012	6.13	3.43
Link200	100 Year	204	308	Circular	1.00	196.00	0.50	0.012	1.17	3.03
Link220	100-Year	203	113	Circular	1.00	196.00	0.50	0.012	1.36	2.48
Link231 Link194	100-Year	304	303	Circular	1.50	50.53	0.25	0.012	5.70	4.45
Link194	100-Year	305	303	Circular	1.00	66.52	0.50	0.012	2.02	3.09
Link223	100-Year	307	305	Circular	1.00	86.60	0.50	0.012	2.02	2.56
Link222 Link221	100-Year	307	303	Circular	1.00	191.00	0.50	0.012	2.02	3.00
Link221 Link228	100-Year	404	103	Circular	1.50	1191.00	0.50	0.012	5.17	2.88
Link228 Link237	100-Year	404	404	Circular	1.50	51.95	1.97	0.012	4.16	2.32
Link237 Link236	100-Year	408	404 408	Circular	1.00	16.90	6.04	0.012	2.24	2.32
Link230	100-Year	409	408	Circular	1.00	58.60	0.50	0.012	2.24	2.81
Link235 Link227	100-Year	410	409	Circular	1.00	32.87	0.50	0.012	0.66	0.82
Link227 Link243	100-Year	411 414	404 408	Circular	1.00	144.43	2.33	0.012	1.36	1.71
Link243 Link242	100-Year	414	408	Circular	1.00	72.79	0.75	0.012	0.80	2.56
Link242 Link207			204		1.50	99.25	0.75	0.012		
	100-Year	505 506		Circular					6.13	3.44
Link206	100-Year	506	505 506	Circular	1.50	96.47	0.50	0.012	5.68	3.19
Link205 Link204	100-Year 100-Year	507	506	Circular Circular	1.50 1.50	76.88 26.77	0.50	0.012	5.46 5.18	3.07 2.91
Link203	100-Year	510	508	Circular	1.00	38.34	0.50	0.012	5.18	6.43
Link202	100-Year	511	510	Circular	1.50	130.29	0.50	0.012	4.64	2.59
Link216	100-Year	512	511	Circular	1.00	187.33 153.29	0.50	0.012	2.19 0.79	2.76
Link215	100-Year	513	512	Circular	0.67			0.012		2.37
Link214	100-Year	515	510	Circular	1.00	23.79	1.12	0.012	0.54	3.35
Link193	100-Year	605	304	Circular	1.50	57.35	0.20	0.012	5.70	4.04
Link192	100-Year	606	605	Circular	1.50	189.65	0.20	0.012	5.44	3.55
Link218	100-Year	613	512	Circular	0.67	135.03	1.29	0.012	0.57	2.87
Link217	100-Year	614	512	Circular	0.67	165.20	0.96	0.012	0.31	2.07
Link226	100-Year	712	411	Circular	1.00	279.24	0.50	0.012	0.54	0.67
Link225	100-Year	713	712	Circular	1.00	104.21	0.50	0.012	0.53	0.67
Link224	100-Year	714	713	Circular	1.00	215.01	0.50	0.012	0.54	0.68
Link241	100-Year	716	415	Circular	1.00	147.39	0.50	0.012	0.80	2.89
Link240	100-Year	717	716	Circular	1.00	131.39	0.50	0.012	0.80	3.07
Link201	100-Year	812	511	Circular	1.00	103.11	0.50	0.012	1.71	2.14
Link200	100-Year	813	812	Circular	1.00	107.18	0.50	0.012	1.71	2.14
Link199	100-Year	814	813	Circular	1.00	55.79	0.50	0.012	1.71	2.15
Link244	100-Year	815	814	Circular	0.67	95.55	1.79	0.012	0.09	2.42
Link191	100-Year	907	606	Circular	1.50	68.08	0.20	0.012	5.44	3.47
Link198	100-Year	915	814	Circular	1.00	101.17	0.50	0.012	1.35	1.84
Link197	100-Year	917	915	Circular	1.00	263.91	0.50	0.012	0.88	2.18
Link211	100-Year	919	917	Circular	0.67	64.14	2.58	0.012	0.12	1.98
Link213	100-Year	921	915	Circular	0.67	84.01	0.50	0.012	0.16	1.93
Link188	100-Year	010	009	Circular	1.50	66.82	0.20	0.012	5.44	3.36
Link196	100-Year	020	917	Circular	1.00	340.03	0.50	0.012	0.45	2.13
Link195	100-Year	022	020	Circular	0.67	65.56	0.50	0.012	0.13	2.06
Link190	100-Year	008	907	Circular	1.50	206.23	0.20	0.012	5.44	3.39
Link189	100-Year	009	008	Circular	1.50	206.23	0.20	0.012	5.44	3.36

				Ground	Max Water	
		Ponding	Invert	Elevation at	Surface	Freeboard
Nama	Storm	-	Elevation		Elevation	ft
Name	Storm	Туре		Spill Crest		
101	100-year	None	8.23	17.03	14.36	2.67
102	100-year	None	8.41	17.07	16.80	0.27
103	100-year	None	9.13	18.28	14.75	3.53
111	100-year	None	12.62	18.21	15.67	2.54
112	100-year	None	13.15	17.37	16.02	1.35
113	100-year	None	14.11	17.17	16.66	0.51
201	100-year	None	8.60	15.92	13.25	2.67
202	100-year	None	8.99	16.92	13.47	3.45
203	100-year	None	9.66	16.95	13.88	3.07
204	100-year	None	10.51	18.70	14.37	4.33
209	100-year	None	14.92	17.17	15.39	1.78
214	100-year	None	15.09	17.17	16.90	0.27
303	100-year	None	12.95	18.23	13.87	4.36
304	100-year	None	13.08	18.83	14.11	4.72
305	100-year	None	12.54	18.76	14.04	4.72
307	, 100-year	None	12.98	17.17	14.27	2.90
308	, 100-year	None	13.94	17.17	14.76	2.41
404	, 100-year	None	9.73	18.52	14.99	3.53
408	100-year	None	10.75	17.77	15.06	2.71
409	100-year	None	11.77	17.81	15.11	2.70
410	100-year	None	12.06	18.53	15.30	3.23
411	100-year	None	10.39	18.30	15.00	3.30
414	100-year	None	14.12	17.94	15.23	2.71
415	100-year	None	14.67	18.18	15.24	2.94
505	100-year	None	11.01	18.74	14.65	4.09
506	100-year	None	11.49	18.14	14.89	3.26
507	100-year	None	11.87	17.91	15.06	2.85
508	100-year	None	10.68	17.76	15.11	2.65
510	100-year	None	10.86	18.06	15.77	2.29
510	100 year	None	11.52	17.54	15.99	1.55
512	100-year	None	13.65	17.52	16.58	0.95
512	100 year	None	14.42	17.68	17.10	0.58
515	100 year	None	14.67	18.20	15.78	2.42
605	100-year 100-year	None	13.20	18.20	14.32	4.18
606	100-year	None	13.20	18.96	14.32	4.16
	-				14.80	
613	100-year	None	15.39	18.12		1.30
614	100-year	None	15.24	18.25	16.66	1.59
712	100-year	None	11.79	19.88	15.05	4.83
713	100-year	None	12.31	19.48	15.07	4.41
714	100-year	None	13.39	18.09	15.11	2.98
716	100-year	None	15.41	18.52	15.78	2.74
717	100-year	None	16.10	17.84	16.47	1.37
812	100-year	None	12.04	19.22	16.18	3.04

813	100-year	None	12.58	19.43	16.38	3.05
814	100-year	None	12.86	18.80	16.49	2.31
815	100-year	None	16.71	19.30	16.82	2.49
907	100-year	None	13.71	19.24	14.96	4.28
915	100-year	None	13.37	19.20	16.61	2.59
917	100-year	None	14.68	19.35	16.75	2.60
919	100-year	None	16.34	18.79	16.75	2.04
921	100-year	None	16.10	19.08	16.62	2.46
O10	100-year	None	14.67	20.21	15.98	4.23
O20	100-year	None	16.38	19.50	16.86	2.64
022	100-year	None	17.01	18.51	17.15	1.36
008	100-year	None	14.12	19.68	15.41	4.27
009	100-year	None	14.54	19.19	15.84	3.35

APPENDIX D KC CSWPP Worksheet Form

KING COUNTY, WASHINGTON SURFACE WATER DESIGN MANUAL

REFERENCE 8-E CSWPP WORKSHEET FORMS

ESC MAINTENANCE REPORT

Performed By:		
Project Name: DPER Permit #:		
Clearing Limits Damage Visible Intrusions Other	ОК ОК ОК	Problem Problem Problem Problem
Mulch Rills/Gullies Thickness Other	OK OK OK	Problem Problem Problem
Nets/Blankets Rills/Gullies Ground Contact Other	ОК ОК ОК	Problem Problem Problem
Plastic Tears/Gaps Other	ОК ОК	Problem Problem
Seeding Percent Cover Rills/Gullies Mulch Other	OK OK OK	Problem Problem Problem Problem
Sodding Grass Health Rills/Gullies Other	ОК ОК ОК	Problem Problem Problem
Perimeter Protectio	on including Silt I	Fence
Damage Sediment Build- Concentrated Fl Other	OK up OK	Problem Problem Problem Problem
Flow Control BMP Damage Sedimentation Concentrated Fl Rills/Gullies Intrusions Other	ОК ОК	Problem Problem Problem Problem Problem Problem
Brush Barrier Damage Sediment Build- Concentrated FI Other		Problem Problem Problem Problem
Vegetated Strip Damage Sediment Build- Concentrated FI Other		Problem Problem Problem Problem
Construction Entra Dimensions Sediment Tracki Vehicle Avoidan Other	OK ing OK	Problem Problem Problem Problem

Wheel Wash	ОК	Droblom
Dimensions Sed build up or tracking Other		Problem Problem Problem
Construction Road		
Stable Driving Surf. Vehicle Avoidance	OK	Problem Problem
Other	OK	Problem
Sediment Trap/Pond		
Sed. Accumulation	OK	Problem
Overtopping Inlet/Outlet Erosion	ОК ОК	Problem Problem
Other	ок	Problem
Catch Basin/Inlet Protecti	on	
Sed. Accumulation	OK	Problem
Damage	OK	Problem
Clogged Filter Other	OK OK	Problem Problem
		FIODIEIII
Interceptor Dike/Swale Damage	OK	Problem
Sed. Accumulation	ОК ОК	Problem
Overtopping	ОК ОК ОК	Problem
Other	OK	Problem
Pipe Slope Drain		
Damage	OK OK	Problem
Inlet/Outlet Secure Fittings		Problem Problem
Other	OK OK	Problem
Ditches		
Damage	OK	Problem
Sed. Accumulation		Problem
Overtopping	UK	Problem
Other	ок	Problem
Outlet Protection		Droblom
Scour Other	OK OK	Problem Problem
- · ·	<u> </u>	
Level Spreader Damage	ОК	Problem
Concentrated Flow	OK	Problem
Rills/Gullies	OK	Problem
Sed. Accumulation	OK	Problem
Other	ОК	Problem
Dewatering Controls Sediment	OK	Problem
Dust Control Palliative applied	OK	Problem
Miscellaneous		
Wet Season Stockpile	OK	Problem
Other		Problem
Comments:		

Comments:

Actions Taken:

Problems Unresolved:

		O					
		Completed by:					
BWD IN	plementation	Title:					
		Date:					
	design), the schedule for		e steps necessary to implement the steps (list dates), and the personant				
BMPs	Description of Action(s) Required for Implementation		Scheduled Milestone and Completion Date(s)	Person Responsible for Action			
Good Housekeeping	1.						
	2.						
	3						
Preventive	1.						
Maintenance	2.						
	3.						
	4.						
Spill	1.						
Prevention and Emergency Cleanup	2.						
	3.						
Inspections	1.						
	2.						
	3.						

BMPs	Description of Action(s) Required for Implementation	Schedule Milestone and Completion Date(s)	Person Responsible for Action
Source Control BMPs	1.		
	2.		
	3		
	4.		
	5.		
	6.		
	7.		
	8.		
Treatment BMPs	1.		
	2.		
	3.		
	4.		
Emerging technologies	1.		
	2.		
Flow Control BMPs	3.		
	4.		

Pollution Prevention Team	Completed by: Title: Date:
Responsible Official:	
Team Leader:	Office Phone:
	Cell Phone #:
	Pager #:
Responsibilities:	
(1)	Title:
	Office Phone:
	Pager #:
	Cell Phone:
Responsibilities:	
(2)	Title:
	Office Phone:
	Pager #:
	Cell Phone #:
Responsibilities:	

		Completed by:							
	Employee Training	Title:							
		Date:							
Describe the annual training of employees on the SWPPP, addressing spill response, good housekeeping, and material management practices.									
Training Topics	Brief Description of Training Program/Materials	Schedule for Training	Attendees						
1.) LINE WORKERS	(e.g., film, newsletter course)	(list dates)							
Spill Prevention and Response									
Good Housekeeping									
Material Management Practices									
2.) P2 TEAM:									
SWPPP Implementation									
Monitoring Procedures									

List of Significant Spills and Leaks List all spills and leaks of toxic or hazardous pollutants that were significa guantities. Although not required, we suggest you list spills and leaks of r						Completed by: Title: Date: ant but are <u>not</u> limited to, release of <u>oil</u> or <u>hazardous substances in excess of reportable</u> non-hazardous materials.			
Description							Response Procedure		
Date (month/day/ye ar)	Location (as indicated on site map)	Type of Material	Quantit y	Sourc e, lf Known	Reaso Spill/L		Amount of Material Recovered	Material No longer exposed to Stormwater (Yes/No)	Preventive Measure Taken

Potential Pollutant Source Identification		Completed by: Title: Date:	
List all potential stormwater pollutants	from materials ha	andled, treated, or stored on-site.	
Potential Stormwater Pollutant	St	ormwater Pollutant Source	Likelihood of pollutant being present in your stormwater discharge. If yes, explain

	Completed by:					runoff.			
		(Quantity (Unit	ts)		Likeliho	ood of contact with stormwater	Past	Spill or
		Used	Produced	Stored		lf Yes, o	describe reason	L	eak
Material	Purpose/Location	(ind	icate per/wk.	or yr.)				Yes	No

APPENDIX E KCSWDM Operation & Maintenance Checklist

Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Structure	Trash and debris	Trash or debris of more than ½ cubic foot which is located immediately in front of the structure opening or is blocking capacity of the structure by more than 10%.	No Trash or debris blocking or potentially blocking entrance to structure.
		Trash or debris in the structure that exceeds $^{1}/_{3}$ the depth from the bottom of basin to invert the lowest pipe into or out of the basin.	No trash or debris in the structure.
		Deposits of garbage exceeding 1 cubic foot in volume.	No condition present which would attract or support the breeding of insects or rodents.
	Sediment	Sediment exceeds 60% of the depth from the bottom of the structure to the invert of the lowest pipe into or out of the structure or the bottom of the FROP-T section or is within 6 inches of the invert of the lowest pipe into or out of the structure or the bottom of the FROP-T section.	Sump of structure contains no sediment.
	Damage to frame and/or top slab	Corner of frame extends more than ¾ inch past curb face into the street (If applicable).	Frame is even with curb.
		Top slab has holes larger than 2 square inches or cracks wider than ¼ inch.	Top slab is free of holes and cracks.
		Frame not sitting flush on top slab, i.e., separation of more than ¾ inch of the frame from the top slab.	Frame is sitting flush on top slab.
	Cracks in walls or bottom	Cracks wider than ½ inch and longer than 3 feet, any evidence of soil particles entering structure through cracks, or maintenance person judges that structure is unsound.	Structure is sealed and structurally sound.
		Cracks wider than ½ inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering structure through cracks.	No cracks more than ¹ / ₄ inch wide at the joint of inlet/outlet pipe.
	Settlement/ misalignment	Structure has settled more than 1 inch or has rotated more than 2 inches out of alignment.	Basin replaced or repaired to design standards.
	Damaged pipe joints	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering the structure at the joint of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of inlet/outlet pipes.
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.
	Ladder rungs missing or unsafe	Ladder is unsafe due to missing rungs, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
FROP-T Section	Damage	T section is not securely attached to structure wall and outlet pipe structure should support at least 1,000 lbs of up or down pressure.	T section securely attached to wall and outlet pipe.
		Structure is not in upright position (allow up to 10% from plumb).	Structure in correct position.
		Connections to outlet pipe are not watertight or show signs of deteriorated grout.	Connections to outlet pipe are water tight; structure repaired or replaced and works as designed.
		Any holes—other than designed holes—in the structure.	Structure has no holes other than designed holes.

Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Cleanout Gate	Damaged or missing	Cleanout gate is missing.	Replace cleanout gate.
		Cleanout gate is not watertight.	Gate is watertight and works as designed.
		Gate cannot be moved up and down by one maintenance person.	Gate moves up and down easily and is watertight.
		Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
Orifice Plate	Damaged or missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
	Deformed or damaged lip	Lip of overflow pipe is bent or deformed.	Overflow pipe does not allow overflow at an elevation lower than design
Inlet/Outlet Pipe	Sediment accumulation	Sediment filling 20% or more of the pipe.	Inlet/outlet pipes clear of sediment.
	Trash and debris	Trash and debris accumulated in inlet/outlet pipes (includes floatables and non-floatables).	No trash or debris in pipes.
	Damaged	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering at the joints of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of the inlet/outlet pipe.
Metal Grates (If Applicable)	Unsafe grate opening	Grate with opening wider than ⁷ / ₈ inch.	Grate opening meets design standards.
	Trash and debris	Trash and debris that is blocking more than 20% of grate surface.	Grate free of trash and debris. footnote to guidelines for disposal
	Damaged or missing	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.
Manhole Cover/Lid	Cover/lid not in place	Cover/lid is missing or only partially in place. Any open structure requires urgent maintenance.	Cover/lid protects opening to structure.
	Locking mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts cannot be seated. Self-locking cover/lid does not work.	Mechanism opens with proper tools.
	Cover/lid difficult to Remove	One maintenance person cannot remove cover/lid after applying 80 lbs. of lift.	Cover/lid can be removed and reinstalled by one maintenance person.

Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Structure	Sediment	Sediment exceeds 60% of the depth from the bottom of the catch basin to the invert of the lowest pipe into or out of the catch basin or is within 6 inches of the invert of the lowest pipe into or out of the catch basin.	Sump of catch basin contains no sediment.
	Trash and debris	Trash or debris of more than ½ cubic foot which is located immediately in front of the catch basin opening or is blocking capacity of the catch basin by more than 10%.	No Trash or debris blocking or potentially blocking entrance to catch basin.
		Trash or debris in the catch basin that exceeds ${}^{1}\!/_{3}$ the depth from the bottom of basin to invert the lowest pipe into or out of the basin.	No trash or debris in the catch basin.
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within catch basin.
		Deposits of garbage exceeding 1 cubic foot in volume.	No condition present which would attract or support the breeding of insects or rodents.
	Damage to frame and/or top slab	Corner of frame extends more than ¾ inch past curb face into the street (If applicable).	Frame is even with curb.
		Top slab has holes larger than 2 square inches or cracks wider than $\frac{1}{4}$ inch.	Top slab is free of holes and cracks.
		Frame not sitting flush on top slab, i.e., separation of more than ¾ inch of the frame from the top slab.	Frame is sitting flush on top slab.
	Cracks in walls or bottom	Cracks wider than ½ inch and longer than 3 feet, any evidence of soil particles entering catch basin through cracks, or maintenance person judges that catch basin is unsound.	Catch basin is sealed and is structurally sound.
		Cracks wider than ½ inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	No cracks more than ¹ / ₄ inch wide at the joint of inlet/outlet pipe.
	Settlement/ misalignment	Catch basin has settled more than 1 inch or has rotated more than 2 inches out of alignment.	Basin replaced or repaired to design standards.
	Damaged pipe joints	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering the catch basin at the joint of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of inlet/outlet pipes.
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.
Inlet/Outlet Pipe	Sediment accumulation	Sediment filling 20% or more of the pipe.	Inlet/outlet pipes clear of sediment.
	Trash and debris	Trash and debris accumulated in inlet/outlet pipes (includes floatables and non-floatables).	No trash or debris in pipes.
	Damaged	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering at the joints of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of the inlet/outlet pipe.

NO. 5 – CATCH BASINS AND MANHOLES				
Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed	
Metal Grates (Catch Basins)	Unsafe grate opening	Grate with opening wider than $^{7}/_{8}$ inch.	Grate opening meets design standards.	
	Trash and debris	Trash and debris that is blocking more than 20% of grate surface.	Grate free of trash and debris. footnote to guidelines for disposal	
	Damaged or missing	Grate missing or broken member(s) of the grate. Any open structure requires urgent maintenance.	Grate is in place and meets design standards.	
Manhole Cover/Lid	Cover/lid not in place	Cover/lid is missing or only partially in place. Any open structure requires urgent maintenance.	Cover/lid protects opening to structure.	
	Locking mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts cannot be seated. Self-locking cover/lid does not work.	Mechanism opens with proper tools.	
	Cover/lid difficult to Remove	One maintenance person cannot remove cover/lid after applying 80 lbs. of lift.	Cover/lid can be removed and reinstalled by one maintenance person.	

NO. 6 – CONVEYANCE PIPES AND DITCHES				
Maintenance Component	Defect or Problem	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed	
Pipes	Sediment & debris accumulation	Accumulated sediment or debris that exceeds 20% of the diameter of the pipe.	Water flows freely through pipes.	
	Vegetation/roots	Vegetation/roots that reduce free movement of water through pipes.	Water flows freely through pipes.	
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.	
	Damage to protective coating or corrosion	Protective coating is damaged; rust or corrosion is weakening the structural integrity of any part of pipe.	Pipe repaired or replaced.	
	Damaged	Any dent that decreases the cross section area of pipe by more than 20% or is determined to have weakened structural integrity of the pipe.	Pipe repaired or replaced.	
Ditches	Trash and debris	Trash and debris exceeds 1 cubic foot per 1,000 square feet of ditch and slopes.	Trash and debris cleared from ditches.	
	Sediment accumulation	Accumulated sediment that exceeds 20% of the design depth.	Ditch cleaned/flushed of all sediment and debris so that it matches design.	
	Noxious weeds	Any noxious or nuisance vegetation which may constitute a hazard to County personnel or the public.	Noxious and nuisance vegetation removed according to applicable regulations. No danger of noxious vegetation where County personnel or the public might normally be.	
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.	
	Vegetation	Vegetation that reduces free movement of water through ditches.	Water flows freely through ditches.	
	Erosion damage to slopes	Any erosion observed on a ditch slope.	Slopes are not eroding.	
	Rock lining out of place or missing (If Applicable)	One layer or less of rock exists above native soil area 5 square feet or more, any exposed native soil.	Replace rocks to design standards.	

Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Site	Trash and debris	Trash and debris accumulated on facility site.	Trash and debris removed from facility site.
Treatment Area	Trash and debris	Any trash and debris accumulated in vault (includes floatables and non-floatables).	No trash or debris in vault.
	Sediment accumulation	Sediment accumulation in vault bottom exceeds the depth of the sediment zone plus 6 inches.	No sediment in vault.
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.
Vault Structure	Damage to wall, frame, bottom, and/or top slab	Cracks wider than ½-inch, any evidence of soil entering the structure through cracks, vault does not retain water or qualified inspection personnel determines that the vault is not structurally sound.	Vault is sealed and structurally sound.
	Baffles damaged	Baffles corroding, cracking, warping and/or showing signs of failure or baffle cannot be removed.	Repair or replace baffles or walls to specifications.
	Ventilation	Ventilation area blocked or plugged.	No reduction of ventilation area exists.
Inlet/Outlet Pipe	Sediment accumulation	Sediment filling 20% or more of the pipe.	Inlet/outlet pipes clear of sediment.
	Trash and debris	Trash and debris accumulated in inlet/outlet pipes (includes floatables and non-floatables).	No trash or debris in pipes.
	Damaged	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering at the joints of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of the inlet/outlet pipe.
Gravity Drain	Inoperable valve	Valve will not open and close.	Valve opens and closes normally.
	Valve won't seal	Valve does not seal completely.	Valve completely seals closed.
Access Manhole	Access cover/lid damaged or difficult to open	Access cover/lid cannot be easily opened by one person. Corrosion/deformation of cover/lid.	Access cover/lid can be opened by one person.
	Locking mechanism not working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts cannot be seated. Self-locking cover/lid does not work.	Mechanism opens with proper tools.
	Cover/lid difficult to remove	One maintenance person cannot remove cover/lid after applying 80 lbs of lift.	Cover/lid can be removed and reinstalled by one maintenance person.
	Access doors/plate has gaps, doesn't cover completely	Large access doors not flat and/or access opening not completely covered.	Doors close flat; covers access opening completely.
	Lifting Rings missing, rusted	Lifting rings not capable of lifting weight of door or plate.	Lifting rings sufficient to lift or remove door or plate.
	Ladder rungs unsafe	Missing rungs, misalignment, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Site	Trash and debris	Any trash or debris which impairs the function of the facility.	Trash and debris removed from facility.
	Contaminants and pollution	Floating oil in excess of 1 inch in first chamber, any oil in other chambers or other contaminants of any type in any chamber.	No contaminants present other than a surface oil film.
Vault Treatment Area	Sediment accumulation in the forebay	Sediment accumulation of 6 inches or greater in the forebay.	No sediment in the forebay.
	Discharge water not clear	Inspection of discharge water shows obvious signs of poor water quality - effluent discharge from vault shows thick visible sheen.	Repair function of plates so effluent is clear.
	Trash or debris accumulation	Trash and debris accumulation in vault (floatables and non-floatables).	Trash and debris removed from vault.
	Oil accumulation	Oil accumulation that exceeds 1 inch at the water surface in the in the coalescing plate chamber.	No visible oil depth on water and coalescing plates clear of oil.
Coalescing Plates	Damaged	Plate media broken, deformed, cracked and/or showing signs of failure.	Replace that portion of media pack or entire plate pack depending on severity of failure.
	Sediment accumulation	Any sediment accumulation which interferes with the operation of the coalescing plates.	No sediment accumulation interfering with the coalescing plates.
Vault Structure	Damage to Wall, Frame, Bottom, and/or Top Slab	Cracks wider than ½-inch and any evidence of soil particles entering the structure through the cracks, or maintenance inspection personnel determines that the vault is not structurally sound.	Vault replaced or repaired to design specifications.
	Baffles damaged	Baffles corroding, cracking, warping and/or showing signs of failure as determined by maintenance/inspection person.	Repair or replace baffles to specifications.
Ventilation Pipes	Plugged	Any obstruction to the ventilation pipes.	Ventilation pipes are clear.
Shutoff Valve	Damaged or inoperable	Shutoff valve cannot be opened or closed.	Shutoff valve operates normally.
Inlet/Outlet Pipe	Sediment accumulation	Sediment filling 20% or more of the pipe.	Inlet/outlet pipes clear of sediment.
	Trash and debris	Trash and debris accumulated in inlet/outlet pipes (includes floatables and non-floatables).	No trash or debris in pipes.
	Damaged	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering at the joints of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of the inlet/outlet pipe.
Access Manhole	Cover/lid not in place	Cover/lid is missing or only partially in place. Any open manhole requires immediate maintenance.	Manhole access covered.
	Locking mechanism not working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts cannot be seated. Self-locking cover/lid does not work.	Mechanism opens with proper tools.
	Cover/lid difficult to remove	One maintenance person cannot remove cover/lid after applying 80 lbs of lift.	Cover/lid can be removed and reinstalled by one maintenance person.
	Ladder rungs unsafe	Missing rungs, misalignment, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.

NO. 23 – COALESCING PLATE OIL/WATER SEPARATOR					
Maintenance Component Defect Condition When Maintenance is Needed Results Expected When Maintenance is Performed					
Large access doors/plate	Damaged or difficult to open	Large access doors or plates cannot be opened/removed using normal equipment.	Replace or repair access door so it can opened as designed.		
	Gaps, doesn't cover completely	Large access doors not flat and/or access opening not completely covered.	Doors close flat and cover access opening completely.		
	Lifting Rings missing, rusted	Lifting rings not capable of lifting weight of door or plate.	Lifting rings sufficient to lift or remove door or plate.		

NO. 24 – CATCH BASIN INSERT				
Maintenance Component	Defect or Problem	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed	
Media Insert	Visible Oil	Visible oil sheen passing through media	Media inset replaced.	
	Insert does not fit catch basin properly	Flow gets into catch basin without going through media.	All flow goes through media.	
	Filter media plugged	Filter media plugged.	Flow through filter media is normal.	
	Oil absorbent media saturated	Media oil saturated.	Oil absorbent media replaced.	
	Water saturated	Catch basin insert is saturated with water, which no longer has the capacity to absorb.	Insert replaced.	
	Service life exceeded	Regular interval replacement due to typical average life of media insert product, typically one month.	Media replaced at manufacturer's recommended interval.	
	Seasonal maintenance	When storms occur and during the wet season.	Remove, clean and replace or install new insert after major storms, monthly during the wet season or at manufacturer's recommended interval.	

APPENDIX F

Department of Ecology Industrial Stormwater General Permit

	Request for Coverage					
DEPARTMENT OF	Indus	trial Stori	mwater General	Permit		
ECOLOGY State of Washington				NOI Version: 1		
Application Type:] New 🛛 Renewal	Permit Nur	nber: WAR000434	Application Id: 23852		
I. Contact Information						
Permittee						
Honorific:	First Name: J	udi	Last Nam	ne: Johnson-Younce		
Organization Name:	United Parcel Service Inc.			W District Director of Engineering Maintenance		
Mailing Address: 445	5 7th Ave S					
City: Seattle	State	: WA	Zip Code	: 98108-1731		
Email: jyounce@ups.c	com					
Primary Phone: 971-	258-4576		Secondary Phone:			
UBI Number: 5780376	580					
Site Contact						
Honorific:	First Name: K	aytee	Last Nam	ne: Villafranca		
Organization Name:	United Parcel Service Inc.		Title: D	istrict Environmental Coordinator		
Mailing Address: 445	5 7th Ave S					
City: Seattle	State	: WA	Zip Code	: 98108-1731		
Email: kvillafranca@u	ps.com					
Primary Phone: 206-	621-6286		Secondary Phone:	206-604-8845		
UBI Number: 5780376	680					
II. Facility Information						
Facility Name: Unit	ed Parcel Service Boeing	Field				
Street Address: 730	0 Perimeter Rd S					
City: SEATTLE	Co	unty: King		Zip Code: 98108-3816		
Latitude: 47.536407	Longitude:					
Size of Site:	10 acres	Date facility	began or will begin op	eration:		
	ndustry Classification Syst ies performed at your faci		and Standard Industria	al Classification (SIC) codes to		
NAICS/SIC	Code Desc	ription		Is Primary		

NAICS/SIC	Code	Description	Is Primary
SIC	4215	COURIER SERVICES, EXCEPT BY AIR	No
SIC	4513	AIR COURIER SERVICES	Yes
NAICS	492110	Couriers and Express Delivery Services	No
NAICS	481112	Scheduled Freight Air Transportation	Yes

Is this facility a Hazardous Waste Treatment, Storage, and Disposal (TSD) facility regulated under Chapter 17-303 WAC?

For Airport Facilities:

☐ At your airport, do you as a single permittee, or a combination of permitted facilities, use more than 100,000 gallons of glycol-based deicing chemicals and/or 100 tons or more of urea on an average annual basis?

- Does your airport have 1,000 or more annual jet departures ("non-propeller aircraft")?
- Does the facility discharge wastewater associated with airfield pavement deicing with stormwater?
 - □ Do you use urea-containing deicers?
- □ Does your airport meet the definition of a new source ("new airports")?
 - Does (will) the airport have 10,000 or more annual departures?
 - □ Is the airport located in a cold climate zone?

Please enter the URL that your Stormwater Pollution Prevention Plan (SWPPP) is located at: (optional)

Please attach a site map following the requirements of S3.B.1 of the 2020 ISGP.

III. Other Permits/Registration

None

IV. Discharge/Receiving Water

Conveyance System

If you discharge to a municipal stormwater system or other stormwater conveyance system (e.g. Kent stormwater drainage system, roadside ditch), identify the system by name or if unnamed, by other identifier (e.g., 145th street ditch)

King County International Airport drainage system

Location of Discharge into Receiving Water (Outfall)

Outfall Number	Outfall Description	Surface Waterbody Name	Outfall Type	Latitude	Longitude
1	OUTFALL 1	Puget Sound	Surface Water Body	47.53681564 33105	- 122.3187637 3291

Location of Discharge Location (Sampling/Monitoring Point)

Monitoring	Monitoring Point	Monitoring Point	Outfall	Active	Latitude /
Point Code	Name	Type	Number		Longitude
BM1	Benchmark Monitoring 1	Stormwater	1	Yes	47.535006 -122.302021

V. State Environmental Policy Act (SEPA)

This Notice of Intent (NOI) is incomplete and cannot be approved until the applicable SEPA requirements under Chapter 197-11 WAC are met.

SEPA and Public Notice sections apply only to facilities that began operations after January 1, 2020. If the facility began operations before this date, these sections do not need to be filled out.

VI. Public Notice

Public Notice applies to facilities that began operations on or after January 1, 2020.

You must publish a public notice at least **once** a week for **two** consecutive weeks with **seven days** between publications, in at least a **single** newspaper of general circulation in the county in which the facility is located. Ecology cannot grant permit coverage sooner than the end of the 30-day public comment period, which begins on the date of the **second** public notice.

Newspaper Name	First Public Notice Date	Second Public Notice Date		
VII. Certification of Permittees				

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

6/28/2019

Permittee Signature

Date

UPS – Boeing Field Gateway Site and Drainage Map Legend

Acronym List:

AMS: Aircraft Maintenance Storage AST: Aboveground Storage Tank CSP: Container Sort Platform DMP: Damaged Materials Program area ES: General/miscellaneous Equipment Staging area GH: Guardhouse GSE: Ground Support Equipment LU: External Loading/Unloading area (mobile equipment fueling can also occur in these areas) MDU: Mobile Docking Unit MS4: Municipal Separate Storm Sewer System PDC: Portable Distribution Center PG: Propylene Glycol anti-icing/deicing fluid PS: Pallet Storage area (significant storage) SD: Snow Dump area SMB: Covered Scrap Metal Bin

Discharge Point Identifiers:

 $\mathbf{OFx}: \mathbf{Outfall} - \mathbf{Discharge}$ associated with a distinctive point and the numerical designator

Monitoring Point Identifiers:

BM1: Location where representative stormwater samples will be collected for benchmark monitoring and the numerical designator. This location will also be used to collect representative samples for industry specific benchmark monitoring, if applicable. This location was determined to be the representative monitoring point using the methodology outlined in the Facility SWPPP.

Stormwater Control Structure Identifiers: CBx: Catch Basin with numerical designator

Conditionally Authorized Non-Stormwater Discharges Present at Facility: HVAC: Condensate from roof top HVACs discharges to roof drain system

FS: Fire Suppression system test discharge (potable water) CRW: Clean Rinse Water drag-out area (rinse water that drips of the outer surfaces of the equipment as it leaves a wash area)

Map Notes:

- 1. The underground storm sewer system piping is owned and operated by the Airport.
- GSE are maintained inside the building (7696 Perimeter Road South) with the exception of CSPs and Omni Dollies, which can't be easily moved. This equipment will be maintained in-place using the proper precautions for spill prevention and cleanup.
- 3. Aircraft Deicing: Performed only in Gates 6, 7 and 8. Deicing may not be performed at Gates 4, 5 or 9. Deicing can be performed at Gate 6 once the Airport has been notified and the storm sewer system piping from this area switched to the municipal sanitary sewer. Deicing can only be performed in Gates 7 and 8 after the three valves shown on the map are shut creating a containment system in this area. Once the aircraft has left Gate 7 or 8 after deicing, a contractor is called to rinse the ramp area into the containment system then evacuate and rinse the underground piping system. Once this procedure has been completed, the valves are opened again.
- 4. No GSE is washed inside the GSE Maintenance Building (7696 Perimeter Road South). GSE are washed outside in a temporary wash area established in the southeast corner of the airfield property operated by UPS, adjacent to the Package Car Staging Area and south airfield gate onto the property (refer to the Site and Drainage Map for the exact location). The pavement sweeping contractor, Linescape, washes equipment for GSE Maintenance upon request. Linescape places plastic sheeting, tarps, and temporary curbing upon the airfield pavement for the temporary wash area. A vactor pumps all washwater needed for washing activities as well as collects all used washwater to haul away for proper disposal. All washwater is contained and collected for off-site disposal; none is discharged or disposed by way of an Airfield property catch basin.
- 5. All Facility surfaces are paved unless otherwise indicated.
- 6. Metal surfaces may potentially be a source of pollutants. Metal surfaces are exposed to stormwater at numerous locations throughout the Facility that can be inferred from this site map. Significant metal sources may include, but not be limited to: building roofs and walls (MDU, PDC), building gutters and downspouts, chain-link fences, container racks and most GSE (e.g., K Loaders, container sort platforms (CSPs), belt loaders, etc.). Most of the metal surfaces are painted, with the exception of the chain link fencing and the MDU and PDC awning.
- CB28: Removed CB28 from map on 01/5/11. When equipment was moved from the area where CB28 was shown on previous map versions, no catch basin was found in this area.

	Hangar doors (equipment entrance/exit)
	Concrete curbing
	Fence line (chain link)
	Jersey barriers (concrete or plastic)
	Awning (metal)
	Grass/vegetated area
	GSE general use/storage area: approximate GSE maintenance (e.g., unscheduled maintenance, emergency repair, fluid top- offs), storage prior to maintenance and fueling areas. Loading/unloading may occur in some of these areas.
•••••	Approximate UPS industrial activity area boundary
	PG Type IV totes (250-gal tote; 6-8 on-site; covered and inside secondary containment)
ß	PG Type I AST (6000-gal capacity) under fabric canopy, inside secondary containment
	Deicing truck summer storage area (3 trucks)
Ì	Deicing truck winter storage area (3 trucks)
	Stormwater flow direction
	Underground separate storm sewer pipe – unknown material Underground separate storm sewer pipe - metal Underground separate storm sewer pipe – concrete Underground separate storm sewer pipe – unknown pipe discharge location
E	Storm sewer drain inlets
>	Storm sewer shut-off valve
	Sanitary sewer drain inlets

· - - → Underground sanitary sewer pipe - unknown material type Temporary Equipment Wash Area (for GSE)

Monitoring Program Information:

Monitoring Program	Applicability to Facility and Parameters if Applicable	Monitoring Points
Benchmark Monitoring	Turbidity, Zinc, Copper, Oil Sheen, pH	BM1
Applicable Industry Specific Benchmark Monitoring	ISGP Condition S5.B Table 3, Transportation Industry: Petroleum Hydrocarbons (Diesel Fraction)	BM1
Not Applicable Industry Specific Benchmark Monitoring	ISGP Condition S5.B Table 3, Air Transportation Industry: Total Ammonia (as N); BOD ₅ ; COD; Nitrate/Nitrite, as N; Petroleum Hydrocarbons (Diesel Fraction) ISGP Condition S5.B Table 5, Effluent Limit Applicable to Airports Subject to 40 CFR Part 449: Total Ammonia (as N)	BM1
Impaired Waters	Total Suspended Solids (TSS)	BM1

Table Notes:

- Benchmark Monitoring: A single representative discharge point has been chosen for benchmark monitoring using the methodology outlined in the Facility SWPPP. Samples for benchmark monitoring will only be collected at the location marked BM1. The benchmark monitoring results at BM1 represent the discharge quality at all other discharge points at the Facility. Benchmark monitoring can be ceased on a parameter-by-parameter basis when a consistent attainment waiver has been achieved for a specific parameter.
- Applicable Industry Specific Benchmark Monitoring: The additional benchmark parameters listed in Permit Condition S5.B Table 3 (Petroleum Hydrocarbons [Diesel Fraction]) for Transportation facilities (40xx – 44xx, except 4221-25) are applicable to this Facility.
- 3) Not Applicable Industry Specific Benchmark Monitoring: The additional benchmark parameters listed in Permit Condition 5S.B Table 3 (Ammonia, BOD₅, COD, Nitrate/Nitrite as N, and Petroleum Hydrocarbons [Diesel Fraction]) for Air Transportation facilities (45xx) and Permit Condition S5.B Table 5 (Total Ammonia [as N]) for the Effluent Limit Applicable to Airports Subject to 40 CFR Part 449 do not apply to this Facility. The rationale is that all of the permitted facilities combined at the Airport do not use more than the threshold of 100,000 gallons of glycol-based deicing chemicals and/or 100 tons of urea on an average annual basis.
- This Facility ultimately discharges to a 303(d)-listed water (Duwamish Waterway) and is required to sample for TSS on a quarterly basis.
- 5) If a monitoring point is not located at the discharge point (e.g., discharge point is inaccessible, unsafe conditions, flow commingles with MS4 flow), the closest viable upstream location was chosen.
- Monitoring is performed quarterly. Refer to the SWPPP and SWPPP Form 4 for additional monitoring information.

Geotechnical Engineering Report

United Parcel Service Proposed Parcel Distribution Facility 7575 Perimeter Road South Seattle, Washington December 20, 2018 Terracon Project No. 81185115

Prepared for:

United Parcel Service Omaha, Nebraska

Prepared by: Terracon Consultants, Inc.

Mountlake Terrace, Washington

December 20, 2018

United Parcel Service 2535 Edward Babe Gomez Avenue Omaha, Nebraska 68107

- Attn: Mr. Jim Reaves P: (402) 319-4155 E: jreaves@ups.com
- Re: Geotechnical Engineering Report Proposed Parcel Distribution Facility 7575 Perimeter Road South Seattle, Washington Terracon Project No. 81185115

Dear Mr. Reaves:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. These services were performed in accordance with the Master Services Agreement (MSA) between United Parcel Service, Inc. (UPS) and Terracon, dated December 17, 2014, and under Work Order No. 001 for this site and project, dated July 30, 2018. This geotechnical engineering report presents the results of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slabs, vehicle and parcel handling equipment pavements, and aircraft apron hard-stands for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, **Terracon Consultants, Inc.**

Chad McMullen, P.E. Geotechnical Project Engineer Dennis R. Stettler, P.E. Senior Engineering Consultant

Terracon Consultants, Inc. 21905 64th Ave W Suite 100 Mountlake Terrace, Washington 98043 P [425] 771 3304 F [425] 771 3549 terracon.com

				Page
			ARY	
1.0	-		ION	
2.0				
	2.1	•	ct Description	
	2.1		ocation and Description	
3.0				
	3.1		eology	
	3.2		al Subsurface Profile	
	3.3		ndwater	
4.0			DATIONS FOR DESIGN AND CONSTRUCTION	
	4.1		chnical Considerations	
	4.2	Earth	work	
		4.2.1	Site Preparation	
		4.2.2	Materials Types	
		4.2.3	Compaction Requirements	
		4.2.4	Utility Trench Backfilling	9
		4.2.5	Grading and Drainage	10
		4.2.6	Construction Considerations	10
		4.2.7	Wet Weather Earthwork	11
	4.3	Found	dations	12
		4.3.1	Ground Improvement - Aggregate Piers	12
		4.3.2	Spread Footing Design Recommendations	13
		4.3.3	Construction Considerations	14
	4.4	Seism	nic Considerations	15
		4.4.1	Liquefaction	16
		4.4.2	Surface Rupture	16
	4.5	Floor	Slabs	16
		4.5.1	Floor Slab Construction Considerations	17
	4.6	Airfie	Id Pavement Analysis and Design	18
		4.6.1	General Aircraft Pavement Design Considerations	18
		4.6.2	Airplane Design Loading	18
		4.6.3	Design Subgrade Support	19
		4.6.4	Pavement Thickness Design Recommendations - Airfields	19
		4.6.5	Alternative Pavements Designs Airfields	20
		4.6.5	Joint Design	21
		4.6.6	Pavement Materials and Construction Considerations	22
	4.7	"Grou	Ind-Side" Pavement Analysis and Design	23
		4.7.1	Traffic Design Loading	
		4.7.2	Design Subgrade Support	
		4.7.3	Pavement Thickness Design	
	Ter	racon Cor	nsultants, Inc. 21905 64th Ave W Suite 100 Mountlake Terrace, Washington 98043	

P [425] 771 3304 F [425] 771 3549 terracon.com

6

TABLE OF CONTENTS - continued

	4.7.4 Recommendations for Design and Construction	26
5.0	GENERAL COMMENTS	27

Terracon Consultants, Inc. 21905 64th Ave W Suite 100 Mountlake Terrace, Washington 98043 P [425] 771 3304 F [425] 771 3549 terracon.com

APPENDIX A – FIELD EXPLORATION

Exhibit A-1	Site Location Map
Exhibit A-2	Site and Exploration Plan
Exhibit A-3	Field Exploration Description
Exhibits A-4 to A-18	Boring Logs B-1 to B-15

APPENDIX B – LABORATORY TESTING

Exhibit B-1	Laboratory Testing
Exhibit B-2	Atterberg Limit Determinations
Exhibit B-3 to B-5	Grain Size Determinations
Exhibits B-6 to B-8	Moisture-Density Relationships
Exhibits B-9 to B-11	California Bearing Ratios

APPENDIX C – SUPPORTING DOCUMENTS

Exhibit C-1	General Notes
Exhibit C-2	Unified Soil Classification System
Exhibit C-3	Seismic Design Summary Report

EXECUTIVE SUMMARY

A geotechnical exploration program has been performed for the proposed Parcel Distribution Facility located at 7575 Perimeter Road South in Seattle, Washington. This site is within the King County International Airport along Taxiway "A" and east of Runway 13L-31R. Terracon's geotechnical scope of services included the advancement of fifteen (15) exploratory borings to approximate depths of between 16½ and 51½ feet below existing site grades, including through existing asphalt and concrete pavements. Based on our current understanding of the proposed development and the results of our subsurface investigation the site appears suitable for the proposed development. The following geotechnical considerations were identified:

- Liquefiable soils were encountered below the water table at all boring locations, including borings advanced to greater depth; a non-liquefiable bearing layer was not encountered within the maximum explored depth, including maximum depths of 51½ feet at three boring locations. Measures to mitigate risk of damage associated with excessive total and differential settlements as a result of liquefaction should be anticipated.
- Based on ASCE 7 table 20.3-1, the seismic site classification for this site is F. However, for the purpose of building design, the ground motions determined according to Site Class D may be used provided that the fundamental period of the structure is less than 0.5 seconds.
- The proposed parcel sorting and distribution structure may be supported on conventional spread footings if used in conjunction with a ground improvement system to mitigate settlement of liquefaction-susceptible alluvial soils. These soils include primarily very loose to loose saturated sands.
- Tie-down ground anchors may be necessary to resist uplift loads, particularly where seismic or wind effects must be resisted; these anchors would need to be installed into the improved ground mass, or else to an as-yet unidentified bearing layer. Anchors may also be necessary to resist toppling of fixed parcel handling equipment during an earthquake event.
- Assuming proper site preparation and the implementation of any necessary subgrade mitigation measures, total and differential building settlement should be within anticipated client/owner specifications.
- Floor slabs and aircraft apron pavement should be supported upon improved ground, or else other slab and pavement support measures should be undertaken.

Proposed Parcel Handling Facility
Boeing Field
Seattle, Washington December 20, 2018
Terracon Project No. 81185115

 Utility connections should be flexible to allow for expected post-liquefaction displacements expected at the site and neighboring property

Close monitoring of the construction operations discussed herein will be critical in achieving the design subgrade support. We therefore recommend that Terracon be retained to monitor this portion of the work.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **GENERAL COMMENTS** should be read for an understanding of the report limitations.

GEOTECHNICAL ENGINEERING REPORT PROPOSED PARCEL DISTRIBUTION CENTER 7575 PERIMETER ROAD SOUTH SEATTLE, WASHINGTON Terracon Project No. 81185115 December 20, 2018

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering services performed for the proposed Parcel Distribution Facility located at 7575 Perimeter Road South in Seattle, Washington. This site is within the King County International Airport along Taxiway "A" and east of Runway 13L-31R. Our geotechnical engineering scope of services for this project included the advancement of fifteen (15) soil test borings to depths ranging between approximately 16½ and 51½ feet below existing site grades (bgs). The purpose of these services is to provide information and geotechnical engineering recommendations pertaining to:

- subsurface soil conditions
- earthwork and grading
- fill selection and placement
- floor slab and pavement design
- ground improvement

- groundwater conditions
- foundation design
- buried utilities
- construction considerations
- seismic considerations

2.0 PROJECT INFORMATION

2.1. Project Description

The project consists of a parcel receiving and sorting facility that includes:

- Parcel loading/unloading from cargo aircraft along a "Main" ramp
- Cargo cart, tractor, and related parcel handling equipment staging areas, travelways, and a cart scale house
- A cargo cart receiving bay and a parcel sorting floor within a distribution building with a footprint of about 420 feet x 110 feet, plus a mezzanine floor with office space
- Semi-truck loading/receiving bays
- Parcel van loading/receiving bays
- Parking and staging areas for semi-trailers and parcel vans
- Two employee parking areas with a combined total of 195 small vehicle parking stalls.

These project elements are described in greater detail in the following table:

Geotechnical Engineering Report Proposed Parcel Handling Facility ■ Boeing Field ■ Seattle, Washington December 20, 2018 ■ Terracon Project No. 81185115

ITEM	DESCRIPTION	
Site layout	Refer to the Site Location Map and Boring Location Diagram (Exhibits A-1 and A-2 in Appendix A)	
Structures	A sorting building with a 48,325 square-foot ground floor, plus additional square footage on a mezzanine level above the equipment and parcel-sorting floor.	
Aircraft Cargo and Parking Areas	 Aircraft Aprons: "Ramp" Area will have five aircraft stalls, each of which can accommodate a range of cargo aircraft, including 757-200, 767-300, A-300, and MD-11. Heavy aircraft stalls will include hardstand zones for prolonged static loads from the aircraft landing gear, plus wheel loads from cargo loaders, cargo carts, tractors, and related equipment. 	
Building construction, (Assumed)	Details not provided, but understood to be steel frame structure with metal cladding, supported on isolated spread footings and strip footings. The mezzanine office floor would presumably be suspended between structure framing, above the sorting floor	
Building Floor (Assumed)	 Concrete slab-on-grade Assumed to be at or within 12 inches above existing site grades. Uniform slab load assumed to be 150 psf Cargo cart bay will support cargo tractor and cart wheel loads 	
Semi-Trailer and Parcel Van Staging	Located primarily to the east and northeast of the parcel sorting building; presumed to consist of asphalt paving	
Yearly Aircraft Arrivals (provided by UPS)	Each of five hardstands on the Main Ramp would experience 730 arrivals/departures per year (2 per day), which could include aircraft as large and heavy as the MD-11	
Truck and Parcel Van Traffic (provided by UPS)	Design equivalent axle loads (EAL's): Truck and Parcel Van Areas 1.04 million over 30 years Employee Parking 797 over 30 years	

2.1. Site Location and Description

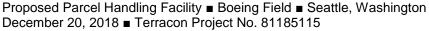
ITEM	ITEM DESCRIPTION	
Location	7575 Perimeter Road South, Seattle, Washington	
Existing Improvements and Uses	Current improvements consist of a patchwork of asphalt and concrete pavement of various thicknesses. The site is currently used for aircraft loading/unloading operations and for staging and storage of cargo handling equipment. Equipment storage sheds are also located on-site.	

Existing topography

Generally flat and level.

3.0 SUBSURFACE CONDITIONS

3.1. Site Geology


The project site is situated within the extent of the Duwamish River floodplain. The USGS publication *Geologic Map of Seattle – A Progress Report* (2005) was used to reference mapped geologic conditions at the project site. The site location is mapped as units Q_{al} and Q_{yal} described as Holocene-age "alluvial" and "young alluvial" deposits (respectively) consisting of silt, sand, gravel, and cobbles, and locally containing accumulations of peat. These deposits are typically very loose to loose. Although usually not mapped, man-made fill and near-surface graded soils are typically present in previously built environments. The subsurface conditions encountered in the boring explorations were generally consistent with these designated map units, and are overlain by fill, debris, and other evidence of previous grading activities.

The history of the development of the area at and surrounding Boeing Field is also consistent with the findings of this geotechnical investigation. Prior to development, the Duwamish River valley consisted of the river flood plain and tidally influenced marshes. Meander channels of the former path of the Duwamish River and associated side channels are known to exist throughout the Boeing Field area. Over many years between about 1890 and 1930, the area was filled primarily with sediments originating from sluicing from the surrounding hillsides as a part of early Seattle regrading activities and later by dredging and straightening of the Duwamish River in its present channel location. Development of the airport and improvements and expansion over the years has resulted in a long history of fill placement at different times and with a variety of soil types.

3.2. Typical Subsurface Profile

Presented below is a simplified, generalized soil profile that was generated using the information obtained during the subsurface investigation:

Geotechnical Engineering Report

Description	Approximate Depth to Bottom of Stratum Below Existing Ground Surface (typ.)	Material Encountered	Consistency/Density (typ.)
Stratum 1	2 to 7 feet ⁽¹⁾	Asphalt and Portland cement concrete pavements over existing Fill – fine to medium sand with silt to silty, with variable amounts of debris: bricks, concrete rubble, other waste.	Loose to Medium Dense
Stratum 2	Undetermined ⁽²⁾ but greater than 50 feet	Alluvial deposits – generally fine to medium sand, variable amount of silt, though typically between 3% to 8% silt. At greater depth, includes lenses (up to several feet thick) of silt and sandy silt	Very Loose to Loose

 At Boring B-10, loose gravel with an abundance of bricks and clay pipe debris was encountered to a depth of 18 feet

2. Each exploration was terminated within the described stratum. Extent of deposit is unknown.

Specific conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs included in Appendix A of this report.

Laboratory tests were conducted on select soil samples to obtain index properties for analysis purposes. Moisture content, grain size analysis, Atterberg limits, moisture/density determinations, and California Bearing Ratio tests were performed as part of this study. Test results are presented in Appendix B.

3.3. Groundwater

Groundwater levels were observed and recorded while drilling but do not necessarily reflect steady state conditions at the borehole location. Groundwater was encountered at a depth of between 8 and 11 feet at each of the exploration locations.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. In addition, perched water can develop over low permeability soil strata. Therefore, groundwater levels during construction

or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project. Fluctuations in groundwater levels can be measured by implementation of a groundwater monitoring plan. Such a plan would include installation of groundwater monitoring wells, and periodic measurement of groundwater levels over a sufficient period of time.

3.4. Environmental Considerations

The scope of Terracon's geotechnical services did not include the identification or evaluation of environmental contaminants in the soil or groundwater beneath the site. The long use of the site and surrounding sites as aviation support facilities means that petroleum products and solvents have been used and in some cases have spilled, leaked, or been discharged into the soil and groundwater beneath the area. Previous environmental investigations have been conducted on nearby sites and have disclosed soil and groundwater contamination.

The potential presence of environmental contaminants in soil and groundwater at the UPS facility needs to be considered in developing the construction specifications for the project. The potential presence of environmental contaminants in the soil and groundwater could dictate specific construction protocols related to worker health and safety, as well as protocols related to excavation and appropriate disposal of soil or groundwater containing contaminants. Terracon is available to evaluate and address these issues but such services are not included in our present scope.

4.0 **RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION**

4.1. Geotechnical Considerations

Existing fill soils were present at each exploration location conducted as part of our study and are anticipated to exist, to some extent, over the entire footprint of the proposed development. Due to the uncertainty associated with undocumented fills, there is an inherent risk for the owner that compressible fill or unsuitable material may exist within or buried by the fill and will go undetected. This risk of unforeseen conditions cannot be eliminated without completely removing the existing fill. However, ground improvement techniques, as recommended subsequently in this report, can reduce the potential detrimental effects of poor performance of existing fill.

The native alluvial soils underlying the existing fill consist primarily of saturated, loose to very loose sand with fines to a trace of fines. Where present, silty lenses within the alluvial soils are non-plastic. Western Washington is considered to be an active seismic zone with earthquakes potentially arising from a variety of sources including shallow earthquakes, deep crustal earthquakes, and interplate subduction zone earthquakes. In addition, the site is in close proximity to the Seattle Fault Zone. As such, the site is subject to significant ground shaking during an

earthquake and the site subsurface is expected to be highly susceptible to liquefaction during a design-level earthquake, and also susceptible during earthquakes of lesser intensity. Structures and pavements founded above such liquefiable soils can be expected to undergo extreme and structurally unacceptable settlements during and up to several days or weeks following a large earthquake.

Boeing Field was hard hit by the Nisqually Earthquake that occurred on February 28, 2001. Although the earthquake epicenter was about 58 km southwest of Seattle, the earthquake had a moment magnitude of 6.8 and resulted in significant liquefaction at Boeing Field. Numerous sand boils developed at the ground surface and cracks were noted in airport runways and taxiways. Ground settlement of up to 9 inches was reported at Boeing Field and runway pavement cracking up to 1000 feet long with a horizontal crack offset of ½ to 1 inch was observed. The runway and taxiways were closed or only open to limited operations for several weeks as around-the-clock-repairs were made to the runway and taxiways.

Without any ground improvement, settlements on the order of 12 to 21 inches are estimated to occur as a result of liquefaction-induced settlement resulting from a major earthquake. Footings atop such unimproved soils would experience similar settlements; deep foundations extending through these soils would experience strength loss during shaking followed by accumulation of significant downdrag loads and pile settlement.

A non-liquefiable bearing layer was not encountered during our explorations and – based upon our previous observations in the area and existing geologic information – not likely to be present within a reasonable depth for the purpose of deep foundation design. Based on the geotechnical engineering analyses, subsurface exploration and laboratory test program conducted as part of this study, we recommend that the proposed parcel sorting structure and other occupiable structures be supported on conventional spread footings following soil densification by means of aggregate pier ground improvement techniques. Such subgrade soil improvement is achieved by constructing compacted aggregate columns within the existing subsurface soils to both increase the density of the surrounding native soils and to act as a groundwater relief pathway in order to reduce the buildup of groundwater pressure during earthquake shaking; the build-up of groundwater pressure is a primary contributor in the occurrence of liquefaction.

Liquefaction would also negatively affect pavements, including those in aircraft traffic and in truck traffic areas. Ground improvement in these areas could be employed to reduce pavement settlement and damages due to liquefaction, allowing a more rapid resumption in operations following an earthquake. However, it should be noted that areas of Boeing Field outside of these UPS tenant improvements may be substantially impacted following an earthquake, and airfield operations may be suspended pending emergency repair of impacted areas.

Geotechnical engineering recommendations for foundation systems and other earth connected phases of the project are discussed in detail in the following sections. References to ASTM and

WSDOT specifications refer to the current version of the American Society of Testing and Materials and the 2018 Washington State Department of Transportation *Standards and Specifications for Road, Bridge, and Municipal Construction*, publication number M 41-10, respectively. References to FAA specifications refer to the current version of the Federal Aviation Administration (FAA) Advisory Circular (AC) 150/5320-6F.

4.2. Earthwork

The following presents recommendations for site preparation, excavation, subgrade preparation and placement of engineered fills on the project. The recommendations presented for design and construction of earth supported elements including foundations, slabs and pavements are contingent upon adherence to the prescribed measures outlined in this section.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during construction efforts.

4.2.1 Site Preparation

We anticipate construction will be initiated by demolishing existing improvements including primarily the full-depth removal of all existing pavements, foundations, and building slabs within the project area. Removal of these existing structures is necessary to allow facilitate ground improvement and to provide for uniform subgrade preparation in advance of foundation, floor slab, and pavement support. Removal depth of these existing features varies considerably across the site, as indicated in our explorations.

Due to the site's historical filling activities, unsuitable subgrade soils such as overly wet, compressible, or organic-rich soils may be exposed during demolition of the existing site improvements. Unsuitable soils may also be encountered in landscape islands and other undeveloped areas. Wood, concrete, and clay brick or clay pipe construction debris may be present in localized areas. Where encountered, these soils should be removed from the site. A Terracon representative should be on-site to document the presence of these unsuitable soils and to provide timely recommendations for overexcavation and backfilling.

After stripping, proofrolling should be performed with heavy rubber tire construction equipment such as fully loaded tandem-axle dump truck. A geotechnical engineer or his representative should observe proofrolling to aid in locating unstable subgrade materials. Proofrolling should be performed after a suitable period of dry weather to avoid degrading an otherwise acceptable subgrade and to reduce the amount of undercutting / remedial work required. Unstable materials located should be stabilized as recommended by the engineer based on conditions observed during construction. Undercut and replacement and densification in place are typical remediation

methods. Where ground improvement will be used, a second iteration of subgrade preparation and confirmation via proof-rolling will likely be necessary.

4.2.2 Material Types

We expect that the majority of fill – where fill is used on the project – will be used for support of airfield and truck/vehicle pavements, or the support of the slab-on-grade floor of the parcel distribution building. Fill will also be necessary for trench backfill during the construction of buried utilities, and for backfill of over-excavated areas encountered during site preparation. Due to the high fines content of some of the near-surface soils, and the variable make-up of fill owing to the site history, we do not expect that soils generated during site grading will be acceptable for reuse in the support of site pavements or slabs-on-grade; their suitability for backfilling of utilities is expected to be limited. Instead, pavements and slabs should be supported by imported granular fill. Outside of areas where FAA pavements specifications are applicable, we recommend that pavements and concrete slabs-on-grade be supported by Crushed Surfacing; utility trenches can be backfilled with Select Borrow or Gravel Borrow. These materials are described below:

Fill Type	Recommended Materials ^{1, 2}	Acceptable Location for Placement
	9-03.9(3) Crushed Surfacing Top Course ¹	Beneath and adjacent to
Crushed	9-03.9(3) Crushed Surfacing Base Course ¹	pavements outside of aircraft travelways, and slab
Surfacing		subgrades
	9-03.12(1)A Gravel Backfill for Foundations Class A ¹	Foundation backfill
Borrow Fill	Section 9-03.14(1) Gravel Borrow ¹	Trench backfill outside of
	Section 9-03.14(2) Select Borrow ¹	aircraft travelways

1. WSDOT Standard Specifications

2. Crushed Surfacing and Borrow Fill should consist of approved materials free of organic matter and debris. Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the Geotechnical Engineer for evaluation prior to use on this site.

The suitability of soils used for structural fill depends primarily on their grain-size distribution and moisture content when they are placed. As the fines content (that soil fraction passing the U.S. No. 200 Sieve) increases, soils become more sensitive to small deviations in moisture content. Soils containing more than about 5 percent fines (by weight) cannot be consistently compacted to a firm, unyielding condition when the moisture content is more than 2 percentage points above or below optimum. Optimum moisture content is the moisture at which the maximum dry density for the material is achieved in the laboratory following ASTM procedures.

4.2.3 Compaction Requirements

Crushed Surfacing and Borrow Fill should meet the following compaction requirements.

Item	Crushed Surfacing	Borrow Fill ²		
Maximum Lift Thickness	8 inches or less in loose thickness when heavy, self-propelled compaction equipment is used	Same as Crushed Surfacing		
	<i>4 to 6 inches in loose thickness when hand- guided equipment (i.e. jumping jack or plate compactor) is used</i>			
Minimum Compaction Requirements ¹	95% of max. below pavements and floor slabs	92% of maximum dry density, except 95% when within 2 feet of pavement of slab subgrade.		
Water Content Range ¹	Typically within 2% of optimum	As required to achieve min. compaction requirements		
 Maximum density and optimum water content as determined by the modified Proctor test (ASTM D 1557). Refer to the following section for use of Borrow Fill as utility trench backfill. 				

Structural fill materials should be placed in horizontal lifts not exceeding about 8 inches in loose thickness. We recommend that each lift then be thoroughly compacted with a mechanical compactor to a uniform density of at least 95 percent, based on the modified Proctor test (ASTM D 1557). Where light compaction equipment is used, as is typical within a few feet of retaining walls and in utility trenches, the lift thickness may need to be reduced to achieve the desired degree of compaction. Soils removed which will be used as structural fill should be protected by plastic sheeting to aid in preventing an increase in moisture content due to rain and other factors. Moisture contents at the time of compaction should be within ± 2 percent of the optimum moisture content.

4.2.4 Utility Trench Backfilling

All trenches should be wide enough to allow for compaction around the haunches of the pipe, or material such as pea gravel (provided this is allowed by the pipe manufacturer) should be used below the spring line of the pipes to eliminate the need for mechanical compaction in this portion of the trenches. If water is encountered in the excavations, it should be removed prior to fill placement.

Placement and compaction of recommended materials for utility trench backfill should be in accordance with the recommendations presented above. In our opinion, the initial lift thickness should not exceed one foot unless recommended by the manufacturer to protect utilities from damage by compacting equipment. Light, hand-operated compaction equipment in conjunction with thinner fill lift thicknesses may be utilized on backfill placed above utilities if damage resulting from heavier compaction equipment is of concern.

Flexible connections for utilities that pass through building foundations are recommended to reduce potential stress associated with differential settlement that may occur between the building foundation and the improvements located outside of the building footprint.

4.2.5 Grading and Drainage

Adequate positive drainage should be provided during construction and maintained throughout the life of the development to prevent an increase in moisture content of the foundation, pavement and backfill materials. Surface water drainage should be controlled during and after construction.

Gutters and downspouts that drain water a minimum of 10 feet beyond the footprint of the proposed structures are recommended. This can be accomplished through the use of splashblocks, downspout extensions, and flexible pipes that are designed to attach to the end of the downspout. Flexible pipe should only be used if it is daylighted in such a manner that it gravitydrains collected water. Splash-blocks should also be considered below hose bibs and water spigots.

4.2.6 Construction Considerations

It is anticipated that excavations for the proposed construction can be accomplished with conventional earthmoving equipment.

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to construction of floor slabs and pavements. If practical, construction traffic over the completed subgrade should be limited to prevent unnecessary disturbances. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become frozen, desiccated, saturated, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted prior to floor slab and pavement construction under the observation of Terracon.

Surface water should not be allowed to pond on the site and soak into the soil during construction. Construction staging should provide drainage of surface water and precipitation away from the building and pavement areas. Any water that collects over or adjacent to construction areas should be promptly removed, along with any softened or disturbed soils. Surface water control in the form of sloping surfaces, drainage ditches and trenches, and sump pits and pumps will be important to avoid ponding and associated delays due to precipitation and seepage.

Groundwater was encountered in all explorations at depths ranging from about 8 to 11 feet; however, groundwater may be encountered at shallower depths during the wetter part of the year.

Deeper excavations, where necessary, should anticipate the potential for encountering groundwater. Where groundwater is encountered during construction operations, some form of temporary or permanent dewatering is likely to be necessary. Conventional dewatering methods, such as pumping from sump excavations, may be adequate for temporary removal for perched groundwater in isolated pockets; however well points would likely be required for significant groundwater flow, or where excavations penetrate groundwater in the loose cohesionless sands encountered below the layer of exiting fill.

As mentioned previously in this report, the soil and groundwater beneath the site could potentially be contaminated and could require special procedures and protocols for handling, disposal, and worker health and safety.

All excavations should be sloped or braced as required by OSHA regulations to provide stability and safe working conditions. Temporary excavations will probably be required during grading operations. The grading contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. All excavations should comply with applicable local, state and federal safety regulations, including the current Occupational Health and Safety Administration (OSHA) Excavation and Trench Safety Standards.

Construction site safety is the sole responsibility of the contractor who controls the means, methods and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean that Terracon is assuming any responsibility for construction site safety or the contractor's activities; such responsibility shall neither be implied or inferred.

4.2.7 Wet Weather Earthwork

The near-surface soils have a typically moderate to high fines content based on our visual observations and lab testing and are considered moisture sensitive. The soils will exhibit moderate erosion potential and may be transported by running water. Silt fences and other best-management practices will be necessary to control erosion and sediment transport during construction. When subjected to additional moisture plus construction traffic, the native subgrade can be expected to deteriorate rapidly and require corrective action prior to pavement or floor slab construction. To reduce the potential for deterioration of the subgrade during wet weather. We recommend the following "best practices":

- Perform earthwork in small sections
- Limit construction traffic over unprotected soil
- Slope excavations and subgrade surface to promote drainage and prevent ponding

- Sealing exposed surfaces with a smooth-drum roller or rubber-tire roller at end of each work shift.
- Limit the size and type of construction equipment
- Provide gravel "working mats" over areas of prepared subgrade
- Remove wet surficial soil prior to placement of fill each day
- Provide upgradient perimeter ditches or low earthen berms to direct runoff away from prepared subgrade areas and into sump areas.

If inclement weather or in situ soil moisture content prevents the use of on-site material as structural fill, we recommend importing granular fill containing less than 5 percent by weight passing the U.S. No. 200 sieve, based on the fraction passing the U.S. No. 4 sieve.

Stockpiled soils should be protected with polyethylene sheeting anchored to withstand local wind conditions and preservation of the soil's moisture content.

4.3. Foundations

In our opinion, the proposed building and other structures can be supported by a conventional spread footing foundation system bearing on sufficiently densified subgrade soils using an approved ground improvement method. The purpose of the ground improvement would be to create a "raft" of densified, non-liquefied sand upon which footings could support the parcel distribution building and related structures without incurring excessive settlements during and following an earthquake. Where isolated footings will be used, we recommend that grade beams be used to structurally tie those footings to the rest of the building foundation system.

The use of deep foundations – such as drilled shafts or driven steel pipe piles -- would require additional subsurface exploration to determine the depth of a suitable bearing layer. Based upon our understanding of the site geology and our experience with nearby projects, a suitable bearing layer is unlikely to be present within a depth interval that would be cost-effective for the use of deep foundations.

The following subsections include a discussion of the recommended ground improvement method and the foundation design parameters that may be applied for the system described.

4.3.1 Ground Improvement - Aggregate Piers

Ground improvement utilizing aggregate piers is a method that offers a practical and effective method to densify loose saturated sand, which is necessary to reduce their susceptibility to liquefaction during and following a large earthquake. Aggregate piers are columns of crushed stone that, when configured in groups, can provide a significant increase in the overall density of and stiffness of the surrounding soil mass. Furthermore, the close spacing of these columns of

crushed stone also allows for the ready dissipation of groundwater pressure build-up during an earthquake; it is the build-up of groundwater pressure within sands that is a principal culprit leading to liquefaction. The installation method can vary depending on the nature of the soils to be improved, but a typical procedure consists of advancing a downhole vibrating mandrel from the working pad surface to the planned toe elevation of the pier and compacting successive lifts of crushed stone until the desired top of pier elevation is reached. The top of pier is commonly constructed to just above the finished subgrade elevation or to the existing surface of the working pad and can later be excavated to the base of footing elevation during final grading efforts.

It should be noted that the goal of ground improvement would not be to eliminate liquefaction at all depths, nor everywhere on-site. Rather, the design goal would be to create a block or "raft" of non-liquefied sand which is capable of resisting foundation and floor slab loads without excessive settlements, and for that raft to be sufficiently competent to remain intact above underlying layers of liquefied soils. Based on the conditions encountered at our exploration locations, the required toe depth of the aggregate piers would be on the order of 30 to 35 feet below current site grades. Relative spacing of the aggregate piers is typically specified by a specialty contractor that accounts for the anticipated building loads in order to determine the level of improvement deemed necessary to sustain the required loads; however, a center-to-center spacing on the order of 8 to 10 feet appears to be appropriate for this site. Aggregate piers beneath spread footing foundations are generally arranged in tighter configurations than beneath areas to receive slab-on-grade floors, or pavements. As a rule of thumb we recommend that aggregate piers extend approximately 1 pier-spacing beyond all building limits for adequate support of the structures.

The surficial condition of the existing fill on-site varies considerably and may require pre-drilling in order to construct aggregate piers at some locations.

4.3.2 Spread Footing Design Recommendations

The following design summary table applies to conventional spread footings supported by an improved subgrade using the recommended aggregate piers described above. The design bearing pressures and differential settlement estimates are preliminary and should be reviewed by the ground improvement contractor. If the ground improvement contractor recommends a system that warrants greater design pressures Terracon should be retained for additional review.

FOR SPREAD FOOTINGS BEARING ON AGGREGATE PIER IMPROVED SUBGRADE						
Description Column Wall						
Net allowable bearing pressure ¹	3,000 psf	3,000 psf				
Minimum dimensions	24 inches	18 inches				
Minimum embedment below finished grade for frost protection ²	18 inches	18 inches				
Approximate total static settlement ³	<1 inch	<1 inch				

Geotechnical Engineering Report

Proposed Parcel Handling Facility
Boeing Field
Seattle, Washington December 20, 2018
Terracon Project No. 81185115

Estimated differential settlement ³	<1/2 inch between columns	<1/2 inch over 40 feet
Post-liquefaction differential settlement ⁴	<2 inches	<2 inches
Allowable coefficient of sliding friction	0.	35

1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. Assumes any unsuitable fill or soft soils, if encountered, will be undercut and replaced with engineered fill.

2. And to reduce the effects of seasonal moisture variations in the subgrade soils. For perimeter footing and footings beneath unheated areas.

3. The foundation settlement will depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the footings, the thickness of compacted fill, and the quality of the earthwork operations.

4. Post-liquefaction differential settlement is measured over a distance 40 feet. For life-safety reasons, structural design of the building implies that building collapse is prevented; however, significant repairs may be necessary to resume full operation within the building following a large earthquake.

The allowable foundation bearing pressures apply to dead loads plus design live load conditions. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions. The weight of the foundation concrete below grade may be neglected in dead load computations. Interior footings should bear a minimum of 12 inches below finished grade. Finished grade is the lowest adjacent grade for perimeter footings and floor level for interior footings.

Footings, foundations, and masonry walls should be reinforced as necessary to reduce the potential for distress caused by differential foundation movement. The use of joints at openings or other discontinuities in masonry walls is recommended.

Foundation excavations should be observed by the geotechnical engineer. If the soil conditions encountered differ from those presented in this report, supplemental recommendations will be required.

4.3.3 Construction Considerations

If footing subgrades are unsuitable, i.e. contain organics, soft or disturbed, the subgrade soils should be removed and replaced with structural fill in accordance with the recommendations herein. Overexcavation for structural fill placement should extend laterally beyond all edges of the footing as shown in the figure below. Structural fill can be substituted by lean-mix concrete without the need to overexcavate beyond the extents of the footing.

Geotechnical Engineering Report Proposed Parcel Handling Facility ■ Boeing Field ■ Seattle, Washington December 20, 2018 ■ Terracon Project No. 81185115

Areas of loose or disturbed soils may be encountered at foundation bearing depth after excavation is completed for footings. When such conditions exist beneath planned footing areas, the surficial subgrade soils should be compacted prior to placement of the foundation system. If sufficient compaction cannot be achieved in-place, the loose soils should be removed and replaced with engineered fill. For placement of engineered fill below footings, the excavation should be widened laterally, at least eight inches for each foot of fill placed below footing base elevations.

DESCRIPTION	VALUE
2015 International Building Code (IBC) Site Classification ¹	F ²
Site Latitude	47.53411° N
Site Longitude	122.30054° W
S_s Spectral Acceleration for a Short Period for Site Class D^3	1.506g
S_1 Spectral Acceleration for a 1-Second Period for Site Class D^3	0.575g
Fa Site Coefficient for a Short Period ³	1.000
F _v Site Coefficient for a 1-Second Period ³	1.5

4.4. Seismic Considerations

NOTES:

- 1. The 2015 International Building Code (IBC) indicates that the seismic site classification is based on the average soil and bedrock properties in the top 100 feet. The current scope does not include a 100-foot soil profile determination. This seismic site class definition considers that soils encountered at depth in our borings continue below the termination depth. Additional exploration to deeper depths would be required to confirm the conditions below the current depth of exploration.
- 2. Site Class F applies to any profile having (1) soils vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clays and collapsible weakly cemented soils, (2) at least 10 feet of peats and/or highly organic clays, (3) at least 25 feet of very high plasticity clays or (4) at least 120 feet of soft to medium stiff clays. The USGS Seismic Design Maps tool used for analysis does not accommodate Site Class F as

lleccon

	DESCRIPTION	VALUE
	site-specific ground motion procedures are general accelerations $S_{\rm s}$ and $S_{\rm 1}.$	ly required. Site Class D was used to generate spectral
3.	occur for structures with fundamental periods of vibra	F_a and F_y to be determined assuming that liquefaction does not ation less than 0.5 second. Based on the results of the exploration e values of F_a and F_y . The fundamental period of vibration for the r.

4.4.1 Liquefaction

The native soils encountered during the subsurface investigation consisted of generally very loose to medium dense, predominantly fine to medium sand with low silt content and – to a lesser extent – fine to medium sand with silt. At some exploration locations, these sand layers were interrupted by layers of very soft to soft, non-plastic silt with variable amount of fine sand. Where saturated (i.e. below typical depths of 8 to 11 feet), these soils should all be considered to have a moderate to high risk for liquefaction during and after ground shaking due to an earthquake.

Boring B-13 was chosen as a representative soil boring for determination of susceptibility to liquefaction, and to develop an estimate of post-liquefaction settlement. The groundwater table was placed at a depth of 9½ feet below existing grades for the purpose of the analysis. The results of our analysis indicate that free-field settlements could be on the order of **12** to **21** inches. This amount of settlement typically cannot be accommodated by typical structural design or by construction methods. Due to the flat and level site topography and the great distance to the nearest "free-face" slope (3,300 feet to the east bank of the Duwamish Waterway), we do not expect that significant lateral spreading would occur at the site. However, even when footings are constructed atop a raft of improved soil, good design and construction practice recommends that isolated elements of the building foundation be structurally tied together to reduce the occurrence of incidental lateral movements and separation during and following earthquake shaking.

4.4.2 Surface Rupture

The subject site is located within the Seattle Fault Zone, and can be expected to experience intense ground shaking during movements within that fault zone. However, deep sediments conceal the fault location within the general project vicinity, and the likelihood of a ground surface rupture due to fault movement at depth can be considered low at the subject site.

4.5. Floor Slabs

In our opinion, the site is suitable for conventional, Portland cement concrete slabs-on-grade, which may be used for interior floors and for aprons around the exterior of the building, and elsewhere. Design recommendations for slabs-on-grade bearing on an improved subgrade utilizing aggregate pier ground improvement are presented below.

Design parameters for floor slabs assume the requirements of our Earthwork section have been followed. Specific attention should be given to positive drainage away from the structure and positive drainage of the aggregate base beneath the floor slab.

Item	Description					
Floor Slab Support ¹	Minimum 6 inches of 9-03.9(3) <i>Crushed Surfacing Base Course</i> ³					
Floor Slap Support	Compacted to at least 95% of maximum dry density (ASTM D 1557)					
Estimated Modulus of	250 pounds per square inch per inch (psi/in) for point loads					
Subgrade Reaction ²						
1. Floor slabs should be structurally independent of building footings or walls to reduce the possibility of fl						
 Modulus of subgra condition, the requi 	 slab cracking caused by differential movements between the slab and foundation. Modulus of subgrade reaction is an estimated value based upon our experience with the subgrade condition, the requirements noted in the Earthwork section, and the floor slab support as noted in this table. 					

It is provided for point loads. For large area loads the modulus of subgrade reaction would be lower. 3. WSDOT Standard Specification

The use of a vapor retarder is recommended beneath concrete slabs on grade covered with wood, tile, carpet, or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder.

Saw-cut control joints should be placed in the slab to help control the location and extent of cracking. For additional recommendations refer to the ACI Design Manual. Joints or cracks should be sealed with a water-proof, non-extruding compressible compound specifically recommended for heavy duty concrete pavement and wet environments.

Where floor slabs are tied to perimeter walls or turn-down slabs to meet structural or other construction objectives, our experience indicates differential movement between the walls and slabs will likely be observed in adjacent slab expansion joints or floor slab cracks beyond the length of the structural dowels. The Structural Engineer should account for potential differential settlement through use of sufficient control joints, appropriate reinforcing or other means.

4.5.1 Floor Slab Construction Considerations

On most project sites, the site grading is generally accomplished early in the construction phase. However, as construction proceeds, the subgrade may be disturbed due to utility excavations, construction traffic, desiccation, rainfall, etc. As a result, the floor slab subgrade may become unsuitable for placement of base rock and concrete and corrective action may be required.

We recommend the area underlying the floor slab be rough graded and then thoroughly proofrolled with a loaded tandem axle dump truck prior to final grading and placement of base rock. Proofrolling

should be completed under the observation of the Geotechnical Engineer. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the affected material with properly compacted fill. All floor slab subgrade areas should be moisture conditioned and properly compacted to the recommendations in this report immediately prior to placement of the base rock and concrete.

4.6. Airfield Pavement Analysis and Design

4.6.1 General Aircraft Pavement Design Considerations

Pavement design for the air field pavements for this project were conducted in accordance with the procedures outlined in the FAA Advisory Circular (AC) 150/5320-6F. Current FAA practice for design of pavements is based on use of the FAA computer program FAARFIELD, which includes an elastic layer analyses coupled with a finite element analyses for rigid pavements. For pavements supporting aircraft in excess of 100,000 pounds (which is the case for this project), the FAA requires that the PCC pavements be constructed on a stabilized base consisting of either P-304 Cement Treated Base, P-306 Econocrete or P-401/403 Plant-Mixed Bituminous Materials (asphalt concrete). An aggregate subbase (P-209) may be used in combination with any of the stabilized base materials.

UPS requested ten-year and twenty-year designs including consideration for overlay needed to increase the 10-year design to 20 years. The FAA minimum standard design life is 20 years. As you requested, we have included pavement options for traditional asphalt pavements, full-depth asphalt pavements and PCC pavements. PCC overlay alternatives for the air field pavements include recommendations for unbonded PCC overlays.

Based on the figure provided in Work Order No. 001, we understand there is one air field pavement area designated the Airplane Hardstand and Air Field Areas. Details of the pavement design parameters used are presented in the following sections.

4.6.2 Airplane Design Loading

The following table summarizes our understanding of the aircraft information and loading for the Airplane Hardstand and Air Field pavement areas on the project:

Geotechnical Engineering Report

Proposed Parcel Handling Facility ■ Boeing Field ■ Seattle, Washington December 20, 2018 ■ Terracon Project No. 81185115

The design aircraft loading and annual departures are based on information provided to Terracon by UPS for the design. The traffic arrivals and departures should be confirmed prior to implementing the design thickness recommendations included in this report.

4.6.3 Design Subgrade Support

The design subgrade modulus is based on the CBR testing completed on composite samples of representative subgrade soils. Based on the results of the CBR testing we have selected the following subgrade support parameters for the design of the project.

Design Parameter	Value
CBR	16
Resilient Modulus	24,000 psi
Effective Modulus of Subgrade Reaction, k	250 pci

The PCASE software developed by the U.S. Army Corps of Engineers was used to assess the frost penetration depth expected in the Seattle region based on climate data obtained from the "Seattle Jackson" weather station. The frost penetration is expected to be 10 inches below the top of pavement. The silty sand (SM) subgrade soil was classified as FG-3 frost group. The pavement design alternatives represent designs based on limited frost penetration and subgrade strength reductions.

The FAA AC 150/5320-6F provides subgrade compaction requirements for different values of compaction and airplane gear type. For purposes of this design, the CBR and resultant k-value were selected based on a minimum compaction requirement of 95% of the maximum density as specified in FAA specification P-152. We have assumed the subgrade was previously compacted to FAA standard specifications, however prior to pavement replacement or placement of new fill, the subgrade or exposed base should be proof-rolled and areas of soft or yielding subgrade should be recompacted to 95 percent of ASTM D 1557.

4.6.4 Pavement Thickness Design Recommendations - Airfields

Using the aircraft loading and the subgrade support characteristics as outlined above, alternative pavement sections for each area of the project were developed on the basis of the procedures outlined in Chapter 3 of the FAA Advisory Circular 150/5320-6F.

lerracon

In summary, the recommended design alternatives for flexible and rigid pavements, summarized for each area, are as follows:

UPS Boeing Field Facility Expansion Flexible Pavement Design and Recommended Thicknesses (Inches) ^{1, 2}							
Pavement Area	P-209 Cr Ag Total						
Airplane	20	A	4	5	9	18	
Hardstand and Air Field Areas	20	В	4	9		13	

¹ Prior to placement of new fill, the subgrade should be proof-rolled and areas of soft or yielding subgrade should be recompacted to 95 percent of ASTM D 1557

² Each alternative should be evaluated in part based on material availability, construction conditions and economic factors

UPS Boeing Field Facility Expansion Rigid Pavement Design Recommended Thicknesses (Inches) ^{1, 2}						
Pavement AreaDesign LifePavement Pavement 						
Airplane Hardstand and Air Field Areas	20	C1	16½	5	6	27½

¹ Prior to placement of new fill, the subgrade should be proof-rolled and areas of soft or yielding subgrade should be recompacted to 95 percent of ASTM D 1557

² Each alternative should be evaluated in part based on material availability, construction conditions and economic factors

The recommended minimum joint spacing is 17.5 feet on center. Joint design details for the project are discussed in Section 4.6.6 below.

4.6.5 Alternative Pavements Designs -- Airfields

We have also developed alternative pavement designs as outlined in the following tables.

UPS Boeing Field Facility Expansion Flexible Pavement Design Alternative Thicknesses (Inches) ^{1, 2}								
Pavement Area	P-209 Cr Ag Total							
Airplane	40.	A2	4	5	8	17		
Hardstand	Istand 10 + 10	A2 OL ³	2					
and Air		B2	4	81⁄2		12½		

Geotechnical Engineering Report

Proposed Parcel Handling Facility
Boeing Field
Seattle, Washington December 20, 2018
Terracon Project No. 81185115

UPS Boeing Field Facility Expansion Flexible Pavement Design Alternative Thicknesses (Inches) ^{1, 2}							
Pavement Area	P-209 Cr Ad I lotal						
Field Areas		B2 OL ³	2				

¹ Prior to placement of new fill, the subgrade should be proof-rolled and areas of soft or yielding subgrade should be recompacted to 95 percent of ASTM D 1557

² Each alternative should be evaluated in part based on material availability, construction conditions and economic factors

³ The overlay (OL) rehabilitations are to be implemented at 10 years after the initial construction and are designed to provide an additional 10 years of service life

UPS Boeing Field Facility Expansion Rigid Pavement Design Alternative Thicknesses (Inches) ^{1, 2}							
							Pavement Thickness
Airplane Hardstand and	10 - 10	C2		16	5	6	27
Air Field Areas	ld ^{10 + 10}	C2 OL ³	5				5

¹ Prior to placement of new fill, the subgrade should be proof-rolled and areas of soft or yielding subgrade should be recompacted to 95 percent of ASTM D 1557

² Each alternative should be evaluated in part based on material availability, construction conditions and economic factors

³ The overlay rehabilitations are to be implemented at 10 years after the initial construction and are designed to provide an additional 10 years of service life

4.6.6 Joint Design

Joints in the PCC pavements should be designed based on the criteria outlined in Section 3.14 of FAA AC 150/5230-6F. Based on the recommended design thickness of the PCC pavements as outlined in this report, the maximum joint spacing for the PCC pavements outlined above should be 17.5 feet based on Table 3-9 of FAA AC 150/5230-6F for pavement thicknesses between 13.5 and 16 inches.

Construction joints should meet the requirements for Type E joints according to Section 3.14 of AC 150/5230-6F. Based on the requirements of Table 3-8 of FAA AC 150/5230-6F for pavement thickness in the range of 12.5 to 16 inches, 1-1/4 inch diameter dowels, 20 inches in length and placed 15 inches on center along the location of the joint should be specified. We recommend that the dowels be placed and epoxy grouted in drill holes in any existing slabs and that the

painted and oiled end of the dowel bar be placed in the new PCC pavement. These same joint details should be specified for any other construction joints used in the new PCC pavements.

Based on the requirements of Table 3-7 of FAA AC 150/5230-6F, Type C Doweled Contraction Joints and Type D Dummy contraction joints should be used as appropriate in the design of the new pavements on the project. Joint Details in Section 3.14 should be specified for construction and contraction joints.

4.6.7 Pavement Materials and Construction Considerations

The use of FAA construction specifications are recommended for all airfield work on the project. Based on the recommendations for the alternative pavement thicknesses outlined in this report, and pending the final determination of actual designs, the specifications, at a minimum, should include those listed in the following table. The table also includes our comments on those items that should be specified in each section based on the results of the pavement design.

FAA Specification	Specification Title	Comments/ Recommendations
P-101	Surface Preparation	This specification should include a provision for removal of existing base course and some of the subgrade soils where pavement will be removed to accommodate the new design section thickness.
P-152	Excavation & Embankment	All excavation should be considered as unclassified. Compaction for subgrade should be specified to a minimum of 95% of the maximum dry density determined in accordance with ASTM D1557. We have assumed the existing subgrade has been prepared in accordance with FAA standards.
P-154	Subbase Course	Compaction should be specified to a minimum of 100% of the maximum dry density determined in accordance with ASTM D1557.
P-209	Crushed Aggregate Base Course	Compaction should be specified to a minimum of 100% of the maximum dry density determined in accordance with ASTM D1557.
P-401	Plant Mixed Bituminous Pavements	The use of Performance Grade PG 64H-28 asphalt binder should be specified. A ³ / ₄ " maximum aggregate mix design for aircraft gross weights exceeding 60,000 pounds should be specified.
P-403	Plant Mixed Bituminous Pavements	The use of Performance Grade PG 64S-28 asphalt binder should be specified as required by WSDOT. A ³ / ₄ " maximum aggregate mix design for aircraft

Proposed Parcel Handling Facility
Boeing Field
Seattle, Washington December 20, 2018
Terracon Project No. 81185115

FAA Specification	Specification Title	Comments/ Recommendations
		gross weights exceeding 60,000 pounds should be specified.
P-501	Portland Cement Concrete Pavement	The use of ASTM Type II cement should be specified for the concrete pavement. A minimum 28-day flexural strength of 650 psi should be specified for the concrete pavement.

We are available to assist in the review and development of the final specifications for the project once the final design section alternatives are determined.

4.7. "Ground-Side" Pavement Analysis and Design

The following sections address pavement considerations for conventional vehicle traffic around the parcel distribution facility, including the following traffic areas:

- 1. The Truck Portion of the Package Sorting Facility Parking Lot
- 2. The Employee Parking Portion of the Package Sorting Facility

4.7.1 Traffic Design Loading

Equivalent Single Axle Loading (ESALs) for the Truck and Employee Portions of the package sorting facility were developed based on the frequency and type of loading provided by UPS. UPS also provided the truck factors used in calculating the ESAL values for each vehicle type expected to use the parking lot. A summary of the design ESALs is provided in the following table.

Pavement Area	Design Vehicle	Truck Factor	Total Design Life Passes	Total Design Life ESALs			
Truck Portion of the	Loaded 45' Feeder	1.828	56,465				
Package Sorting Parking	Loaded Double 28' Feeder	2.145	56,465	265,724			
Lot	Loaded Single 28' Feeder	1.116	28,233	200,121			
L0i	Loaded Package Cars	0.175	56,465				
Employee Portion of the Package Sorting Parking Lot	Employee Personal Vehicles	0.00036	722,800	260			

4.7.2 Design Subgrade Support

The design subgrade modulus is based on the CBR testing completed on composite samples of representative subgrade soils. Based on the results of the CBR testing we have selected the following subgrade support parameters for the design of the project.

Proposed Parcel Handling Facility ■ Boeing Field ■ Seattle, Washington December 20, 2018 ■ Terracon Project No. 81185115

Design Parameter	Value
CBR	16
Resilient Modulus	24,000 psi
Effective Modulus of Subgrade Reaction, k	250 pci

The PCASE software developed by the U.S. Army Corps of Engineers was used to assess the frost penetration depth expected in the Seattle region based on climate data obtained from the "Seattle Jackson" weather station. The frost penetration is expected to be 10 inches below the top of pavement. The pavement designs alternatives represent designs based on limited frost penetration and subgrade strength reductions.

4.7.3 Pavement Thickness Design

Design of pavements that are not on the airfield were based on the guidelines outlined by the Washington State Department of Transportation (WSDOT) Pavement Policy, dated September 2018, as well as procedures outlined in the 1993 Guideline for Design of Pavement Structures by the American Association of State Highway and Transportation Officials (AASHTO-1993).

Based upon AASHTO criteria, the project site is located within Climatic Region II of the United States. The region is characterized as being wet, with freeze-thaw cycling. The spring thaw condition typically results in saturated or near-saturated subgrade soil moisture conditions. The AASHTO criteria suggest these moisture conditions are prevalent for approximately 4 percent of the annual moisture variation cycle.

Local drainage characteristics of proposed pavements areas are considered fair. The crushed aggregate base provides a limited amount of pavement drainage. These characteristics, coupled with the approximate duration of saturated subgrade conditions, result in a design drainage coefficient of 1.0 when applying the AASHTO criteria for design.

Pav	ement Thickness Design Parame	ters
Input Parameter	Flexible (asphalt)	Rigid (concrete)
Reliability	85%	85%
Serviceability Loss	1.5	1.5
Standard Deviation	0.45	0.35
Asphalt Layer Coefficient	0.44	N/A
Crushed Surface Aggregate Base Coefficient	0.13	N/A
Aggregate Base Modulus (Mr)	30,000 psi	30,000 psi
Concrete Elastic Modulus(Ec)	N/A	4,000,000 psi
Concrete Modulus of Rupture (S'c)	N/A	650 psi

Geotechnical Engineering Report

Proposed Parcel Handling Facility ■ Boeing Field ■ Seattle, Washington December 20, 2018 ■ Terracon Project No. 81185115

Pavement Thickness Design Parameters								
Input Parameter	Flexible (asphalt)	Rigid (concrete)						
Lood Transfer Coefficient (1)	NI/A	Dowelled – 3.2						
Load Transfer Coefficient (J)	N/A	Not Dowelled – 4.1						

As a minimum, we suggest the following pavement sections be considered:

UPS Package Sorting Facility Parking Lot Flexible Pavement Design Alternatives and Recommended Thicknesses (Inches) ^{1, 2}									
Pavement Area	Design Life	Pavement Alternative	HMA Surface ³	HMA Base ³	Crushed Surfacing Base Course (CSBC) ³	Total			
	20 104	A3 4			6	10			
Employee		B3	2	3		5			
Portion		A4	4		6	10			
		B4	2	3		5			
	20	A5	4		6	10			
Truck Portion	20	B5	2	3		5			
	10 ⁴	A6	4		6	10			
	10.	B6	2	3		5			

¹ Subgrade compaction for non-air field areas must extend to a minimum depth of 10 inches below finished subgrade elevation

² Each alternative should be evaluated in part based on material availability, construction conditions and economic factors

³ The HMA surface course should be ½ inch Nominal Maximum Aggregate Size (NMAS), PG 58H-22. The HMA Base Course should be ¾ inch NMAS, PG 58H-22. The HMA should conform to Section 5-04 of the WSDOT Standard Specifications, 2018. The CSBC should conform to Section 9-03 of the WSDOT Standard Specifications, 2018.

⁴ No overlay alternative was presented because a minimum practical section was used with no difference between the 10-year and 20-year design life alternatives

Pavement thickness designs for new PCC pavements based on the traffic loads presented above and the results of our testing and analysis are included below. The pavements in the Truck Portion were designed with dowelled joints whereas the pavements in the Employee Portion were designed without dowelled joints.

UPS Package Sorting Facility Parking Lot Rigid Pavement Design Alternatives and Recommended Thicknesses (Inches) ^{1, 2}										
Pavement Area	Design Life	Pavement Alternative	PCC Bonded Overlay ³	PCC ³	Crushed Surface Aggregate Base ³	Total Pavement Thickness (inches)				
	20	C3		5	6	11				

_{iton} Terracon

Proposed Parcel Handling Facility
Boeing Field
Seattle, Washington
December 20, 2018
Terracon Project No. 81185115

UPS Package Sorting Facility Parking Lot Rigid Pavement Design Alternatives and Recommended Thicknesses (Inches) ^{1, 2}										
Pavement Area	Design Life	Pavement Alternative	PCC Bonded Overlay ³	PCC ³	Crushed Surface Aggregate Base ³	Total Pavement Thickness (inches)				
Employee Portion	10	C4		5	6	11				
Truck	20 C5			6½	6	12½				
Portion	10	C6		6	6	12				
FUILION	10	C6 OL ⁴	3			3				

¹ Subgrade compaction for non-air field areas must extend to a minimum depth of 10 inches below finished subgrade elevation

² Each alternative should be evaluated in part based on material availability, construction conditions and economic factors

³ The PCC should conform to Section 5-05 of the WSDOT Standard Specifications, 2018. The CSBC should conform to Section 9-03 of the WSDOT Standard Specifications, 2018. The PCC should have a minimum 14-day flexural strength of 650 psi.

⁴ The overlay rehabilitations are to be implemented at 10 years after the initial construction and are designed to provide an additional 10 years of service life. No overlay alternative was presented for the Employee Parking portion of the pavement because that area utilized a minimum practical section with no difference between the 10-year and 20-year design life.

4.7.4 Recommendations for Design and Construction

Terracon considered the weather conditions and traffic to determine the appropriate asphalt binder for this project. This was accomplished using the LTPPBind Version 3.1 Beta, dated September 15, 2015 software provided by the Federal Highway Administration (FHWA). This software utilizes historical temperature data from the 5 weather stations nearest the project and considers traffic speed and traffic loading to establish a recommended Performance Graded (PG) binder grade of asphalt concrete. Terracon then compared the software output to the binders that were indicated to be locally available to determine the recommended binder selection for the project.

Areas for parking of heavy vehicles, concentrated turn areas, and start/stop maneuvers could require thicker pavement sections. Edge restraints (i.e. concrete curbs or aggregate shoulders) should be planned along curves and areas of maneuvering vehicles. A maintenance program including surface sealing, joint cleaning and sealing, and timely repair of cracks and deteriorated areas will increase the pavement's service life. As an option, thicker sections could be constructed to decrease future maintenance.

Concrete for rigid pavements should have a minimum 28-day compressive strength of 4,000 psi and be placed with a maximum slump of 4 inches. Although not required for structural support, a

minimum 6-inch thick base course layer is recommended to help reduce potential for slab curl, shrinkage cracking, and subgrade pumping through joints. Proper joint spacing will also be required to prevent excessive slab curling and shrinkage cracking. Joints should be sealed to prevent entry of foreign material and doweled where necessary for load transfer.

Where practical, we recommend early-entry cutting of crack-control joints in PCC pavements. Cutting of the concrete in its "green" state typically reduces the potential for micro-cracking of the pavements prior to the crack control joints being formed, compared to cutting the joints after the concrete has fully set. Micro-cracking of pavements may lead to crack formation in locations other than the sawed joints, and/or reduction of fatigue life of the pavement.

Openings in pavements, such as decorative landscaped areas, are sources for water infiltration into surrounding pavement systems. Water can collect in the islands and migrate into the surrounding subgrade soils thereby degrading support of the pavement. This is especially applicable for islands with raised concrete curbs, irrigated foliage, and low permeability near-surface soils. The civil design for the pavements with these conditions should include features to restrict or collect and discharge excess water from the islands. Examples of features are edge drains connected to the storm water collection system, longitudinal subdrains, or other suitable outlets and impermeable barriers preventing lateral migration of water such as a cutoff wall installed to a depth below the pavement structure.

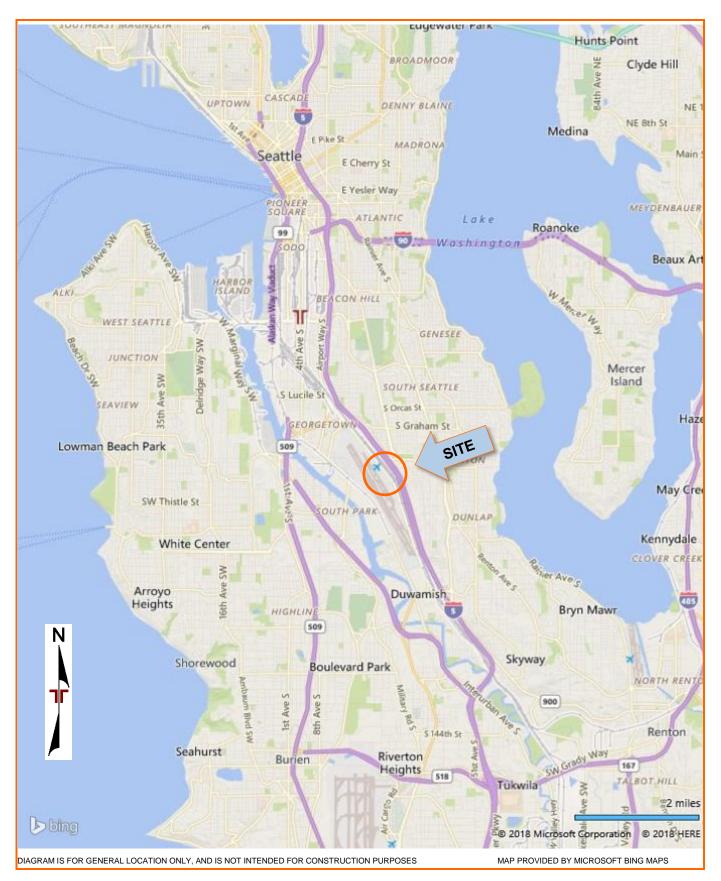
Rigid PCC pavements will perform better than AC in areas where short-radii turning and braking are expected (i.e., entrance/exit aprons) due to better resistance to rutting and shoving. In addition, PCC pavement will perform better in areas subject to large or sustained loads. An adequate number of longitudinal and transverse control joints should be placed in the rigid pavement in accordance with ACI and/or AASHTO requirements. Expansion (isolation) joints must be full depth and should only be used to isolate fixed objects abutting or within the paved area.

PCC pavement details for joint spacing, joint reinforcement, and joint sealing should be prepared in accordance with ACI 330-2R and ACI 325. PCC pavements should be provided with mechanically reinforced joints (doweled or keyed) in accordance with ACI 330-2R.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications, so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.


The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

EXHIBIT A-1 --SITE LOCATION

UPS – Boeing Field Parcel Distribution Facility
Seattle, Washington December 20, 2018
Terracon Project No. 81185115

llerracon

EXHIBIT A-2 -- EXPLORATION PLAN

UPS – Boeing Field Parcel Distribution Facility
Seattle, Washington December 20, 2018 Terracon Project No. 81185115

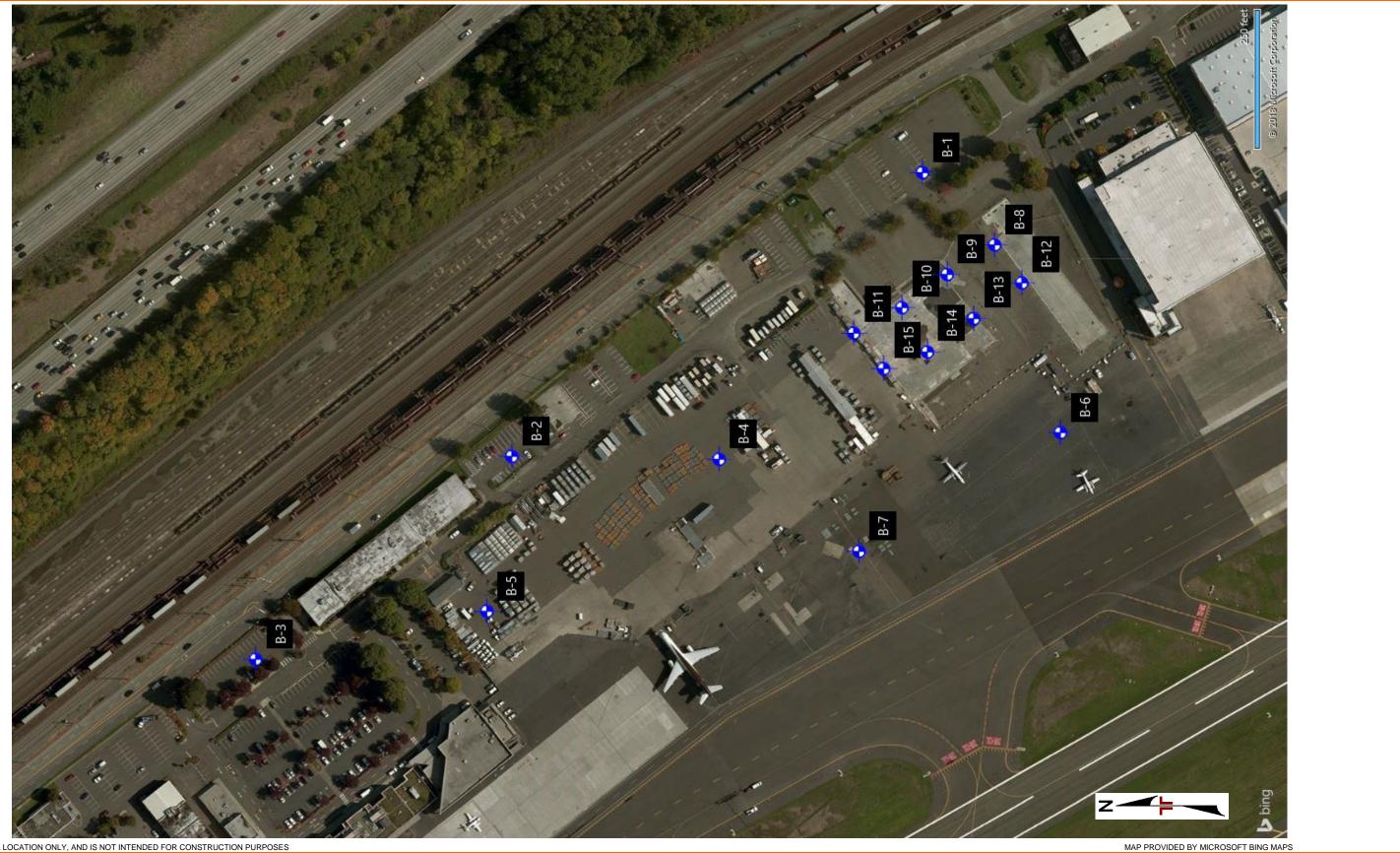


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

EXHIBIT A-3 -- FIELD EXPLORATION DESCRIPTION

Field Exploration

We advanced exploration borings B-1 through B-15 to the following depths at the locations shown on Exhibit A-1. Borings were advanced between September 5 and September 7, 2018.

Boring Name	Boring Depth	Primary Engineering Purpose
B-1 through B-7	16½ feet	Pavement Design
B-9, B-10, B-12, B-14, B-15	21½ feet	Building Foundation
B-8, B-11, B-13	51½ feet	Building Foundation

Boring Layout: UPS provided the boring layout. Coordinates were obtained with a handheld GPS unit (estimated horizontal accuracy of about ± 10 feet). If a more precise boring layout is desired, we recommend borings be surveyed.

Subsurface Exploration Procedures: We advanced the borings with a truck-mounted, drill rig using the mud-rotary drilling technique. Mud-rotary drilling was selected due to expected relatively shallow groundwater conditions and loose sands through the depths of exploration. Four samples were obtained in the upper 10 feet of each boring and at depth intervals of 5 feet thereafter. In the split-barrel sampling procedure, a standard 2-inch outer diameter split-barrel sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. We observed and recorded groundwater levels during drilling and sampling. For safety purposes, and in accordance with Washington Department of Ecology regulations for borehole abandonment, all borings were backfilled with bentonite chips after their completion. Pavements were patched with a black-dyed quickset concrete patch.

The sampling depths, penetration distances, and other sampling information was recorded on the field boring logs. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a Geotechnical Engineer. Our exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials encountered during drilling and our interpretation of the subsurface conditions between samples. Final boring logs were prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

			<u> </u>			•				Page 1 of	1
PR	OJECT: UPS Boeing Field Parcel Distribution Facili	y C	LIENT			d Pa na, N	rcel Service E				
SIT	TE: 7575 Perimeter Road S. Seattle, WA							-			
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5341° Longitude: -122.2992° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	0.3 <u>ASPHALT CONCRETE</u> , Asphalt thickness 0.25 feet 1.0 FILL - POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), fine to coarse grained, angular, brown, moist, medi dense, Crushed base rock				X	1.2	6-8-10 N=18	S-1			
	2.5 FILL - SAND WITH SILT AND GRAVEL (SP-SM), fine to medi grained, brown, moist, medium dense FILL - SILT WITH SAND (ML), fine grained, dark brown, mois medium dense, with charcoal				\square	1.3	2-2-2 N=4	S-2	31	-	
	5.0 SANDY SILT (ML), fine grained, light reddish brown, moist, so medium stiff POORLY GRADED SAND WITH SILT (SP-SM), fine to mediuu grained, reddish brown, moist, loose, with interbedded fine sa	1	5		X	1.1	3-4-4 N=8	S-3			
	with silt 7.5 POORLY GRADED SAND (SP), fine to medium grained, redd										
	brown to dark reddish brown, moist to wet, medium dense, to medium sand with trace silt		_		X	1.2	3-6-8 N=14	S-4			
			10	\bigtriangledown	X	1.3	9-6-7 N=13	S-5			
			-								
	16.5		15-		\square	1.3	5-6-9 N=15	S-6			
	Stratification lines are approximate. In-situ, the transition may be gradual.					Har	nmer Type: Automat				
Advan											
Muc Aband Bor	d-Rotary procedures. See Appendix B fo procedures and ad tonment Method: See Appendix C fo abbreviations.	descrip litional c	otion of labo data (if any	oratory).		Note	s.				
$\overline{\nabla}$	WATER LEVEL OBSERVATIONS					Borinę	9 Started: 09-05-2018	B E	Boring Con	pleted: 09-05-	2018
<u> </u>	While drilling	6		ונ		Drill F	lig: Veh. #92		Driller: Holo	ocene	
		905 64th Ave W, Ste 100					t No : 81185115		Exhibit: A-4		

	BURIN		JIN	J. 1	3-4	2			F	Page 1 of	1
PR	OJECT: UPS Boeing Field Parcel Distribution Fa	acility Cl	LIENT			d Pa Ia, N	rcel Service E				
SI	IE: 7575 Perimeter Road S. Seattle, WA										
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5361° Longitude: -122.3012° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	0.2.∧ <u>ASPHALT CONCRETE</u> , Asphalt thickness 0.2 feet FILL - SILTY SAND (SM), fine to medium grained, dark g black, moist, medium dense, with gravel and abundant c 2.0_trace brick	harcoal and	-		X	1.4	5-6-7 N=13	S-1	19		21
	SILT WITH SAND (ML), fine grained, reddish brown, mois		_		X	1.2	5-6-7 N=13	S-2			
	4.5 POORLY GRADED SAND WITH SILT (SP-SM), fine grain light brown, moist, medium dense POORLY GRADED SAND WITH SILT (SP-SM), medium of dark gray, moist to wet, loose to medium dense, with sor	/ grained,	5-		\bigtriangledown	1.2	3-3-5	S-3	6		
	interbedded fine to medium sand	ne	_	-	\square		N=8				
			-		X	1.2	3-4-4 N=8	S-4	_		
			10-		X	1.3	3-5-6 N=11	S-5	_		
			-								
	16.5		15		ig	1.5	3-6-12 N=18	S-6			
	Stratification lines are approximate. In-situ, the transition may be gradual.					Han	nmer Type: Automat	ic			
		-3 for description	on of field			Note	s:				
Abano Bor	See Appendia procedures a	x B for descripti nd additional da x C for explanat	ata (if any	r).							
$\overline{\nabla}$	While drilling					Boring	Started: 09-05-2018	Bor	ing Com	pleted: 09-05-	2018
<u> </u>	While drilling	611				Drill R	ig: Veh. #92	Dri	ler: Holo	cene	
		905 64th Ave W Iountlake Terra)		Projec	t No.: 81185115	Ext	nibit:	A-5	

					.)-\	,			F	Page 1 of 1	1
PR	OJ	ECT: UPS Boeing Field Parcel Distri	bution Facility	CLIEN				d Pa Ia, N	rcel Service E				
SI	ΓE:	7575 Perimeter Road S. Seattle, WA											
GRAPHIC LOG		CATION See Exhibit A-2 tude: 47.5374° Longitude: -122.3027° PTH		DEPTH (Ft.)	WATER LEVEL	OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	0.3	<u>ASPHALT CONCRETE</u> , Asphalt thickness 0.3 <u>FILL - POORLY GRADED SAND WITH SILT A</u> (<u>SP-SM</u>), fine grained, reddish brown, moist, I <u>\FILL - SILT WITH SAND (ML)</u> , fine grained, red	ND GRAVEL oose		_		X	1.2	2-4-3 N=7	S-1	25		
	3.5	medium stiff <u>SILT WITH SAND (ML)</u> , fine grained, light bro stiff, loose, with interbedded silty fine sand an	wn, moist, medium Id fine sand with silt	/	_		X	1.3	3-2-3 N=5	S-2			
		<u>POORLY GRADED SAND (SP)</u> , fine to medium dark gray, moist, loose, with interbedded fine	m grained, gray to sand with silt	5	_		\checkmark	1.4	2-4-3	S-3			
	7.0	POORLY GRADED SAND (SP) , medium grain	ned, dark gray,		_	2	$ \land $	1.4	N=7	0-5			
		moist to wet, loose to medium dense			_	_	X	1.2	1-2-2 N=4	S-4	11		
				10) 		X	1.2	2-2-3 N=5	S-5	26		4
				15	_								
	16.5	Boring Terminated at 16.5 Feet					X	1.3	4-6-7 N=13	S-6			
		atification lines are approximate. In-situ, the transition ma	y be gradual.						nmer Type: Automat	ic			
Mu Abanc Bor	d-Rot	ent Method: ackfilled with bentonite capped with concrete	See Exhibit A-3 for desc procedures. See Appendix B for des procedures and addition See Appendix C for exp abbreviations.	cription of I al data (if a	aborat any).		nd	Note	s:				
$\overline{\nabla}$	14							Boring	Started: 09-05-2018	Во	ring Com	pleted: 09-05-	2018
<u> </u>	W	hile drilling	IIerr	DC		Π		Drill R	ig: Veh. #92	Dr	iller: Holo	cene	
			21905 64th A Mountlake T					Projec	t No · 81185115	Fx	hibit [.]	A-6	

			BORING L	OG N	0. I	B-4	4			F	Page 1 of	1
PR	OJECT	: UPS Boeing Field Parcel Dist	ribution Facility	CLIENT			d Pa na, N	rcel Service E				
SI	ſE:	7575 Perimeter Road S. Seattle, WA		-			,					
g	LOCATIC)N See Exhibit A-2			NS NS	ЪЕ	Ft.)	F	BER	(%	ATTERBERG LIMITS	LES
GRAPHIC LOG	Latitude: 4	7.5351° Longitude: -122.3013°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
0			05.6		≤ö	Ś	R		SAI			
\otimes		HALT CONCRETE, Asphalt thickness 0 POORLY GRADED SAND (SP), medi										
		, moist, loose to medium dense, with tra		ete _		\mathbb{A}	1.3	6-10-6 N=16	S-1			
				-		X	1.2	4-4-4 N=8	S-2	8		
		POORLY GRADED SAND (SP), fine to		5-								
	dark	gray, moist, loose to medium dense, w	ith trace gravel	-	_	X	1.2	3-3-3 N=6	S-3			
				-								
	9.0 POC	DRLY GRADED SAND (SP), fine to medi	um grained, dark		∇	Д	1	5-6-9 N=15	S-4	13		
	gray	, moist, very loose to loose, with trace s	ilt	10-								
	11.0					X	1	2-2-2 N=4	S-5			
	SILT WITH SAND (ML), fine grained, dark gray, wet, soft, with trace silt		ray, wet, soft, with	-	-							
		D <mark>RLY GRADED SAND (SP)</mark> , medium gra Ioose	ined, dark gray, wet,		-							
	40.5			15-	-		1.3	1-2-1 N=3	S-6	27		
1 1 1	16.5 Bor i	ing Terminated at 16.5 Feet										
	Boring Terminated at 16.5 Feet											
PAKAIEU	Stratification lines are approximate. In-situ, the transition may be gradual.		nay be gradual.		1		Han	nmer Type: Automat	l			
Advar Advar Muc ION Abanc Bor	dvancement Method: Mud-Rotary See Exhibit A-3 for procedures. See Appendix B for procedures and ad bandonment Method: Boring backfilled with bentonite			cription of lab nal data (if an	ioratory y).		Note	s:				
Sur	Boring backfilled with bentonite abbreviations. Surface capped with concrete								_			
							Boring	Started: 09-05-2018	3 Е	Boring Com	pleted: 09-05-	2018
	While di	IIIIIIY		900			Drill R	ig: Veh. #92	C	Driller: Holo	cene	
о П		21905 64th A Mountlake	ve W, Ste 10 Terrace, WA	0		Projec	et No.: 81185115	E	Exhibit:	A-7		

		OG N	0.	B -:	5			F	Page 1 of	1	
PR	OJECT: UPS Boeing Field Parcel Distri	bution Facility	CLIEN			d Pa na, N	rcel Service E			-	
SIT	E: 7575 Perimeter Road S. Seattle, WA										
ъ	LOCATION See Exhibit A-2			NS NS	Ы	Ft.)	L	BER	(%	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 47.5363° Longitude: -122.3024°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
	DEPTH			ЗB	SA	RE	H	SAN	Ō		BEI
	0.8 ASPHALT CONCRETE, Asphalt thickness 0.8										
	FILL - POORLY GRADED SAND (SP), fine to dark gray, moist, loose to medium dense, with	medium grained, h trace silt	-	_		1.3	5-7-6 N=13	S-1	5		
			-			1.2	1-1-5 N=6	S-2			
××	4.5 <u>POORLY GRADED SAND (SP)</u> , medium grair	ned, dark gray,	5-								
	moist to wet, very loose to loose, with interbe sand	dded fine to medium	ין ד .	_		1.3	1-4-4 N=8	S-3	4		
			-								
			-			1.3	3-4-3 N=7	S-4			
			10-		_						
				_		1.1	3-2-1 N=3	S-5	28		4
				_							
	14.0 SILTY SAND (SC-SM), fine grained, dark gray	wat vary looso		_							
	with interbedded fine sandy silt with trace woo	od	15-			1.2	0-1-2 N=3	S-6			
				-	\downarrow		N-3				
	Boring Terminated at 16.5 Feet										
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.				Har	nmer Type: Automat	tic			
Mud Aband	cement Method: Rotary	See Exhibit A-3 for desc procedures. See Appendix B for desc procedures and addition See Appendix C for exp	cription of lai nal data (if an	porator iy).	-	Note	95:				
	ng backfilled with bentonite ace capped with concrete	abbreviations.									
	WATER LEVEL OBSERVATIONS					Boring	g Started: 09-05-2018	B Bori	ing Com	pleted: 09-05-	-2018
	While drilling						s Rig: Veh. #92		ler: Holo		
		21905 64th Av			_	<u> </u>	ct No.: 81185115			A-8	

	E	BORING L	OG N	0.	B -(6			F	Page 1 of	1
PR	OJECT: UPS Boeing Field Parcel Distri	bution Facility	CLIEN			d Pa na, N	rcel Service				
SIT	E: 7575 Perimeter Road S. Seattle, WA			•		,	-				
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5334° Longitude: -122.3011°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
G G G	DEPTH 0.6 ASPHALT CONCRETE, Asphalt thickness 0.5	5 feet		WA	SAN	REC	ш ^щ	SAMI	O		PER
\bigotimes	I.1 CONCRETE, Concrete thickness 0.6 feet FILL - POORLY GRADED SAND WITH SILT (\$ medium grained, dark brown to dark gray, mo	ist, medium dense		_		0.9	5-6-8 N=14	S-1	7		
	POORLY GRADED SAND (SP) , fine to mediur brown to dark gray, moist to wet, loose, with t			_		1.1	3-4-5 N=9	S-2	_		
			5 -	-		1.1	3-3-7 N=10	S-3	_		
				_		1.4	3-3-4 N=7	S-4	22		
			10-			1.1	2-2-2 N=4	S-5	-		
	13.0 SAND WITH SILT (SP-SM), fine grained, dark gray, w			_					-		
	13.0 SAND WITH SILT (SP-SM), fine grained, dark gray, wet, loose, with trace wood and fine organics		15-	_		1.5	2-3-3	S-6	_		
	16.5 Boring Terminated at 16.5 Feet			-	\square	1.0	N=6				
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hai	mmer Type: Automat	ic			
Mud	cement Method: I-Rotary onment Method:	See Exhibit A-3 for desc procedures. See Appendix B for des procedures and addition See Appendix C for exp abbreviations	cription of la al data (if ar	borator ıy).	-	Note	es:				
Sur	g backfilled with bentonite abbreviations. ce capped with concrete										
\bigtriangledown	WATER LEVEL OBSERVATIONS While drilling					Borin	g Started: 09-06-2018	Bori	ing Com	pleted: 09-06-	2018
<u> </u>	······s driving	llerra				Drill F	Rig: Veh. #92	Dril	ler: Holo	cene	
		21905 64th Av Mountlake T		00		Proje	ct No.: 81185115	Exh	ibit:	A-9	

		I	BORING L	OG N	Ю.	В	8-7	7			F	Page 1 of [·]	1
PR	OJE	CT: UPS Boeing Field Parcel Distri	bution Facility	CLIEN				d Pa a, N	rcel Service				
SI	TE:	7575 Perimeter Road S. Seattle, WA			,	5	an	a, 1 1	L				
GRAPHIC LOG	Latitue	ATION See Exhibit A-2 de: 47.5344° Longitude: -122.3019°		DEPTH (Ft.)	WATER LEVEL	OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
		H ASPHALT CONCRETE, Asphalt thickness 1.7	75 feet					_		0 V			
\bigotimes	1.8 	FILL - SAND WITH SILT (SP-SM), fine to mee gray, moist, medium dense	lium grained, light		_	Ν			7.0.40				
					_	Z	X	1.1	7-9-10 N=19	S-1	4		7
\otimes	5.5 7.0	SILT (ML) , light brown, moist, medium stiff, g silt, thinly laminated	rading to fine sandy	5	_		X	1.3	2-2-3 N=5	S-2			
	SILTY SAND (SM), fine grained, gray, wet, very loose 9.0 SAND WITH SILT (SP-SM), fine to medium grained, dark gray					z	X	1.2	2-1-2 N=3	S-3	30		
	SAND WITH SILT (SP-SM), fine to medium grained, dark gray, wet, loose		10)		$\overline{\mathbf{A}}$	1.2	1-3-4	S-4	-			
	13.0				_	Z	$ \land $		N=7		-		
	<u> </u>	POORLY GRADED SAND (SP), medium grair oose	ned, dark gray, wet,		_								
	16.5			15	; 		X	1.2	2-2-3 N=5	S-5			
		Boring Terminated at 16.5 Feet											
	Stratification lines are approximate. In-situ, the transition may be gradual.						[Han	nmer Type: Automati	с	<u> </u>		
Mu	ancement Method: ud-Rotary See Exhibit A-3 for d procedures. See Appendix B for c procedures and addit procedures and addit			cription of l al data (if a	aborat any).	-	nd	Note	S:				
Bor	ing bac face ca	nment Method: See Appendix C for g backfilled with bentonite abbreviations. ce capped with concrete				al							
\bigtriangledown		WATER LEVEL OBSERVATIONS While drilling					Ţ	Boring	Started: 09-06-2018	Bori	ng Com	pleted: 09-06-	2018
	vvill			JL	U			Drill R	ig: Veh. #92	Drill	er: Holo	cene	
			21905 64th A Mountlake T				ſ	Projec	t No.: 81185115	Exhi	ibit: A	A-10	

	BORING	LO	G NO) . I	B-8	3			F	Page 1 of 3	3
PR	OJECT: UPS Boeing Field Parcel Distribution Facili	ty C	LIENT			d Pa Ia, N	rcel Service E			5	
SIT	E: 7575 Perimeter Road S. Seattle, WA										
DG	LOCATION See Exhibit A-2			NS NS	PE	Ft.)	F	BER	(%	ATTERBERG LIMITS	LES
GRAPHIC LOG	Latitude: 47.5338° Longitude: -122.2997°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)		PERCENT FINES
RAPI			DEPT	ATEF SER/	MPL	COVI	RESI	1PLE	ONTE	LL-PL-PI	SCEN
Ċ	DEPTH			×80	SA	RĒ	Ľ	SAN	ŭ		PE
	0.2 <u>ASPHALT CONCRETE</u> , Asphalt thickness 0.2 feet <u>POORLY GRADED SAND WITH SILT (SP-SM)</u> , light reddish brown, moist to wet, very loose to loose, with interbedded silt and thick leminated.	y fine	/ -		X	1.3	6-4-4 N=8	S-1			
	sand, thinly laminated		-								
			-	-	Д	1.1	2-3-4 N=7	S-2	_		
	5.0 <u>POORLY GRADED SAND (SP)</u> , fine grained, dark brown, wet		- 5-	-					_		
	medium dense	,	_		X	1	4-6-6 N=12	S-3			
	7.0				\vdash						
	POORLY GRADED SAND (SP) , fine to medium grained, dark gray, wet, medium dense, with trace silt and fine gravel, and interbedded medium to coarse sand		_		X	1.2	4-6-8 N=14	S-4	_		
			_								
			10-	-	X	1	4-5-7 N=12	S-5	23		4
			-								
			_								
			_								
			15								
			15-		\bigtriangledown	1.5	7-8-9	S-6			
			_		\square		N=17				
			-								
	18.5		-								
	SILT (ML), dark gray, wet, soft, with interbedded fine sand			-							
			20-								
			-		X	0.9	2-1-2 N=3	S-7	36		
			-								
	23.0 POORLY GRADED SAND (SP) , fine grained, dark gray, wet, loose, with interbedded silty with fine sand, with wood			-							
			25-								
	Stratification lines are approximate. In-situ, the transition may be gradual.		20			Har	nmer Type: Automat	ic			
	cement Method: See Exhibit A-3 for procedures. See Appendix B for procedures and add	descrip	tion of lab	oratory	/	Note	s:				
Bor	Ionment Method: See Appendix C foi ing backfilled with bentonite abbreviations. face capped with concrete	r explana	ation of sy	mbols	and						
	WATER LEVEL OBSERVATIONS					Borino	Started: 09-07-2018	В	oring Com	pleted: 09-07-	2018
\square		61					ig: Veh. #92		riller: Holo		
			V, Ste 100 ace, WA)	-		et No.: 81185115			A-11	

		BORING L	OG N	0.	B- 8	8			F	Page 2 of	3
PF	OJECT: UPS Boeing Field Parcel Distri	bution Facility	CLIEN			d Pa na, N	rcel Service				
Sľ	FE: 7575 Perimeter Road S. Seattle, WA		-		- Tea	10, 10	-				
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5338° Longitude: -122.2997°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
	DEPTH POORLY GRADED SAND (SP), fine grained, loose, with interbedded silty with fine sand, w	dark gray, wet, ith wood <i>(continued)</i>)	_ ≤ 8	s.	1 1	1-3-3 N=6	S-8	0		H
	28.0 SILT (ML), gray, wet, soft, with shell fragment laminations	is and fine	_	_							
			30	-		1.5	1-0-0 N=0	S-9	25	NP	-
	35.5		35	_			5-6-7		_		
	35.5 SANDY SILT (ML), fine grained, gray, wet, soft, with gravel and shell fragments				X	1.4	N=13	S-10	_		
			40	_		1.5	0-0-2 N=2	S-11	22		36
	SILT WITH SAND (ML), fine to medium graine medium dense, with fine gravel	ed, light brown, wet,	45	-			10-14-10				
				_		0.5	N=24	S-12			
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.	50			Har	mmer Type: Automat	tic			
Mu	d-Rotary	See Exhibit A-3 for desc procedures. See Appendix B for des procedures and addition See Appendix C for exp	cription of la nal data (if a	borator าy).		Note	25:				
Bo	ing backfilled with bentonite face capped with concrete	abbreviations.		,							
	WATER LEVEL OBSERVATIONS					Boring	g Started: 09-07-2018	B Boi	ring Com	pleted: 09-07-	2018
$\underline{\sim}$	While drilling	lierr	90		1	Drill F	Rig: Veh. #92	Dri	ller: Holo	cene	
		21905 64th A Mountlake T				Proje	ct No.: 81185115	Ex	hibit:	A-11	

	В	BORING LO	OG	6 NC). E	B-8	B			F	Page 3 of 3	3
PR	OJECT: UPS Boeing Field Parcel Distrib	oution Facility	CL	IENT	: Ur	nite	d Pa na, N	rcel Service				
SIT	E: 7575 Perimeter Road S. Seattle, WA				U,	nai	ia, iv	I L				
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5338° Longitude: -122.2997°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
	DEPTH <u>SILT WITH SAND (ML)</u> , fine to medium grained medium dense, with fine gravel (continued) 51.5	d, light brown, wet,				X	0.5	6-4-6 N=10	ە S-13			
Mud-Rotary procedures. See Appendix B for dee procedures and additio		See Exhibit A-3 for desc procedures. See Appendix B for desc procedures and addition See Appendix C for expl	cription nal data	n of lab a (if any	oratory /).		Hai	mmer Type: Automat	ic			
	WATER LEVEL OBSERVATIONS						D. i					0040
\bigtriangledown	Vhile drilling				זר			g Started: 09-07-2018		-	pleted: 09-07-	2018
		21905 64th Av Mountlake T	ve W,	Ste 100		-		Rig: Veh. #92	Drill	er: Holo	cene A-11	

		DONING		GIN	J. I	2-3	9			F	Page 1 of 1	1
PF	roj	ECT: UPS Boeing Field Parcel Distribution Faci	ility C	LIENT			d Pa 1a, N	rcel Service E				
Sľ	TE:	7575 Perimeter Road S. Seattle, WA										
GRAPHIC LOG	Lat	CATION See Exhibit A-2 itude: 47.534° Longitude: -122.2999° PTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	0.4	loose, 5/8 inch minus crushed rock	C		-	X	1.1	4-4-3 N=7	S-1			
	4.0	\medium grained, gray brown, moist, loose, with trace grave wood debris <u>SILTY SAND (SM)</u> , fine to medium grained, gray brown, mo ¬loose, with trace gravel and charcoal				X	1	3-4-5 N=9	S-2			
		POORLY GRADED SAND WITH SILT (SP-SM) , fine to medi grained, dark gray, moist, loose, with interbedded medium s medium sand with silt		5		X	1.2	4-5-5 N=10	S-3	6		
	9.0	SILTY SAND (SM), fine to medium grained, dark gray, wet,	loose			X	1.4	3-4-4 N=8	S-4			
		to medium dense, with interbedded silty fine to medium sar		10			1	2-2-6 N=8	S-54 S-5E			
				- - 15- -		\mathbf{X}	1	1-4-5 N=9	S-6	24		14
						\mathbf{X}	1.5	2-3-9 N=12	S-7			
.1 1 . [21.5 Boring Terminated at 21.5 Feet Stratification lines are approximate. In-situ, the transition may be gradual.					× \	Han	ımer Type: Automat	ic			
Advir												
Mu Aban Bo	donm	ent Method: tary See Exhibit A-3 f procedures. See Appendix B procedures and a procedures and a procedures and a see Appendix C abbreviations.	for descrip additional d	tion of labo lata (if any	oratory ').		Note	s.				
_		WATER LEVEL OBSERVATIONS					Boring	Started: 09-06-2018	3 E	Boring Com	pleted: 09-06-2	2018
V	И						-	ig: Veh. #92		Driller: Holo		
		21905	64th Ave W	V, Ste 100		•		t No.: 81185115		Exhibit:		

		B	ORING LO	DG NC). E	3-1	0			F	Page 1 of [·]	1
	PR	OJECT: UPS Boeing Field Parcel Distrib	oution Facility	CLIENT	: Ui	nite	d Pa na, N	rcel Service				
	SIT	E: 7575 Perimeter Road S. Seattle, WA		-	0	nai	ia, i	L				
	GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5342° Longitude: -122.3002° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
			AND SAND ly coal, coal slag			X	1.3	3-3-4 N=7	S-1			
/20/18		4.0			-	X	1	2-2-4 N=6	S-2			
EMPLATE.GDT 12		FILL - GRAVEL WITH DEBRIS, angular, yellov loose to loose, majority bricks and clay pipe de irregularly laying	v, moist, very bris, loose and	5 -	-	X	0.5	4-3-3 N=6	S-3	-		
RACON_DATATE				-			0.5	2-1-2 N=3	S-4	_		
FIELD .GPJ TER				10-	-	X	0.7	1-5-1 N=6	S-5	-		
- 81185115 UPS BOEING				- - 15-	-		0.5	2-1-2 N=3	S-6	_		
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81185115 UPS BOEING FIELD. GPJ TERRACON_DATATEMPLATE.GDT 12/20/18		18.0 POORLY GRADED SAND (SP) , fine to medium grained, dark gray, wet, medium dense, with interbedded fine sand with silt ar trace wood			-		1.5	3-3-7	S-7	_		
M ORIGINAL REPOR	21.5 Boring Terminated at 21.5 Feet							N=10				
ARATED FRC		Stratification lines are approximate. In-situ, the transition may	be gradual.				Har	nmer Type: Automat	ic			
G IS NOT VALID IF SEF	Muc band Bori	PROTATY provide the second sec	See Exhibit A-3 for deso procedures. See Appendix B for des procedures and addition See Appendix C for exp ubbreviations.	cription of lab nal data (if an	orator <u>.</u> /).		Note	S:				
NG LO	$\overline{\mathbf{\nabla}}$	WATER LEVEL OBSERVATIONS					Boring	9 Started: 09-06-2018	Bor	ing Com	pleted: 09-06-2	2018
BORI	<u>×_</u>	While drilling					Drill R	ig: Veh. #92	Dril	ler: Holo	cene	
THIS			21905 64th A Mountlake	ve W, Ste 10 Terrace, WA	J		Projec	et No.: 81185115	Exh	nibit: /	\-13	

	BORING LO	OG N	0. E	3-1	1			F	Page 1 of	3
PR	OJECT: UPS Boeing Field Parcel Distribution Facility	CLIEN			d Pa na, N	rcel Service E				
SI	E: 7575 Perimeter Road S. Seattle, WA				,	-				
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5345° Longitude: -122.3003° DEPTH	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	ATTERBERG LIMITS	PERCENT FINES
	0.2 <u>ASPHALT CONCRETE</u> , Asphalt thickness 0.2 feet 0.7 <u>AGGREGATE BASE COURSE</u> , 5/8 inch minus crushed base rock FILL - POORLY GRADED SAND WITH GRAVEL (SP), coarse to		_		1	12-13-12 N=25	S-1			
	medium grained, brown, moist to wet, loose to medium dense, w trace silt	vith	_		0.7	4-5-6 N=11	S-2	_		
		5	_		0	3-3-4 N=7	S-3			
	 <u>POORLY GRADED SAND (SP)</u>, fine to medium grained, dark brown, moist, loose 9.0 				0.8	5-5-4 N=9	S-4			
	<u>POORLY GRADED SAND (SP)</u> , medium grained, dark gray, wet, loose	10	_		0.6	3-2-2 N=4	S-5			
			-							
WELL 0110311		15	-		1	3-4-4 N=8	S-6	_		
	18.0 <u>POORLY GRADED SAND WITH SILT (SP-SM)</u> , fine to medium grained, dark gray, wet, medium dense		_							
		20	_		1	3-7-9 N=16	S-7	26	-	8
UM URIGINAL F	23.0 <u>SILT WITH SAND (ML)</u> , fine grained, dark gray, wet, very soft to soft, with occasional interbedded fine and fine to medium sand		_							
	Stratification lines are approximate. In-situ, the transition may be gradual.	25	_		Han	nmer Type: Automat	ic			
	cement Method: I-Rotary See Exhibit A-3 for des procedures. See Appendix B for de procedures and additio	scription of la nal data (if a	aborator ny).	-	Note	s:				
Abanc Bor Sur	onment Method: See Appendix C for ex ng backfilled with bentonite abbreviations. ace capped with concrete	planation of :	symbols	and			<u>.</u>			
	WATER LEVEL OBSERVATIONS While drilling				Boring	started: 09-07-2018	B B	oring Com	pleted: 09-07-	2018
		30			Drill R	ig: Veh. #92	D	riller: Holo	ocene	
μ	21905 64th / Mountlake	Ave W, Ste 1 Terrace, WA			Projec	at No.: 81185115	E	xhibit:	A-14	

	BORIN	G LO	g no). B	8-1	1			F	Page 2 of 3	3
PR	OJECT: UPS Boeing Field Parcel Distribution Fa	cility (CLIENT	: Un On	iteo	d Pa a, N	rcel Service				
SI	E: 7575 Perimeter Road S. Seattle, WA			On	nan	ia, in	-				
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5345° Longitude: -122.3003° DEPTH		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	SILT WITH SAND (ML), fine grained, dark gray, wet, very soft, with occasional interbedded fine and fine to medium (continued)	soft to sand			X	0.9	2-2-9 N=11	S-8			
					X	1.5	2-1-1 N=2	S-9	38		83
					X	1.5	1-1-2 N=3	S-10	36		
			40	,	X	1.5	0-0-0 N=0	S-11	26		
	SILT WITH SAND (ML), fine to medium grained, dark gray stiff, with gravel and interbedded silty fine sand	y, wet,	_ 45—		$\mathbf{\nabla}$	0	6-7-8 N=15	S-12	_		
							N-13				
	Stratification lines are approximate. In-situ, the transition may be gradual.		50-			Har	nmer Type: Automat	ic			
Mud Abanc Bor	cement Method: I-Rotary See Exhibit A- procedures. See Appendix procedures an procedures an See Appendix procedures an See Appendix abbreviations.	B for descri ad additional C for explar	ption of labo data (if any	oratory).		Note	:S:				
	WATER LEVEL OBSERVATIONS					Boring	g Started: 09-07-2018	в	oring Com	pleted: 09-07-	2018
\square	While drilling	כוב				Drill R	lig: Veh. #92	D	riller: Holo	cene	
		05 64th Ave ountlake Ter				Projec	ct No.: 81185115	E	xhibit:	\-14	

			BORING LO	C	i NC). B	8-1	1			F	Page 3 of 3	3
	PR	OJECT: UPS Boeing Field Parcel Dist	ribution Facility	С	LIENT	: Un	nite	d Pa	rcel Service				
	SIT	E: 7575 Perimeter Road S. Seattle, WA				Ur	nan	na, N	IC.				
	GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5345° Longitude: -122.3003°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
		DEPTH <u>SILT WITH SAND (ML)</u> , fine to medium grain stiff, with gravel and interbedded silty fine sa			_			1.1	6-6-8 N=14	о S-13	18		31
		51.5 Boring Terminated at 51.5 Feet			-		$ \land$						
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81185115 UPS BOEING FIELD GPJ TERRACON_DATATEMPLATE.GDT 12/20/18	Stratification lines are approximate. In-situ, the transition may be gradual. Advancement Method: See Exhibit A-3 for des procedures. Mud-Rotary See Exhibit A-3 for des procedures and additional and additional and additional and additional and additional additionadditional additional additionadditional addition				on of lab ata (if any	oratory ').		Har	mmer Type: Automat	ic			
ON SI DC	Bor	ng backfilled with bentonite face capped with concrete		nanati	ion of syl	ndols a	and						
SING LC	$\overline{\nabla}$	WATER LEVEL OBSERVATIONS While drilling	lerr					Boring	g Started: 09-07-2018	B Bori	ng Com	pleted: 09-07-	2018
S BOR	<u> </u>							Drill F	Rig: Veh. #92	Drill	er: Holo	cene	
THIS			21905 64th A Mountlake			,		Proje	ct No.: 81185115	Exh	ibit: /	\-14	

BORING LOG NO. B-12								Page 1 of 1					
PROJECT: UPS Boeing Field Parcel Distribution Facility		CLIENT: United Parcel Service Omaha, NE											
SITE: 7575 Perimeter Road S. Seattle, WA													
90	LOCATION See Exhibit A-2			t.)	/EL	ſΡΕ	(Ft.)	ST S	ABER	(%)	ATTERBERG LIMITS	NES	
GRAPHIC LOG	Latitude: 47.5336° Longitude: -122.3°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES	
U		AF 5 4			88	Ś	R		SAN	0		Н	
	 <u>ASPHALT CONCRETE</u>, Asphalt thickness 0.4 <u>FILL - SANDY GRAVEL WITH SILT (GP-GM)</u>, gray, moist, loose to medium dense, with silt <u>FILL - POORLY GRADED SAND (SP)</u>, fine to 	brown and dark to trace silt medium grained,		-		X	1	8-6-5 N=11	S-1				
	brown, moist, loose to medium dense, with tr			_	-	X	0.9	10-3-4 N=7	S-2				
	POORLY GRADED SAND (SP), fine to mediu moist to wet, very loose to loose, with trace s	m grained, brown, ilt		5 -									
				-		X	1.3	2-3-0 N=3	S-3	3			
				-		X	11.3	2-2-2 N=4	S-4				
				10- -			1.1	1-2-2 N=4	S-5				
	13.0 POORLY GRADED SAND WITH SILT (SP-SM), fine to medium grained, dark gray, wet, loose 16.0 SILT WITH SAND (ML), fine to medium grained, dark gray, wet, soft to medium stiff, with interbedded fine to medium sand with trace silt and shell fragments 21.5				-	X	1.2	1-1-4 N=5	S-6				
						X	1.3	1-1-2 N=3	S-7	36			
	Boring Terminated at 21.5 Feet Stratification lines are approximate. In-situ, the transition ma	ay be gradual.					Har	nmer Type: Automat	ic				
Mud-Rotary procedur See App procedur Abandonment Method: See App		procedures and addition	description of laboratory										
WATER LEVEL OBSERVATIONS			Bo				g Started: 09-06-2018	В	Boring Completed: 09-06-2018				
			acon				Drill Rig: Veh. #92			Driller: Holocene			
			h Ave W, Ste 100 ke Terrace, WA				Project No.: 81185115			Exhibit: A-15			

	BORI	NG LO	<u>G NC</u>). E	3-1	3			F	Page 1 of :	3
PR	ROJECT: UPS Boeing Field Parcel Distribution	Facility	CLIENT			d Pa a, N	rcel Service				
SIT	TE: 7575 Perimeter Road S. Seattle, WA			U.	nan	a, 1 1					
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5339° Longitude: -122.3002°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
\otimes	0.4 <u>ASPHALT CONCRETE</u> , Asphalt thickness 0.4 feet 1.3 FILL - POORLY GRADED SAND WITH SILT (SP-SM), r	nedium			\bigtriangledown		4-3-4		-		
	to coarse grained, dark brown, moist, loose, primarly c with trace fine gravel FILL - POORLY GRADED SAND (SP), medium grained			-	\square	1.5	N=7	S-1			
\bigotimes	reddish gray, moist, loose to medium dense, with trace and silt 4.5	coarse san	ıd –	-	X	1	4-4-6 N=10	S-2	_		
	POORLY GRADED SAND WITH SILT (SP-SM), fine to r grained, reddish gray to brown gray, moist to wet, med with interbedded fine sand and medium to coarse sand silt	lium dense,	5-	-	X	0.7	3-4-7 N=11	S-3	_		
			-		X	0.9	3-4-8 N=12	S-4	15		6
			10	-	X	0.75	3-4-6 N=10	S-5	_		
	13.0 POORLY GRADED SAND WITH SILT (SP-SM), fine gra dark gray, wet, loose, with some shell fragments	ained,		-							
			15	-	X	0.7	2-3-3 N=6	S-6			
			-	-							
			20-	-	X	1.1	3-3-4 N=7	S-7			
			-	-							
	Stratification lines are approximate. In-situ, the transition may be gradua	al.	25-	1		Han	nmer Type: Automat	ic			
Mud Aband	d-Rotary procedures See Appen procedures donment Method: See Appen	ndix B for descr s and additiona ndix C for expla	iption of lab I data (if any	oratory /).		Note	S:				
	face capped with concrete										
\bigtriangledown	WATER LEVEL OBSERVATIONS While drilling						Started: 09-07-2018		-	pleted: 09-07-	2018
						Drill R	ig: Veh. #92	Dr	iller: Holo	cene	
21905 64th Av Mountlake Te						Projec	t No.: 81185115	E>	hibit: A	A-16	

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81185115 UPS BOEING FIELD .GPJ TERRACON_DATATEMPLATE.GDT 12/20/18

	В	ORING LC)g NC). E	8-1	3			F	Page 2 of 3	3
PR	OJECT: UPS Boeing Field Parcel Distril	bution Facility	CLIENT			d Pa na, N	rcel Service				
SIT	E: 7575 Perimeter Road S. Seattle, WA			0.		ia, ii	-				
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5339° Longitude: -122.3002°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
	DEPTH 25.5 <u>SILT (ML)</u> , dark gray, wet, soft to medium stiff	, with some wood	-	-	X	1	2-2-2 N=4	S-8	39		
	28.0 <u>POORLY GRADED SAND (SP)</u> , fine to mediur gray, wet, loose, with trace silt	n grained, dark		-							
	22.0		-	-	X	1	2-3-4 N=7	S-9	28		3
	32.0 <u>SILT (ML)</u> , gray, wet, very soft to stiff, with inter medium sand and thin laminations	erbedded fine to									
			35-		X	1.5	1-1-1 N=2	S-10	40		
			-	-							
			40	-	X	1.3	3-2-4 N=6	S-11	-		
			-								
			45-	-	X	1.5	0-0-0 N=0	S-12	27	NP	
			-	-							
	Stratification lines are approximate. In-situ, the transition may	/ be gradual.	50-	-		Har	nmer Type: Automat	ic			
م جار م	compet Method					N 1 <i>i</i>					
Advancement Method: See Exhibit A-3 for des procedures. Mud-Rotary See Appendix B for des procedures and addition Abandonment Method: See Appendix C for expendix		cription of lab	oratory /).		Note	35:					
Boring backfilled with bentonite abbreviations.											
∇	WATER LEVEL OBSERVATIONS					Boring	g Started: 09-07-2018	Bo	ring Com	oleted: 09-07-2	2018
	While drilling	IIGLL	JCC			Drill F	Rig: Veh. #92	Dri	ller: Holo	cene	
		21905 64th Av Mountlake T		C		Proje	ct No.: 81185115	Ex	hibit: A	A-16	

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81185115 UPS BOEING FIELD .GPJ TERRACON_DATATEMPLATE.GDT 12/20/18

	В	ORING LC)G	NC). E	3-1	3			F	Page 3 of 3	3
PR	OJECT: UPS Boeing Field Parcel Distrib	oution Facility	CLI	ENT	: Ur	nite	d Pa na, N	rcel Service				
SI	TE: 7575 Perimeter Road S. Seattle, WA				U.	nai	ia, iv					
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.5339° Longitude: -122.3002° DEPTH			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits	PERCENT FINES
	<u>SILT (ML)</u> , gray, wet, very soft to stiff, with inte medium sand and thin laminations <i>(continued)</i>	rbedded fine to				\mathbb{X}	1.2	5-6-5 N=11	S-13			
	51.5 Boring Terminated at 51.5 Feet											
	Stratification lines are approximate. In-situ, the transition may	be gradual.					Ha	mmer Type: Automat	ic			
		See Exhibit A-3 for desc	ription	of field	1		Note	es:				
Mud-Rotary See EXhibit A-5 to description Mud-Rotary procedures. See Appendix B for description See Appendix B for description Abandonment Method: See Appendix C for exp abbreviations. Surface capped with concrete See Appendix C for exp abbreviations.			cription nal data	n of lab a (if any	oratory /).							
\bigtriangledown	WATER LEVEL OBSERVATIONS						Borin	g Started: 09-07-2018	Bori	ng Com	pleted: 09-07-	2018
	While drilling					1	Drill F	Rig: Veh. #92	Drill	er: Holo	cene	
21905 64th Av Mountiake T)		Proje	ct No.: 81185115	Exhi	bit: /	A-16	

ω
5
/20
12/
F
GDT.
Ë
F
2
ΜР
Ē
∢
<u> </u>
CON
ğ
Å
TERRA
Ë
_
GPJ
D.GPJ
=
Ū
BOEII
ы
PS
15
5
1851
8
_
Ē
MEI
0 Z
RT LOG-
_
RT
SMA
0
GEO
ORT.
6
Ξ
2
Ι
ИIJ
N
MO
20
FR
TED
Ë
Ą
<
SEP
۳ ۳
9
¥
01
ç
ls ⊾
<u>ں</u>
ö
В
Į,
BOR
SE
÷

	В	ORING LC	DG NC). E	3-1	4			F	Page 1 of	1
PR	OJECT: UPS Boeing Field Parcel Distrik	oution Facility	CLIEN			d Pa na, N	rcel Service E				
SIT	E: 7575 Perimeter Road S. Seattle, WA			•		,	_				
g	LOCATION See Exhibit A-2			EL NS	PE	Ft.)	F	BER	(%	ATTERBERG LIMITS	JES
GRAPHIC LOG	Latitude: 47.5341° Longitude: -122.3005°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (Ft.)	FIELD TEST RESULTS	SAMPLE NUMBER	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
0	DEPTH			≥₩	Ś	RE		SAN	0		Щ
\otimes	0.3 ASPHALT CONCRETE, Asphalt thickness 0.3								-		
	FILL - POORLY GRADED SAND (SP), fine to r brownish gray, moist, medium dense, with trac	nedium grained, ce silt and gravel	-		X	0.9	8-9-7 N=16	S-1			
8	3.5 <u>POORLY GRADED SAND (SP)</u> , fine to mediun brownish gray, moist to wet, loose, with trace s	n grained, dark				1.4	5-8-8 N=16	S-2			
	brownian gray, molat to wet, loose, with trace t	5110	5 -						_		
				_	X	1.3	3-5-5 N=10	S-3	_		
			-			1	3-2-3 N=5	S-4			
			-	\bigtriangledown	\vdash				-		
			10-			1	2-2-2 N=4	S-5			
			15-	-			1-2-2		_		
			-	-		1.5	N=4	S-6	_		
	19.0										
	POORLY GRADED SAND (SP) , fine to mediun brownish gray, wet, dense, with trace silt	n grained, dark	20-			1.5	6-12-19	S-7	-		
	21.5			-	\square	1.0	N=31	01			
	Boring Terminated at 21.5 Feet										
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Har	nmer Type: Automat	ic			
Mud	-Rotary	See Exhibit A-3 for desc procedures. See Appendix B for des procedures and addition See Appendix C for exp abbreviations.	cription of lai nal data (if an	poratory y).		Note	25:				
	Boring backfilled with bentonite abbreviations. Surface capped with concrete										
<u> </u>	WATER LEVEL OBSERVATIONS					Boring	g Started: 09-06-2018	B Bor	ing Com	pleted: 09-06-	2018
	While drilling	lierr	DCO		1	Drill F	Rig: Veh. #92	Dril	ler: Holo	cene	
21905 64th Ave			Ave W, Ste 100 e Terrace, WA Project No.: 81185115					Exhibit: A-17			

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81185115 UPS BOEING FIELD .GPJ TERRACON_DATATEMPLATE.GDT 12/20/18

	E	BORING LO	DG NO	D. E	3-1	5			F	Page 1 of	1
PR	OJECT: UPS Boeing Field Parcel Distr	ibution Facility	CLIEN	T: U	nite	d Pa na, N	rcel Service				
SIT	E: 7575 Perimeter Road S. Seattle, WA			U	mai	ia, i					
<u>-0G</u>	LOCATION See Exhibit A-2		t.)	/EL	ſΡΕ	(Ft.)	ST S	ABER	(%)	ATTERBERG LIMITS	NES
GRAPHIC LOG	Latitude: 47.5343° Longitude: -122.3006°		DEPTH (Ft.)	R LEV	LE LE	VERY	FIELD TEST RESULTS		ATER		ENT FI
GRAF			DEP	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY	FIEL	SAMPLE NUMBER	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
¢ ≜ ⊗	DEPTH 0.6 CONCRETE, Concrete thickness 0.6 feet				0,			ە م			<u> </u>
	brown, moist, medium dense 2.0					0.4	7-12-12 N=24	S-1			
	POORLY GRADED SAND (SP), fine to mediu gray, moist, loose, with trace gravel	ım grained, dark				-	4-4-5		_		
					\mathbb{N}	1.2	N=9	S-2			
			5								
			5-		\mathbb{N}	1.4	2-4-4	S-3	5		
					\vdash		N=8				
						-	0.4.0	<u> </u>	_		
					X	1.3	3-4-3 N=7	S-4			
	9.5 POORLY GRADED SAND (SP), fine grained,	dark brown gray			-						
	wet, loose, with trace silt	dank brown gray,	10-		\square	1.2	2-3-3	S-5			
					\square	1.2	N=6		_		
			15		\bigtriangledown	4.5	2-2-2				
						1.5	N=4	S-6	_		
				-							
	18.0 POORLY GRADED SAND WITH SILT (SP-SM	/) , fine grained,		_							
	dark gray, wet, loose, with wood			_							
			20-	_			1-2-3				
	21.5				Ň	1.5	N=5	S-7	32		8
	Boring Terminated at 21.5 Feet										
	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.				Har	nmer Type: Automat	IC			
	ement Method: -Rotary	See Exhibit A-3 for desc procedures.	cription of fie	ld		Note	es:				
See Appendix B for des procedures and addition			cription of la nal data (if ar	borator ıy).	у						
	onment Method: ig backfilled with bentonite	See Appendix C for exp abbreviations.		• ·	and						
	ace capped with concrete										
\square	WATER LEVEL OBSERVATIONS While drilling		aci				g Started: 09-06-2018		-	pleted: 09-06-	2018
		21905 64th A	ve W, Ste 10				Rig: Veh. #92		iller: Holo		
21905 64th Av Mountlake T						Projec	ct No.: 81185115	Ex	hibit:	A-18	

APPENDIX B LABORATORY TESTING

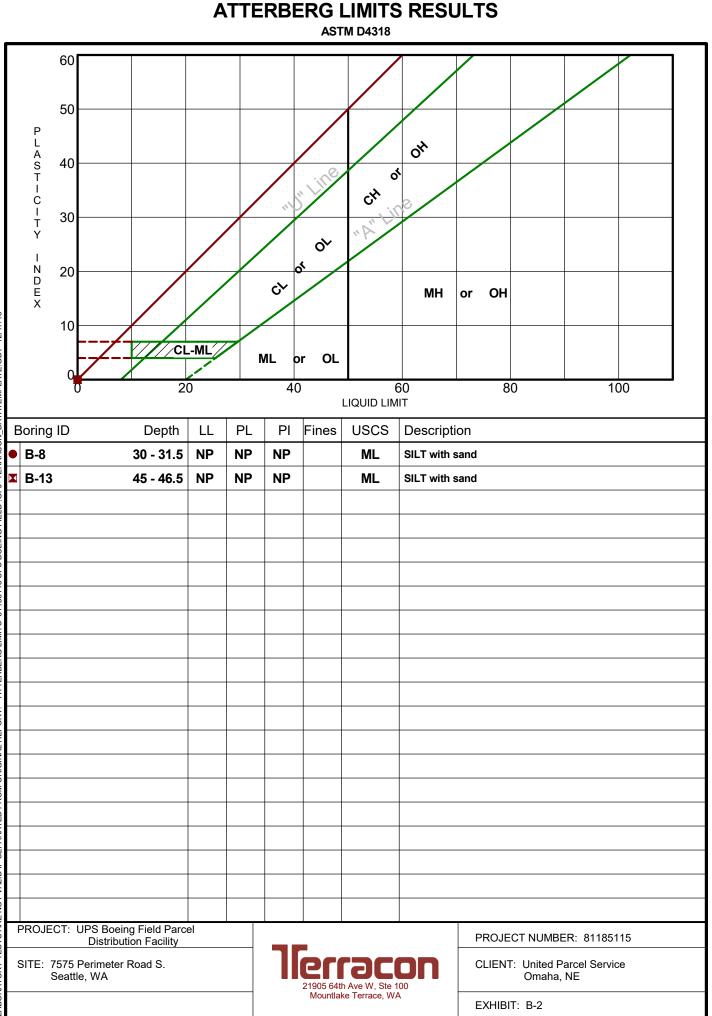
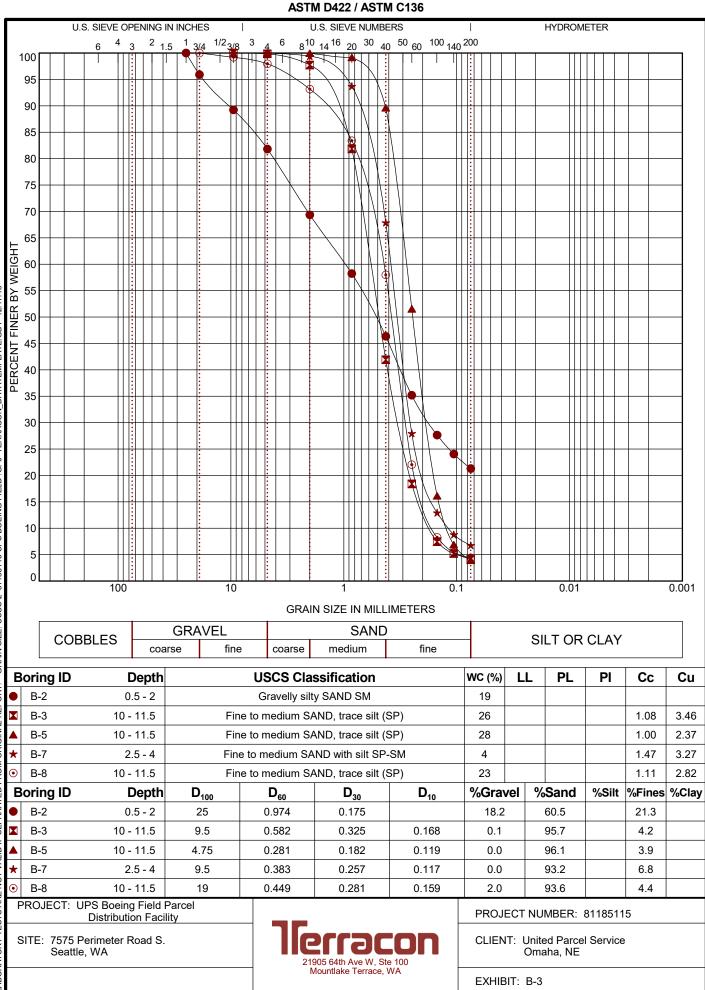
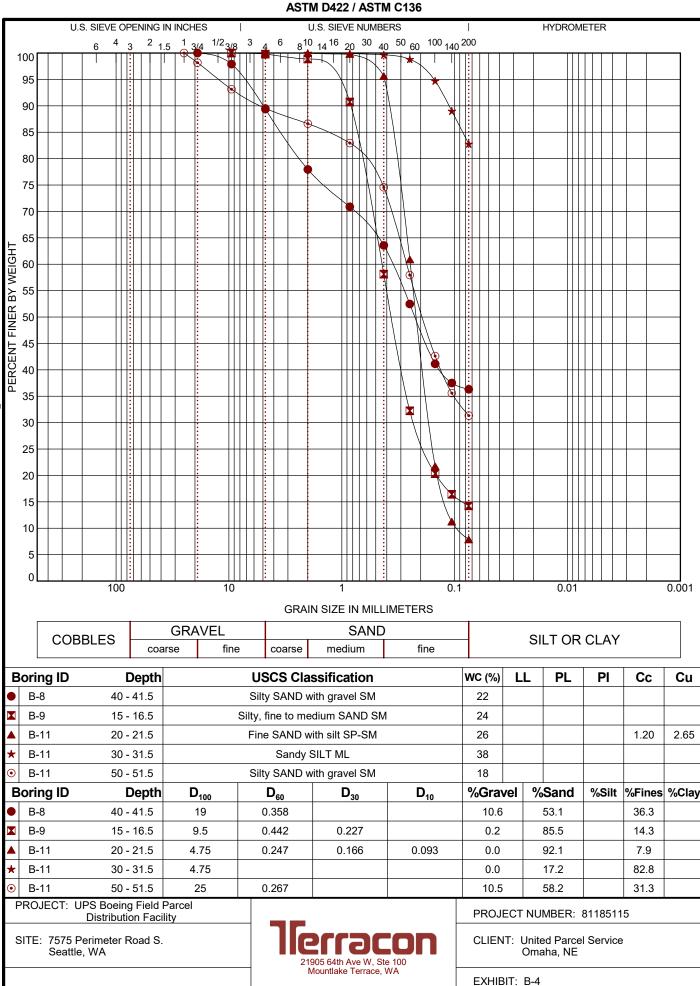


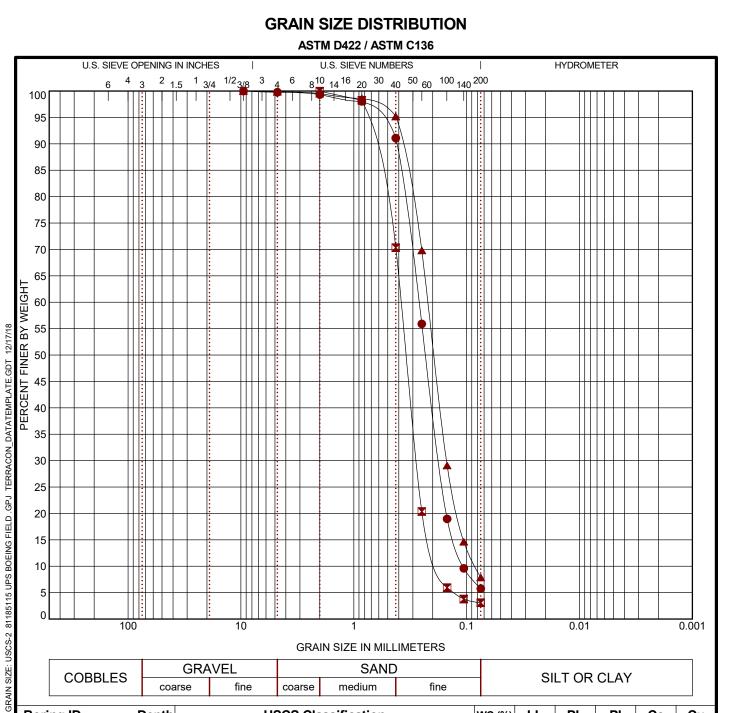
EXHIBIT B-1 -- LABORATORY TESTING

The project engineer reviewed the field data and assigned laboratory tests to understand the engineering properties of the various soil strata, as necessary, for this project. Procedural standards noted below are for reference to methodology in general. In some cases, variations to methods were applied because of local practice or professional judgment. Standards noted below include reference to other, related standards. Such references are not necessarily applicable to describe the specific test performed.


- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils
- Moisture-Density Relationships (modified Proctor) ASTM D-1557
- California Bearing Ratio (CBR) ASTM D-1883

The laboratory testing program often included examination of soil samples by an engineer. Based on the material's texture and plasticity, we described and classified the soil samples in accordance with the Unified Soil Classification System.


TERRACON_DATATEMPLATE.GDT 12/17/18 . GPJ. ATTERBERG LIMITS 81185115 UPS BOEING FIELD -ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.


GRAIN SIZE DISTRIBUTION

GRAIN SIZE: USCS-2 81185115 UPS BOEING FIELD . GPJ TERRACON_DATATEMPLATE.GDT 12/17/18 REPORT. ORIGINAL ROM^T SEPARATED ш NOT VALID I ABORATORY TESTS ARE

GRAIN SIZE DISTRIBUTION

1

medium

D₃₀

0.174

0.277

0.151

GRAIN SIZE IN MILLIMETERS

SAND

÷

coarse

D₆₀

0.266

0.381

0.221

USCS Classification

SAND with silt SP-SM

Fine to medium SAND, trace silt (SP)

Fine SAND with silt SP-SM

10

fine

GRAVEL

D₁₀₀

9.5

2

9.5

coarse

Depth

Depth

7.5 - 9

30 - 31.5

20 - 21.5

7.5 - 9

30 - 31.5

20 - 21.5

WC (%)

15

28

32

%Gravel

0.2

0.1

LL

0.1

fine

D₁₀

0.108

0.172

0.084

Boring ID B-13 B-13 B-15 **Boring ID** B-13 B-13 B-15 PROJECT: UPS Boeing Field Parcel Distribution Facility SITE: 7575 Perimeter Road S. Seattle, WA

5

0

REPORT.

SEPARATED FROM ORIGINAL

ш

ABORATORY TESTS ARE NOT VALID I

•

100

COBBLES

PROJECT NUMBER: 81185115

%Sand

94.0

96.9

92.0

0.01

SILT OR CLAY

PI

Сс

1.06

1.17

1.23

%Silt %Fines %Clay

5.8

3.1

7.9

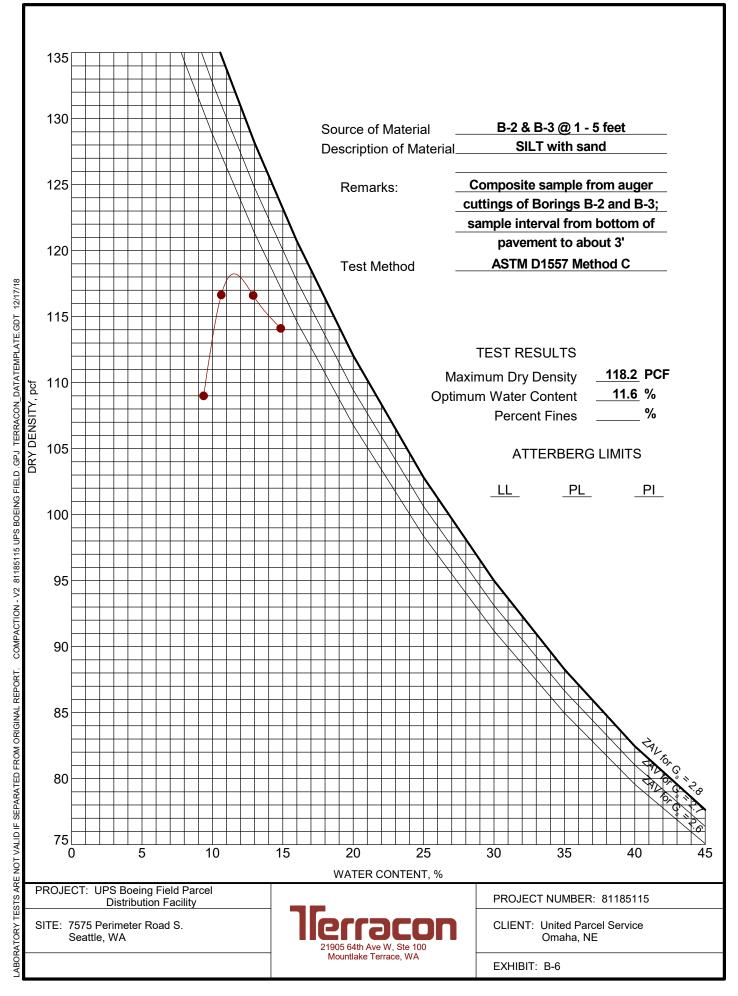
PL

0.001

Cu

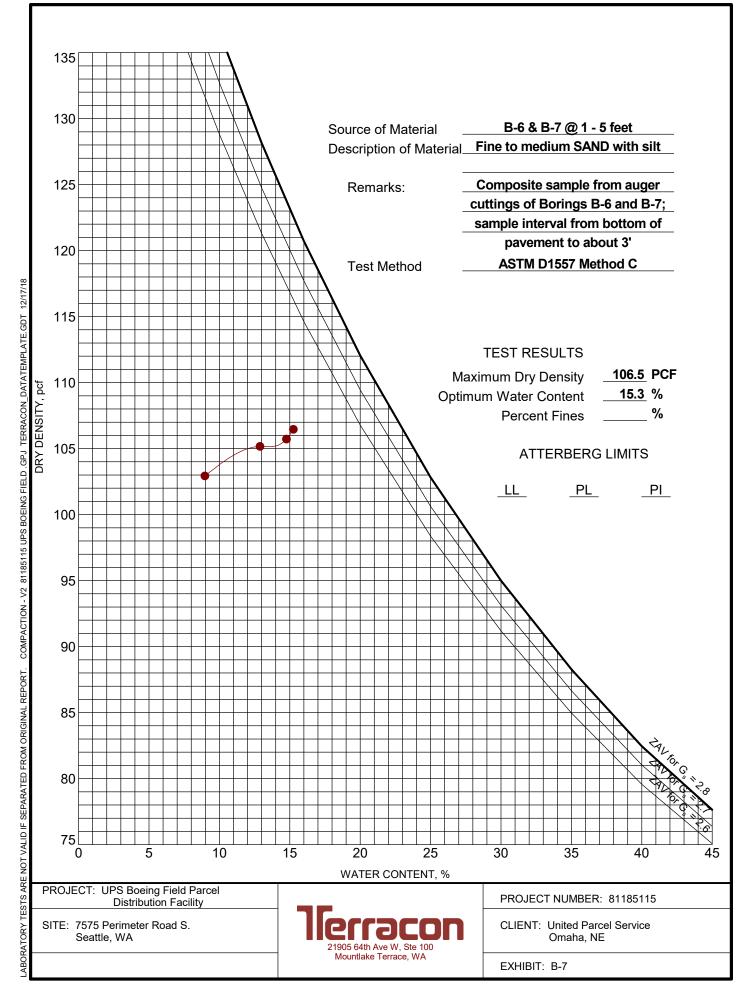
2.47

2.21

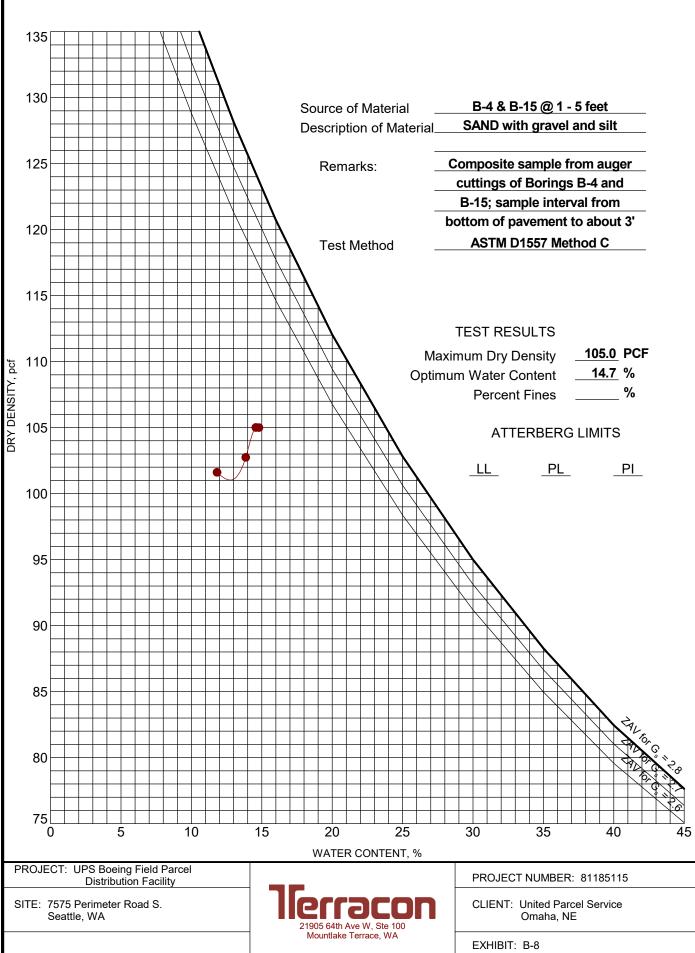

2.64

CLIENT: United Parcel Service Omaha, NE

EXHIBIT: B-5

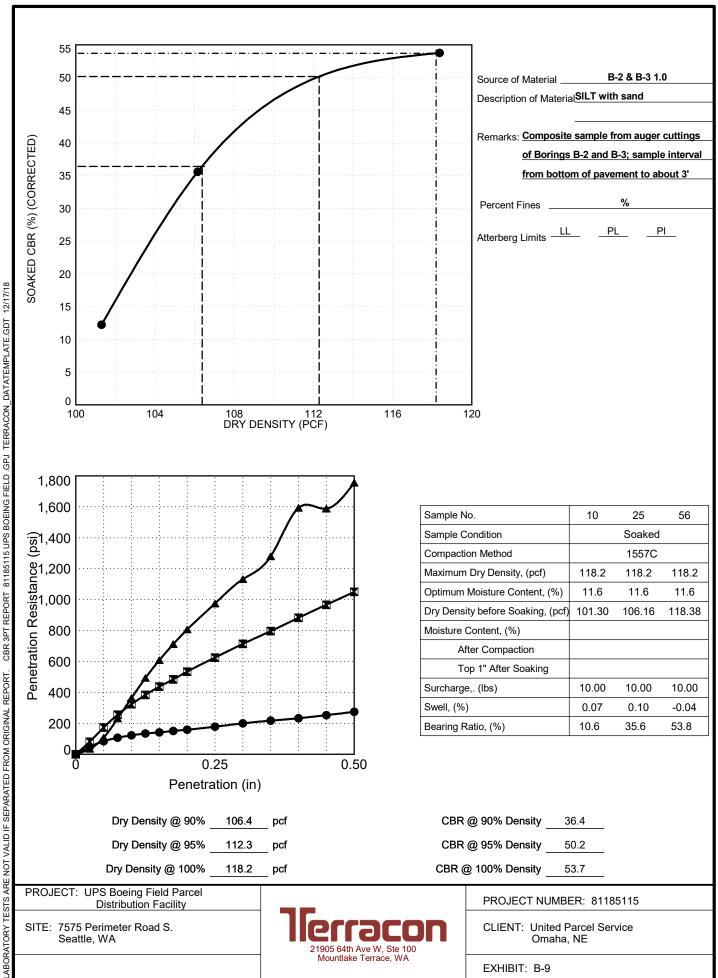

MOISTURE-DENSITY RELATIONSHIP

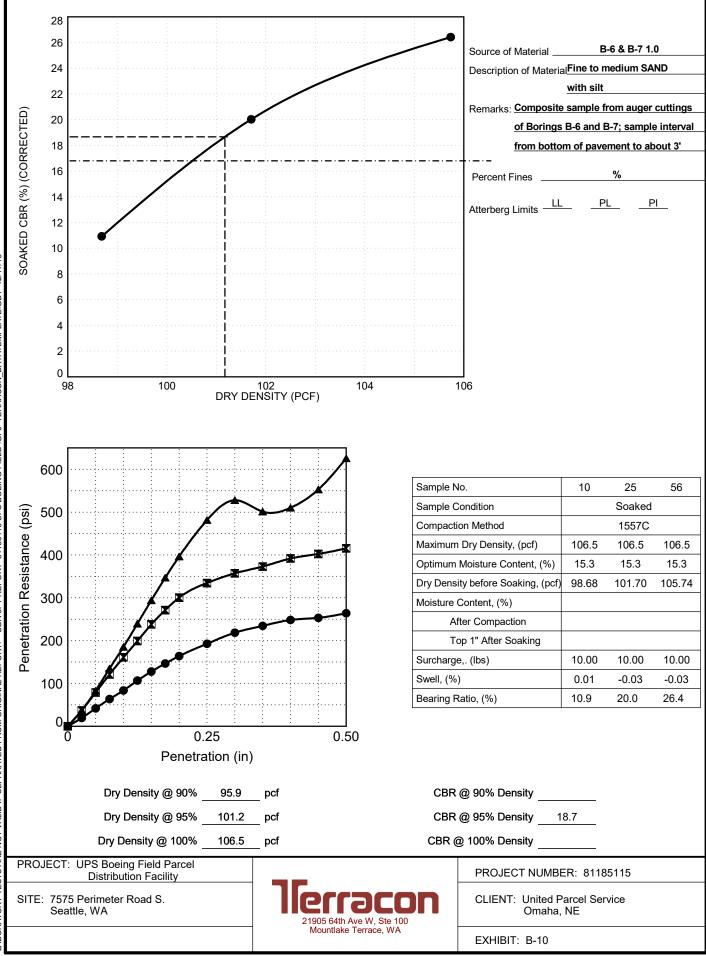
ASTM D698/D1557

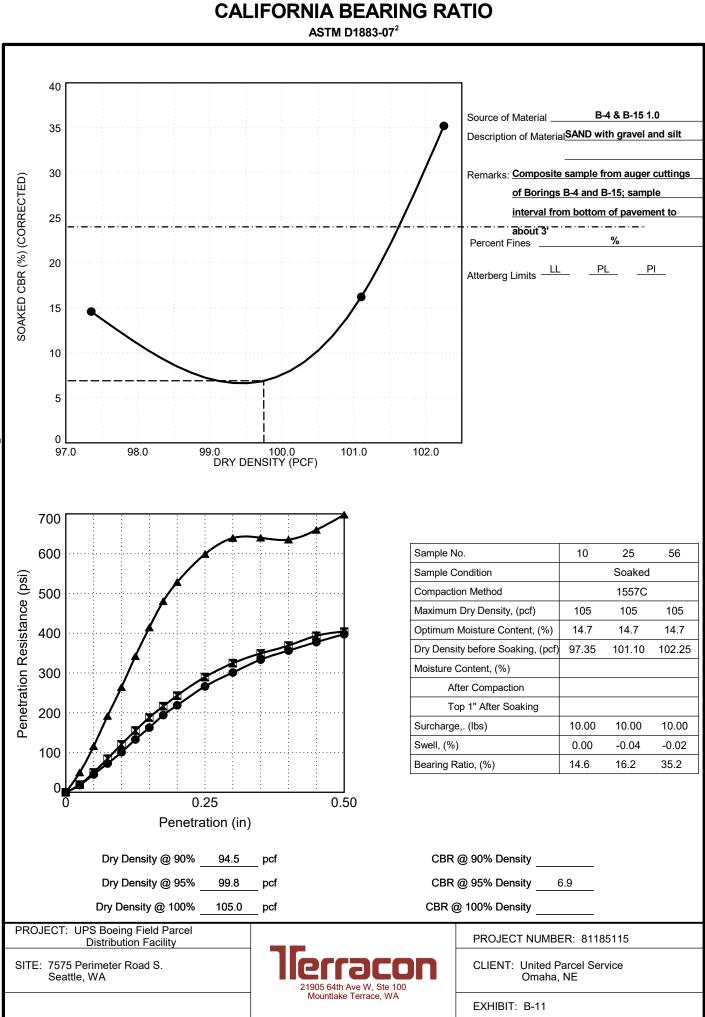

MOISTURE-DENSITY RELATIONSHIP

ASTM D698/D1557

MOISTURE-DENSITY RELATIONSHIP


ASTM D698/D1557


ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. COMPACTION - V2 81185115 UPS BOEING FIELD GPJ TERRACON DATATEMPLATE.GDT 12/17/18


CALIFORNIA BEARING RATIO

ASTM D1883-07²

CBR 3PT REPORT 81185115 UPS BOEING FIELD .GPJ TERRACON_DATATEMPLATE.GDT 12/17/18 TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. LABORATORY

APPENDIX C SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

SAMPLING	Auger Cuttings	Standard Penetration Test	WATER LEVEL	 Water Initially Encountered Water Level After a Specified Period of Time Water Level After a Specified Period of Time Water levels indicated on the soil boring logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level observations. 	FIELD TESTS	N (HP) (T) (DCP) (PID) (OVA)	Standard Penetration Test Resistance (Blows/Ft.) Hand Penetrometer Torvane Dynamic Cone Penetrometer Photo-Ionization Detector Organic Vapor Analyzer
----------	-------------------	---------------------------------	-------------	--	-------------	---	---

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than 50%	OF COARSE-GRAINED SOILS retained on No. 200 sieve.) Standard Penetration Resistance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance							
ERMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	scriptive Term Uncontined Compressive Strength						
⊢	Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1					
NGTH	Loose	4 - 9	Soft	0.25 to 0.50	2 - 4					
TRE	Medium Dense	10 - 29	Medium Stiff	0.50 to 1.00	4 - 8					
ູ ເ	Dense	30 - 50	Stiff	1.00 to 2.00	8 - 15					
	Very Dense	> 50	Very Stiff	2.00 to 4.00	15 - 30					
			Hard	> 4.00	> 30					

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace

With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12 **GRAIN SIZE TERMINOLOGY**

Major Component of Sample Boulders Cobbles Gravel Sand Silt or Clay

Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm)

Particle Size

3 in. to #4 sieve (75mm to 75mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High 0 1 - 10 11 - 30 > 30

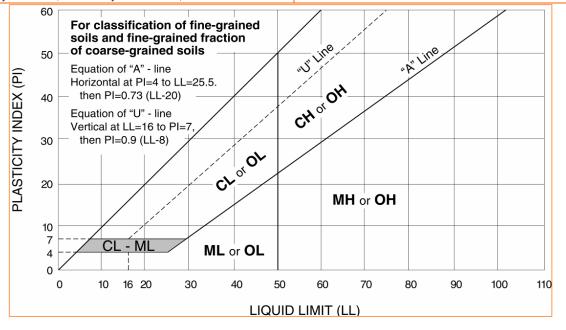
EXHIBIT C-2 -- UNIFIED SOIL CLASSIFICATION SYSTEM

Terracon
GeoReport

					S	oil Classification
Criteria for Assigni	Group Symbol	Group Name ^B				
		Clean Gravels:	$Cu \geq 4$ and $1 \leq Cc \leq 3$ $^{\text{E}}$		GW	Well-graded gravel F
	Gravels: More than 50% of	Less than 5% fines ^C	Cu < 4 and/or [Cc<1 or C	Cc>3.0] <mark>■</mark>	GP	Poorly graded gravel ^F
	coarse fraction retained on No. 4 sieve	Gravels with Fines:	Fines classify as ML or N	ИH	GM	Silty gravel F, G, H
Coarse-Grained Soils:	Tetained on No. 4 Sieve	More than 12% fines ^C	Fines classify as CL or C	Ή	GC	Clayey gravel ^{F, G, H}
More than 50% retained on No. 200 sieve		Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand
	Sands: 50% or more of coarse	Less than 5% fines D	Cu < 6 and/or [Cc<1 or 0	Cc>3.0] <mark>E</mark>	SP	Poorly graded sand
	fraction passes No. 4	Sands with Fines:	Fines classify as ML or N	ИH	SM	Silty sand ^{G, H, I}
	sieve	More than 12% fines ^D	Fines classify as CL or C	H	SC	Clayey sand ^{G, H, I}
		Inergenie	PI > 7 and plots on or ab	ove "A"	CL	Lean clay ^{K, L, M}
	Silts and Clays:	Inorganic:	PI < 4 or plots below "A"	line <mark>J</mark>	ML	Silt K, L, M
	Liquid limit less than 50	Organic:	Liquid limit - oven dried	< 0.75	OL	Organic clay K, L, M, N
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried	< 0.75	OL	Organic silt K, L, M, O
No. 200 sieve		Inorganic:	PI plots on or above "A"	line	СН	Fat clay ^{K, L, M}
	Silts and Clays:	morganic.	PI plots below "A" line		MH	Elastic Silt K, L, M
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	Liquid limit - oven dried		Organic clay ^{K, L, M, P}
		Organic:	Liquid limit - not dried	< 0.75	OH	Organic silt ^{K, L, M, Q}
Highly organic soils:	Primarily	organic matter, dark in co	olor, and organic odor		PT	Peat

A Based on the material passing the 3-inch (75-mm) sieve.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.


- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

E Cu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

F If soil contains \geq 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^MIf soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N PI \geq 4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- QPI plots below "A" line.

EVALUATE: Design Maps Detailed Report

2012/2015 International Building Code (47.53411°N, 122.30054°W)

Site Class D – "Stiff Soil", Risk Category I/II/III

Section 1613.3.1 — Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S_1). Maps in the 2012/2015 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From <u>Figure 1613.3.1(1)</u> ^[1]	$S_s = 1.506 \text{ g}$
From <u>Figure 1613.3.1(2)</u> ^[2]	$S_1 = 0.575 \text{ g}$

Section 1613.3.2 — Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard - Table 20.3-1
SITE CLASS DEFINITIONS

Site Class	Vs	\overline{N} or \overline{N}_{ch}	Su		
A. Hard Rock	>5,000 ft/s	N/A	N/A		
B. Rock	2,500 to 5,000 ft/s	N/A	N/A		
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf		
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf		
E. Soft clay soil	<600 ft/s	<15	<1,000 psf		
	Any profile with more than 10 ft of soil having the characteristics:Plasticity index <i>Pl</i> > 20,				
	• Moisture content $w \ge 40\%$, and • Undrained shear strength $\overline{s}_u < 500$ psf				

F. Soils requiring site response

See Section 20.3.1

analysis in accordance with Section 21.1

For SI: 1ft/s = 0.3048 m/s 1lb/ft² = 0.0479 kN/m²

Site Class	Mapped Spectral Response Acceleration at Short Period						
	S _s ≤ 0.25	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25		
А	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
E	2.5	1.7	1.2	0.9	0.9		
F		See Section 11.4.7 of ASCE 7					

TABLE 1613.3.3(1) VALUES OF SITE COEFFICIENT $F_{\rm a}$

Note: Use straight–line interpolation for intermediate values of S_{s}

For Site Class = D and $S_s = 1.506 \text{ g}$, $F_a = 1.000$

TABLE 1613.3.3(2) VALUES OF SITE COEFFICIENT $F_{\rm v}$

Site Class	Mapped Spectral Response Acceleration at 1-s Period				
	S₁ ≤ 0.10	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	S₁ ≥ 0.50
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F		See Se	ction 11.4.7 of	ASCE 7	

Note: Use straight–line interpolation for intermediate values of S_1

For Site Class = D and $S_{\scriptscriptstyle 1}$ = 0.575 g, $F_{\scriptscriptstyle V}$ = 1.500

Equation (16-37):	$S_{MS} = F_a S_s = 1.000 \text{ x} 1.506 = 1.506 \text{ g}$
Equation (16-38):	$S_{M1} = F_v S_1 = 1.500 \text{ x } 0.575 = 0.863 \text{ g}$
Section 1613.3.4 — Design spectral respons	e acceleration parameters
Equation (16-39):	$S_{\text{DS}} = \frac{2}{3} S_{\text{MS}} = \frac{2}{3} \times 1.506 = 1.004 \text{ g}$

Equation (16-40):

 $S_{\text{D1}} = \frac{2}{3} S_{\text{M1}} = \frac{2}{3} \times 0.863 = 0.575 \ g$

Section 1613.3.5 — Determination of seismic design category

EI	SMIC DESIGN CATEGORY BAS	ED ON SHORT-PERIOD	(0.2 second) RESPONSE	E ACCELERATION	
		RI SK CATEGORY			
	VALUE OF S_{DS}	l or l l		IV	
	S _{DS} < 0.167g	А	А	А	
	0.167g ≤ S _{DS} < 0.33g	В	В	С	
	0.33g ≤ S _{DS} < 0.50g	С	С	D	
	0.50g ≤ S _{DS}	D	D	D	

TABLE 1613.3.5(1) SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

For Risk Category = I and S_{DS} = 1.004 g, Seismic Design Category = D

TABLE 1613.3.5(2)

SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF S _{D1}	RI SK CATEGORY				
VALUE OF SD1	l or l l	111	IV		
S _{D1} < 0.067g	А	А	A		
0.067g ≤ S _{D1} < 0.133g	В	В	С		
0.133g ≤ S _{D1} < 0.20g	С	С	D		
0.20g ≤ S _{D1}	D	D	D		

For Risk Category = I and S_{D1} = 0.575 g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is E for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)" = D

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

- 1. *Figure 1613.3.1(1)*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf
- 2. *Figure 1613.3.1(2)*: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf

Lighting S	ummary			LTG-SUM		
2015 Washington State		liance Forms for Commercial Buildings including R2, R3, R4 ove	er 3 stories and all R1	Revised Nov 2017		
Project Info	Project Title:	UPS BFI Gateway Project - Main Sort Bldg	Date	10/31/2019		
Compliance forms do not		on. Provide contact information for individual who can s about compliance form information provided.	For Building Departn	nent Use		
require a password to	Company Name:	Design West Engineering				
use. Instructional and	Company Address:	110 James Street, Suite 106				
calculating cells are write-	Applicant Name:	Leonard Maya				
protected.	Applicant Phone:	425-458-9700				
	Applicant Email:	lmaya@designwesteng.com				
Project Descrip	otion	New Building	eration	No Lighting Scope		
		Include PROJ-SUM form (included in envelope forms workbo	ook) with lighting com	pliance forms.		
Interior Lightin	ng System	High bay warehouse lighting consisting of LED energy	efficient fixtures. C	Office and support		
Description		areas consiste of LED fixtures. Network lighting control	ols including Dimmi	ing low voltage		
I I I		controls, occupancy sensors and daylight controls with	n automatic shutoff.			
Interior Lighting	Plans Included					
Interior Lightin	ng Power	Building Area Method Spa	ce-by-space Method			
Allowance Me	thod	Select method used in project.				
Interior Lightin	ng Controls		5.2 Exception 5 Lumi	naire Level		
Interior Lightin	ing Controls	All C405.2.1 - C405.2.8 Lighting Controls C405.2 Exception 5 Luminaire Level Lighting Controls (LLLC)				
		Additional Efficiency Package Option C406.4 Enhanced Digital Lighting				
		To comply with C406.4, no less than 90% of the total installed interior lighting power shall comply with required controls per C406.4.				
Dwelling Unit	Interior	Permanently installed interior lighting fixtures in dwelling units comply with:				
Lighting		C405.2 thru C405.5 Commercial Lighting Controls and LF	PA A	Units		
0 0		C406.3 High Efficacy Lighting				
		OR404.1 Residential High Efficacy Lighting. Dwelling unit lighting complies with WSEC Residential				
			eu of WSEC Comme			
Exterior Lighti	ng System	LED Wallpacks and LED pole mount fixtures will be p				
Description		exterior lighting requirements. Controls will be provide photocell and timeclock inputs.	d by exterior lightin	g controller with		
-		photocen and timeclock inputs.				
D utoviov Liebting	Diana Indudad					
Exterior Lighting			ł	8		
Building Addi	tions	Compliance Method	Interior lighting	Exterior lighting		
		Lighting systems in addition area comply with all applicable provisions as a stand alone new construction project				
Refer to Section C50 requirements.	2.2.6 for additional	Lighting systems in addition are combined with existing building lighting systems to demonstrate compliance				
		Addition is combined with existing: For interior lighting projects, include new + existing-to-rema Proposed Lighting Wattage table in LTG-INT-BLD or LTG-II		ure wattage in		
		For exterior lighting projects, include new + existing-to-rem	ain exterior lighting fix			
		Proposed Tradable and Proposed Non-Tradable Lighting Wattage tables in LTG-EXT form.				

Lighting Summary, cont. LTG-SUM 2015 Washington State Energy Code Compliance Forms for Commercial Buildings including R2, R3, R4 over 3 stories and all R1 Revised Nov 2017				
·	iance Forms for Commercial Buildings incl	uding R2, R3, R4 ove	er 3 stories and all R1	Revised Nov 2017
Project Title: UPS BFI Gateway F	Project - Main Sort Bldg		Date	10/31/2019
Change of Space Use	Existing interior lighting systems in comply with LPAs for the new space Identify interior spaces requiring LPD up table in LTG-INT-BLD or LTG-INT-SPA	ce types per Tables of ograde to the current	C405.4.2(1) or C405.	4.2(2).
Interior and Exterior	Lighting Power	Interior lighting	Parking garage	Exterior lighting
Lighting Alterations	50% or more of existing are replaced			
Select all Lighting Power and Lighting Control elements that apply to the scope of the retrofit project. If project includes a	Less than 50% of existing are replaced			
combination of spaces where less than 50% of the existing fixtures are replaced in some spaces, and 50% or more of the	Lamp and/or ballast replacement only – existing total wattage not increased			
fixtures are replaced in others, then provide separate lighting power compliance forms for the two retrofit conditions. Spaces undergoing the same type of retrofit may be combined into one lighting power compliance form. Refer to Section C503.6 for additional	total LPA per Sections C405.4.2 and C Proposed Lighting Wattage table in LT Less than 50% replaced - Total lightir the total lighting power prior to alteratio Lighting Wattage table in LTG-INT-BLD	405.5.2. Include ne G-INT-BLD, LTG-IN ng power of new + ex n. Include new + ex D, LTG-INT-SPACE of minaires for interior	isting-to-remain fixtures shall comply with ew + existing-to-remain fixtures in IT-SPACE or LTG-EXT form. existing-to-remain fixtures shall not exceed existing-to-remain fixtures in the Proposed	
requirements.	Lighting Controls	Interior lighting	Parking garage	Exterior lighting
All alteration lighting controls shall be commissioned per C408.3.	New wiring installed to serve added fixtures and/or fixtures relocated to new circuit(s)			
	New or moved lighting panel			
	Interior space is reconfigured - luminaires unchanged or relocated			
No changes are being made to the interior or exterior lighting systems and existing space uses and configuration are not changed.	New wiring or circuit - For interior ligh occupancy sensor controls per C405.2. specific lighting controls per C405.2.5. I New or moved panel - Provide all app time switch controls per C405.2.2. Reconfigured interior space - Provide space. Application specific lighting cont	1, daylight responsiv For exterior lighting, licable lighting contro all required lighting	ve controls per C405. provide required con ols as noted for New controls that apply to	2.4 and application trols per C405.2.7. Wiring and automatic o a new interior

Interior L	_ighting - Space-By-Space M	lethod		LTG-IN	NT-SPACE
2015 Washington S	State Energy Code Compliance Forms for Commercial Buildin	ngs including F	R2, R3, R4 over	3 stories and all F	R1 Revised Nov 2017
Project Title:	UPS BFI Gateway Project - Main Sort Bldg			Date	10/31/2019
Calculation Area ^{NOTE 9}	O New Construction O Addition -	O Addition		For Building Dep	artment Use
	O Spaces where < 50% of O Spaces where \ge 50% of	O Spaces w	/here the Use		
LPA Calculation	Standard Additional Efficiency Pac C406.3 Reduced Interior				
Туре	To comply with C406.3, the Proposed LPD shall be 25% lo Refer to C406.3 for additional requirements.	ower than the	Target LPA.	User Note	
Maximum A	Allowed Lighting Wattage NOTE 1				
Location (plan #, room #)	Space Type	Ceiling Height ^{NOTE 2}	Gross Interior Area in ft ²	Allowed Watts per ft ²	Watts Allowed (watts/ft ² x area)
		Total Area		J	
		Retail Display	Allowance from	n LTG-INT-DISPL	AY
Lobh	w Art/Exhibit Display Allowance from I TG-INT-DISPLAY NOTE8			Allowed Wa	tts

Proposed Lighting Wattage^{NOTE3}

Location (plan #, room #)	Fixture Description NOTE 4, 5, 6	Number of Fixtures	Watts/ Fixture ^{NOTE 7}		Watts Proposed
	_				
	Propose	ed Retail Disp	, , ,	1 LTG-INT-DISPLAY	
	/atts may not exceed Total Allowed Watts for Interior Lighting	1	To	otal Proposed Watts	

Interior Lighting Power Allowance

Note 1 - List all unique space types per Table C405.4.2(2) that occur in the project scope. Select space type category from drop down menu.

Note 2 - Indicate ceiling height for atriums and spaces utilizing the ceiling height adjustment per Table C405.4.2(2), Footnotes d thru f.

Note 3 - List all proposed lighting fixtures including exempt lighting equipment and existing-to-remain fixtures.

track lighting, list the length of the track (in feet) in addition to the fixture, lamp, and ballast information.

Note 5 - For lighting equipment eligible for exemption per C405.4.1, note exception number and leave Watts/Fixture blank.

Note 6 - Existing-to-remain fixtures shall be included in the Proposed Lighting Wattage table in the same manner as new fixtures. Identify as existing

in fixture description.

Note 7 - For proposed Watts/Fixture enter the luminaire wattage for installed lamp and ballast using manufacturer or other approved source. For luminaires with screw-in lamps, enter the manufacturer's listed maximum input wattage of the fixture (not the lamp wattage). For low voltage

lighting, enter the wattage of the transformer. For line voltage track/busway systems, enter the larger of the attached luminaire wattage or 50

watts/lineal foot, or enter the wattage limit of permanent current limiting device.

Note 8 - Lobby Art/Exhibit Display Allowance is independent of the Maximum Allowed Lighting Wattage. Enter all proposed lobby art/exhibit display fixtures in LTG-INT-DISPLAY form only.

Note 9 - Calculation Area Details:

а

a. Lighting fixtures in a building addition may comply as a stand alone project, or they may be combined with the overall existing building lighting systems to demonstrate compliance. Refer to C502.1.

b. For alterations and building additions, provide Space Types and gross interior areas in the Maximum Allowed Lighting Wattage table. If

building addition will comply as combined with the overall existing building lighting systems, include all applicable existing Space Types and cross interior areas.

Note 4 - For proposed Fixture Description, indicate fixture type, lamp type (e.g. T-8), number of lamps in the fixture, and ballast type (if included). For

Interior E	Display Lighting - Space-by-Spac	e	LTG-	INT-	DISPLAY
2015 Washington S	State Energy Code Compliance Forms for Commercial Buildings inclue	ding R2, R3, R4 ove	er 3 stories a	and all R	1Revised Nov 2017
Project Title:	UPS BFI Gateway Project - Main Sort Bldg		Date		10/31/2019
specifically for the merchandise displa lighting power allow	Sales areas, an increase in lighting power allowance is permitted for l purpose of highlighting merchandise. Only Sales areas illuminated wit ay lighting may be included in the Gross Interior Area under each Reta wance is the Maximum Retail Display Allowance OR the Total Retail F s less. Proposed retail display lighting wattage that exceeds this allow ng.	h eligible ail category. This Proposed Display	For Buildin	g Depart	ment Use
Maximum A	llowed Retail Display Lighting Wattage		User Note		
Location (plan #, room #)	Retail Sales Area Type ^{NOTE 1}	Gross Interior Area in ft ²	Allowed per ft ^{2 ^}		Watts Allowed (watts/f ² x area) _{NOTE 3}
			-		
	Total Retail With Display Area		Tot	al Watts	
		Retail Display Ligh	ting Base A	llowance	
	M	aximum Retail Disp	lay Allowan	ce ^{NOTE 4}	

Proposed Retail Display Lighting Wattage NOTE 5

Retail Area	Location (plan #, room #)	Fixture Description ^{NOTE 6}	Number of Fixtures	Watts per Fixture ^{NOTE 7}	Watts Proposed
				NOTE 8	

Total Retail Proposed Display Watts^{NOTE 8}

Retail Display Power Allowance^{NOTE 9}

Proposed Retail Display Lighting Totals from LTG-INT-DISPLAY

Retail 1	Retail 2	Retail 3	Retail 4

Note 1 - Select retail sales areas from drop down menu. Only retail sales areas that comply with C405.4.2.2.1 may be entered in this table.

Note 2 - Retail display lighting power allowances per C405.4.2.2.1, Equation 4-11.

Note 3 - Unlit Message - Enter lighting fixture information for this retail sales area in Proposed Lighting Wattage table to generate Lighting Power Allowance.

Note 4 - Maximum retail display wattage allowance as calculated per C405.4.2.2.1, Equation 4-11.

Note 5 - Only separately controlled retail display fixtures that are independent of general area lighting per C405.4.2.2.1 may be entered in this table.

Note 6 - For proposed Fixture Description, list ALL proposed display lighting fixtures. Indicate fixture type, lamp type (e.g. T-8), number of lamps in the fixture, and ballast type (if included). For track lighting, list the length of the track (in feet) in addition to the fixture, lamp, and ballast information.

Note 7 - For proposed Watts/Fixture enter the luminaire wattage for installed lamp and ballast using manufacturer or other approved source. For luminaries with screw-in lamps, enter the manufacturer's listed maximum input wattage of the fixture (not the lamp wattage). For low voltage lighting enter the wattage of the transformer. For line voltage track/buswey, systems, enter the larger of the attached low voltage lighting, enter the wattage of the transformer. For the voltage track/busway systems, enter the target of the attached luminaire wattage or 50 watts/lineal foot, or enter the wattage limit of permanent current limiting device.

- Note 8 Total Retail Proposed Display Watts is automatically entered into the Proposed Fixture Wattage table in LTG-INT-SPACE. Note 9 - Retail display lighting power allowance is the lesser of the Maximum Retail Display Allowance OR the Total Retail Proposed Display Watts. Retail display wattage allowance is automatically entered in the Maximum Allowed Lighting Wattage table in LTG-INT-SPACE.
- Note 10 Enter a unique title for each lobby area in the project that has seperately controlled art/exhibit display lighting. A lobby area title (Column A) and the gross interior sf of the lobby area are are both required to generate the maximum display allowance.
- Note 11 Lobby art and exhibit display wattage allowance per Table C405.4.2(2), Footnote c = 0.5 W/ft².
- Note 12 Proposed display lighting totals for each lobby area per information entered into Proposed Lobby Art/Display Lighting Wattage table. Note 13 - Only separately controlled display fixtures installed in lobbies for the purpose of highlighting art and exhibits, that are independent of general area lighting, may be entered in this table.
- Note 14 Lobby Art/Exhibit Display Allowance is automatically entered in LTG-INT-SPACE.

	Display Lighting - Space-by-Space		LTG-INT-	
2015 Washington S	State Energy Code Compliance Forms for Commercial Buildings inclu	uding R2, R3, R4 ove	er 3 stories and all R	1Revised July 2016
Project Title:	UPS BFI Gateway Project - Main Sort Bldg		Date	10/31/2019
specifically for th may use this add allowance.	In Lobby areas, an additional wattage allowance is permitted for light te purpose of highlighting art and exhibits. Only Lobby areas with elig ditional allowance. Proposed display lighting for each Lobby area ma .llowed Lobby Art/Exhibit Display Lighting	gible display lighting y not exceed this	For Building Depart	tment Use
Lobby Area ^{NOTE}		Gross Interior	Maximum Display Watts Allowed	Proposed Display Lighting Total
10	Lobby Description including (plan # & room #)	Area in ft ²	Per Area NOTE 11	Per Area NOTE 12
	Total Lobby with Display Area	a		

Total Lobby with Display Area

Total Lobby Art/Exhibit Display Allowance^{NOTE 14}

Proposed Lobby Art/Exhibit Display Lighting Wattage NOTE 13

Lobby Area	Location (plan #, room #)	Fixture Description NOTE 6	Number of Fixtures	Watts per Fixture ^{NOTE 6}	Watts Proposed
	Total Lobby Art/Exhibit Proposed Display Watts				

Interior Lighting Power Allowance

* See footnotes on previous page

Interior Lighting - Building Area Method

LTG-INT-BLD

2015 Washington State Energy Code Compliance Forms for Commercial Buildings including R2, R3, R4 over 3 stories and all R Revised Nov 2013 Project Title: UPS BFI Gateway Project - Main Sort Bldg 10/31/2019 Date O Addition For Building Department Use Calculation Addition -O New Construction stand alone + existing Area NOTE 9 O Spaces where the Use Spaces where < 50% of Spaces where ≥ 50% of luminaires are replaced luminaires are replaced is changing (C505) Additional Efficiency Package Option LPA Ô Standard C406.3 Reduced Interior Lighting Power Calculation To comply with C406.3, the Proposed LPD shall be 25% lower than the Target LPA. User Type Refer to C406.3 for additional requirements. Note

Maximum Allowed Lighting Wattagere 1

Building Area	Location (plan #, room #, or ALL)	Area Description	Gross Interior Area in ft ²	Allowed Watts per ft ²	Watts Allowed (watts/ft ² x area) NOTE 2
Warehouse	Main/Small Sort	Bulk package handling	41854	0.40	16742
Office	1st Floor Admin	Admin Offices and Support Areas	7419	0.66	4897
Office	2nd Flr Flight Cont	Flight Control, Offices and Support Areas	2934	0.66	1937
Workshop	Maint Bldg	Repair bays, parts storage, offices and support areas	10000	0.95	9500
Office	Security Bldg	Security Screening Waiting and Support areas	1256	0.66	829
		Total	63463		

Proposed Lighting Wattage

Building Area	Location (plan #, room #)	Fixture Description NOTE 3, 4, 5, 6	Number of Fixtures	Watts per Fixture ^{NOTE 7}	Watts Proposed
Warehouse	Main/Small Sort	HBL(6) - LED Highbay	77	177	13629
Office	1st Floor Admin	L1/L1E - 2X4 Recessed LED Troffer	79	42	3318
Office	1st Floor Admin	L3 - 1X4 Surface LED	15	37	555
Office	1st Floor Admin	F2 - 2' Wall Vanity LED	4	26	104
Office	1st Floor Admin	F3 - 6" LED Recessed Downlight	6	36	216
Office	2nd Flr Flight Cont	L1/L1E - 2X4 Recessed LED Troffer	20	42	840
Office	2nd Flr Flight Cont	F1/F1E - 6" LED Recessed Downlight	12	36	432
Office	2nd Flr Flight Cont	L3 - 1X4 Surface LED	1	37	37
Workshop	Maint Bldg	L2/L2E - 2X2 Recessed LED Troffer	2	44	88
Workshop	Maint Bldg	L1/L1E - 2X4 Recessed LED Troffer	48	44	2112
Workshop	Maint Bldg	HBL(6) - LED Highbay	16	177	2832
Workshop	Maint Bldg	L3 - 1X4 Surface LED	12	37	444
Office	Security Bldg	L3 - 1X4 Surface LED	3	27	81
Office	Security Bldg	L1/L1E - 2X4 Recessed LED Troffer	18	42	756

Compliance by Building Area^{NOTE 8}

Building Area	Warnings	Total Allowed Watts	Total Proposed Watts	Interior Lighting Power Allowance
Warehouse		16742	13629	COMPLIES
Office		7663	6339	COMPLIES
Workshop	Confirm all fixtures are reported under proposed lighting - low watts relative to maximum allowed.	9500	5476	COMPLIES

Note 1 - List all unique building areas per Table C405.4.2(1) that occur in the project scope. Select building area category from drop down menu. Totals 33905 25444

Note 2 - Unlit Message - Enter lighting fixture information for this building area surface in Proposed Lighting Wattage table to generate Lighting Power Allowance.

Note 3 - Proposed fixtures must be listed in the building area in which they occur. List all proposed lighting fixtures including exempt

lighting equipment and existing-to-remain fixtures.

Note 4 - For proposed Fixture Description, indicate fixture type, lamp type (e.g. T-8), number of lamps in the fixture, and ballast type (if included).

For track lighting, list the length of the track (in feet) in addition to the fixture, lamp, and ballast information.

Note 5 - For lighting equipment eligible for exemption per C405.4.1, note exception number and leave Watts/Fixture blank.

Note 6 - Existing-to-remain fixtures shall be included in the Proposed Lighting Wattage table in the same manner as new fixtures. Identify as existing in fixture description.

Note 7 - For proposed Watts/Fixture enter the luminaire wattage for installed lamp and ballast using manufacturer or other approved source. For

luminaires with screw-in lamps, enter the manufacturer's listed maximum input wattage of the fixture (not the lamp wattage). For low voltage

lighting, enter the wattage of the transformer. For line voltage track/busway systems, enter the larger of the attached luminaire wattage or

50 watts/lineal foot, or enter the wattage limit of permanent current limiting device.

Note 8 - Proposed Wattage for each Building Area type shall not exceed the Allowed Wattage for that Building Area type. Trading wattage between Building Area types is not allowed under the Building Area Method compliance path. Note 9 - Calculation Area Details:

Vote 9 - Calculation Area Details:

a. Lighting fixtures in a building addition may comply as a stand alone project, or they may be combined with the overall existing building

Exterior Lighti	ing			LTG-EXT
2015 Washington State Energy	Code Compliance Forms for Commercial Buildings	including R2, R3, R4 o	ver 3 stories and all R1	Revised Nov 2017
Project Title:	UPS BFI Gateway Project - Main Sort Bldg		Date	10/31/2019
Exterior Lighting	O Zone 1 O Zone 2 O Zone 3 O	Zone 1 O Zone 2 O Zone 3 O Zone 4		nent Use
Zone	Exterior Lighting Zone selection required to ena Zones are defined in Table C405.5.2(1) and spe			
Calculation Area	New construction Addition - stand alone Addition + existing			
	• Alteration with < 50% ext. wattage replaced • Alteration with wattage replaced		User Note	
Building Grounds	✓ Efficacy > 80 lumens/watt	ion		
Applies to individual Iuminaires > 100 Watts	Controlled by motion sensor			
Tradable Maximum	Allowed Lighting Wattage ^{NOTE 1}		Base Site Allowance:	750
Tradable Surfaces	Surface Description	Area (ft ²), perimeter (lf) or # of items	Allowed Watts per ft ² or per lf	Allowed Watts $x \text{ ft}^2$ (or x lf) NOTE 2
Uncovered Parking and drives	Parking, Staging and circulations	387874	0.08 W/ft2	31030
Entry Canopies	Caster Deck Canopy	40386	0.4 W/ft2	16154
Entry Canopies	De-lcing Canopy	3213	0.4 W/ft2	1285

Tradable Proposed Lighting Wattage^{NOTE 3}

Tradable Surface	Fixture Description ^{NOTE 4, 5}	Number of Fixtures	Watts per Fixture ^{NOTE 6}	Watts Proposed
Uncovered Parking and drives	LE1-XX - LED Pole Mount Fixture	45	161	7245
Uncovered Parking and drives	LE3-XX - LED Wallpack	19	161	3059
Uncovered Parking and drives	LE5-XX - LED Wallpack	32	48	1536
Entry Canopies	L13 - 4' Surface LED	88	88 65	
Entry Canopies	L13 - 4' Surface LED 15 65		975	
Total proposed tradable watts may not exceed the sum of total allowed tradable Total Proposed Tradable Watts:		18535		

watts plus the base site allowance. Any base site allowance not needed to make tradable watts comply can be applied to individual non-tradable

Non-Tradable Maximum Allowed Lighting Wattage Site Allowance Remaining: 750 Allowed Watts Allowed Watts Area (ft²), perimeter x ft² (or x lf) NOTE 2 Non-Tradable Surfaces per ft², If or item Surface Description (If) or # of items

Non-Tradable Proposed Lighting Wattage^{NOTE 3, 7}

Non-Tradable Surface	Fixture Description NOTE 4, 5	Number of Fixtures	Watts per Fixture ^{NOTE 6}	Watts Proposed
Non-tradable proposed watts n	nay not exceed allowed watts for any individual	Non-Tradable W	atts Exceeding I PA	0

surface unless the total excess watts for all non-tradable surfaces are less than the remaining site allowance.

Exterior Lighting

Remaining Site Allowance:

Total Allowed Tradable + Site Allowance Watts

49220

750

COMPLIES WITH MAX. ALLOWANCE

Note 1 - List all exterior surfaces per Table C405.5.2(2) that occur in the project scope. Select exterior surface categories from drop down menu Note 2 - Unlit Message - Enter lighting fixture information for this surface in Proposed Lighting Wattage table to generate Lighting Power Allowa Note 3 - List all proposed lighting fixtures including existing-to-remain fixtures.

Note 4 - For proposed Fixture Description, indicate fixture type, lamp type, number of lamps in the fixture, and ballast type (if applicable).

Note 5 - Existing-to-remain fixtures shall be included in the Tradable and Non-Tradable Proposed Lighting Wattage tables in the same manner as new fixtures. Identify as existing in fixture description.

Note 6 - For proposed Watts/Fixture enter the luminaire wattage for installed lamp and ballast using manufacturer or other approved source. For luminaires with screw-in lamps, enter the manufacturer's listed maximum input vattage of the fixture (not the lamp vattage). For low voltage lighting, enter the wattage of the transformer.

Note 7 - Automated Teller and Night Depositories - For each location, enter the number of ATM machines or depositories within that location. If there are multiple locations in the project, enter each location individually in the Non-Tradable Maximum Allowed Lighting Wattage table and identify the location in the Surface Description section.

			ectrical Permit Checklist, Pg. 1 Forms for Commercial Buildings including R2, R3, R4 over 3 sto		LTG-CHK Revised Nov 201
Project Title			oject - Main Sort Bldg	Date	10/31/2019
The following	information is	necessary to check a	permit application for compliance with the lighting, motor, and ele	ectrical requirements	in the
Applicability (yes,no,na)	Code Section	Component	Compliance information required in permit documents	Location in Documents	Building Departmen Notes
LIGHTING	CONTRO	LS		•	·
Yes	C405.2	Lighting controls, general	For all lighting fixtures, indicate lighting control method on plans for spaces and lighting zone(s) served, or exception taken	Lighting Plan, Lighting Control Details	
NA	C405.2	Luminaire level lighting controls (LLLC)	Indicate on plans all fixtures provided with LLLC in lieu of C405.2 lighting controls; provide description of control capabilities and performance parameters		
NA	C405.1	Lighting in dwelling units	For permanently installed lighting fixtures in dwelling units, indicate lighting control method on plans for spaces and lighting zone(s) served, or demonstrate compliance with high efficacy exception		
Yes	C405.2.3 C405.2.1.1 C405.2.2.2 C405.2.4 C405.2.5	Manual controls	Indicate on plans the method of manual lighting control (whether combined with occupancy sensor, automatic light reduction, daylight responsive or specific application controls), location of manual control device and area or specific application it serves	Lighting Plan, Lighting Control Details	
Yes	C405.2.2.1 C405.2.2.2 C405.2.3	Manual interior light reduction controls	Indicate on plans which method of manual 50% lighting load reduction is provided, or whether lighting load is reduced via occupancy sensors or daylight responsive controls	Lighting Plan, Lighting Control Details	
Yes	C405.2.2	Method of automatic shut-off control	Indicate on plans the method of automatic shut-off control during unoccupied periods (occupancy sensor, time switch or digital timer switch) for all lighting zones; Indicate locations where automatic shutoff is provided by other methods (occupancy sensor or digital timer switch) or which time switch control exception applies	Lighting Plan, Lighting Control Details Lighting Plan, Lighting Control Details	
Yes	C405.2.1 C405.2.1.1	Occupancy sensor controls	Indicate on plans the spaces served by occupancy sensors; Indicate whether occupancy sensor controls are configured to be manual-on, automatic 50%-on, or serve a space eligible for automatic 100%-on per exception	Lighting Plan, Lighting Control Details	
Yes	C405.2.1.2	Occupancy sensor controls - warehouses	Indicate aisleways and open areas in warehouse spaces provided with occupancy sensor controls that reduce lighting power by 50%	Lighting Plan, Lighting Control Details	
NA	C405.2.2.1	Automatic time switch controls	Indicate locations of override switches on plans and the lighting zone(s) served, include area sq. ft.		
NA	C405.2.6	Digital timer switch	Indicate digital timer switch control includes: manual on/off, time delay, audible and visual indication of impending time-out		
NA	C405.2.4.2 C405.2.4.3	Daylight zones - Sidelight and toplight	Indicate primary and visual indicator of impending time-out Indicate primary and secondary sidelight daylight zone areas on plans, include sq. ft.; Indicate toplight daylight zone areas on plans, include sq. ft.; For small vertical fenestration assemblies (rough opening less than 10 percent of primary daylight zone) where daylight responsive controls are not required, provide fenestration area to daylight zone calculation(s)		
NA	C405.2.4	Daylight responsive controls	Indicate on plans lighting zone(s) served by daylight responsive controls; Identify sidelight and toplight daylight zones that are not provided with daylight sensing controls and the exception(s) that apply; Indicate on plans the lighting load reduction method - continuous dimming, or stepped dimming that provides at least two even steps between 0%-100% of rated power; Indicate that daylight sensing controls are configured to completely shut off all controlled lights in the lighting zone		
NA	C405.2.5	Additional controls - Specific application lighting controls	Identify spaces and lighting fixtures on plans that require specific application lighting controls per this section		
NA	C405.2.5 - Items 1&2	Display and accent lighting	Indicate on plans that display and accent lighting, and display case lighting are controlled independently from both general area lighting and other lighting applications within the same space; Indicate manual and automatic lighting control method		

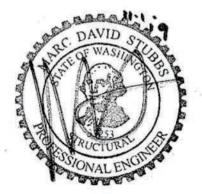
Project Title			Forms for Commercial Buildings including R2, R3, R4 over 3 sto roject - Main Sort Bldg	Date	Revised Nov 201 10/31/2019
		-	permit application for compliance with the lighting, motor, and ele		
Applicability				Location in	Building Departmer
(yes,no,na)	Code Section	Component	Compliance information required in permit documents Indicate method of automatic control - vacancy or captive key	Documents	Notes
NA	C405.2.5 - Item 3	Hotel/motel guest rooms	control of all installed luminaires and switched receptacles in guest room		
NA	C405.2.5 - Item 4	Supplemental task lighting	Indicate method and location of automatic shut-off vacancy control for supplemental task lighting, including under-shelf or under-cabinet lighting		
NA	C405.2.5 - Item 5	Lighting for non- visual applications	Indicate on plans eligible non-visual lighting applications, include sq. ft. area of each lighting control zone; Indicate on plans that non-visual lighting are controlled independently from both general area lighting and other lighting applications within the same space; Indicate method of manual lighting control and applicable		
NA	C405.2.5 - Item 6	Lighting equipment for sale or demonstration	automatic lighting control Indicate on plans that lighting equipment for sale or demonstration are controlled independently from both general area lighting and other lighting applications within the same space; Indicate method of manual lighting control and applicable automatic lighting control		
			Identify on plans egress fixtures that function as both normal and emergency means of egress illumination;	Lighting plan, Egress Provided by Generator	
res	Means of egress lighting	Provide calculation of lighting power density of total egress lighting;	Lighting Plan		
		If total egress lighting power density is greater than 0.02 W/sq. ft., indicate on plans egress fixtures requiring automatic shut-off during unoccupied periods;	Lighting Plan		
			Indicate method of automatic shut-off control	Lighting Plan	
			Indicate on exterior lighting plans and fixture schedules the automatic lighting control method, control sequence, and locations served;	Electrical Site Plan	
Yes	C405.2.7	Exterior lighting controls	For building facade and landscape lighting, indicate automatic controls shut off lighting as a function of dawn/dusk and fixed opening/closing time;	N/A	
			For all other exterior lighting, indicate automatic controls shut off lighting as a function of available daylight; include control sequence that also reduces lighting power by at least 30% between 12am-6am, or from 1 hour after closing to 1 hour before opening, or based upon motion sensor	Electrical Site Plan	
NA	C405.5.1	Exterior building grounds lighting controls	For building grounds fixtures greater than 100 watts, indicate on plans whether fixtures have efficacy greater than 80 lumens or; are controlled by motion sensor, or are exempt lighting per C405.5.2		
NA	C405.2.5 (listed after C405.2.7)	Area controls - Master control switches and circuit power limit	Indicate location(s) of master control switch(es) intended to control multiple independent switches; circuit breaker may not be used as a master control switch; Verify that no 20 amp circuit controlled by a single switch or		
		•	automatic control is loaded beyond 80% OPTION - ENHANCED DIGITAL LIGHTING CON		<u> </u>
		ENCY PACKAGE	To comply with additional efficiency package option, indicate on plans all interior lighting fixtures that are individually addressed and provided with continuous dimming, or exception taken;	Lighting Control Details	
Yes	C406.4	D6.4 Enhanced digital lighting controls	Include calculation of percent total installed interior lighting power that is configured with required enhanced lighting control functions (min 90% to comply with additional efficiency package option)		

			ectrical Permit Checklist, Pg. 3		LTG-CHK
			Forms for Commercial Buildings including R2, R3, R4 over 3 sto		Revised Nov 201
Project Title			roject - Main Sort Bldg	Date	10/31/2019
Applicability	g information is	necessary to check a	permit application for compliance with the lighting, motor, and ele	Location in	In the Building Departmen
	Code Section	Component	Compliance information required in permit documents	Documents	Notes
INTERIO		POWER & EFFI		1	
Yee	C405.4.1	Total connected	Include all luminaires in lighting fixture schedule; indicate fixture types, lamps, ballasts, and manufacturer's rated watts per fixture; Identify spaces eligible for lighting power exemption on plans and in compliance forms; indicate the exception applied;	Fixture Schedule N/A	
Yes	C405.4.2	interior lighting power	Identify lighting equipment eligible for lighting power exemption in fixture schedule and in compliance forms; indicate the exception applied; Indicate that exempt lighting equipment is in addition to general	N/A	
			area lighting and is controlled independently		
Yes	C405.3	Exit signs	Indicate location of exit signs on plans and rated watts per fixture in lighting fixture schedule (maximum 5 watts per side)	Lighting Floor Plan	
NA	C405.1	Lighting in dwelling units - lamp efficacy	If high efficacy exception is applied to permanently installed lighting fixtures in dwelling units, indicate in lighting fixture schedule if lamps in fixtures are high efficacy per R404.1. Calculate percentage of fixtures with high efficacy lamps in project (min 75% to comply with exception).		
Interior Ligh	ting Power Ca	Iculation - Indicate c	ompliance path taken		
NA	C405.4.2.1	Building Area Method	Complete required compliance forms – proposed wattage per building area does not exceed maximum allowed wattage per building area; identify locations of building areas on plans		
Yes	C405.4.2.2	Space-By-Space Method	Complete required compliance forms – total proposed wattage does not exceed maximum allowed wattage; identify locations o space types on plans, including retail display areas, lobby art & exhibit display areas, and ceiling heights as applicable	f	
ADDITIOI	NAL EFFICI	ENCY PACKAGE	OPTION - REDUCED INTERIOR LIGHTING POV	VER DENSITY	
No	C406.3	Reduced lighting power density	To comply with additional efficiency package option, demonstrate in compliance forms that total connected interior lighting wattage is 25% less than the total maximum allowed lighting wattage via Building Area Method or Space-By-Space Method		
No	C406.3	Reduced lighting power density - dwelling unit lamp efficacy	For project with dwelling units, to comply with additional efficiency package option indicate in lighting fixture schedule if lamps in interior fixtures have efficacy rating of 60 lumens per watt or more. Calculate percentage of fixtures with lamps that have this efficacy rating (min 95% to comply with option)		
EXTERIO	R LIGHTIN	G POWER & EFF	ICACY	•	
Yes	C405.5.2	Total connected exterior lighting power	Include all luminaires in lighting fixture schedule; indicate fixture types, lamps, ballasts, and manufacturer's rated watts per fixture; Identify exterior applications eligible for lighting power exemption on plans and in compliance forms; indicate exceptior applied;	Lighting Fixture Schedule N/A	
		ponoi	Indicate that exempt exterior lighting is controlled independently from non-exempt exterior lighting; include exception claimed for each fixture or group of fixtures under exception category		
Yes	Table C405.5.2(1)	Exterior lighting zone	Indicate building exterior lighting zone as defined by the AHJ	Lighting Plan	
NA	C405.5.1	Exterior building grounds lighting	For building grounds fixtures rated at greater than 100 watts that are complying based on efficacy, indicate rated lamp efficacy (in lumens per watt) in fixture schedule		
Yes	C405.5.2	Exterior lighting power calculations	Complete required compliance form – proposed wattage for exterior lighting plus base site allowed does not exceed maximum allowed		

			ectrical Permit Checklist, Pg. 4		LTG-CHK
2015 Washin	gton State Ene	67	Forms for Commercial Buildings including R2, R3, R4 over 3 sto roject - Main Sort Bldg	ries and all R1 Date	Revised Nov 201 10/31/2019
The following	information is		permit application for compliance with the lighting, motor, and ele		
Applicability				Location in	Building Departmen
,		•	Compliance information required in permit documents	Documents	Notes
LIGHTING	ALTERAT	IONS	l		1
Yes	C503.6	Interior and parking garage lighting	Where ≥ 50% of existing luminaires in interior space(s) or parking garage are replaced; indicate compliance path (building area or space-by-space method); include all new and existing-to remain luminaires in compliance form (LTG-INT-BLD or LTG- INT-SPACE); indicate proposed lighting wattage does not exceed maximum allowed per compliance path	Lighting Floor Plan	
163	0003.0	fixture alterations	Where < 50% of existing luminaires in interior space(s) or parking garage are replaced; indicate total existing lighting wattage in each space prior to alteration; include all new and existing-to-remain luminaires in LTG-INT-SPACE form; indicate proposed total lighting wattage in alteration area does not exceed total existing lighting wattage prior to alteration		
			Where ≥ 50% of existing exterior lighting wattage is replaced; include all new and existing-to-remain luminaires in LTG-EXT form; indicate proposed total exterior lighting wattage does not exceed maximum allowed	Electrical Site Plan	
Yes	C503.6	Exterior lighting fixture alterations	Where < 50% of existing exterior lighting wattage is replaced; indicate total existing lighting wattage prior to alteration; include all new and existing-to-remain luminaires in LTG-EXT form; indicate proposed total exterior lighting wattage does not exceed total existing wattage prior to alteration		
Yes	C503.6	Interior lighting wiring alterations	Where new wiring is installed to serve new interior luminaires and /or luminaires are relocated to a new circuit; indicate lighting controls are provided (as applicable) - manual (C405.2.3); occupancy sensor (C405.2.1); daylight responsive (C405.2.4); specific application (C405.2.5); exit signs (C405.3)	Lighting Floor Plan	
Yes	C503.6	Exterior lighting wiring alterations	Where new wiring is installed to serve new exterior luminaires and /or luminaires are relocated to new circuit; indicate exterior lighting controls are provided (C405.2.7)	Electrical Site Plan	
Yes	C503.6	Lighting panel alterations	Where a new lighting panel is installed or an existing panel is moved (all new raceway and conductor wiring); indicate lighting controls are provided (as applicable) - same provisions as wiring alterations; time switch controls and manual light reduction controls (C405.2.2)	Lighting Floor Plan	
Yes	C503.6	Interior space reconfiguration	Where interior space(s) is reconfigured (permanently installed walls or ceiling-height partitions); indicate lighting controls are provided (as applicable) - same provisions as lighting panel alterations	Lighting Floor Plan	
NA	C504.2	Lighting repairs	Identify existing luminaires being upgraded with bulb and / or ballast replacement; indicate fixture alteration does not increase existing fixture wattage		
NA	C505.1	Change of space use	Identify spaces on plans where the building area type or space use type is being changed from one type to another per Tables C405.4.2(1) or (2) Indicate compliance path (building area or space-by-space method); include all new and existing-to-remain luminaires in compliance form (LTG-INT-BLD or LTG-INT-SPACE); indicate proposed lighting wattage does not exceed maximum allowed per compliance path		
RECEPTA	CLES	·		·	·
	C405.10	Controlled receptacles	Identify all controlled and uncontrolled receptacles on electrical plans in each space in which they are required; include receptacle configuration such as spacing between controlled and uncontrolled, duplex devices, etc; Indicate on plans whether the method of automatic control for		
			each controlled receptacle zone is by occupant sensor or programmable time-of-day control		

		6, 1	Forms for Commercial Buildings including R2, R3, R4 over 3 sto		Revised Nov 20 10/31/2019
		-	roject - Main Sort Bldg	Date	
he following	g information is	necessary to check a	permit application for compliance with the lighting, motor, and ele	ectrical requirements	s in the Building Departme
(yes,no,na)	Code Section	Component	Compliance information required in permit documents	Documents	Notes
IOTORS	, TRANSFO	RMERS, ELECT	RIC METERS, INTERIOR TRANSPORTATION		
NA	C405.6	Electrical	Include electrical transformer schedule on electrical plans;		
		transformers Dwelling unit	indicate transformer size, efficiency, or exception taken		
NA	C405.7	electrical energy consumption	Indicate on electrical plans that each dwelling unit in Group R-2 has a separate electrical energy meter		
NA	C405.8	Electric motor efficiency	Include all motors, including fractional hp motors, in electric motor schedule on electrical plans; indicate hp, rpm, rated efficiency, or exception applied		
NA	C405.9.1	Elevator cabs	For luminaires in each elevator cab, provide calculated average efficacy of combined fixtures that indicates efficacy is not less than 35 lumens per watt; Indicate rated watts per cfm for elevator cab ventilation fans do not exceed 0.33 watts per cfm;		
			Indicate automatic controls that de-energize lighting and ventilation fans when elevator is stopped and unoccupied for a period of 15 minutes or more		
NA	C405.9.2	Escalators and moving walks	Indicate escalators comply with ASME A17.1/CSA B44; automatic controls are configured to reduce operational speed to the minimum permitted when not in use		
NA	C405.9.3	Regenerative drive	Indicate all one-way down or reversible escalators are provided with a variable frequency regenerative drive		
OCUME		ND SYSTEM RE	QUIREMENTS TO SUPPORT COMMISSIONING	(Cx)	
NA	C408.3	Scope of electrical power and lighting systems commissioning	Indicate that all electrical systems (receptacles, transformers, motors, vertical and horizontal transportation) for which the WSEC requires control functions and / or configuration to perform specific functions are required to be commissioned; Where total building lighting load is > 20 kW, or where total lighting load of luminaires requiring daylight sensing and / or occupancy control > 10 kW, indicate that all automatic lighting control systems are required to be commissioned; or provide building lighting power calculation demonstrating eligibility for exception;		
NA	C405.13 C408.1.1 C408.1.2 C408.1.4.2 C103.6	Commissioning requirements in construction documents	Indicate Cx requirements in plans and specifications for all applicable electrical and lighting control systems per C408; Include general summary with at minimum Items 1 thru 4 of the Cx plan per C408.1.2 including: narrative description of activities, responsibilities of the Cx team, schedule of activities including verification of project close out documentation per C103.6, and conflict of interest plan (if required); Include in general summary that a Cx project report or Compliance Checklist (Figure C408.1.4.2) shall be completed by the Certified Cx Professional and provided to the owner prior to the final electrical inspection		
NA	C408.3.1	Functional performance testing criteria	Identify in plans and specifications the intended operation of all equipment and controls during all modes of operation, including interfacing between new and existing-to-remain systems		
PROJECT		UT DOCUMENTA	TION		-
Yes	C103.6.3	Project close out documentation requirements	Indicate in plans that project close out documentation is required including WSEC lighting compliance forms and calculations that document all interior and exterior lighting area and / or surface types, lighting power allowances and installed	General Notes, E002	

ONSULTING ENGINEERS


Structural Calculations for

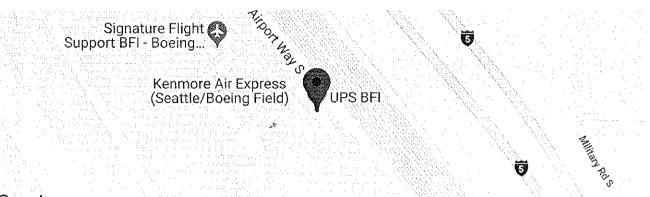
UPS BFI Gateway Project

King County International Airport Boeing Field Seattle, WA

November 2019

PSM #18188

2200 6TH AVENUE, #601 WWW.PSM-ENGINEERS.COM SEATTLE WASHINGTON 98121 USA PHONE 206-622-4580 FAX 206-622-0422



Page 1 of 3

UPS BFI Bldg

7300 Perimeter Rd S, Seattle, WA 98108, USA

Latitude, Longitude: 47.5367751, -122.3019577

Risk Category Site Class Type Value Ss 1.51 S1 0.52 SMS 1.51 Sms 1.51 Sms 1.51 Sms 1.51 Sms 1.01 SDS 1.01 Sp1 null Fype Value SDC null Sp2 1.01 Sp3 1.01 Sp4 null	8 4 8 -See Section 11.4.8	ASCE7-16 I D - Stiff Soil Description MCE _R ground motion. (for 0.2 second period) MCE _R ground motion. (for 1.0s period) Site-modified spectral acceleration value Site-modified spectral acceleration value Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Selsmic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second MCE _e peak ground acceleration
Site Class Ype Value Ss 1.51 S1 0.52 Sms 1.51 Sms 1.51 Sms 1.51 Sms 1.51 Sms 1.01 SDs 1.01 SD1 null SDC null Fa 1 Fv null PGA 0.65 FPGA 1.1 PGAM 0.715 TL 6 SSRT 1.518	8 4 8 -See Section 11.4.8 2 -See Section 11.4.8 See Section 11.4.8	D - Stiff Soil Description MCE _R ground motion. (for 0.2 second period) MCE _R ground motion. (for 1.0s period) Site-modified spectral acceleration value Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Selsmic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
Type Value Ss 1.51 S1 0.52 Sms 1.51 Sms 1.51 Sms 1.51 Sms 1.51 Sms 1.01 SDs 1.01 Sps 1.01 Spc null SDC null SDC null Fa 1 Fv null PGA 0.65 FpgA 1.1 PGAm 0.715 TL 6 SsRT 1.518	8 4 8 -See Section 11.4.8 2 -See Section 11.4.8 See Section 11.4.8	Description MCE _R ground motion. (for 0.2 second period) MCE _R ground motion. (for 1.0s period) Site-modified spectral acceleration value Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
Ss 1.51 Ss 1.51 Sms 1.51 Sms 1.51 Sms 1.01 Sps 1.01 Sps 1.01 Sps 1.01 Sps 1.01 Sps 1.01 Sps null SDC null SDC null Fa 1 Fy null PGA 0.65 FPGA 1.1 PGAm 0.715 TL 6 SsRT 1.518	8 4 8 -See Section 11.4.8 2 -See Section 11.4.8 See Section 11.4.8	MCE _R ground motion. (for 0.2 second period) MCE _R ground motion. (for 1.0s period) Site-modified spectral acceleration value Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Selsmic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
S1 0.52 SMS 1.51 SM1 null SDS 1.01 SD1 null Type Value SDC null SDC null Fa 1 Fv null PGA 0.65 FPGA 1.1 PGAM 0.715 TL 6 SSRT 1.518	4 8 -See Section 11.4.8 2 -See Section 11.4.8 See Section 11.4.8	MCE _R ground motion. (for 1.0s period) Site-modified spectral acceleration value Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Selsmic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
S _{MS} 1.51 S _{M1} null S _{DS} 1.01 S _{D1} null Fype Value SDC null SDC null Fa 1 Fv null PGA 0.65 FPGA 1.1 PGAM 0.715 TL 6 SSRT 1.518	8 -See Section 11.4.8 2 -See Section 11.4.8 See Section 11.4.8	Site-modified spectral acceleration value Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Selsmic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
S _{M1} null S _{DS} 1.01 S _{D1} null Type Value SDC null SDC null Fa 1 F _v null PGA 0.65 F _{PGA} 1.1 PGA _M 0.715 T _L 6 SsRT 1.518	-See Section 11.4.8 2 -See Section 11.4.8 See Section 11.4.8	Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
SDS 1.01 SD1 null Fype Value SDC null -S Fa 1 Fv null -S PGA 0.65 FPGA 1.1 PGA_M 0.715 TL 6 SSRT 1.518	2 -See Section 11.4.8 See Section 11.4.8	Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Selsmic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
S _{D1} null Type Value SDC null -S Fa 1 Fy null -S PGA 0.65 FPGA 1.1 PGAM 0.715 TL 6 SsRT 1.518	-See Section 11.4.8 See Section 11.4.8	Numeric seismic design value at 1.0 second SA Description Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
Type Value SDC null -S Fa 1 Fv null -S PGA 0.65 FPGA 1.1 PGAM 0.715 TL 6 SSRT 1.518	See Section 11.4.8	Description Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
SDC null -S Fa 1 Fv null -S PGA 0.65 FPGA 1.1 PGAM 0.715 TL 6 SSRT 1.518		Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second
Fa 1 Fv null -S PGA 0.65 FpgA 1.1 PGAM 0.715 TL 6 SSRT 1.518		Site amplification factor at 0.2 second Site amplification factor at 1.0 second
Fv null -S PGA 0.65 F _{PGA} 1.1 PGA _M 0.715 T _L 6 SsRT 1.518	See Section 11.4.8	Site amplification factor at 1.0 second
PGA 0.65 F _{PGA} 1.1 PGAM 0.715 T _L 6 SsRT 1.518	See Section 11.4.8	
F _{PGA} 1.1 PGA _M 0.715 T _L 6 SsRT 1.518		MCE - neck around acceleration
PGA _M 0.715 T _L 6 SsRT 1.518		MOEG peak ground acceleration
T _L 6 SsRT 1.518		Site amplification factor at PGA
SsRT 1.518	· · ·	Site modified peak ground acceleration
		Long-period transition period in seconds
SsUH 1.683	i -	Probabilistic risk-targeted ground motion. (0.2 second)
	i e e	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD 4.302	2	Factored deterministic acceleration value. (0.2 second)
S1RT 0.524		Probabilistic risk-targeted ground motion. (1.0 second)
S1UH 0.586)	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D 1.639)	Factored deterministic acceleration value. (1.0 second)
PGAd 1.422		Factored deterministic acceleration value. (Peak Ground Acceleration)
7KS 0.9		MXPPED VALUE OF THE RISK GEFFICIENT AT HORT PERON N N N N N N N A AT A PERIOD OF 8/13/2

ATC Hazards by Location

X

ATC Hazards by Location

Search Information

7300 Perimeter Rd S, Seattle, WA 98108, USA
47.5367751, -122.3019577
ft
2019-08-13T20:01:50.3722
Wind

ASCE 7-16

ASCE 7-10

MRI 10-Year	67	niph .
MRI 25-Year	74	nibµ
MRI 50-Year	78	mph
MRI 100-Year	83	mph
Risk Category I	92	ուրի
Risk Category II	98	mph
Risk Category III	105	mph
Risk Category IV	109	nich

MRI 10-Year
MRi 25-Year 79 mph
MRI 50-Year
MRI 100-Year
Risk Category I
Risk Category il
Risk Category III-IV 115 mph

ASCE 7-05

ASCE 7-05 Wind Speed 85 mph

The results indicated here DO NOT reflect any state or local amendments to the values or any defineation lines made during the building code adoption process. Users should confirm any output obtained from this root with the local Authority Having. Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and munded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions,

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals. having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the raport provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longibude location in the report.

Job: UPS BFI Seattle, WA (Maintenance Bldg)

Date: 8/28/2019

Job No.: 18188-003 By: TCL \sim

ASCE 7-10 WIND

General Requirements - Chapter 26

Risk category =	Table 1.5-1*	
V = 110	mph Figure 26.5-1A, B, or	C based on risk category*
Kd = 0.85	Table 26.6-1*, 0.85 e	except chimneys, tanks, similar structures, and trusses towers
Exposure C	Section 26.7.2*	http://www.seattle.gov/DPD/toolsresources/windloadfactors/default.htm
Kzt = 1	Figure 26.8-1*	
h = 28.87	5 ft (Average of 27.25' - I	Bldg Eave & 30.5' - Ridge)
G = 0.85		

* indicates table or figure on separate excel tab

MWFRS (Directional = all heights) - Chapter 27

qz =	25.7 psf	
L=	102.167 ft	horz dim parallel to wind (long dim)
B =	97.333 ft	horz dim normal to wind (short dim)
θroof =	1.35 degrees	roof slope
GCpi =	0.18	Table 26.11-1, enclosed=0.18, partially enclosed=0.55, open=0

Wall net pressure

p = max of: qz*G*Cp-qh*(GCpi) windward + internal qz*G*Cp-qh*G*Cp windward + leeward

Windward pressure varies with height (qz), leeward & internal are for max height (qh)

			p _{net_short,} psf	p _{net_long,} psf	p _{net_parapet_ww} , psf
z, ft	Kz	qz, psf	wind perp to short dim, B	wind perp to long dim, L	
15	0.85	22.4	25.9	26.1	50.3
20	0.90	23.7	26.8	27.1	53.4
25	0.95	24.9	27.6	27.8	56.0
30	0.98	25.9	28.3	28.5	58.2
40	1.04	27.5	29.4	29.6	61.8
50	1.09	28.8	30.3	30.5	64.8
60	1.14	29.9	31.0	31.3	67.3
70	1.17	30.9	31.7	31.9	69.6

Roof net pressure

p = max of: qz*G*Cp-qh*(GCpi) windward + internal qz*G*Cp-qh*G*Cp windward + leeward All pressures are for qh

θ ≥ 10°

p _{roof,ww} =	-19.63		
	-3.93		
p _{roof,lw} =	-10.9		
p _{roof,horz} =	not valid	nsf	
Proor,norz	not rand	por	
p _{roof,vert} =	not valid	psf	•

θ < 10°

	< h/2	h/2-h	h-2h	> 2h
p _{roof,perp}	-24.3	-19.9	-15.5	-11.2

*monoslope roofs are either entirely WW or LW

Job: UPS BFI Seattle, WA (Maintenance Bldg)

Date: 8/28/2019

Job No.: 18188-003 By: TCL

ASCE 7-10 WIND

General Requirements - Chapter 26

Risk category =	11		Table 1.5-1*
. V=	110	mph	Figure 26.5-1A, B, or C based on risk category*
Kd =	0.85		Table 26.6-1*, 0.85 except chimneys, tanks, similar structures, and trusses towers
Exposure	С		Section 26.7.2*
Kzt =	1		Figure 26.8-1*
h =	28.875	ft	
G =	0.85		

* indicates table or figure on separate excel tab

MWFRS (Envelope = low rise) - Chapter 28

qz =	25.7	psf	
L=	102.167	ft	horz dim parallel to wind (long dim)
B =	97.333	ft	horz dim normal to wind (short dim)
θroof =	1.35	degrees	roof slope
GCpi =	0.18		Table 26.11-1, enclosed=0.18, partially enclosed=0.55, open=0
a =	9.7	ft	

Wall net pressure

p = max of: qh*(GCpf-GCpi) windward + internal qh*(GCpf-GCpf) windward + leeward All pressures are for max height (qh)

Zone	1+4	1E+4E	5+6	5E+6E	parapet ww	parapet lw
Pressure, psf	17.7	26.7	17.7	26.7	38.5	25.7

Parapets

p = qpGCpn p = 38.48 psf

Roof net pressure

p = max of: qh*(GCpf-GCpi) windward + internal qh*(GCpf-GCpf) windward + leeward All pressures are for qh

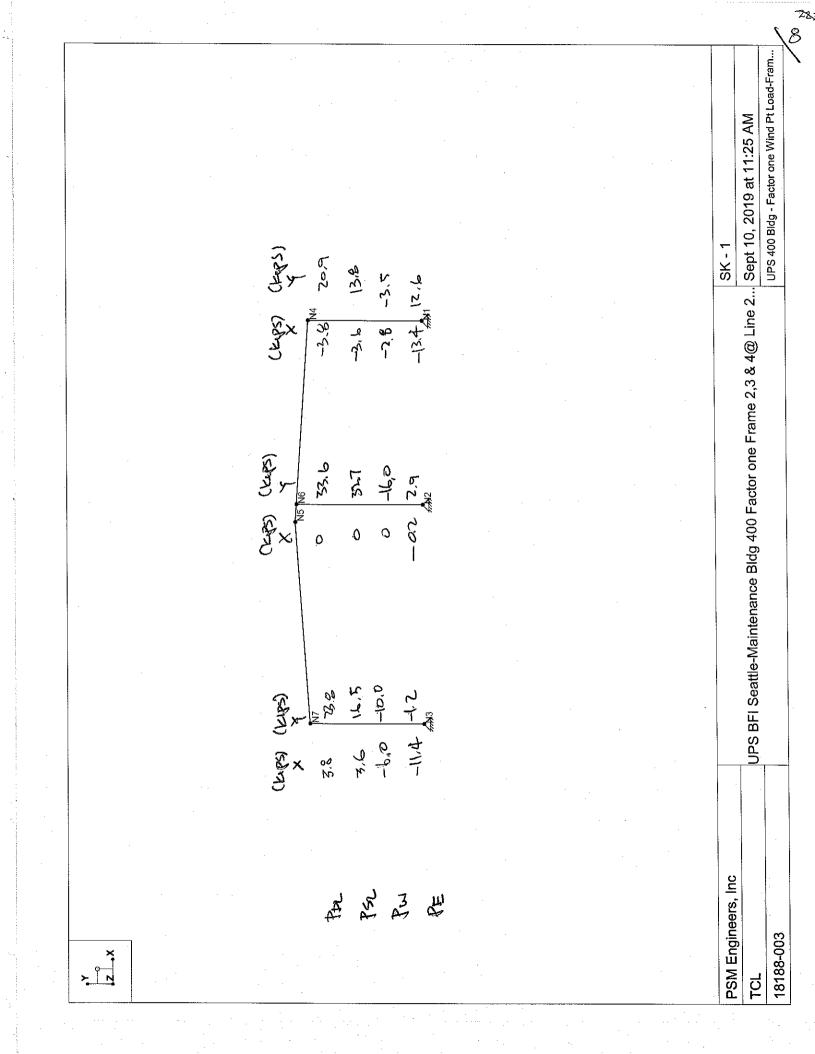
Zone 2+3 2+3, horz 2+3, vert 2E+3E 2E+3E, hor						_ [
	vrz 2E+3E, vert	2E+3E, NORZ	2E+3E		<u>∠</u> +3	Zone
Pressure, pst 22.3 22.3 0.5 32.1 32.1	0.8	32.1	32.1	0.5	22.3	Pressure, psf

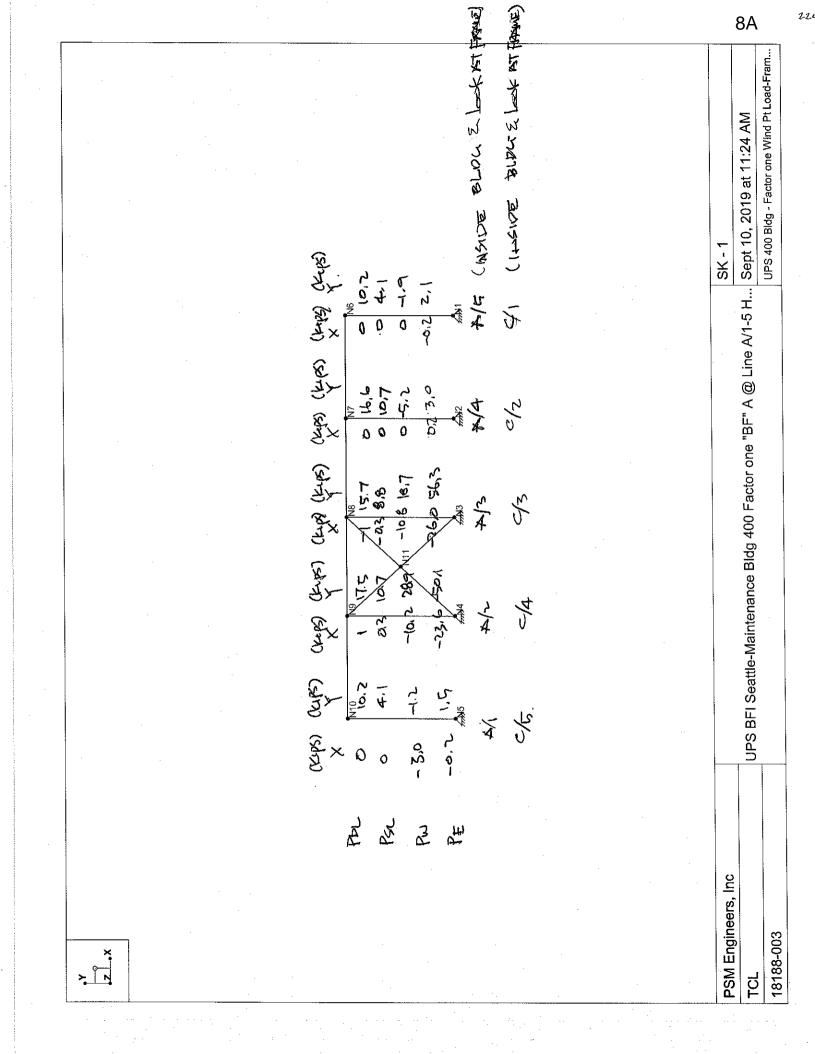
					•				8 - 4		
P	SM				BOF:	18(88	-05	5 UPS	ofi se	attus /	
		EEDO			DATE	851	14,19	BY:	. ل		
) SIXTH AVENUE, SI		ATTLE. WA	SHINGTON 98	SUBJ	ECT:		مسد مرکز بر ایت	<u></u>		
	CE 206.622.4580					_M	BISTE	CAN CIZ	BI 04 40	20	
					· .	Ē	Ene	s four	VAAT701	$\overline{\mathbf{v}}$	
Brief:								· .			
ne metal pullo	ineered metal m ding column read of IBC 2018 and	ctions will d	e evalua	ted for the b	uilidna co	lumn fou	ndation (ited at 7300 design. The	Perimeter R e design shall	d. S., Seattle W conform to the	/A 98108. I
esign Data								51. Longit :	-122.30195	771	
It. of building	eave, h ₁ =	27.2	5 ft	.				o i, congit	122.00100		
lt. of building i	ridge, h ₂ =	30.50) ft		(Average	Bldg He	iaht =	28.875 f	t)		
ength of meta	al bidg., L =	102.17	7 ft		· •	0	•		-7		
Vidth of metal	bldg., W =	97.33	3 ft								
oads on new	metal building				psf						
ssumed DL o	of new metal bldg	i roof ≕			12.0						
ssumed DL (Collated-Mech 8	Elect)of ne	ew metal	bldg =	8.0						
	of exterior wall =	,		.	8.0						
snow:					25.0						
Vind	(Per ASCE 7-1	6)									
Vind Exposure						Gust e	ffect fac	tor, G =	0.85		
	in Wind Speed,		110.0	•	I	Ultimate V	elocity pre	essure, q _{h(ULT}	=0.00256 K _z K	_{Zi} K _d V ² (psf) =	25.7 PSF
Iominal Desig	In Wind Speed, '	V _{ASD} =		mph							
	ality factor, K _d =		0.90								
lisk Category elocity pressure			0.00	s							
opographic fa			0.96 1.00								
eismic Seismic Desia	(Per IBC 2018) n Category D;	& ASCE 7-	Site Cla	ace D:	Dick Coto	0000					
is =	1.505		Site Cia S _{MS} =	$F_a * S_s =$	Risk Cate		05				
1 =	0.576		S _{M1} =	F,*S,=		0.8					
a =	1.000		S _{DS} =	S _{MS} * 2/3 =			04				
v =	1.500		S _{D1} =	S _{M1} * 2/3 =		0.5	576				
=	1.000										
		Table 12.2	-1 Pre-Er	ngineered Bl	dg-Ordina	ıry Mome	ent Fram	es (C _d = 3.0	Ο, Ω = 3.0)		
=	3.250	Table 12.2	-1 Pre-Er	ngineered Bl	dg-Ordina	iry Conce	entrically	Braced Fra	ames (C _d = 3.	.25, Ω = 2.0)	
′ = C _s * W	е <i>к</i> ол) –	0 0000					g weighi		Τ=	0.249 se	econd
s =	S _{DS} /(R/I) =	0.3089	< ŀor	Metal Pre-E	ngineereo	~	· · · · ·	Kips			-
, = =	S _{D1} /T(R/I) = 0.044S _{DS} I =	0.7114 0.0442			E-4		Roof =	198.9		Roof area =	9944.2 ft ²
νs = Σ _s =	0.8S₁/(R/I) =	0.0442				or long v		31.9		kt. Long Wall =	204.3 ft
/= C _s * W =	0.001((01) -		Vine	6 -		or short v		36.3	-	t. Short Wall =	194.7 ft
- O _s vv -		83.4	Kips	Say	100.	0 Kips	ΣW =	267.1	< \$ay	270.0 Ki	ps
ona Lona Sie	de of Metal Build	lina									

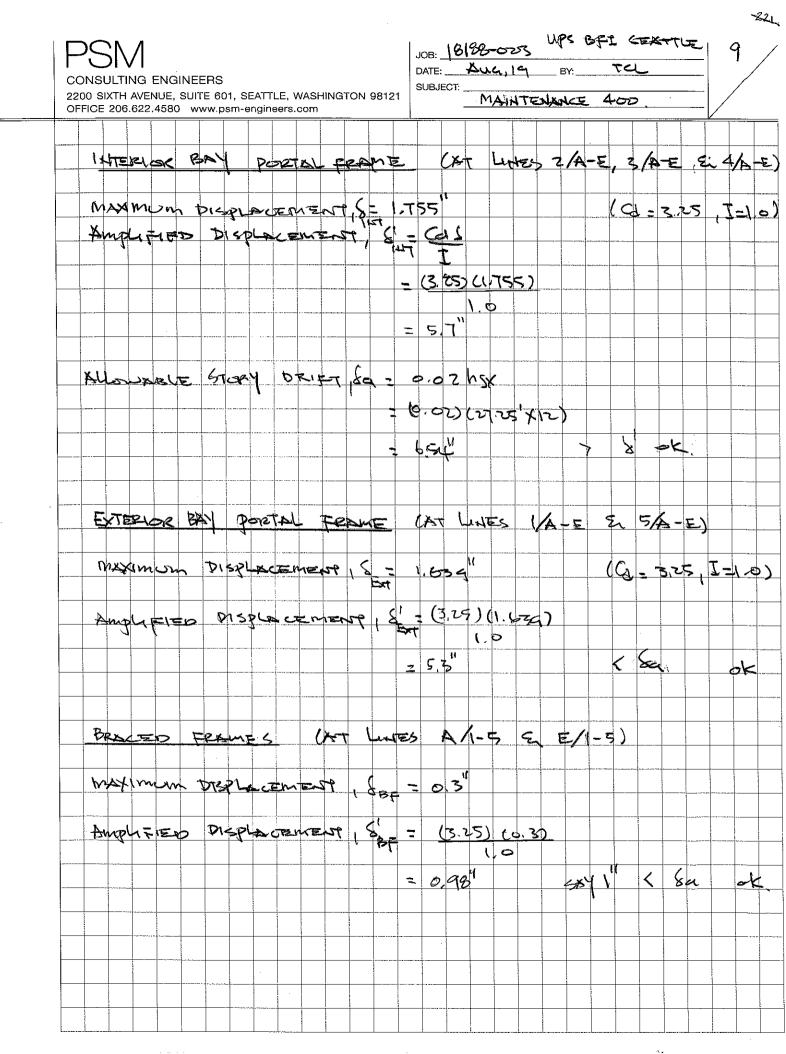
Z:Z

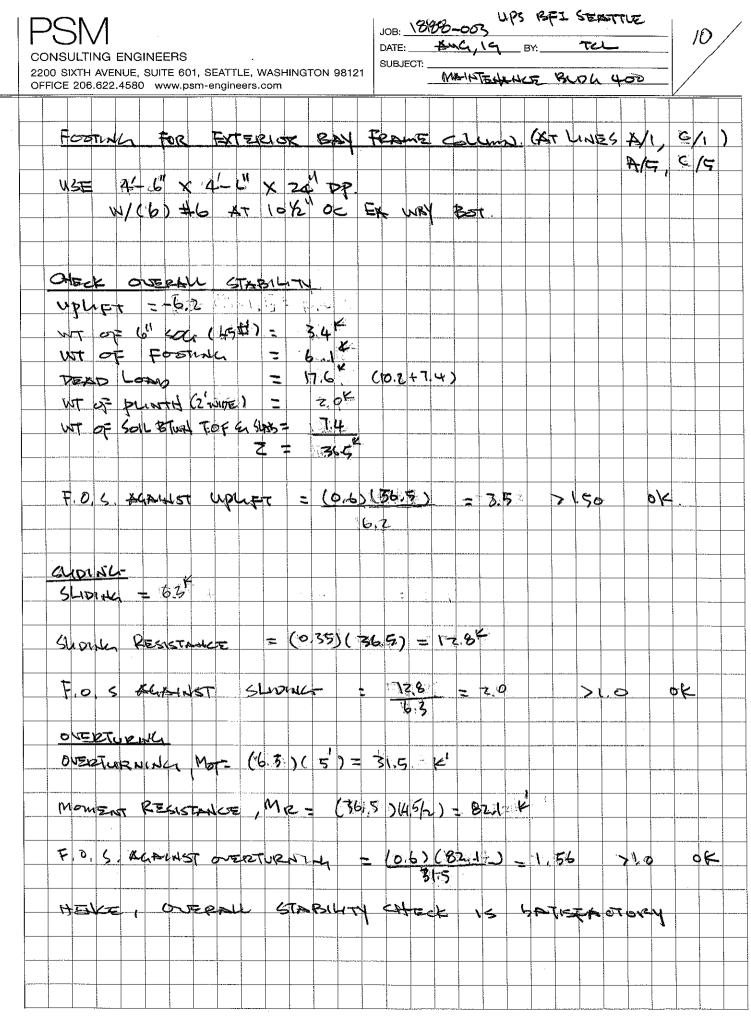
Along Long Side of Metal Building,

Assume Steel Braced Frames at line A/2-3 and at line E/3-4 to resist the lateral forces (wind and seismic).


Along Short Side of Metal Building, The lateral forces shall be resisted by the portal frames at lines 1/A-E, 2/A-E, 3/A-E, 4/A-E & 5/A-E.


Allowable Soil Bearing Pressure =


3000.0 PSF


(Per Soil Report)

7 UPS 400 Bldg - Factor one Frame 1 & 5 with Wi... UPS BFI Seattle-Maintenance Bldg 400 Factor one Frame 1 & 5 W/Wind C... Sept 10, 2019 at 11:26 AM (tres) (trass) 4 5 0 -2.() 1-1 -42 95 SK - 1 ź 0 0 (sthic) (schice) (schice) (schice) (schice) 0 0 0 0 0 0 - 17 0 0 Ļ Å. 0,4-9. 9 6'1 0), | ۲ţ 00 0-1-0 000 ۍ ۲ ŝ. Ø ٥ م تم (Frank) L.J 4 ¢ S **2** 17 -6,3-(Kda)) X 507 0 0 在 我 **PSM Engineers, Inc** 18188-003 × >____ ТСL

Code References $\frac{1}{2}$ L2 $\frac{1}{2}$ Calculations per ACI 318-11 [IBC 2012, CBC 2013, ASCE 7-10, $\frac{1}{\sqrt{2} \le \frac{1}{2} - 1 \le \frac{1}{2}}$ Consisting the constructionMaterial PropertiesSol bisSol bisSol bisSol bisSol bisSol bisSol Dasign ValuesAnalysis SettingsOption ValueOption ValueSol Dasign ValuesAnalysis SettingsOptionOptionOptionOptionOptionOptionConcrete Easter Modulasa 10.0010Increases to Soling Depth Fooling Baster factorTools Baster Secting BasterYesConcrete Easter fooling Depth Fooling Baster factorTools Baster factorYesOptionNoAdd Poductal W for Soli PressureNoOptionNoOptionNoAdd Poductal W for Soli PressureNoOptionNoOptionNoOptionNoDimetric S		Description : Footing for (No Fa	ictor) Ext. Bay F	rame Col-Mainte	nance Bldg 400 (At Lines A/1, A	5, C/1 & C/5)			
Load Combinations Used : IBC 2015, ($\frac{16}{2}$ - $\frac{1}{2}$ $\frac{1}{2}$ General Information Material Properties To: Concrete 28 day sterngth = 0.00 kid $\frac{1}{9}$, Rebat Vield = 0.00 kid $\frac{1}{9}$, Rebat Weidt = 0.20 $\frac{1}{9}$ Values Reure = 0.20 $\frac{1}{9}$ Values Reure = 0.20 Analysis Stern Analysis Stern										
Soli Design ValuesMaterial Properties f: Concrete 28 day stength f: Retar Ytet= 3.0 kgl morease Baring By Fooling Weight = $1.32.0 \text{ kgl}$ Soli Design Values Allowable Soli Bearing norease Baring By Fooling Weight = 0.350 brar = 3.0 kgl morease Baring By Fooling Weight = 0.350 brar = 3.0 kgl morease Baring By Fooling Weight = 0.350 brar = 3.0 kgl morease baring By Fooling Weight = 0.350 brar = 3.0 kgl morease baring Dy Fooling Depth = 0.750 brar = 3.0 kgl morease based on tooling Depth = 0.750 brar = 0.350 brar Analysis Setting Min Steel Steader Brain Min Steel Steader Brain Min Steel Steader Steader Steader and nooling Depth = Min Steader Steader and nooling Depth memotion Ald Petersetal Win Stable, monte & shears = Weith pracille to XX Axis = = Dimensions= A.50 ft d.50 ft<		Calculations per ACI 318-11,	IBC 2012,	CBC 2013, /	ASCE 7-10 ,	asce 7-	16			
Material Properties 1°: Concrete 26 by strength 1°: Restrict Density Process Flexure=3.0 kst et 8.0 kst allocable Sol Bearing Process Bearing B17 colong Weight sol Cassave Relations Flexure Sol Cassave Relations Floxing Sol Cassave Relations Floxing 			3C 2015 , (V	52.0018						
$\begin{array}{ccccc} \mbox{r} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		General Information								
hy. Rebar Yield=60.0 kglincrease Baaring By Footing Weight=NoConcrete Density=145.0 pdSolid Density=0.350=0.350Q. ValuesFlocure=0.300Solid Density=0.350=0.350Mana YusisSettings=0.750Increases based on footing Depth Analysis increase period of depth=4.50 ftMin Steel X Bending Reint=0.00180Increases based on footing Depth Yes=4.50 ftMin Steel X Bending Sately Factor=1.0 itIncreases based on footing plan dimension Add Pig Wi for Solid Pressure1.0 itMin Steel X footing Sately Factor=1.0 itIncreases based on footing plan dimension Add Pig Sately FactorIncrease based on footing plan dimension Add Pig Wi for Solid PressureIncrease based on footing plan dimension Add Pig Sately FactorAdd Pig Wi for Solid Pressure:YesYesIncrease based on footing plan dimension a dd Pig Sately FactorWidth parallel to XX Axis=4.50 ftIncrease based on footing plan dimension a dd Pig Sately FactorIncrease based on footing plan dimension a dd Pig Sately FactorWidth parallel to XX Axis=4.50 ftIncrease Sately SatelyIncrease based on footing PigParallel to XX Axis=3.0 inIncrease based on footingIncrease based on footingPater Contine to Edge of Concrete at Battor of footing=6Bara profile to XZ Axis=6Bara weight to XX Axis<						Soil Desi	gn Values			3.0 kof
$\begin{array}{cccc} \text{Ec: Concrete Elistic Modulus} & = 3,122.0 \text{kd} \\ \text{Concrete Elistic Modulus} & = 3,122.0 \text{kd} \\ \text{Solid Passive Relistance (for Silling)} & = 250.0 \text{pd} \\ \text{Q. Values Floure} & = 0.350 \\ \text{Shear } & = 0.350 \\ \text{Management of Sector } & = 0.750 \\ \text{Increases based on footing Depth } \\ \text{Footing Dase depth below soli surface } & = 4.50 \text{ft} \\ \text{Mon Site Sector Plant } & = 0.00180 \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Man Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Min Silling Safely Factor } & = 1.0 \text{:1} \\ \text{Machade pressure increase per foot of depth } \\ \text{Wrein max, length or width is greater than } = n \\ \text{Min Machade pressure increase per foot of depth } \\ \text{Min max, length or width is greater than } = n \\ \text{Wrein max, length or width is greater than } = n \\ \text{Wrein max, length or width is greater than } = n \\ \text{Min trans a basis } = 4.50 \text{ft} \\ \text{Footing Thickness } = 24.0 \text{in} \\ \text{Mather max, length or width is greater than } = n \\ \text{Machade pressure increase per foot of depth } \\ \text{Mather max, length or width is greater than } = n \\ \text{Wrein max, length or width is greater than } = n \\ \text{Wrein max length or width is greater than } = n \\ \text{Machade pressure increase per foot of depth } \\ \text{Mather max, length or width is greater than } = n \\ \text{Wrein max length or width is greater than } = n \\ \text{Machade pressure increase per foot of depth } \\ \text{Mather max, length or width is greater than } = n \\ \text{Wrein max length or width is greater than } = n \\ \text{Machade pressure increase per foot of depth } $		fy : Rebar Yield		= 60).0 ksi	Increase	Bearing By Footin	ng Weight		No
ϕ ValuesFlexure $=$ 0.90Shear $=$ 0.750Analysis Settings $=$ 0.750Min Allow % Temp Reint $=$ 0.00180Min. Siding Sately Factor $=$ 0.0180Min. Siding Sately Factor $=$ 1.0Min. Siding Sately Factor $=$ 1.0Mad Fight Witor Soil Pressure $:$ YesUse fight Witor Soil Pressure $:$ NoAdd Pedetal Witor Soil Pressure $:$ YesUse Product Witor Soil Pressure $:$ YesWidh parallel to X-X Axis $=$ 4.50 ftLength parallel to X-X axis $=$ 4.50 ftPedestal dimensions px : parallel to X-X axis $=$ 3.00 inPedestal dimensions px : parallel to X-X axis $=$ 3.00 inBare parallel to Z-X axis $=$ 6 Bare parallel to Z-X axis $=$ 6 B	·.	Éc : Concrete Elastic Modulus				Soil Pase	ive Resistance (fo	or Sliding)		
Shear=0.750Increase based on footing peth4.50 ftAnalysis Settings=0.00180-kifMin Sitel 's Bending Reint,=0.00180-kifMin Min Werk Temp Reint,=0.00180-tistMin Sitely 'Factor=1.0;1kifAdd Fig Witor Sately Factor=1.0;1Add Pig Witor Sately Factor=1.0;1 <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td>300/0018</td><td></td><td></td><td>-</td><td>0.000</td></td<>		•				300/0018			-	0.000
Analysis SettingsMin Allow K. Temp Reint.=0.00180Min Allow X. Temp Reint.=0.00180Min. Studing Stately Factor=1.0 :1Min. Studing Stately Factor:YesUse fig with or stability, moments & shears <td: no<="" td="">Vise Pedestal with for stability, mom & shear<td: td="" yes<="">Use Pedestal dimensions.:YesWidth parallel to X-X Axis=4.50 ftPedestal dimensions.::p:: parallel to X-X Axis=3.0 0 inreportin:Reinforcing::Bars parallel to X-X Axis=6Bars parallel to X-X Axis=6Bars parallel to X-X Axis=6Bars parallel to Z-X Axis=6Bars parallel to Z-X Axis=6Bars parallel to Z-X Axis=6Bars parallel to Z-X Axis=6Bars required with no coner/a# Bars required with no coner/a# Bars required with no coner/aP: Column Load=7.40O: Civerburden:Morz::Wrz::</td:></td:>		, Shear		= 0.7	50	Increases I	ased on footing	Depth		
Min Allow % Temp Reinf.=0.00180 1.0 1.1when footing base is below=ftMin Stoling Safely Factor=1.0 1.0 1.1Increase based on footing plan dimension Allowable pressure increase per foot of depthAdd Flydetaulty for Sol Pressure:YesUse Podestal W for stability, moments & shears:NoAdd Podestal W for Sol Pressure:YesUse Podestal W for Sol Pressure:YesDimensions::YesWidth parallel to XX Axis=4.50 ftPodestal dimensions:::px: parallel to ZZ Axis=::min Rebar Centerine to Edge of Concrete:::at bottom of tooling Bars Size:::Bars parallel to ZZ Axis:::Bars parallel to ZZ Axis:::Bars parallel to ZZ Axis:::Bars parallel to ZZ Axis:::Bars parallel to XZ Axis:::Number of Bars:::Bars parallel to ZZ Axis:::Bars required within zone:::Number of Bars:::Bars required with zone:::Precion Requiring Closer Separation::		Analysis Settings Min Steel % Bending Reinf.		=		Footing I	ase depth below	soil surface		
Min. Stiding Safety Factor = 1.0.1 Increase based on footing plan dimension Add Pyd for Sol Pressure : Yes Use Podestal W for stability, moments & shears : No Add Pedestal W for stability, moments & shears : Yes Use Podestal W for stability, moments & shear : Yes Use Podestal W for stability, mom & shear : Yes Width parallel to X-X Axis = 4.50 ft Length parallel to X-X Axis = 4.50 ft Length parallel to X-X Axis = 4.50 ft Length parallel to X-X Axis = 4.50 ft Pedestal dimensions px: parallel to X-X Axis = 30.0 in p: parallel to X-X Axis = 30.0 in p: parallel to Z-X Axis = 30.0 in p: parallel to Z-X Axis = 30.0 in p: parallel to Z-X Axis = 6 Reinforcing Bars parallel to Z-X Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to Z-X Axis = # 6 Reinforcing Bar Size = # 6 Bars parallel to Z-X Axis = # 6 Reinforcing Bar Size = # 6 Bars parallel to Z-X Axis = # 6 Reinforcing Bar Size = # 6 Rein		Min Allow % Temp Reinf.				when	footing base is be	elow		
Add Pg Wi for Soil Pressure $:$ Ves Allowable pressure increase per toot of depth $:$ when max. length or width is greater than $=$ ksf when max. length or width is greater than $=$ the transmitter of the transmitter that is the transmitter that is the transmitter tran			r ·	=		Increases	nased on footing	nlan dimensio	•	н. Н
when max length or width is greater than				:						
Add Petusial with 0 Solir Piessure 1: Yes = t Use Pedestal with 0 Sahear : Yes = t Width parallel to XX Axis = 4.50 ft Length parallel to ZZ Axis = 4.50 ft Length parallel to ZZ Axis = 24.0 in Pedestal dimensions px: parallel to XX Axis = 30.0 in pz: parallel to XX Axis = 30.0 in pz: parallel to XX Axis = 30.0 in regention of footing = 3.0 in Rebar Control to Edge of Concrete at Bottom of footing = 3.0 in Mumber of Bars = 6 Reinforcing Bar Size = # 6 Bandwidth Distribution Check (ACI 15.4.2) Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required within zone n/a Applied Loads P: Column Load = 7.40 B: Column Load = 7.40 B: Column Load = 7.40 B: Column Load = 0.00 B: Column Load = 0.00				:		when ma	x length or width	is greater than	=	ksf
Dimensions With parallel to X-X Axis = 4.50 ft Length parallel to Z-Z Axis = 4.50 ft Pedestal dimensions px: parallel to X-X Axis = 30.0 in px: parallel to X-X Axis = 30.0 in x_{2} Report E 30.0 in x_{2} x_{2} x_{2} Bars parallel to X-X Axis = 30.0 in x_{2} x_{2} x_{2} x_{2} Bars parallel to X-X Axis = 30.0 in x_{2} x_{3} x_{4}				:				.	=	ft
With parallel to XX Axis = 4.50 ft Length parallel to ZZ Axis = 4.50 ft Footing Thickness = 24.0 in Pedestal dimensions p: parallel to XX Axis = 30.0 in p: parallel to ZZ Axis = 30.0 in Height Rehar Centerline to Edge of Concrete at Bottom of footing = 3.0 in Reinforcing Bars is = 6 Bars parallel to ZZ Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to ZZ Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to ZZ Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to ZZ Axis = 6 Reinforcing Bar Size = # 6 Bars required within zone n/a # Bars required within zone n/a # Bars required within zone n/a P: Column Load = 7.40 D: Lr L S W E H P: Column Load = 7.40 Bars parallel to ZZ Axis = 0.0 k k k / 1.10 P: Column Load = 7.40 D: Vx = - 0.0 0.0 k k				•						
Length parallel to Z-Z Axis = 4.50 ft Footing Thickness = 24.0 in Pedestal dimensions p: parallel to X-X Axis = 30.0 in p: parallel to Z-Z Axis = 30.0 in Height = 3.0 in Reber Centerline to Edge of Concrete at Bottom of footing = 3.0 in Reinforcing Bars Size = # 6 Bars parallel to Z-Z Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to Z-Z Axis = # 6 Bars required mixing zero = m/a # Bars required within zone n/a # Bars required on each side of zone n/a # Bars required mean side of zone n/a M-xx =			_	4 50 f	······	· · · · · ·				
Footing Thickness = 24.0 in Pedestal dimensions px: parallel to X-X Axis = 30.0 in height bit X-X axis = 30.0 in at Bottom of footing = 3.0 in Reinforcing Bars parallel to Z-Z Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to Z-Z Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to Z-Z Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to Z-Z Axis = 6 Reinforcing Bar Size = # 6 Bars parallel to Z-Z Axis = 6 Reinforcing Bar Size = # 6 Bars required within zone n/a # Bars required on each side of zone n/a # D tr t t s W E H OB: Overburden = 7.40 3.90 1.10 9.50 k M-zz = kft M-zz = kft V-x = = 000000000000000000000000000000000			=					Z		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			=	24.0 i	ı	f	energi antisa da	cia Aprovinationali		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							AND			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									~	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			=	30 0 i	'n	4	201 232 234 234 234 234 234 234 234 234 234		^	
Rebar Centerline to Edge of Concrete 3.0 in Reinforcing 3.0 in Bars parallel to X-X Axis		pz : parallel to Z-Z Axis								
at Bottom of rooting = 3.0 in Reinforcing = 3.0 in Bars parallel to X-X Axis Number of Bars = 6 Bars parallel to Z-Z Axis Number of Bars = 6 Bars parallel to Z-Z Axis Number of Bars = 6 Bars parallel to Z-Z Axis Number of Bars = 6 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation # Bars required within zone # Bars required on each side of zone OB: Overburden n/a P: Column Load OB: Overburden = 7.40 3.90 1.10 9.50 k ksf M-xz = - - - ksf M-zz = - - - - ksf V-x = 0.0 0.0 k - -			crete	1	n				Ēdg	
Reinforcing 4*5" Bars parallel to X-X Axis = 6 Number of Bars = 6 Bars parallel to Z-Z Axis Number of Bars = 6 Number of Bars = 6 6 Bars parallel to Z-Z Axis Number of Bars = 6 Number of Bars = 6 6 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a Direction Required on each side of zone n/a ************************************		at Bottom of footing		3.0 j	n					
ReinforcingBars parallel to X-X Axis Number of BarsNumber of Bars=6Bars parallel to Z-Z Axis Number of Bars=Number of Bars=6Bars parallel to Z-Z Axis Number of Bars=Number of Bars=6Bandwidth Distribution Check (ACI 15.4.4.2) Direction Required within zonen/a# Bars required within zonen/a# Bars required of zonen/aP: Column Load=7.40OB: Overburden=M-xx=M-xz=V-x=V-x=		·	i.						8	
Number of Bars = 6 Reinforcing Bar Size = # Bars parallel to Z-Z Axis Number of Bars = 6 Reinforcing Bar Size = # 6 Bandwidth Distribution Check (ACI 15.4.4.2)		Reinforcing					-	4'6"	ω	
Reinforcing Bar Size = # 6 Bars parallel to Z-Z Axis Number of Bars = 6 Reinforcing Bar Size = # 6 Bandwidth Distribution Check (ACI 15.4.4.2) - - - Direction Requiring Closer Separation n/a - - - # Bars required within zone n/a - - - - # Bars required on each side of zone n/a - - - - - P: Column Load = 7.40 3.90 1.10 9.50 k M-xx = - - - - - - M-zz = - - - - - - V-x = - 0.0 0.0 k -			_							
Bars parallel to Z-Z Axis Number of Bars = # 6 Reinforcing Bar Size = # 6 Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation n/a # Bars required on each side of zone n/a # Bars required on each side of z		Number of Bars Beinforcing Bar Size								
Number of Bars = 6 Reinforcing Bar Size = # Bandwidth Distribution Check (ACI 15.4.4.2)										
Bandwidth Distribution Check (ACI 15.4.4.2) n/a Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads Image: Column Load P: Column Load = 7.40 3.90 M-xx = M-xx = M-zz = V-x = 0.0 0.0		Number of Bars	=			989-88 S				
Direction Requiring Closer Separation n/a # Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads E P : Column Load = 0B : Overburden = M-xx = M-zz = V-x = 0.0 0.0		Heililoicing bai size	-	# 0		6-868			6 #6 Ba	
# Bars required within zone n/a # Bars required on each side of zone n/a Applied Loads K P : Column Load = 7.40 3.90 1.10 9.50 k P : Column Load = 7.40 3.90 1.10 9.50 k M-xx = K-ft K-ft K-ft K-ft M-zz = 0.0 0.0 k					<u>h.</u>	X-X Sector Look	noio 42	<u>k (* 1967)</u>	2.2 Section Locid	
# Bars required on each side of zone n/a Applied Loads Image: Column Load or Column Colum			aration				<u></u>			
D Lr S W E H P: Column Load OB: Overburden = 7.40 3.90 1.10 9.50 k ksf M-xx = ////////////////////////////////////			zone							
D Lr S W E H P: Column Load OB: Overburden = 7.40 3.90 1.10 9.50 k ksf M-xx =										
P: Column Load = 7.40 3.90 1.10 9.50 k OB: Overburden = ksf ksf M-xx = k-ft k-ft M-zz = 0.0 0.0 k				D	Lr	L	S	w	E	н
M-xx = k-ft M-zz = <u>k-ft</u> V-x = 0.0 0.0 k		P : Column Load	=							k
M-zz = <u>k-ft</u> V-x = 0.0 0.0 k			-			*****				
V-x = 0.0 0.0 k										k-ft k-ft
								0.0	0.0	
		V-z	=		1 2. 			0.0	0.0	k

General Footing

File = L'Uobs/2018/18188 - UPS BFI Seattle/Engineering/Main Bidg Frame 100 Col Reactions/Design/design.ec6 ENERCALC, INC. 1983-2016, Build 6:16:2:18, Ver.6:16:2:18 Licensee : PETERSON-STREHLE-MARTINSON, INC

Footing for (No Factor) Ext. Bay Frame Col-Maintenance Bldg 400 (At Lines A/1, A/5, C/1 & C/5) Description :

	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.8970	Soil Bearing	2.691 ksf	3.0 ksf	+2.406D+1.40E+H about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.01359	Z Flexure (+X)	0.7326 k-ft	53.922 k-ft	+1.401D+0.50L+0.70S+2.0E+1.60
PASS	0.01359	Z Flexure (-X)	0.7326 k-ft	53.922 k-ft	+1.401D+0.50L+0.70S+2.0E+1.60
PASS	0.01359	X Flexure (+Z)	0.7326 k-ft	53.922 k-ft	+1.401D+0.50L+0.70S+2.0E+1.60
PASS	0.01359	X Flexure (-Z)	0.7326 k-ft	53.922 k-ft	+1.401D+0.50L+0.70S+2.0E+1.60
PASS	n/a	1-way Shear (+X)	0.0 psi	82.158 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a
PASS	n/a	1-way Shear (+Z)	0.0 psi	82.158 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	82.158 psi	n/a
PASS	n/a	2-way Punching	0.8932 psi	82.158 psi	+1.401D+0.50L+0.70S+2.0E+1.60

Soil Bearing

Rotation Axis &		Xecc	Zecc	Actua	I Soil Bearing S	Stress @ Locat	ion	Actual / Allow
Load Combination	Gross Allowable	(ir	I) .	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, +D+H	3.0	n/a	0.0	0.8456	0.8456	n/a	n/a	0.282
X-X, +D+L+H	3.0	n/a	0.0	0.8456	0.8456	n/a	n/a	0.282
X-X, +D+Lr+H	3.0	n/a	0.0	0.8456	0.8456	n/a	n/a	0.282
X-X, +D+S+H	. 3.0	n/a	0.0	1.038	1.038	n/a	n/a	0.346
X-X, +D+0.750Lr+0.750L+H	3.0	n/a	0.0	0.8456	0.8456	n/a	n/a	0.282
X-X, +D+0.750L+0.750S+H	3.0	n/a	0.0	0.990	0.990	n/a	n/a	0.330
X-X, +D+0.60W+H	3.0	n/a	0.0	0.8781	0.8781	n/a	n/a	0.293
X-X, +D-0.60W+H	3.0	n/a	0.0	0.8130	0.8130	n/a	n/a	0.271
X-X, +2.406D+1.40E+H	3.0	n/a	0.0	2.691	2.691	n/a	n/a	0.897
X-X, +2.406D-1.40E+H	3.0	n/a	0.0	1.377	1.377	n/a	n/a	0.459
X-X, +D+0.750Lr+0.750L+0.450W+H	3.0	n/a	0.0	0.870	0.870	n/a	n/a	0.290
X-X, +D+0.750Lr+0.750L-0.450W+H	3.0	n/a	0.0	0.8211	0.8211	n/a	n/a	0.274
X-X, +D+0.750L+0.750S+0.450W+H	3.0	n/a	0.0	1.014	1.014	n/a	n/a	0.338
X-X, +D+0.750L+0.750S-0.450W+H	3.0	n/a	0.0	0.9656	0.9656	n/a	n/a	0.322
X-X, +2.054D+0.750L+0.750S+1.050		n/a	0.0	2.374	2.374	n/a	n/a	0.791
X-X, +2.054D+0.750L+0.750S-1.050E		n/a	0.0	1.389	1.389	n/a	n/a	0.463
X-X, +0.60D+0.60W+0.60H	3.0	n/a	0.0	0.5399	0.5399	n/a	n/a	0.180
X-X, +0.60D-0.60W+0.60H	3.0	n/a	0.0	0.4747	0.4747	n/a	n/a	0.158
X-X, -0.8056D+1.40E+0.60H	3.0	n/a	0.0	-0.02439	-0.02439	n/a	n/a	0.008
X-X, -0.8056D-1.40E+0.60H	3.0	n/a	0.0	-1.338	-1.338	n/a	n/a	0.446
Z-Z, +D+H	3.0	0.0	n/a	n/a	n/a	0.8456	0.8456	0.282
Z-Z, +D+L+H	3.0	0:0	n/a	n/a	n/a	0.8456	0.8456	0.282
Z-Z, +D+Lr+H	3.0	. 0.0	n/a	n/a	n/a	0.8456	0.8456	0.282
Z-Z, +D+S+H	3.0	0.0	n/a	n/a	n/a	1.038	1.038	0.346
Z-Z, +D+0.750Lr+0.750L+H	3.0	0.0	∵n/a	n/a	n/a	0.8456	0.8456	0.282
Z-Z, +D+0.750L+0.750S+H	3.0	0.0	n/a	n/a	n/a	0.990	0.990	0.330
Z-Z, +D+0.60W+H	3.0	0.0	n/a	n/a	n/a	0.8781	0.8781	0.293
Z-Z, +D-0.60W+H	3.0	0.0	n/a	n/a	n/a	0.8130	0.8130	0.271
Z-Z, +2.406D+1.40E+H	3.0	0.0	n/a	n/a	n/a	2.691	2.691	0.897
Z-Z, +2.406D-1.40E+H	3.0	0.0	n/a	n/a	n/a	1.377	1.377	0.459
Z-Z, +D+0.750Lr+0.750L+0.450W+H	3.0	0.0	n/a	n/a	n/a	0.870	0.870	0.290
Z-Z, +D+0.750Lr+0.750L-0.450W+H	3.0	0.0	n/a	n/a	n/a	0.8211	0.8211	0.274
Z-Z, +D+0.750L+0.750S+0.450W+H	3.0	0.0	n/a	n/a	n/a	1.014	1.014	0.338
Z-Z, +D+0.750L+0.750S-0.450W+H	3.0	0.0	n/a	n/a	n/a	0.9656	0.9656	0.322
Z-Z, +2.054D+0.750L+0.750S+1.050		0.0	n/a	n/a	n/a	2.374	2.374	0.791
Z-Z. +2.054D+0.750L+0.750S-1.050I		0.0	n/a	n/a	n/a	1.389	1,389	0.463
Z-Z, +0.60D+0.60W+0.60H	3.0	0.0	i n/a	n/a	n/a	0.5399	0.5399	0.180
Z-Z, +0.60D-0.60W+0.60H	3.0	0.0	n/a	n/a	n/a	0.4747	0.4747	0.158
Z-Z, -0.8056D+1.40E+0.60H	3.0	0.0	n/a	n/a	n/a	-0.02439	-0.02439	0.008
Z-Z, -0.8056D-1.40E+0.60H	3.0	0.0	n/a	n/a	n/a	-1.338	-1.338	0.446

2

220	DNSU 00 SI	хтн	AVE	NUE,	sur	FE 60					ING	TON	9812		JOB: _ DATE: SUBJI							87 - 1						13
	Ę	20	[Lood	4	1	Fexe	_	141	চ্চ	20	8	B	27-	Ę	292	- MB		<u>د ما</u>	_in	<u>~~</u>	<u> </u>	7 4 ,	<u> </u>	d E		12	<u>e</u>	2) /3
		»Е ~ /	۱ ۲	ी'- व्	- 0' +	ى ب		7' AT	- 0 11	, o	X (0	24	(ξ _Α		-4	4 1	BƏ								ा- • /य	1	-/4
		dE vpu					-	ره. ²	5) 4	τ <u>ρ</u> - \			16	n														
		15 <u>5</u> 1		5-T - F	C	£	ر" <i>ا</i>	56	۶G	((70 ^{tt}	}= =	1	> /8 +.7														
		DEI WT		Ŧ					(6			11 1 1		29 24		(7 	3.8		2 2	<i>9,9</i>	•)							
														76,6										-				
		-,0, 				445			18	-			6.4	5)(0,0	-) (16	2	-,	2;	10			>	¥ :		ی	K
	*4		2.e.h	<u> </u>			<u> </u>						6.8		0,3) =	10	1.9	4					-			
							x T		ł						9.9								>	l	0		əĶ	
		1	E			1012		m	sn-	ź	*		(3,4	4)	(5)))	-	1	7.04	1							
		M	IDW	۲۶۰	n	25	-515	572	-44C	6 ,	M	e :	= (756 199	8 8,8	> (2	7	o /	2)									
								57					~4		2	7	47		•			· . (· ·	7	, \		σ	¥	
		14	Ex	12	5		E.C.	<u>+-</u>		51	ip)i	31L	-171		*+		×e	\^ ²	5	57		5 (7		61	27			

: : { ------

.....

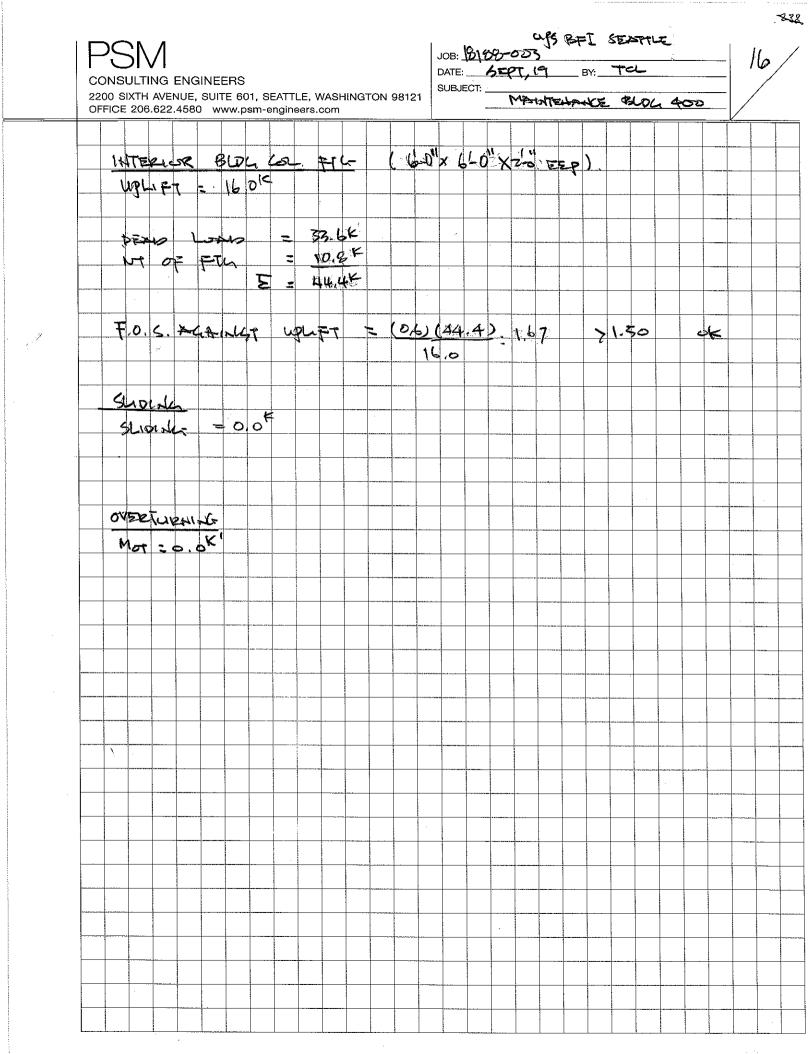
eneral Footing	eo - el les oltradas El tra gener el este			File = L'N	obs\2018\18188 -	JPS BFI Seattle\Eng			ctions\Design\design.ect d:6.16.2.18, Ver:6.16.2.18
c. # : KW-06001622 escription : Footing for (No F	actor) Int. Bay	Frame Co	l-Mainter	aoca Bida 400 (A	t1 ines A/2_C/2	Licens , A/3, C/3, A/4 & C	ee : PETERS		E-MARTINSON, I
ode References AL 30				larise bing foo ((LING / VL) OF	, 100, 070, 704 a c	//···/		
alculations per ACI 318-11		CBC 2	2013. A	SCE 7-10	50E T-1				
ad Combinations Used : I									
eneral Information									
laterial Properties					Soil Desig	n Values			
f'c : Concrete 28 day strength		=		.0 ksi	Allowable	Soil Bearing		=	3.0 ksf
fy : Rebar Yield Ec : Concrete Elastic Modulus		=	3,122	.0 ksi Ω ksi	Increase I Soil Passi	Bearing By Footi ve Resistance (f	ng Weight	=	No 250.0 pcf
Concrete Density	4	=.		.0 pcf	Soil/Conc	rete Friction Coe	eff.	=	0.350
φ Values Flexure		=	0.9						
Shear Analysis Settings		=	0.7	50	Increases b	ased on footing	Depth		4.50.4
Min Steel % Bending Reinf.			=		Footing b Allow pres	ase depth below s. increase per	soil surface	=	4.50 ft 4.0 ksf
Min Allow % Temp Reinf.			=	0.00180		ooting base is b		=	4.250 ft
Min. Overturning Safety Factor Min. Sliding Safety Factor	pr		= =	1.0 · 1 1.0 · 1	Incroscoc b	ased on footing	n nlan dimonol	^ n	
Add Ftg Wt for Soil Pressure			:	Yes	Allowable	pressure increa	se per foot of de	epth	
Use ftg wt for stability, momen	nts & shears		:	No			•	. =	ksf
Add Pedestal Wt for Soil Pres			:	Yes	when max	c. length or width	i is greater than	=	ft
Use Pedestal wt for stability,	nom & shear		:	Yes					
imensions		···	· · · · ·		5				
Vidth parallel to X-X Axis	=		7.0 ft				"7		
ength parallel to Z-Z Axis	=		7.0 ft				Í		
ooting Thickness	=		24.0 in		f				
No. 4					ź.			X	
edestal dimensions px : parallel to X-X Axis	= .		24.0 ir	1	ř.		lange statute lange signal p lange statute lange signal p		
pz : parallel to Z-Z Axis	=		24.0 ir	l					
Height Rebar Centerline to Edge of Cor			ir	1		in the second se		Edg	
at Bottom of footing	=		3.0 ir) 1	L			Edge Dis	
Reinforcing							7'0"	မှု	
Bars parallel to X-X Axis			<u> </u>				Z		
Number of Bars	=		9						
Reinforcing Bar Size	=	#	6						
Bars parallel to Z-Z Axis Number of Bars	=		9				_		
Reinforcing Bar Size	=	#	6		she <mark>nga shenga shenga</mark> Anglan nga shenga				
		0)		1	9 –∦ 6 Baris		1	a .#6	Bars
Bandwidth Distribution Check Direction Requiring Closer Ser		2)	n/a	<u>1000000000000000000000000000000000000</u>	KA Second Looking	ng agan na ang kabupatén déléh	1 (1995-1995) (1995-1995)		1999-1999 (1999-1997) - C.
# Bars required within zone		•	n/a						
# Bars required on each side o	zone		n/a						
pplied Loads									
	· · · ·	D		Lr	L	S	W	E	H
: Column Load	=	23.80)			16.50	-10.0	-1.20	k
DB : Overburden	=								ksf
M-xx M-zz	=								k-ft
v-∠∠ V-x	·	3.80	n			3.60	10.20	23.60	k-ft
	=	0.01				0.00	10.20	Z3.00	k

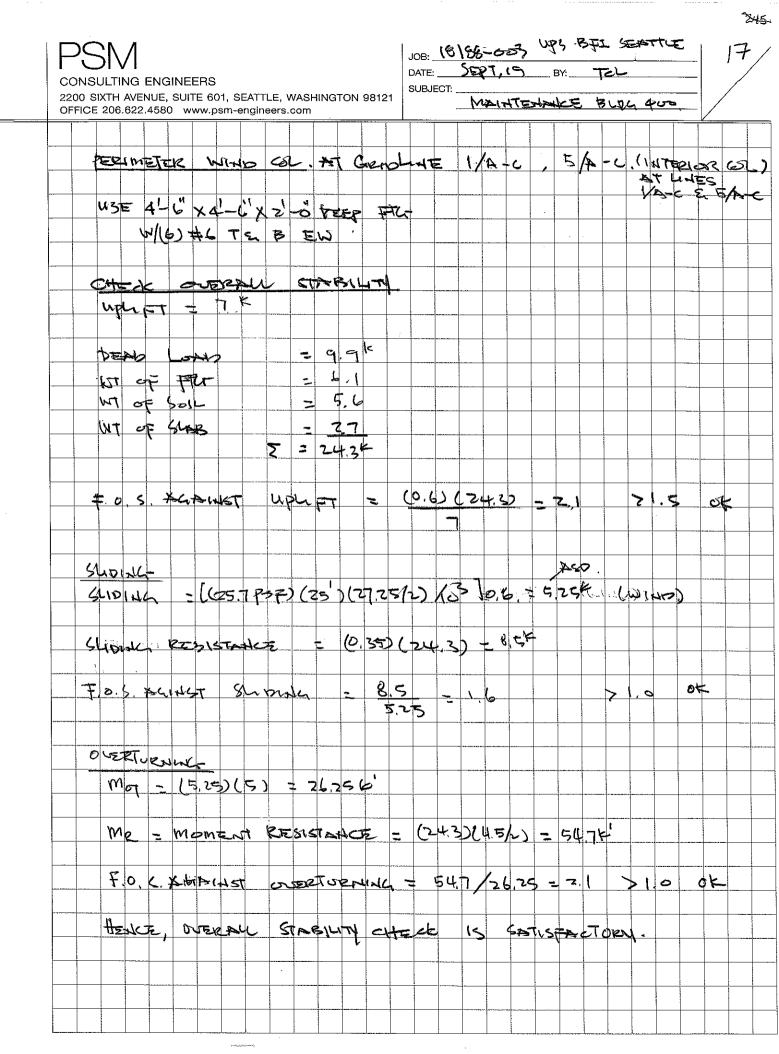
General Footing

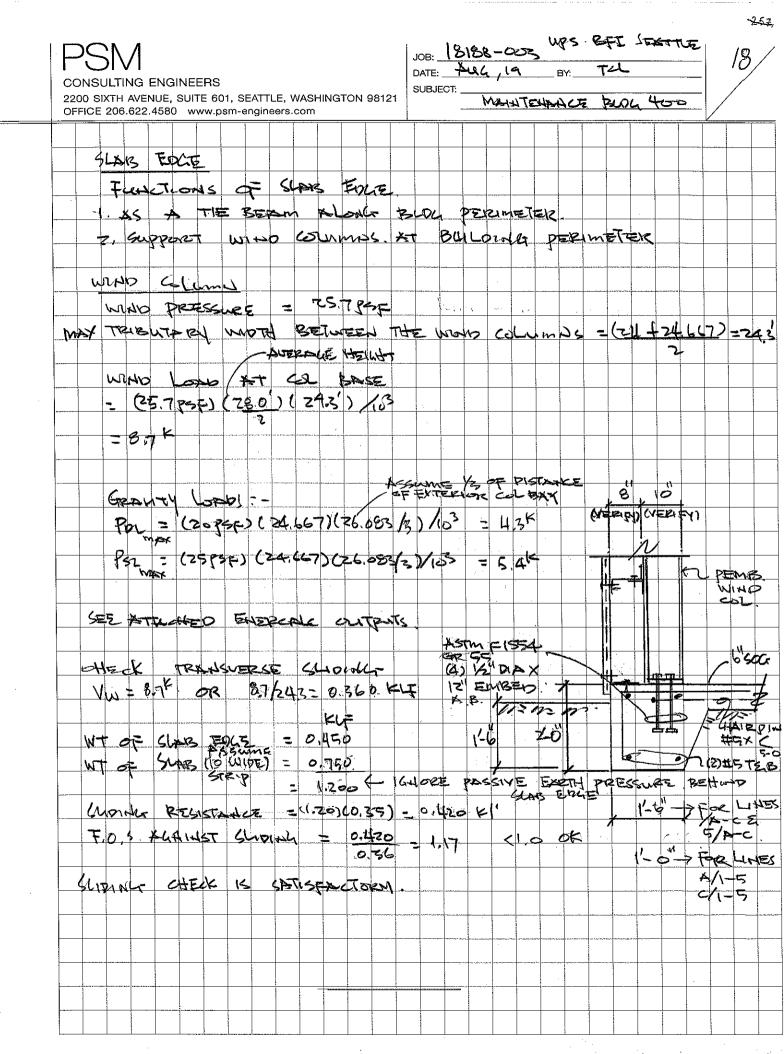
File = L:Uobs\2018\18188 - UPS BFI Seattle\Engineening\Main Bldg Frame 100 Col Reactions\Design\design.ec6 ENERCALC, INC. 1983-2016, Build:6.16.2.18, Ver.6.16.2.18 Licensee: PETERSON-STREHLE-MARTINSON, INC

Design OK

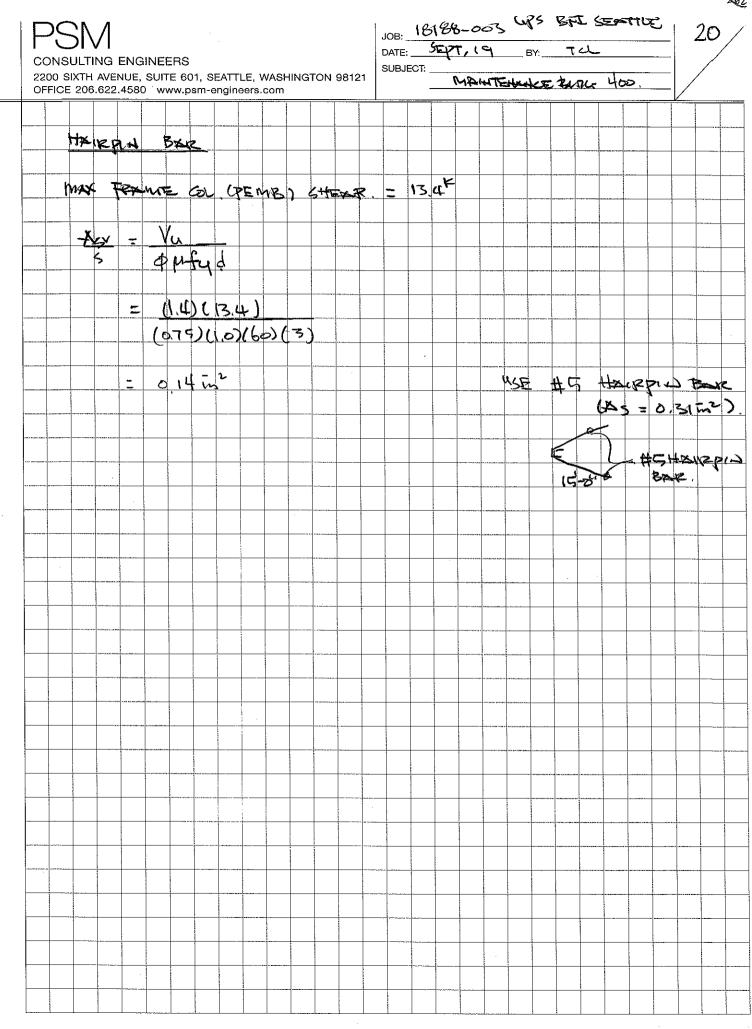
234


Licensee Description : Footing for (No Factor) Int. Bay Frame Col-Maintenance Bldg 400 (At Lines A/2, C/2, A/3, C/3, A/4 & C/4)


	IMMAR	


	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9725	Soil Bearing	3.890 ksf	4.0 ksf	+2.406D+1.40E+H about Z-Z axis
PASS	8.034	Overturning - X-X	21.150 k-ft	169.925 k-ft	+D+0.750L+0.750S+0.450W+H
PASS	2.010	Overturning - Z-Z	37.80 k-ft	75.968 k-ft	+0.60D+0.60W+0.60H
PASS	1.653	Sliding - X-X	25.661 k	42.414 k	+2.406D+1.40E+H
PASS	8.524	Sliding - Z-Z	3.60 k	30.686 k	+D+S+H
PASS	3.618	Uplift	-6.0 k	21.705 k	+0.60D+0.60W+0.60H
PASS	0.1597	Z Flexure (+X)	8.313 k-ft	52.048 k-ft	+0.6992D+2.0E+0.90H
PASS	0.04919	Z Flexure (-X)	2.560 k-ft	52.048 k-ft	+1.20D+0.50L+1.60S+1.60H
PASS	0.07491	X Flexure (+Z)	3.899 k-ft	52.048 k-ft	+1.20D+0.50L+1.60S+1.60H
PASS	0.05649	X Flexure (-Z)	2.940 k-ft	52.048 k-ft	+1.20D+0.50L+1.60S+1.60H
PASS	0.1575	1-way Shear (+X)	12.941 psi	82.158 psi	+0.6992D+2.0E+0.90H
PASS	0.02676	1-way Shear (-X)	2.198 psi	82.158 psi	+1.401D+0.50L+0.70S+2.0E+1.60H
PASS	0.04314	1-way Shear (+Z)	3.545 psi	82.158 psi	+1.20D+0.50L+1.60S+1.60H
PASS	0.03088	1-way Shear (-Z)	2.537 psi	82.158 psi	+1.20D+0.50L+1.60S+1.60H
PASS	0.06180	2-way Punching	10.154 psi	164.317 psi	+1.20D+0.50L+1.60S+1.60H
etailed Re	sults				

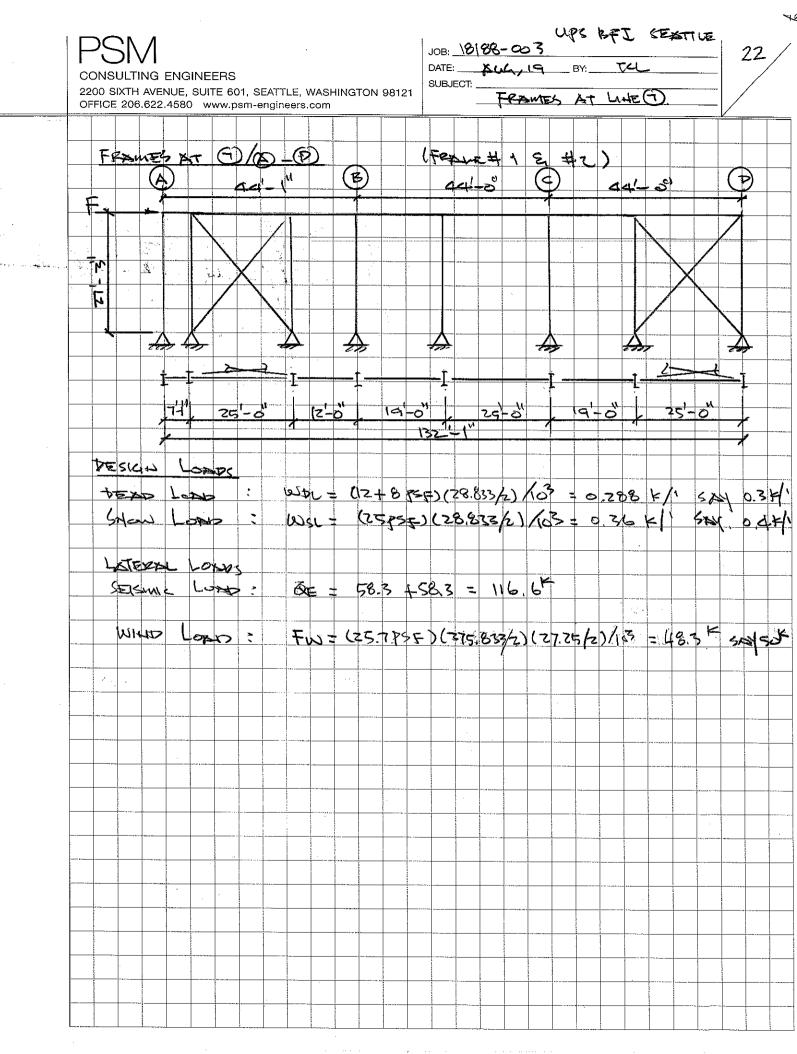
Soil Bearing

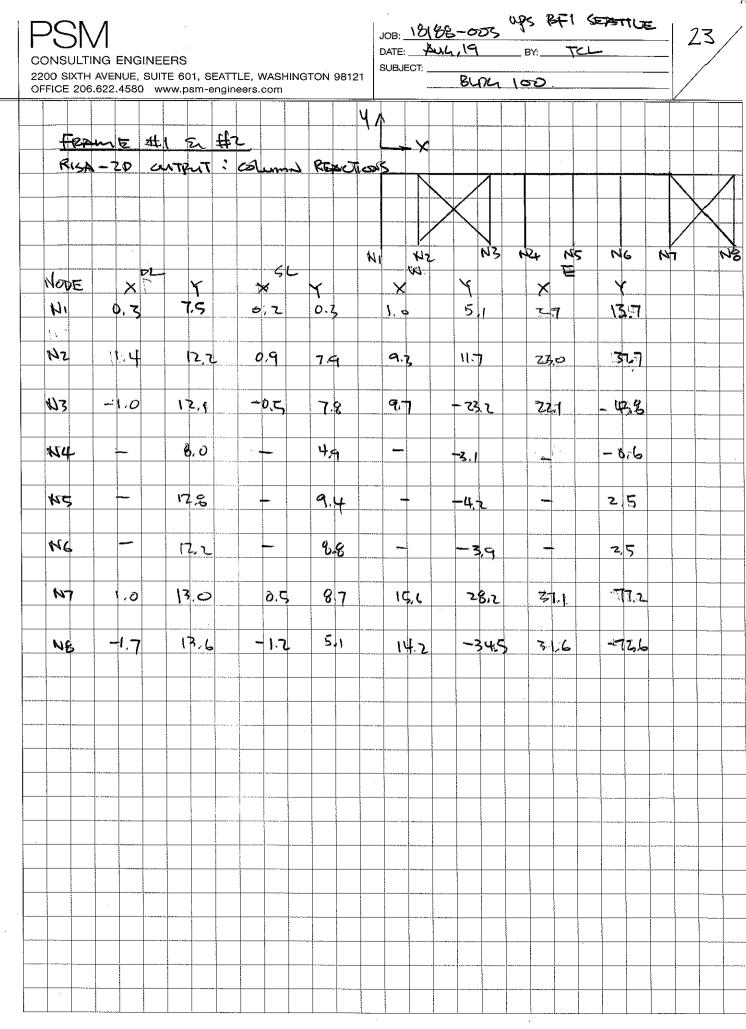

Rotation Axis &	·····	Xecc	Zecc	Actual	Soil Bearing S	tress @ Locat	ion	Actual / Allow
Load Combination	Gross Allowable	(i	in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, +D+H	4.0	n/a	0.0	1.028	1.028	n/a	n/a	0.257
X-X, +D+L+H	4.0	n/a	0.0	1.028	1.028	n/a	n/a	0.257
X-X, +D+Lr+H	4.0	n/a	0.0	1.028	1.028	n/a	n/a	0.257
X-X, +D+S+H	4.0	n/a	1.292	1.241	1.489	n/a	n/a	0.372
X-X, +D+0.750Lr+0.750L+H	4.0	n/a	0.0	1.028	1.028	n/a	n/a	0.257
X-X, +D+0.750L+0.750S+H	4.0	n/a	1.033	1.188	1.374	n/a	n/a	0.344
X-X, +D+0.60W+H	4.0	n/a	0.0	0.9058	0.9058	n/a	n/a	0.227
X-X. +D-0.60W+H	4.0	n/a	0.0	1.151	1.151	n/a	n/a	0.288
X-X, +2.406D+1.40E+H	4.0	n/a	0.0	2.439	2.439	n/a	n/a	0.610
X-X, +2.406D-1.40E+H	4.0	n/a	0.0	2.508	2.508	n/a	n/a	0.627
X-X, +D+0.750Lr+0.750L+0.450W+ł		n/a	0.0	0.9364	0.9364	n/a	n/a	0.234
X-X, +D+0.750Lr+0.750L-0.450W+H		n/a	0.0	1.120	1.120	n/a	n/a	0.280
X-X, +D+0.750L+0.750S+0.450W+H		n/a	1.112	1.096	1.282	n/a	n/a	0.321
X-X, +D+0.750L+0.750S-0.450W+H	4.0	n/a	0.9634	1.280	1.466	n/a	n/a	0.367
X-X, +2.054D+0.750L+0.750S+1.050		n/a	0.5654	2.246	2,432	n/a	n/a	0.608
X-X, +2.054D+0.750L+0.750S-1.050		n/a	0.5532	2.298	2.483	n/a	n/a	0.621
X-X, +0.60D+0.60W+0.60H	4.0	n/a	0.0	0.4945	0.4945	n/a	n/a	0.124
X-X, +0.60D-0.60W+0.60H	.4.0	n/a	0.0	0.7394	0.7394	n/a	n/a	0.185
X-X, -0.8056D+1.40E+0.60H	4.0	n/a	0.0	-0.8627	-0.8627	n/a	n/a	0.216
X-X, -0.8056D-1.40E+0.60H	4.0	n/a	0.0	-0.7941	-0.7941	n/a	n/a	0.199
Z-Z, +D+H	4.0	1.810	n/a	n/a	n/a	0.8975	1.159	0.290
Z-Z, +D+L+H	4.0	1.810	n/a	n/a	n/a	0.8975	1.159	0.290
Z-Z, +D+Lr+H	4.0	1.810	n/a	n/a	n/a	0.8975	1.159	0.290
Z-Z, +D+S+H	4.0	2.655	n/a	n/a	n/a	1.110	1.620	0.405
Z-Z, +D+0.750Lr+0.750L+H	4.0	1.810	n/a	n/a	n/a	0.8975	1.159	0.290
Z-Z, +D+0.750L+0.750S+H	4.0	2.486	n/a	n/a	n/a	1.057	1.504	0.376
Z-Z, +D+0.60W+H	4.0	5.364	n/a	n/a	n/a	0.5645	1.247	0.312
Z-Z, +D-0.60W+H	4.0	-0.9875	n/a	n/a	n/a	1.231	1.071	0.308
Z-Z, +2.406D+1.40E+H	4.0	8.470	n/a	n/a	n/a	0.9882	3.890	0.973
Z-Z, +2.406D-1.40E+H	4.0	-4.667	n/a	n/a	n/a	3.330	1.686	0.833
Z-Z, +D+0.750Lr+0.750L+0.450W+I		4.388	n/a	n/a	n/a	0.6478	1.225	0.306
Z-Z, +D+0.750Lr+0.750L-0.450W+H		-0.3455	n/a	n/a	n/a	1.147	1.093	0.287
Z-Z, +D+0.750L+0.750S+0.450W+H		4.568	n/a	n/a	n/a	0.8075	1.571	0.393
Z-Z. +D+0.750L+0.750S-0.450W+H	4.0	0.6815	n/a	n/a	n/a	1.307	1.438	0.360
Z-Z, +2.054D+0.750L+0.750S+1.05		7.389	n/a	n/a	n/a	1.125	3.553	0.888
Z-Z, +2.054D+0.750L+0.750S-1.050		-2.925	n/a	n/a	n/a	2.882	1.899	0.721
Z-Z, +0.60D+0.60W+0.60H	4.0	8.320	n/a	n/a	n/a	0.2055	0.7835	0.196
Z-Z. +0.60D-0.60W+0.60H	4.0	-2.544	n/a	n/a	n/a	0.8715	0.6073	0.218
Z-Z, -0.8056D+1.40E+0.60H	4.0	-17.021	n/a	n/a	n/a	-1.916	0.0	0.000
Z-Z0.8056D-1.40E+0.60H	4.0	22.267	n/a	n/a	n/a	0.0	-2.227	0.000

Beam on Elastic Found	lation Fil	le = L'Jobs\2018\18188 - UPS E		Bidg Frame 100 Col Reactions/Design/des
Lic. # : KW-06001622			Licensee : PETE	C, INC, 1983-2016, Build:6,16,2,18, Ver:6, RSON-STREHLE-MARTINS(
Description : Slab edge around mai	ntenance building 400 perimeter PEr	NB WIND Call		
CODE REFERENCES Calculations per ACI 318-11, IB		10		
Load Combinations Used : IBC :	2015 • • • • • • • • • • • • • • • • • • •			
Material Properties	.0 ksi Λ Phi Values Fi	exure : 0.90	f	
$\begin{array}{rcl} \text{fr} = \text{f'c}^{1/2} * 7.50 &= & 410.7 \\ \text{Ψ Density} &= & 145 \end{array}$	92 psi ξ 5.0 pcf β ₁ =	Shear : 0.750 = 0.850	24 In	
fy - Main Rebar = 60.0 k E - Main Rebar = 29,000.0 k	si E - Stirrups = Stirrup Bar Size # =	" =		
Number Beam is supported on an elastic	of Resisting Legs Per Stirrup foundation,	2		
Cross Section & Reinforcing De	tails	6(7.9) W(-4) E(0.9 # an¥9773801ft	1	N(-7) E(-9.6) B EDGE 18400 T S B GNT.
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing	t s tails n, Height = 24.0 in	k an¥97£5801ft	₩5E SLA ₩ (2) #6	BEDGE 1840 TCB GNT.
Cross Section & Reinforcing De Rectangular Section, Width = 18.0	t s tails n, Height = 24.0 in	∲ an≌97,380 ft 2.#6 at 3	₩5E SLA ♥ (2) ₦6 0 in from Top, from 0.0	
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.60, S = 7.90, W Point Load : D = 9.90, S = 8.10, W	i Sp tails in, Height = 24.0 in m 0.0 to 97.330 ft in this span ded to loads = -4.60, E = 13.30 k @ 24.667 ft /= -4.0, E = 0.90 k @ 48.667 ft	∲ an≌97,380 ft 2.#6 at 3	₩5E SLA ♥ (2) ₦6 0 in from Top, from 0.0	E E D C E D C E D C E D C E T C N T C S C N T C S C N T C S C N T C S C N T S C N T S C N T S C N T S C N T S C N T S C N T T T S C N T T T T S T T T T T T T T T T
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.60, S = 7.90, W Point Load : D = 9.90, S = 8.10, W DESIGN SUMMARY Maximum Bending Stress Ratio	Sp stalls in, Height = 24.0 in m 0.0 to 97.330 ft in this span $ \frac{\text{ded to loads}}{48.667 \text{ ft}} = -4.60, E = 13.30 \text{ k} @ 24.667 \text{ ft} \\ 7 = -4.0, E = 0.90 \text{ k} @ 48.667 \text{ ft} \\ 7 = -7.0, E = -9.60 \text{ k} @ 72.667 \text{ ft} \\ 7 = -7.0 \text{ ft} \\ 7 = -7.0$	kan¥97-380 ft 2-#6 at 3 Service I Maximum Deflet	WSE SLA WSE SLA W (22) #6 0 in from Top, from 0.0 bads entered. Load F	E E D C E D C E D C E D C E D C S T Σ E D E S C S T Σ E D E S D E S E D E E E D E E E D E E E D E E E D E E E D E E E D E E E D E E E D E E E D E E E D E E E D E E E D E E E E D E E E E D E E E E D E E E E E E E E E E
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.60, S = 7.90, W Point Load : D = 9.90, S = 8.10, W DESIGN SUMMARY	Sp Stalls in, Height = 24.0 in m 0.0 to 97.330 ft in this span $\frac{\text{ded to loads}}{I = -4.60, E = 13.30 \text{ k} @ 24.667 \text{ ft}}$ $I = -7.0, E = -9.60 \text{ k} @ 72.667 \text{ ft}}$ $I = 0.831:1$ Typical Section	An ^w 97 <i>:</i> 380 [°] ft 2-#6 at 3 Service I Maximum Deflet Max Downward	WらE らしみ り (こ) 来ら 0 in from Top, from 0.0 pads entered. Load F	E E D C E D C E D C E D C E T C N T C S C N T C S C N T C S C N T C S C N T S C N T S C N T S C N T S C N T S C N T S C N T T T S C N T T T T S T T T T T T T T T T
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.90, S = 8.10, W Point Load : D = 9.90, S = 8.10, W DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable	i stails in, Height = 24.0 in m 0.0 to 97.330 ft in this span ded to loads = -4.60, E = 13.30 k @ 24.667 ft // = -4.0, E = 0.90 k @ 48.667 ft // = -7.0, E = -9.60 k @ 72.667 ft // = -7.0, E = -9.60 k @ 72.667 ft	Anw97:330 ft 2-#6 at 3 Service I Maximum Deflec Max Downward Max Upward L+ Max Downward	WSE SLA W (2) #6	B EDGE 18^{4} C T \sim B \sim T. T \sim B \sim T. T \sim Design O 0.000 in 0.000 in 0.000 in 0.045 in
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.90, S = 8.10, W Point Load : D = 9.90, S = 8.10, W DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable	Sp Stalls in, Height = 24.0 in m 0.0 to 97.330 ft in this span $\frac{\text{ded to loads}}{42.667 \text{ ft}}$ $= -4.60, E = 13.30 \text{ k} @ 24.667 \text{ ft}$ $f = -7.0, E = -9.60 \text{ k} @ 72.667 \text{ ft}$ $= 0.831:1$ Typical Section 70.092 k-ft	Anw97.380 ft 2-#6 at 3 Service I Maximum Defler Max Downward Max Upward L+	WSE SLA W (2) #6	B EDGE 18^{4} C T \sim B \sim T. T \sim B \sim T. T \sim Design O 0.000 in 0.000 in
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.90, S = 8.10, W DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination Location of maximum on span	tails in, Height = 24.0 in m 0.0 to 97.330 ft in this span $ded to loads$ = -4.60, E = 13.30 k @ 24.667 ft /= -4.0, E = 0.90 k @ 48.667 ft /= -7.0, E = -9.60 k @ 72.667 ft /= -7.0, E = -9.60 k @ 72.667 ft = -7.0, E = -9.60 k @ 72.0E e = -7.00 k @ 72.00	Anw97:330 ft 2-#6 at 3 Service I Maximum Deflec Max Downward Max Upward L+ Max Downward	WSE SLA W (2) #6	B EDGE 18^{4} C T \sim B \sim T. T \sim B \sim T. T \sim Design O 0.000 in 0.000 in 0.000 in 0.045 in
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.60, S = 7.90, W Point Load : D = 9.90, S = 8.10, W DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Soil Pressure =	i stails in, Height = 24.0 in m 0.0 to 97.330 ft in this span ded to loads = -4.60, E = 13.30 k @ 24.667 ft /= -4.0, E = 0.90 k @ 48.667 ft /= -7.0, E = -9.60 k @ 72.667 ft /= Typical Section 70.092 k-ft 84.373 k-ft +1.401D+0.50L+0.70S+2.0E 25.191 ft Span # 1 1.606 ksf	Anw97-380 ft 2-#6 at 3 Service I Maximum Deflet Max Downward Max Upward L+ Max Downward Max Upward Tc	WSE SLA WSE SLA WSE SLA WSE SLA WSE SLA WSE SLA SLA Dominant Science Dads entered. Load F Dads entered. Load F Dads entered. Load F Dads entered. Load F Dads entered. Load F	$E EDGE 18\%$ $T \subseteq B G MT.$ T
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.60, S = 7.90, W Point Load : D = 9.90, S = 8.10, W DeISIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Soil Pressure = Maximum Forces & Stresses for Load Combination	i stails in, Height = 24.0 in m 0.0 to 97.330 ft in this span ded to loads = -4.60, E = 13.30 k @ 24.667 ft /= -4.0, E = 0.90 k @ 48.667 ft /= -7.0, E = -9.60 k @ 72.667 ft = 0.831: 1 Typical Section 70.092 k-ft 84.373 k-ft +1.401D+0.50L+0.70S+2.0E 25.191 ft Span # 1 1.606 ksf r Load Combinations Location (ft)	Anw97-3801ft 2-#6 at 3. Service I Maximum Deflee Max Downward Max Upward Lt Max Downward Max Upward Tc at 24.87 ft ess Results (k-ft)	WSE SLA WSE SLA WSE SLA WSE SLA WSE SLA WSE SLA SLA Dominant Science Dads entered. Load F Dads entered. Load F Dads entered. Load F Dads entered. Load F Dads entered. Load F	$E EDGE 18\%$ $T \subseteq B G MT.$ T
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.60, S = 7.90, W Point Load : D = 9.90, S = 8.10, W DeISIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Soil Pressure = Maximum Forces & Stresses for Load Combination Segment Length Span # MAXimum Bending Envelope	i Sp etails in, Height = 24.0 in m 0.0 to 97.330 ft in this span ded to loads = -4.60, E = 13.30 k @ 24.667 ft /= -4.0, E = 0.90 k @ 48.667 ft /= -7.0, E = -9.60 k @ 72.667 ft /= -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.667 ft * -7.0, E = -9.60 k @ 72.017 ft * Span # 1 * 1.606 ksf * r Load Combinations Location (ft) Bending Strong ft in Span Mu : Max	Anw97.380 ft 2-#6 at 3 Service I Maximum Deflet Max Downward Max Upward L+ Max Downward Max Upward To at 24.87 ft ess Results (k-ft) Phi*Mnx Stress Ratio	WSE SLA WSE SLA WSE SLA WSE SLA WSE SLA WSE SLA SLA Dominant Science Dads entered. Load F Dads entered. Load F Dads entered. Load F Dads entered. Load F Dads entered. Load F	$E EDGE 18\%$ $T \subseteq B G MT.$ T
Cross Section & Reinforcing De Rectangular Section, Width = 18.0 Span #1 Reinforcing 2-#6 at 3.0 in from Bottom, fro Applied Loads Beam self weight calculated and ad Point Load : D = 9.90, S = 8.0, W Point Load : D = 9.90, S = 7.90, W Point Load : D = 9.90, S = 8.10, W DESIGN SUMMARY Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Soil Pressure = Maximum Forces & Stresses for Load Combination Segment Length Span #	i stails in, Height = 24.0 in m 0.0 to 97.330 ft in this span ded to loads = -4.60, E = 13.30 k @ 24.667 ft /= -4.0, E = 0.90 k @ 48.667 ft /= -7.0, E = -9.60 k @ 72.667 ft = 0.831: 1 Typical Section 70.092 k-ft 84.373 k-ft +1.401D+0.50L+0.70S+2.0E 25.191 ft Span # 1 1.606 ksf r Load Combinations Location (ft)	Anw97-3801ft 2-#6 at 3. Service I Maximum Deflee Max Downward Max Upward Lt Max Downward Max Upward Tc at 24.87 ft ess Results (k-ft)	WSE SLA WSE SLA WSE SLA WSE SLA WSE SLA WSE SLA SLA Dominant Science Dads entered. Load F Dads entered. Load F Dads entered. Load F Dads entered. Load F Dads entered. Load F	$E EDGE 18\%$ $T \subseteq B G MT.$ T

	UPS BF1 SEBITUE
I DON A	JOB 181883-003
	DATE: Kug 19 BY: TCL
	SUBJECT
2200 SIXTH AVENUE, SUITE 601, SEATTLE, WASHINGTON 9812 OFFICE 206.622.4580 www.psm-engineers.com	BLOG- 100.
	PERB FON
Brief:	
A new pre-engineered metal building will be added to UPS BFI c The metal building column reactions will be evaluated for the building	liding column foundation design. The design shall conform to the
design codes of IBC 2018 and ASCE 7-16. The design loads are	e noted in the following:
	ocated at Lat = 47.5367751, Longit = -122.3019577]
Ht. of building eave, $h_1 = 27.25$ ft	
,	Average Bldg Height = 28.875 ft)
Length of metal bldg., L = 275.83 ft	
Width of metal bldg., W = 166.67 ft (166.667'; 13	(2.083')
Loads on new metal building	psf
Assumed DL of new metal bldg roof =	12.0
Assumed DL (Collated-Mech & Elect)of new metal bldg =	8.0
Assumed DL of exterior wall =	5.0
	3.0
Snow:	25.0
Wind (Per ASCE 7-16)	
Wind Exposure C	Gust effect factor, G = 0.85
Ultimate Design Wind Speed, V _{ULT} = 110.0 mph	Ultimate Velocity pressure, $q_{h(ULT)}=0.00256 \text{ K}_z \text{ K}_{zI} \text{ K}_d \text{ V}^2 \text{ (psf)} = 25.7 \text{ PSF}$
Nominal Design Wind Speed, V _{ASD} = 85.2 mph	
Wind directionality factor, $K_d = 0.90$	
Risk Category II	
Velocity pressure coeff, $K_z =$ 0.96Topographic factor, $K_{2t} =$ 1.00	
	isk Category II
$S_s = 1.505$ $S_{MS} = F_a * S_s =$	1.505
$S_1 = 0.576$ $S_{M1} = F_v * S_1 =$	0.864
$F_a = 1.000$ $S_{DS} = S_{MS} * 2/3 =$	1.004
$F_v = 1.500$ $S_{D1} = S_{M1} * 2/3 =$	0.576
l _E = 1.000	
Table 12.2-1 Pre-Engineered Bldg	g-Ordinary Moment Frames ($C_d = 3.0, \Omega = 3.0$)
R = 3.250 Table 12.2-1 Pre-Engineered Bldg	g-Ordinary Concentrically Braced Frames ($C_d = 3.25$, $\Omega = 2.0$)
	Building weights: T = 0.249 second
$C_s = S_{DS}/(R/I) = 0.3089 \le For Metal Pre-Energy C_s = S_{D1}/T(R/I) = 0.7114$	
$C_s = 0.044S_{DS}I = 0.0442$	Roof = 973.7 Roof area = 48683.4 ft ²
$C_s = 0.8S_1/(R/I) = 0.1418$	Exterior long walls = 19.9 Length of Ext. Long Wall = 696.5 ft
	Exterior short walls = 22.7 Length of Ext. Short Wall = 434.3 ft
• · · · · · · · · · · · · · · · · · · ·	Σ W = 1016.3 < Say 1060.0 Kips
Along Long Side of Metal Building	

Along Long Side of Metal Building,


Assume Portal Frames at lines A, B, C and D and Braced Frame at line E resist the lateral forces (wind and seismic).


Along Short Side of Metal Building, The lateral forces shall be resisted by the steel braced frames and wind columns.

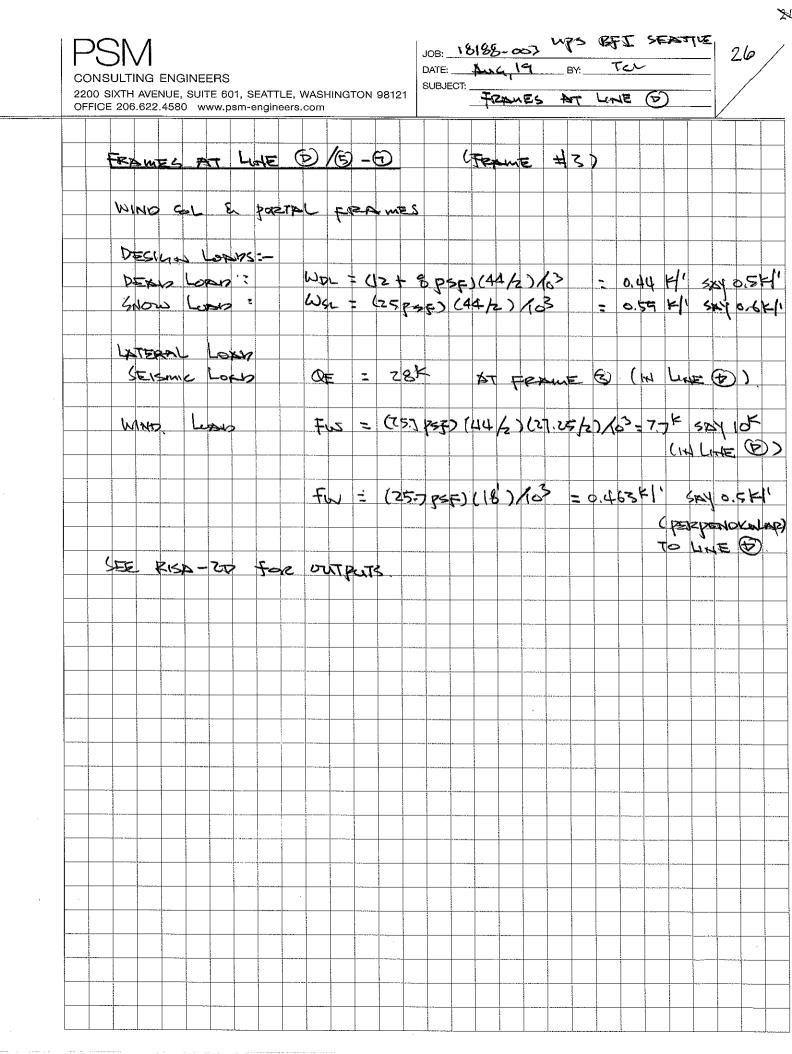
Allowable Soil Bearing Pressure =

3000.0 PSF

(Per Soil Report)

			FNC		FRS								נ	DATE:		Ău	-02 611		F	BY:		76	<u>_ل</u>			2	*
220	0 SIXTI 10E 20	H AVE	INUE,	SUL	TE 60	01, SI				ING	FON	9812	1	SUBJE	- CT:		BL	24		102	>			······		//	1
					VV vv	5															·						
	Ē,;	<u>क</u> ाः	4		Fer		Ľ	RA		-	¢	1	٤	#	7												
		der Jer		5,	Ter	1	ד גע			-		<u>۱</u> ۸31				54	5	nor	-		N 24_	+ b /	272	-	1-51	st.	
	1	12×	<u></u>	~~	-		<u>∧</u> _v 	(<u>۱</u>			57 57	-				50							7	i		
			<u> </u>										-)#			77									ي ماند	
			-											[]		-	73						1			Part	
															_ 								-			-	
4	SHE_	K	<u>v</u>	JE.	1	L		Track					p	-			<u> </u>										<u> </u>
 	upe	, pr	۴	=	Į ų	3,8	+	Z.6	> +	0.6	•	(<u>ي</u>	<u>гь м</u>	nc)		 				1					
				-		7,0					1				<u> </u>	 				.		<u> </u>	<u> </u>	<u> </u>			
	Dex		ME			-		1.5	+	17	. 2	+	12	2	-4	<u>B</u> -	+ F	κŏ	7	12	<u>ኒ</u>	+13	<u>t </u>	- <u>-</u> B -Z \	.		
<u> </u>	WALL			1	<u>hu</u>	=		5/2)(17	32.3	25	<u>)(</u>	<u>, ک</u>) ()	15 7 t) + 19	15	8.00	3X	レX て	110	K07	5				
	_1()		<u> </u> .				0	יז גיינ גיינ	2)	2	+ ۲) ۱	(<u>4</u> ,2	5-	P/	X	$\mathcal{D}($	2)(101	10	<u>}</u>		-				1	ፍ <i>ዓ</i>
	7"50	<u>/Ut : .</u>	<u> </u> \	17			<u> </u>	'k	<u>) (</u>	7.4	L)	(132	.0	83	20	0.12	<u>よ)</u>	1		 	+	 			হ	- 4	2
	TO	+	 			 }		- (_)			6	4	10	19,		<u> </u>	Z.		-	+						- 4	<u>'</u>
	F.O		*	40	-141 5	<u></u>	14	علمز	₹			,	(4 17)		2	-	<u> </u>	<u>70</u>				2	15	7	OK		
				+											+	-		+				+		1			_
	5210	1/1			+			ļ							1				1						+		-
	Ter	1		╟╼	R 1		SU				_		Z.Ţ	<u>+ 7</u>	<u>, , c</u>	×+	22	<u>1 - +</u>	3	T. (=	ج ا	14		11	65	<u>k</u> .	- -
														٩.,"	1	ļ,		, . 				ļ		\square			-
	str	21 -	G_	RE	<u>e</u> sis	7 199	401	•			(0	.39	7)(120	(. Z.)	51		÷		<u>,</u>].		= []	50.7	2 4	Ļ
									ļ						1								<u> </u>				+
	T.o.	<u> </u>	×c	-	+5	⊤ ¶	4	L	bu	La-	.			(5 0)	2	 -	- - -	zq	<u> </u>			+>	-	0	+	0K	Ļ
				-		<u> `</u>		<u> </u>						(16	, S					+		<u> </u>		+			-
			+-		-									1	<u> </u>		<u> </u>		<u> </u>	+			_	+		+	┝
	005	22T	<u>Ur</u>	<u>121 -</u> 14-1	ster And	• 					<u> </u> גיופ	45	<u>ار ا</u>				_		+	1	+				_		
$\left \right $	-r#	z		<u>(</u> <u>+</u> +2	9.0	4:	15	12) :		(n e	127	4		+			-						-			ŀ
	Γne	- 1 -	-11	×I_ (, ,	12	ζ	- I	146	0	<u>ا</u> ب							+						1			F
					1	1	1					1		1					+	-	+					-	ł
	F.	0, 1	\	X		i L e		6		T		- Sta		<u> </u>	(0	a.	112	<u>.</u>	1	$\overline{}$	+		,		• -	, t	51
			+	1	<u>v</u>	130-	* t			Menter ,	Υ ι			-	\rightarrow		60	5-2	-	<u> </u>		- \	, 	1	-(-C	`	t
	002					_	_	_	_	-i	_	_	\rightarrow		****	·····	-,		_								
							1										`		•	Ţ.		T	\Box				
					\top _	T_	Ť_	Τ_	-		T	\top			Τ	1_			Τ								

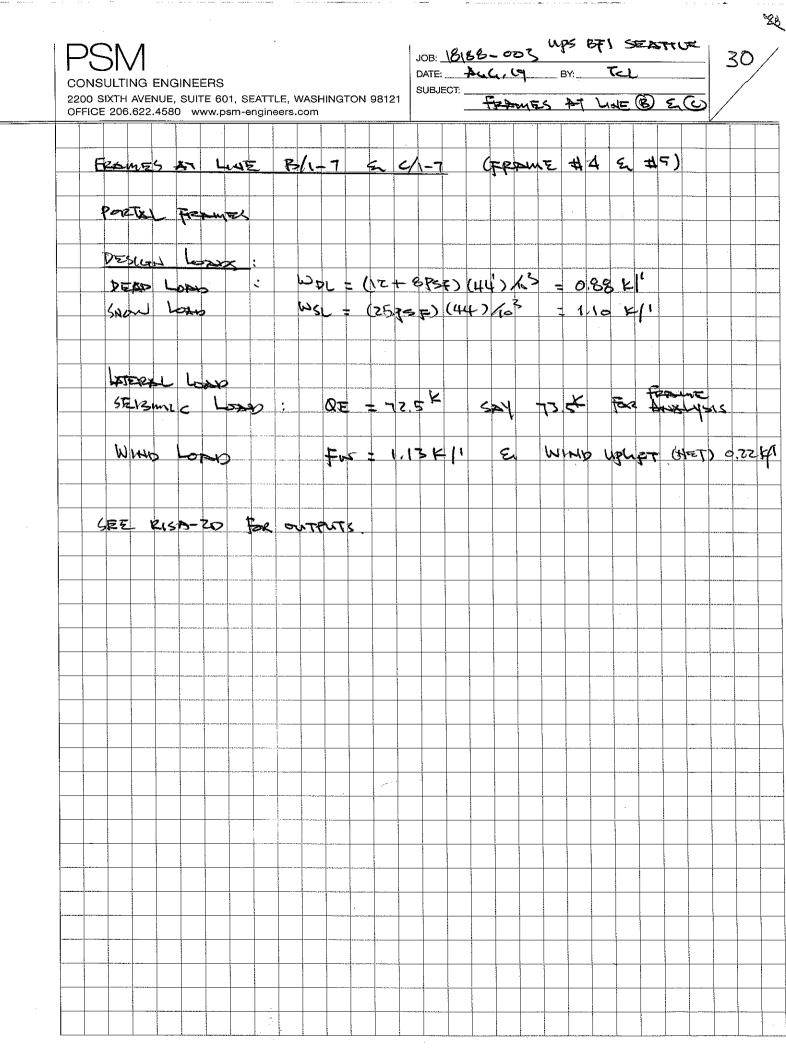
:****

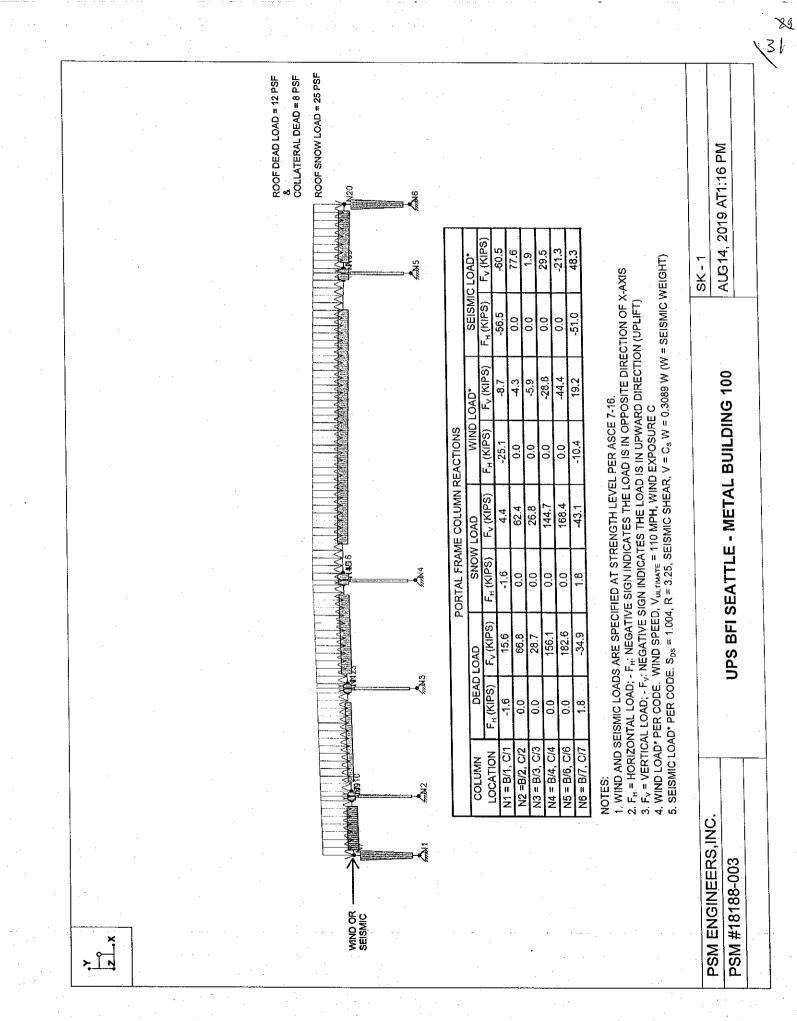

· • _

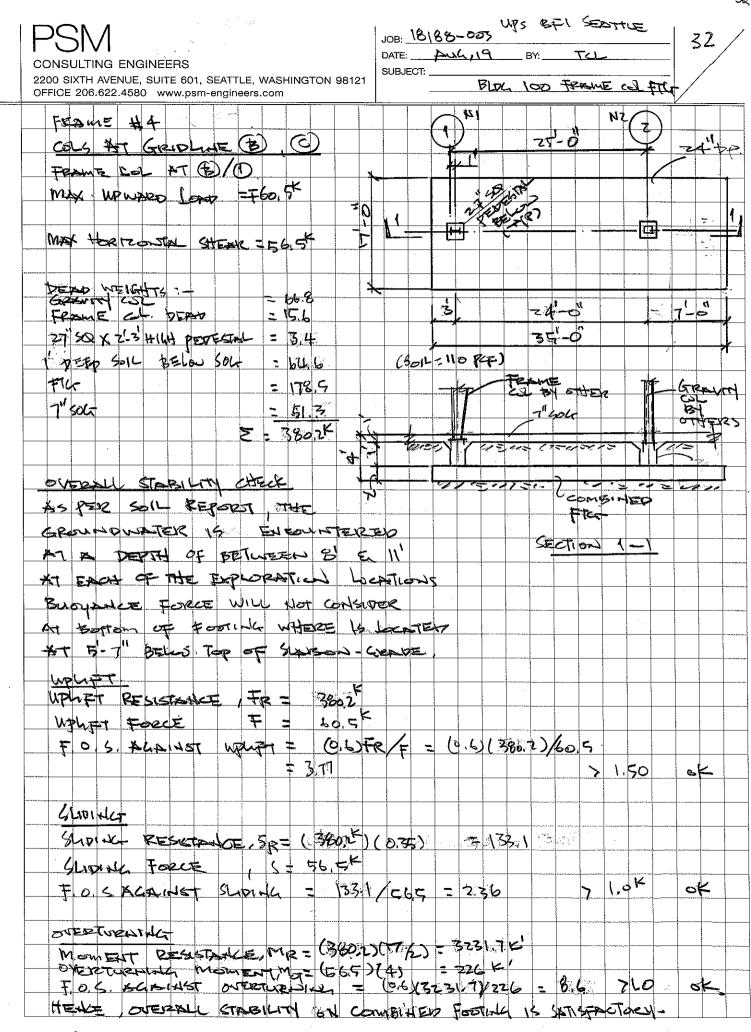
· · · · · ·

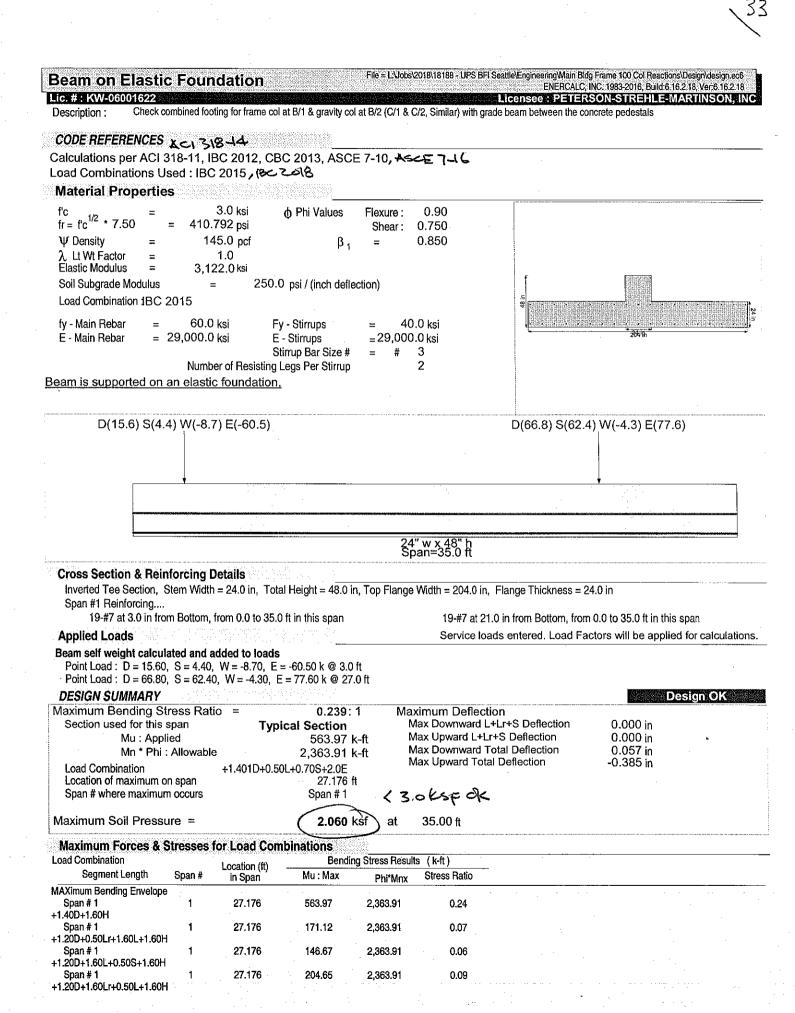
c. # : KW-06001622Licensee : PETescription : Footing for Frame #1 & # 2 ColumnsCODE REFERENCES Act 3/6-14CODE REFERENCES Act 3/6-14alculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Acc E 7-46bad Combinations Used : IBC 2015, IBC 2013, ASCE 7-10 Acc E 7-46Material Propertiesi'c= 3.0 ksi	1 Bidg Frame 100 Col Reactions\Design\design ec6 LC, INC. 1983-2016, Build 6, 16, 2, 18, Ver; 6, 16, 2, 18 ERSON-STREHLESMARTINSON	
CODE REFERENCES ACI 316-14alculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10, ACC E 7-16bad Combinations Used : IBC 2015, IBC 2015, IBC 2015Material PropertiesI'C $=$ 3.0 ksi ϕ Phi Values Flexure : 0.90frc $1/2 * 7.50 =$ 410.792 psiShear : 0.750		
alculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 $\cancel{A} \leftarrow \cancel{E} 7 - \cancel{C}$ bad Combinations Used : IBC 2015, $\cancel{B} \leftarrow \cancel{E} \sim \cancel{E} $ Material Properties f'c = 3.0 ksi \textcircled{O} Phi Values Flexure : 0.90 fr = f'c $^{1/2} * 7.50 = 410.792$ psi Shear : 0.750		
$f'c = 3.0 \text{ ksi} \oplus \text{Phi Values} Flexure : 0.90 fr = f'c^{1/2} * 7.50 = 410.792 \text{ psi} $		
$fr = fc^{1/2} * 7.50 = 410.792 \text{ psi}$ Shear: 0.750		
λ Lt Wt Factor = 1.0 Elastic Modulus = 3,122.0 ksi	anna an	
Soil Subgrade Modulus = 250.0 psi / (inch deflection) Load Combination IBC 2015		
fy - Main Rebar = 60.0 ksi Fy - Stirrups = 40.0 ksi E - Main Rebar = 29,000.0 ksi E - Stirrups = 29,000.0 ksi Stirrup Bar Size # = # 3 Number of Resisting Leas Per Stirrup 2	• • • • • • •	
Number of Resisting Legs Per Stirrup 2 am is supported on an elastic foundation, 2		
D(7 19] 15(2.)35(17(5), 17) ED(17)4E) 4E(3:19) 81/6(28:39) VEP(43:18)E6(29:64) W(-D2) 22(2.5) 8.8) DV(1-3) 50(E(2) 57) (28) Span-4738:488 It	2)323(78(2),1) W(-34.5) E(-72.6)	
Span ≥ 328/988 ft Cross Section & Reinforcing Details Rectangular Section, Width = 51.0 in, Height = 24.0 in	2)至(78(2).1) W(-34.5) E(-72.6)	
Span ¥7 382/988 ft Cross Section & Reinforcing Details Rectangular Section, Width = 51.0 in, Height = 24.0 in Span #1 Reinforcing		
Spah ≥ 382/988 ft Cross Section & Reinforcing Details Rectangular Section, Width = 51.0 in, Height = 24.0 in Span #1 Reinforcing 8-#6 at 3.0 in from Bottom, from 0.0 to 138.083 ft in this span 8-#6 at 4.0 in from Top, from 0		
Cross Section & Reinforcing Details Rectangular Section, Width = 51.0 in, Height = 24.0 in Span #1 Reinforcing 8-#6 at 3.0 in from Bottom, from 0.0 to 138.083 ft in this span 8-#6 at 3.0 in from Bottom, from 0.0 to 138.083 ft in this span 8-#6 at 3.0 in from Bottom, from 0.0 to 138.083 ft in this span 8-#6 at 4.0 in from Top, from 0 Span self weight calculated and added to loads Point Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ft	.0 to 138.083 ft in this span	
Span="4" 282/988 ftSpan="4" 282/988 ftSpan="4" 282/988 ftCross Section & Reinforcing DetailsRectangular Section, Width = 51.0 in, Height = 24.0 inSpan #1 Reinforcing8-#6 at 3.0 in from Bottom, from 0.0 to 138.083 ft in this span8-#6 at 4.0 in from Top, from 0Span #1 Reinforcing8-#6 at 4.0 in from Top, from 0Span #1 Reinforcing8-#6 at 4.0 in from Top, from 0Span #4 at 4.0 in from Top, from 0Span #4 at 4.0 in from Top, from 0Span #4 at 4.0 in from Top, from 0Service loadsPoint LoadsPoint Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 12.20, S = 7.90, W = 11.70, E = 48.30 k @ 10.083 ftPoint Load : D = 12.10, S = 7.80, W = -23.20, E = -43.80 k @ 35.083 ftPoint Load : D = 8.0, S = 4.90, W = -3.10, E = -0.60 k @ 47.083 ft	.0 to 138.083 ft in this span	
Span="4" 23:4988 ftSpan="4" 23:4988 ftSpan="4" 23:4988 ftSpan="4" 23:4988 ftCross Section & Reinforcing DetailsRectangular Section, Width = 51.0 in, Height = 24.0 inSpan #1 Reinforcing8-#6 at 3.0 in from Bottom, from 0.0 to 138.083 ft in this span8-#6 at 4.0 in from Top, from 0Applied LoadsBeam self weight calculated and added to loadsPoint Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 12.20, S = 7.90, W = 11.70, E = 48.30 k @ 10.083 ftPoint Load : D = 12.20, S = 7.90, W = 11.70, E = 48.30 k @ 15.083 ftPoint Load : D = 12.10, S = 7.80, W = -32.20, E = -43.80 k @ 35.083 ftPoint Load : D = 12.10, S = 7.80, W = -32.20, E = -43.80 k @ 35.083 ftPoint Load : D = 12.80, S = 9.40, W = -4.20, E = 2.50 k @ 66.083 ftPoint Load : D = 12.20, S = 8.80, W = -3.90, E = 2.50 k @ 91.083 ftPoint Load : D = 12.20, S = 8.80, W = -3.90, E = 2.50 k @ 91.083 ftPoint Load : D = 12.20, S = 8.80, W = -3.90, E = 2.50 k @ 110.083 ftPoint Load : D = 13.0, S = 8.70, W = 28.20, E = 77.20 k @ 110.083 ft	.0 to 138.083 ft in this span	
YYYSpan="2">Span="2" 382,988 ftSpan="2" Span="2" Spa	.0 to 138.083 ft in this span	
YYYYSpan="4" 38/088 ftSpan="4" 38/088 ftSpan="4" 38/088 ftRectangular Section, Width = 51.0 in, Height = 24.0 inSpan #1 Reinforcing8-#6 at 3.0 in from Bottom, from 0.0 to 138.083 ft in this span8-#6 at 4.0 in from Top, from 0Applied LoadsService loads entered. LoadBeam self weight calculated and added to loadsPoint Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 7.50, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 12.20, S = 7.90, W = 11.70, E = 48.30 k @ 10.083 ftPoint Load : D = 12.20, S = 7.90, W = -11.70, E = 48.30 k @ 35.083 ftPoint Load : D = 12.20, S = 7.90, W = -3.10, E = -0.60 k @ 47.083 ftPoint Load : D = 12.80, S = 9.40, W = -3.20, E = -72.60 k @ 60.083 ftPoint Load : D = 12.80, S = 9.40, W = -3.20, E = 2.50 k @ 91.083 ftPoint Load : D = 12.80, S = 8.70, W = 28.20, E = 77.20 k @ 110.083 ftPoint Load : D = 13.0, S = 8.70, W = 28.20, E = -72.60 k @ 135.083 ftPoint Load : D = 13.60, S = 5.10, W = -34.50, E = -72.60 k @ 135.083 ftDESIGN SUMMARYMaximum Bending Stress Ratio = <td< td=""><td>.0 to 138.083 ft in this span Factors will be applied for calculation</td></td<>	.0 to 138.083 ft in this span Factors will be applied for calculation	
YY	.0 to 138.083 ft in this span Factors will be applied for calculation Design OK 0.000 in 0.000 in 0.080 in	
YY	.0 to 138.083 ft in this span Factors will be applied for calculation Design OK 0.000 in 0.000 in	
Span=47 383/08/8 ftSpan=47 383/08/8 ftSpan=47 383/08/8 ftCross Section & Reinforcing DetailsRectangular Section, Width = 51.0 in, Height = 24.0 inSpan=47 883/08/8 ftSpan=47 883/08/8 ftSection 10.00 to 138.083 ft in this span8-#6 at 4.0 in from Top, from 0Applied LoadsBeam self weight calculated and added to loadsPoint Load : D = 12.00, S = 0.30, W = 5.10, E = 17.40 k @ 3.0 ftPoint Load : D = 12.00, S = 7.00, W = -11.70, E = 48.30 k @ 35.083 ftPoint Load : D = 12.80, S = 9.40, W = -2.30 k @ 35.083 ftPoint Load : D = 12.80, S = 9.40, W = -4.20, E = -2.50 k @ 91.083 ftPoint Load : D = 12.80, S = 8.70, W = 28.20, E = 77.20 k @ 110.083 ftPoint Load : D = 13.60, S = 5.10, W = -38.50, E = -72.60 k @ 135.083 ftDestion Max Downward L+Lr+S DeflectionMaximum Bending Stress Ratio =0.840: 1 <td cols<="" td=""><td>.0 to 138.083 ft in this span Factors will be applied for calculation Design OK 0.000 in 0.000 in 0.080 in</td></td>	<td>.0 to 138.083 ft in this span Factors will be applied for calculation Design OK 0.000 in 0.000 in 0.080 in</td>	.0 to 138.083 ft in this span Factors will be applied for calculation Design OK 0.000 in 0.000 in 0.080 in

1


× 25




F	$) \subset$	SN	Л											נ	IOB:	(9)	88	-0	50	U	PS		4-L	22	، ۲	ICE	2	7
C() DNS	ULTI	NG E	NG	INE	ERS									Date: Subje	CT ²						To	بان					/
22 OF	00 S	IXTH	AVEN .622.4	UE,	SUI	E 60)1, SI	EATT	LE, V	VASH	INGT	ON §	9812	1	000	<u></u>		BLD	5	5	2							·
	1101	200	.022	1000			3131-0						-	<u> </u>			<u> </u>	1					1	1				
			<u></u>	-	_	•										,												
		1	sure		P	۲	74	12	5	0/	ξ	4	G	2742	rΕ	귀		1/-	~									
	<u>R1</u>	574	-20	<u>ح</u>	- 01-	m	\sim	RE	×	licat	,								<u> </u>						,			7
											-2	-1		₽	24			28'			19'			19			24	┉┽
											•																	
																												-
		:																								/		
	-									14			N	<u>د</u>		N	3		N	ł		14	>		4	46		6
					br	-				[5-						W						E					
		হ থ		>	K		Y			X	•			• /*		>	(۲			>	K		Y			
	K	1		·			8,1			-			<u> </u>	-1		<u> </u>	ه ,		<u>۲</u> -	6		2	8		6,4	p.		
																					1							
	N	۲		-	•		181	3)2	G,		C	<u>,4</u>		~ ,	8,4		Ľ.	Ð		- 1 .	I.		
																					ļ							
	N	3		-	-		18-	4		_			JU	t .7]	0	3		4	.4		9	9		ц.	•		
	 					-	-							, 					 		ļ							
	*	4		ſ	-	-	16	6					12	.٩		0	3		- <u></u>	3.3		0	9		40	6		
																1	. <u> </u>											
	N	5		-	-		14	5					<u>\</u>	b. 9		0	3	ļ	- 4	3,2		<u> </u>	۵,		-6	6		
		<u>.</u>																					-					
	+	S.		-	-		۲۱.	3			-		13	3,9		0	129		6.	8		0	8		40	24		
_													(ļ]													
	٢	7_		-	-		13.	5			-		ļ	Þ.1		7	3_		- \	3.5		3	0,6		~2	81		
									<u> </u>																			
							 		 		_			1				ļ								3		
																		· · · ·				<u> </u>		1				
																		<u> </u>	ļ					-	1			
																					_ <u></u> ,							
		-						-																				
																				-	-							
							-	1						<u> </u>								ļ						
		-					_			E .											1				ļ			
	<u> </u>						<u> </u>								<u> </u>										<u> </u>			
		-																		1				-				
		-				 	<u> </u>							<u> </u>	<u> </u>													
		<u> </u>						<u> </u>									1											
								ļ						<u> </u>			<u> </u>	<u> </u>										
																	ŀ											F


File = L/Jobs/2018/18188 - UPS BFI Seattle/EngineeringMain Bidg Frame 100 Col Reactions/Design/design.ec6 Beam on Elastic Foundation ENERCALC, INC. 1983-2016, Build:6 16:2-18, Ver:6 16:2-18 Lic. # : KW-06001622 : PETERSON-STREHLE-MARTINSON, INC Footing for Frame #3 Columns Description : CODE REFERENCES HEL ZIE-14 Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10, ASCET-16 Load Combinations Used : IBC 2015, 1823018 **Material Properties** 3.0 ksi h Phi Values Flexure : 0.90fc $fr = fc^{1/2} * 7.50$ 410.792 psi Shear : 0.750 Ψ Density 145.0 pcf β₁ 0.850 = λ Lt Wt Factor 1.0 = Elastic Modulus 3,122.0 ksi Soil Subgrade Modulus 250.0 psi / (inch deflection) = i E Load Combination IBC 2015 60.0 ksi fy - Main Rebar Fy - Stirrups 40.0 ksi = É - Main Rebar 29,000.0 ksi E - Stirrups = 29,000.0 ksi = Stirrup Bar Size # 3 # Number of Resisting Legs Per Stirrup 2 Beam is supported on an elastic foundation, 36 in D(8.1) S(5.1) WQ(0.8)8F(56(45) W(-8D4) E(4) S(014.7) WQ(664) ES(1) 2.9) (M4.5) 3) (E(290) (M7.8) 25E(3895) (M7(8) 3) (604) (1.3.5) E(-28.1) Stran≠#3/A011 **Cross Section & Reinforcing Details** Rectangular Section, Width = 36.0 in, Height = 24.0 in Span #1 Reinforcing 6-#6 at 3.0 in from Bottom, from 0.0 to 137.0 ft in this span 6-#6 at 3.0 in from Top, from 0.0 to 137.0 it in this span Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Point Load : D = 8.10, S = 5.10, W = -0.60, E = 6.40 k @ 3.0 ft Point Load : D = 18.80, S = 15.0, W = -8.40, E = -1.10 k @ 24.0 ft Point Load : D = 18.40, S = 14.70, W = -6.40, E = 4.0 k @ 48.0 ft Point Load : D = 16.60, S = 12.90, W = -5.30, E = 4.60 k @ 72.0 ft Point Load : D = 14.50, S = 10.90, W = -8.20, E = -6.60 k @ 91.0 ft Point Load : D = 17.30, S = 13.90, W = 6.80, E = 40.40 k @ 110.0 ft Point Load : D = 13.50, S = 6.10, W = -13.50, E = -28.10 k @ 134.0 ft **DESIGN SUMMARY** Design OK Maximum Bending Stress Ratio = 0.749:1 Maximum Deflection Section used for this span Max Downward L+Lr+S Deflection 0.000 in Typical Section Max Upward L+Lr+S Deflection 0.000 in Mu: Applied 181.503 k-ft Mn * Phi : Allowable Max Downward Total Deflection 0.063 in 242.435 k-ft Max Upward Total Deflection -3.673 in Load Combination +1.401D+0.50L+0.70S+2.0E Location of maximum on span ##.### ft くろのやちゃ Span # where maximum occurs Span #1 Maximum Soil Pressure = 2.264 ks at 108.08 ft Maximum Forces & Stresses for Load Combinations Load Combination Bending Stress Results (k-ft) Location (ft) Segment Length Span # Mu: Max Stress Ratio in Span Phi*Mnx MAXimum Bending Envelope ##.### 242.44 Span # 1 1 181.50 0.75 +1.40D+1.60H

SQ

μĽ

ombined Footing	Citation and the second		File = L:Vol	bs\2018\18188 - L	JPS BFI Seattle\Engineering ENERCALC			ictions\Design\a d:6.16.2.18, Ve	
ic: # : KW-06001622 Description : Combined Footing for Fr	ame Col B/1 & G	ravity Col B/2 (Footin	g for C/1 & C/2	, Similar)	Licensee : PETER				
Code References									
Code References 433 (6-14) alculations per ACI 318-11, IBC	2012 CBC (2013 ASCE 7-1	0 2505						
oad Combinations Used : IBC 20)15 - 18- 20	518 518		01-1			÷		
General Information									
laterial Properties				sis/Design Se					
f'c : Concrete 28 day strength fy : Rebar Yield		3 ksi 60 ksi			weight as dead load ' al weight as dead load		Yes No		
Éc : Concrete Elastic Modulus		3122 ksi	Min	Steel % Ben	ding Reinf (based on '	'd')	NO		
Concrete Density Φ : Phi Values Flexul	·o ·	145 pcf 0.9			Reinf (based on thick)			0.0018	
φ Thi values Thexa		0.75		. Sliding Safe	Safety Factor ty Factor			1:1	
Soil Information		Alertary en Tatta - T <u></u>			· .				
Allowable Soil Bearing		3.0 ksf	Soil Bearin		elow soil surface			5.0 ft	
Increase Bearing By Footing Weight Soil Passive Sliding Resistance		No 250 pcf	Increase	es based on fo	poting Depth			-	
(Uses entry for™Footing base depti	n below soil surfa	ce" for force)	Allo whe	wable pressu In base of foo	re increase per foot			ks ft	f
Coefficient of Soil/Concrete Friction		0.350	Increase	es based on fo	ooting Width				
			Allo whe	wable pressu en maximum l	re increase per foot ength or width is grea	ter than		ks ft	f
			Maximu	m Allowed Be	aring Pressure			10 ks	f
			Adjusted	alue of zero im d Allowable S	oil Bearing			3.0 ks	f
			(Allo dep	owable Soil Bea th & width incre	aring adjusted for footing eases as specified by us	y weight a er.)	and		
Dimensions & Reinforcing	n di shahari Shuche a	·····							
Distance Left of Column #1 =		Pedestal dimension	ıs Col #1	Col #2	Boro loft of Col #1	Count	Size #	As	As Boa'd
Between Columns = Distance Right of Column #2 =	24.0 ft 8.0 ft	Sq. Dim.		24.0 in	Bars left of Col #1 Bottom Bars	<u>19.0</u>	7	Actual	Req'd 8.813 in^2
Total Footing Length =	35.0 ft	Height	= 36.0	36.0 in	Top Bars Bars Btwn Cols	19.0	7	11.40	0.0 in^2
Footing Width =	17.0 ft				Bottom Bars	19.0	7	11.40	8.813 in^2
Footing Thickness =	24.0 in				Top Bars Bars Right of Col #2	19.0	7	11.40	8.813 in^2
Rebar Center to Concrete Edge @ To Rebar Center to Concrete Edge @ Bo	p =	3 in 3 in			Bottom Bars	19.0	7	11.40	8.813 in^2
Applied Loads		3 10			Top Bars	19.0	7	11.40	8.813 in^2
Applied @ Left Column	D	Lr		S	W	Е		н	
Axial Load Downward =	15.60	1		4.40	-8.70	-60.50		k	
Moment (+CW) = Shear (+X) =	-1.60			-1.60	-25.10	-56.50		k-fl	
Applied @ Right Column	-1.00			-1.00	-20,10	-00.00		k	
Axial Load Downward = Moment (+CW) =	66.80			62.40	-4.30	77.60		k	
Shear $(+X) =$								k-fi k	
Overburden =	0.5830								
			ſ						
					angele a transformer an angele an angele Angele an angele ang				
								el segung bet en el segu	
			21 0"		, ta ja, da (<u> </u>
₹ 1877	19-#7 19-#7								÷
		1 9-# (-			n de la seconda de la secon La seconda de la seconda de	nini mini ili İmpirmini ili m	pongrad order a News / 12 fai	1.000 (1.000)
			Ł		24-0	35'-0"	***********		<u>,</u>
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	WN0E × 35'-				¥
			W52	11-0	WWDE_X 55-			່ປີກ	SOST

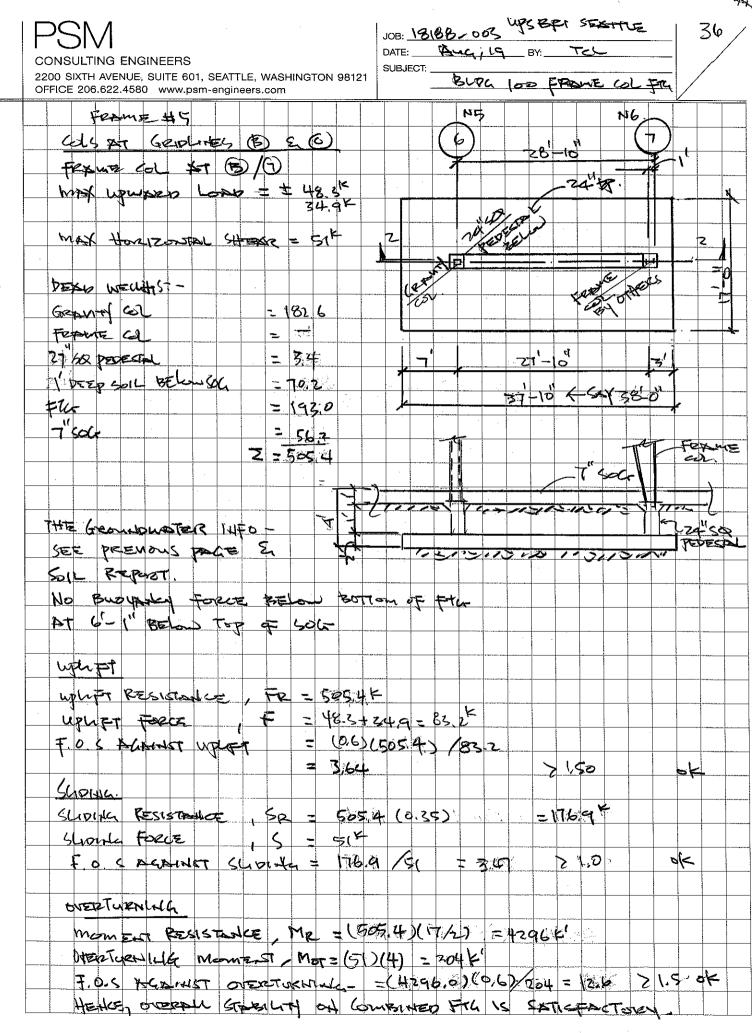
- - -

<u>35</u>

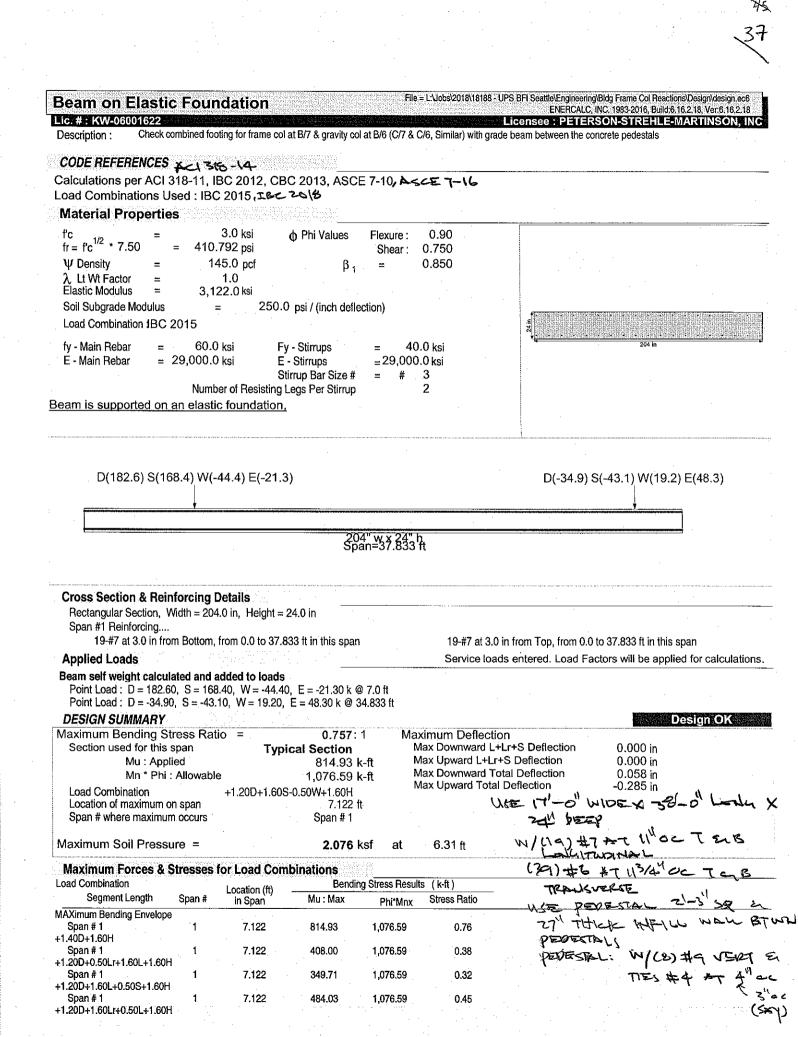
34

Combined Footing

Lic. # : KW-06001622


File = L-Uobs/2018/18188 - UPS BFI Seattle\Engineering\Bidg Frame Col Reactions\Design\design.ec6 ENERCALC, INC. 1983-2016, Build:6.16.2.18, Ver:6.16.2.18 Licensee# PETERSON-STREHLE-MARTINSON, INC 36

Description : Combined Footing for Frame Col B/1 & Gravity Col B/2 (Footing for C/1 & C/2, Similar)


DESIC	GN SUMMA	1RY			Design OK
Fact	tor of Safety	ltem	Applied	Capacity	Governing Load Combination
PASS	2.689	Overturning	2,710.40 k-ft	7,287.68 k-tt	+0.60D+1.40E+0.60H
PASS	2.604	Sliding	-80.060 k	208.464 k	+0.60D+1.40E+0.60H
PASS	6.885	Uplift	84.70 k	583.17 k	+0.60D+1.40E+0.60H
Utili	zation Ratio	Item	Applied	Capacity	Governing Load Combination
PASS (0.6599	Soil Bearing	(1.980 ksf	3.0 ksf	+D+0.750L+0.750S+1.050E+H
PASS	0.2279	1-way Shear - Col #1	18.725 psi	82.158 psi	+1.401D+0.50L+0.70S-2.0E+1.60H
PASS	0.3038	1-way Shear - Col #2	24.962 psi	82.158 psi	+1.401D+0.50L+0.70S+2.0E+1.60H
PASS	0.1976	2-way Punching - Col #1	32.476 psi	164.317 psi	+1.401D+0.50L+0.70S-2.0E+1.60H
PASS	0.2131	2-way Punching - Col #2	35.009 psi	164.317 psi	+1.401D+0.50L+0.70S-2.0E+1.60H
PASS	0.02084	Flexure - Left of Col #1 - Top	-21.749 k-ft	1.043.57 k-ft	+1.401D+0.50L+0.70S+2.0E+1.60H
PASS	0.02079	Flexure - Left of Col #1 - Bottom	21.699 k-ft	1,043.57 k-ft	+0.6992D-2.0E+0.90H
PASS	0.5437	Flexure - Between Cols - Top	-567.44 k-ft	1.043.57 k-ft	+1.401D+0.50L+0.70S+2.0E+1.60H
PASS	0.4990	Flexure - Between Cols - Bottom	520.73 k-ft	1,043.57 k-ft	+1.401D+0.50L+0.70S+2.0E+1.60H
PASS	0.2240	Flexure - Right of Col #2 - Top	-233.787 k-ft	1,043,57 k-ft	+0.6992D-2.0E+0.90H
PASS	0.4851	Flexure - Right of Col #2 - Bottom	506.27 k-ft	1,043.57 k-ft	+1.401D+0.50L+0.70S+2.0E+1.60H
Soil B	earing				

	•	Eccentricity	Actual Soil Be	aring Stress		Actual / Allow
Load Combination	Total Bearing	from Ftg CL	@ Left Edge	@ Right Edge	Allowable	Ratio
+D+H	732.61 k	0.569 ft	1.11 ksf	1.35 ksf	3.00 ksf	0.450
+D+L+H	732.61 k	0.569 ft	1.11 ksf	1.35 ksf	3.00 kst	0.450
+D+Lr+H	732.61 k	0.569 ft	1.11 ksf	1.35 ksf	3.00 ksf	0,450
+D+S+H	799.41 k	1.173 ft	1.07 ksf	1.61 ksf	3.00 ksf	0.538
+D+0.750Lr+0.750L+H	732.61 k	0.569 ft	1.11 ksf	1.35 ksf	3.00 ksf	0.450
+D+0.750L+0.750S+H	782.71 k	1.032 ft	1.08 ksf	1.55 ksf	3.00 ksf	0.516
+D+0.60W+H	724.81 k	0.542 ft	1.11 ksf	1.33 ksf	3.00 ksf	0,444
+D+1.40E+H	756.55 k	3.016 ft	0.62 ksf	1.93 ksf	3.00 ksf	0.642
+D+0.750Lr+0.750L+0.450W+H	726.76 k	0.548 ft	1.11 ksf	1.34 ksf	3,00 ksf	0.445
+D+0.750L+0.750S+0.450W+H	776.86 k	1.016 ft	1.08 ksf	1.53 ksf	3.00 ksf	0.511
+D+0.750L+0.750S+1.050E+H	800.67 k	2.755 ft	0.71 ksf	1.98 ksf	3.00 kst	0.660
+0.60D+0.60W+0.60H	485.94 k	0.469 ft	0.75 ksf	0.88 ksf	3.00 ksf	0.294
+0.60D+1.40E+0.60H	517.68 k	4.089 ft	0.26 ksf	1.48 ksf	3.00 ksf	0.493
Overturning Stability						

o for carriing o caoming						
-	Mon	nents about Left Edge	k-ft	Mome	ents about Right Edge	k-ft
Load Combination	Overturning	Resisting	Ratio	Overturning	Resisting	Ratio
+D+H	8.00	10,870.55	999.000	0.00	0.00	999.000
+D+L+H	8.00	10,870.55	999.000	0.00	0.00	999.000
+D+Lr+H	8.00	10,870.55	999.000	0.00	0.00	999.000
+D+S+H	16.00	12,568.55	785.535	0.00	0.00	999.000
+D+0.750Lr+0.750L+H	8.00	10.870.55	999.000	0.00	0.00	999.000
+D+0.750L+0.750S+H	14.00	12,144.05	867.432	0.00	0.00	999.000
+D+0.60W+H	168.62	10,870.55	64.468	187.68	10,113.73	. 53.888
+D+1.40E+H	657.60	13,803,83	20,991	2,710.40	11.303.05	4.170
+D+0.750Lr+0.750L+0.450W+H	128.47	10.870.55	84.619	140.76	10.094.91	71.717
+D+0.750L+0.750S+0.450W+H	134.47	12,144.05	90.314	140.76	10.580.91	75.170
+D+0.750L+0.750S+1.050E+H	501.20	14.344.01	28.619	2,032.80	11,472.90	5.644
+0.60D+0.60W+0.60H	165.42	6.522.33	39.429	187.68	6.098.36	32.493
+0.60D+1.40E+0.60H	654.40	9,455.61	14.449	2,710.40	7,287.68	2.689
Sliding Stability						
Load Combination		Sliding Force	Resist	ing Force	Sliding SafetyRatio	
+D+H		-1.60 k		310.81 k	194.255	
+D+L+H		-1.60 k		310.81 k	194,255	
+D+Lr+H		-1.60 k		310.81 k	194.255	
+D+S+H		-3.20 k		334.19 k	104.434	
+D+0.750Lr+0.750L+H		-1.60 k		310.81 k	194,255	
+D+0.750L+0.750S+H	5	-2.80 k		328.34 k	117.265	1. A.

THE

Combined Footing					File = L'Uob			INC, 1983	2016, Buil	d:6.16.2.18, V	er:6.16.2.18
	oting for Fran	ne Col B/7 & G	aravity Col B/6 (Fo	oting for	C/7 & C/6,	Similar)	Licensee : PETER	30N-5	IREFIL	E-WAR III	SUN, INC.
Code References Act 34	&-(&)										
Calculations per ACI 318-	11, IBC 2			7-10 ۽	ACCE	7-16					
General Information											
Material Properties						is/Design Sel		_			
f'c : Concrete 28 day strengt	h .		3 ksi 60 ksi				weight as dead load al weight as dead loa		Yes No		
Ec : Concrete Elastic Modulu	JS		3122 ksi		Min S	Steel % Bend	ling Reinf (based on	'd')	NO		
Concrete Density	Elevene		145 pcf				Reinf (based on thick)			0.0018	
	Flexure Shear		0.9 0.75			Overturning Sliding Safe	Safety Factor			1:	
Soil Information											•
Allowable Soil Bearing Increase Bearing By Footing	a Weight		3 ksf No	S		ase depth be	elow soil surface			5.0 ft	
Soil Passive Sliding Resista	ince		250 pcf		Increases	based on fo	oting Depth re increase per foot			Ir	sf
(Uses entry for "Footing I		oelow soil surfa			wher	base of foo	ting is below			ft	
Coefficient of Soil/Concrete	FRECION		0.350		Increases	based on fo	oting Width re increase per foot			k	sf
					wher	n maximum l	ength or width is grea	iter than		ft	
					Maximum (A va	Allowed Be	aring Pressure			10 k	sf
					Adjusted (Allow	Allowable So vable Soil Bea		g weight a	and	3.0 k	sf
Dimensions & Reinfo	rcing	n sagatar ang Sangar pasi			ucpu		aoco ao opconica by ac				
Distance Left of Column #1	=	7.0 ft	Pedestal dimens	sions	Co! #1	Col #2		<u> </u>	0	As	As
Between Columns Distance Right of Column #2	=	27.833 ft 3.0 ft	Sq. Dim	ì. =	24	24 in	Bars left of Col #1 Bottom Bars	19.0	Size # 7	Actual 11.40	Req'd 8.813 in^;
Total Footing Length	=	37.833 ft	Height	=	36	36 in	Top Bars	19.0	7	11.40	0.010 in^:
Footing Width	=	17.0 ft					Bars Btwn Cols Bottom Bars	19.0	7	11.40	10.470 in^;
Footing Thickness	=	24.0 in					Top Bars	19.0	7	11.40	8.813 in^
Rebar Center to Concrete Ec	lge @ Top	=	3 in				Bars Right of Col #2 Bottom Bars	! 19.0	7	11.40	8.813 in^
Rebar Center to Concrete Ec	-	om =	3 in				Top Bars	19.0	7	11.40	8.813 in^
Applied Loads											
Applied @ Left Column Axial Load Downward		D 182.60	Lr		L	\$ 168.30	<u> </u>	E -21.30		H k	
Shear (+X)	=.									k- k	ft
Applied @ Right Column Axial Load Downward	=	-34.90				-43.10	19.20	48.30		k	
Moment (+CW)	=									k-	ft
• • • •	=	1.80 0.583				1.80	-10.40	-51.0		k	
-					•						
								Xvr/filles			
						· siesuwyn ie ejniktuw				n na serie de la constante de la constant	
					이~			eni in (na fraiscea Straisceans Stad Senseration	an taraka tan ya ƙwal		
	-19	#7		19事	5-0-0 5-0-0						l l l
<u>₹</u>	9	3000.0003011.0020223040	1990 and a data of the state of							The state of the s	i i i i i i i i i i i i i i i i i i i
₹ 	9							VALUE AND	0.0203.0204.0204		

Combined Footing Lic. # : KW-06001622

+D+0.750L+0.750S+H

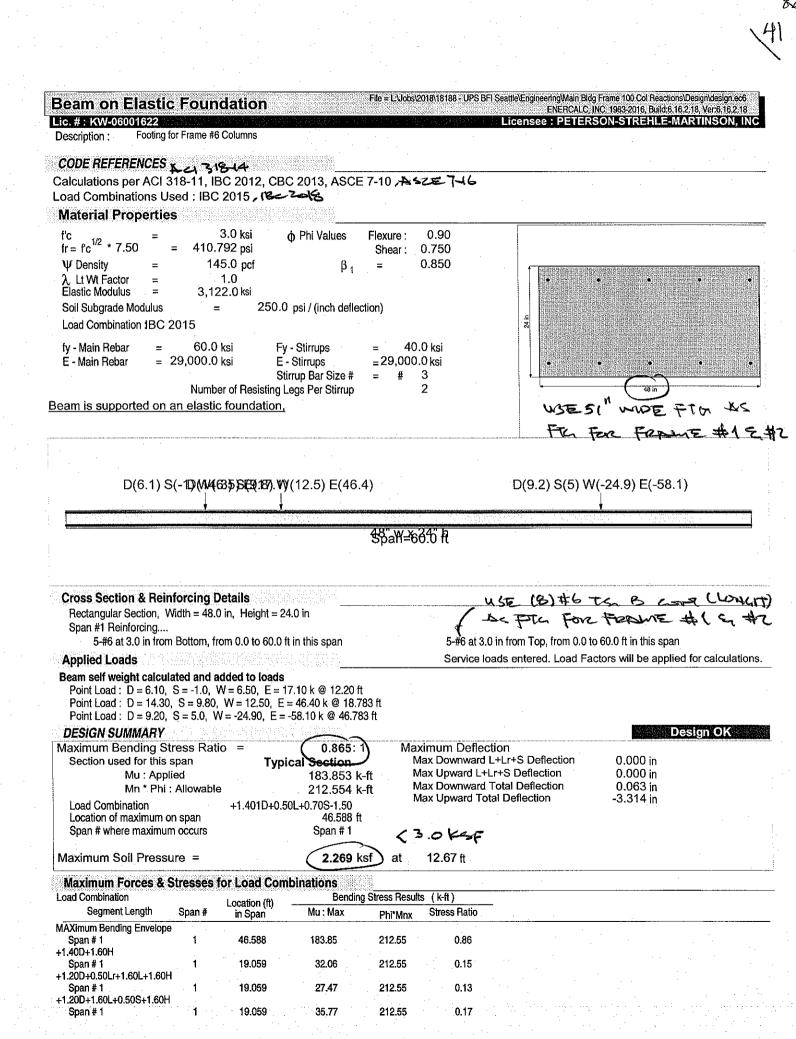
File = L\Jobs\2018\18188 - UPS BFI Seattle\Engineering\Bidg Frame Col Reactions\Design\design.ec6 ENERCALC, INC. 1983-2016, Build:6.16.2.18, Ver.6.16.2.18 as : PETERSON-STREHLE-MARTINSON, INC licens

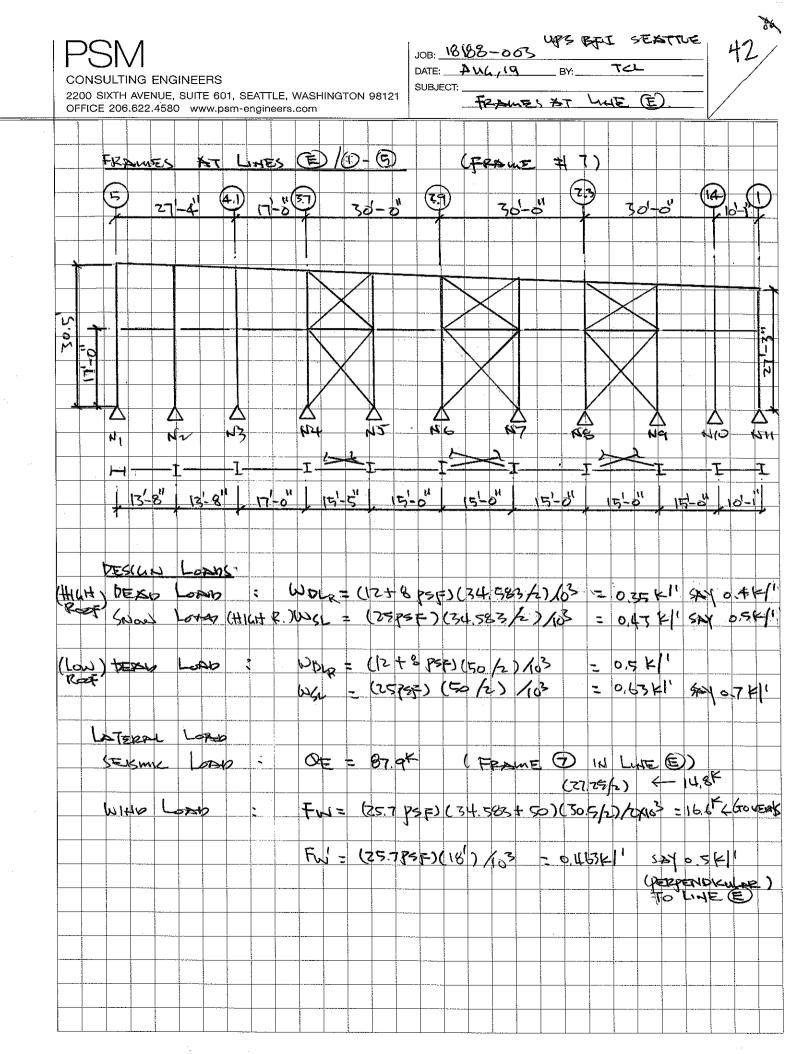
Combined Footing for Frame Col B/7 & Gravity Col B/6 (Footing for C/7 & C/6, Similar) Description :

Facto	or of Safety	Item	Applied	Capacity	Governing Load Combination
ASS	4.784	Overturning	2,716.97 k-ft	12,998.0 k-ft	+D+S+H
PASS	3.402	Sliding	-70.320 k	239.195 k	+0.60D+1.40E+0.60H
ASS	12.210	Uplift	47.580 k	580.93 k	+0.60D+0.60W+0.60H
Utiliz	ation Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9502	Soil Bearing	2.851 ksf	3.0 ksf	+D+S+H
PASS PASS	0.4808 0.1930	1-way Shear - Col #1 1-way Shear - Col #2	39.502 psi 15.853 psi	82.158 psi 82.158 psi	+1.20D+1.60S-0.50W+1.60H +1.401D+0.50L+0.70S-2.0E+1.60H
PASS PASS	0.7598 0.8260	2-way Punching - Col #1 2-way Punching - Col #2	124.846 psi 135.727 psi	164.317 psi 164.317 psi	+1.20D+1.60S-0.50W+1.60H +1.20D+1.60S-0.50W+1.60H
PASS N PASS	lo Bending 0.680	Flexure - Left of Col #1 - Top Flexure - Left of Col #1 - Bottom	0.0 k-ft 709.67 k-ft	0.0 k-ft 1,043.57 k-ft	N/A +1.20D+1.60S-0.50W+1.60H
PASS PASS	0.4972 0.6957	Flexure - Between Cols - Top Flexure - Between Cols - Bottom	-518.91 k-tt 726.05 k-ft	1,043.57 k-ft 1,043.57 k-ft	+1.401D+0.50L+0.70S-2.0E+1.60H +1.20D+1.60S-0.50W+1.60H
PASS PASS	0.04391 0.004708	Flexure - Right of Col #2 - Top Flexure - Right of Col #2 - Bottom	-45.819 k-ft 4.913 k-ft	1,043.57 k-ft 1,043.57 k-ft	+1.401D+0.50L+0.70S-2.0E+1.60H +0.6992D+2.0E+0.90H

Eccentricity **Actual Soil Bearing Stress** Actual / Allow Load Combination... **Total Bearing** from Ftg CL @ Left Edge @ Right Edge Allowable Ratio +D+H 851.07 k 2.00 ksf 0.65 ksf -3.214 ft 3.00 ksf 0.665 +D+L+H -3.214 ft -3.214 ft 0.65 ksf 0.65 ksf 851.07 k 2.00 ksf 3.00 ksf 0.665 2.00 ksf 2.85 ksf +D+Lr+H 851.07 k 3.00 ksf 0.665 +D+S+H 976.27 k -5.550 ft 0.19 ksf 3.00 ksf 0.950 851.07 k 944.97 k +D+0.750Lr+0.750L+H -3.214 ft 2.00 ksf 0.65 ksf 3.00 ksf 0.665 +D+0.750L+0.750S+H -5.024 ft 2.64 ksf 0.30 ksf 3.00 ksf 0.879 +D+0.60W+H 835.95 k -2.711 ft 1.86 ksf 0.74 ksf 3.00 ksf 0.619 +D+1.40E+H +D+0.750Lr+0.750L+0.450W+H 888.87 k -1.868 ft 1.79 ksf 0.97 ksf 3.00 ksf 0.597 0.631 0.844 839.73 k -2.838 ft 1.89 ksf 0.72 ksf 3.00 ksf 933.63 k 973.32 k -4.708 ft -4.049 ft +D+0.750L+0.750S+0.450W+H 2.53 ksf 0.37 ksf 3.00 ksf +D+0.750L+0.750S+1.050E+H 2.48 ksf 0.54 ksf 3.00 ksf 0.828 +0.60D+0.60W+0.60H 554.14 k -2.117 ft 1.15 ksf 0.57 ksf 3.00 ksf 0.383 +0.60D+1.40E+0.60H 607.06 k -0.936 ft 1.08 ksf 0.80 ksf 3.00 ksf 0.361 Overturning Stability

	Mon	nents about Left Edge	e k-ft	Mome	ents about Right Edge	k-ft
Load Combination	Overturning	Resisting	Ratio	Overturning	Resisting	Ratio
+D+H	1,215.67	11.810.87	9.716	113.70	16,172,44	142,238
+D+L+H	1,215.67	11,810.87	9.716	113.70	16,172,44	142.238
+D+Lr+H	1,215.67	11,810.87	9.716	113.70	16,172,44	142.238
+D+S+H	2.716.97	12,997.97	4.784	252.00	21.361.63	84.768
+D+0.750Lr+0.750L+H	1.215.67	11,810.87	9.716	113.70	16,172,44	142.238
+D+0.750L+0.750S+H	2.341.65	12,701.20	5.424	217.43	20.064.33	92.282
+D+0.60W+H	1.433.35	12,212.15	8.520	935.09	16,238,20	17.365
+D+1.40E+H	1,781,41	14,166.28	7. 9 52	1,033.14	16,732,30	16.196
+D+0.750Lr+0.750L+0.450W+H	1,378.93	12,111.83	8.783	729.74	16.221.76	22.22
+D+0.750L+0.750S+0.450W+H	2,504.91	13,002.16	5.191	833.47	20,113.65	24.132
+D+0.750L+0.750S+1.050E+H	2,765.95	14,467.75	5.231	907.01	20,484.23	22.584
+0.60D+0.60W+0.60H	947.08	7,487.80	7.906	889.61	9,769.22	10.98
+0.60D+1.40E+0.60H	1,295.14	9,441.93	7.290	987.66	10,263.32	10.392
Sliding Stability						
Load Combination		Sliding Force	Resi	isting Force	Sliding SafetyRatio	
+D+H		1.80 k		353.94 k	196.634	
+D+L+H		1.80 k		353.94 k	196.634	
+D+Lr+H	· · · · · · · · · · · · · · · · · · ·	1.80 k	•	353.94 k	196.634	
+D+S+H		3.60 k	· · · · · · · · · · · · · · · · · · ·	397.76 k	110.489	
+D+0.750Lr+0.750L+H		1.80 k		353.94 k	196.634	
		· · · · · · · · · · · · · · · · · · ·				

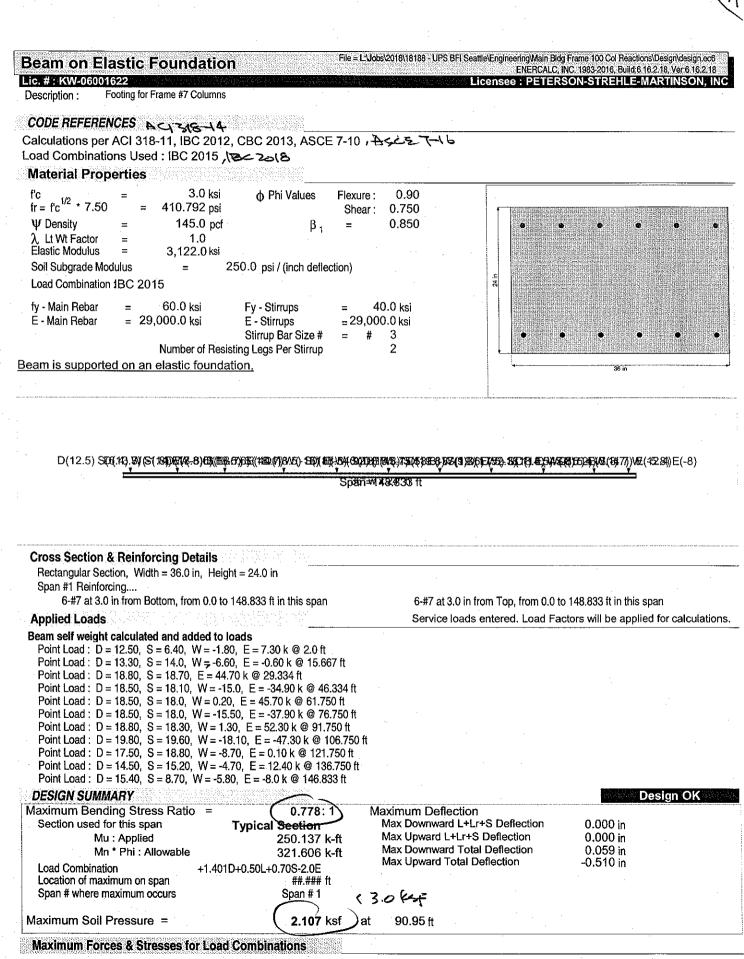

386.81 k


122.796

3.15 k

о л я	ULTI	NG	ENG	INE	ERS									JOB: _ DATE: SUBJE	ECT:	Pu(a il	1		BY:		72	<u></u>				/
	IXTH 206									HING	TON	9812	:1	SUBJE			P	U7(۹. ۱۰	בית							/
F	22	na	hr:	Ē	<u>5</u> R		Fe	<u> </u>	FZ.	Ħ																	
4	EAT	ERC	A	c	or	pan	272		:		V	ŚΈ	1	-3	<u>~</u>	νΦΙ	ēΧ	2	4	2Z	ΞP	(5	Tit	lu	burg	<u>ب</u>
						4	 					 														<u>5</u> . 5	
									 				(63-)								<u> </u>	<u> </u>			
													\	M/	18	\$) ₩	6	77	12	0	- م	<u>1</u> .	5	B	لحعوا	<u></u>	90
														(‡)	6¥	7-	12	n c	c '	τ۶	h 1	3	TREP	-uhs	رها	est	_
												1	<u> </u>											1			
C	150	K_	5	121	لحع	L	5	1			Ļ			Æ													
	up	1	-1		3	58	1						<u> </u>	>+ >>C (4:25) >(5:								sh		an 12	<u></u>		<u> </u>
-																			حرن	185	516	Pres	FU	<u></u>			
	DE¥	į –	1		1	1			₽,	6.	\ •	611	د با	┝┷	٩	29		ļ	DAN	1	10				=	2	
				£				-	- (Ъ	لر کر	134	583	<u>50</u>	2')	(0.11	<u>5) 1</u>	+ 3.	b)(11.151	(z)	(o.	(5)	·	=	٧o	_
	501		~	ŧU	itt				2		ð) /	(2-	1)	(42)	h-	8	24	(2)	(1	(0)	Koz	\$			=	Š	<u> </u>
٦	500	<u> </u>	12						2	U	$\frac{h}{2}$) (\c	<u>. ככל</u>	<u>(6</u> :	ጜን፣	<u>\$ </u>	0,(0	7)					-		1		
											<u> </u>													٤	=	22	5.
	F A											10		1-3-		2	<u> </u>							+	<u> </u>		
		4 >	/ 1 *	ren ș e	-1.+1	51		4P	n₹	3-4	•	10.1	ا رد	(235	*(4)	/5	81	-	- - -,	52			2	1.5	50	0	ĸ
		,				-										-				+			1	+			
	<u>Lip</u>	1 2	<u>h</u> .	T	-				7 5		17/1			30.7			11		K-						1	1	-
	Sh	0	- Le	<u>م_ ۱</u>	De	EE		<u>+</u>	5,7	T	<u>. 21</u>		<u>+</u>	30.			Ø	ק, ק 	' 					+	+		
	4		×K		05						-7	< 21		(0%	5 1		1								۴.	1	-
			20		<u> </u>	<u>-77-</u>	. E		~~~	- 6					2.7				1				-12	24	+		1
	+ ^				a.,		+	50					2.9							2	1 0		1		01		\vdash
1	T.C		* .	- 7- -C-	6 Faces	× 4 - 3.	1			YCA	•	<u> </u>	5	3			¥——	ļ		C			+	1		· 	-
								1					-									1		-			
	055	eT.	R4	state	e.							-													_		
)(4	155	6	-	4 ٦4	74	•		1													1
			1																								
	Me	শ	- (65	3	$\frac{1}{2}$	4)	>	-	261	.zk	-															
	F,	6	5		×	L,A	b _1 *	157	•	5	JE	Ta	Jn	- AN	4	-	. (0.6	$\frac{1}{2}$	470	10) -	-1	10	2	0.1	0
																			26	1.7							
0	JEV	2	ų.	5					<u>Ly</u>	HE.	1/2	1.		55		<u> </u>	10	°¢	N								
								V											•	1							

-



ONSULT										_			DATE SUB		<u>sug</u>						<u></u>					/
200 SIXTI FFICE 20										iton	1 981	21				B	wa	<u> </u>	60	<u>,</u>						/
									<u> </u>																	
	zm e	<u> </u>	#	-	1	<u> </u>	(15	<u>~</u> -	25	<u>></u> _'	باك	-~~~	<u>1</u>	RE	7 07	ti a	245		-							
Y					 		=			+		\neq	╞	+					7							
		×						[<u> </u>		-	.ŧ₹	\geq	*	+	 		\leq	井			4	Þ			
	+	\rightarrow						I		+	+	\Rightarrow	$ \times $	\bigcirc			$\left \right\rangle$	\prec	\exists			\geqslant	\langle			
					N		И	2	+	43	4	14	+	NJ		11	6	•	57	•	N	é	4	٩	NI NI	2
			£,	Ŀ		·			<	L	-	1			U	ų					I	E				
NERE	<u>.</u>		<u>ڊ</u>		$ \gamma $	 	 	×	<u> </u>	-		<u> </u>	+		X	<u> </u>					\star		<u> </u>	٢		<u> </u>
41		0/2	<u>}</u>	\vdash	12	5]	0.	<u>،</u> ح		(64			Ð.1		-4	.8			1,8			73		
54	+]	-		+	+,	14,0			<u> </u>		-6	6	$\left \right $			-	-→t	3.6		
		\dashv		$\left \right ^{+}$	3	>						<u>, 4, 0</u>	'													
KS		١.6	2		18	.93		۱. ۹	5		\pm	العجا	t		7,0	\	<u> </u>	_		· ·	14.	5	L_L	۲. رجعه		
				!			'			\square			_		100 100 1 00 -				{ 							
NG		- I .I ¢	<u>F</u>		13	.5			3			18,1			3.2		~ <i>I</i> S	P	 		3.5	\$	<u> </u>	342	a	
100				<u> '</u>	10	-		-	<u> </u>	+			_		<u> </u>		5				15,			45.7		
hc.		• 5			פו	5		170	4			18,0	<u>د</u>		2.2	-		<u>с</u>								$\left - \right $
NG	-	-1. ¢	5		18	3.5		-1	ч			18,0	0		3.4		-15	ξ,ς_			14	ų	=	57.9	1	-
																									İ	
- 147		- ١.	5		12	2.6		1	4			18,2	5	_	2.4	-	·1,	3			16	<u>4</u>	Ę	52,3	·	
, Lro		 						1				19		+	37							<u> </u> <u>-</u> .	+			
NS.		- \ ,\	P		19.	8	1	<u>-1</u> ,	· 7	, 4 MT			-		71	+	- 1	81			ឋរ	¥	 u	1713		╞
NG			-		17.	5			•			18/1	5	-	+		_ [8.7			-		•	0.j	2 2	
				<u> </u>				-																		
No	,				14	5						15.	2		-		-	4.7			_		17	24		\downarrow
	_	<u> </u>			<u> </u>	5.¥		+	.D.L			0	_	+	-0,4	, 					5,			8:0		-
NI		-0	5			- <u> </u>	1	+	1-			<u> </u>	<u> </u>		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			\$/8			3,6			5, -	<u> </u>	+
			+	2	=181			-	+				-					+	2	: 8	210	<u>خ</u>		_	+	╀
														-			<u> </u>									+
			<u> </u>	<u> </u>	—			<u> </u>	\downarrow														\downarrow	1	+	
						<u> </u>		<u> </u>		_											<u> </u>			1	<u> </u>	+
		<u> </u>	<u> </u>			<u> </u>	<u> </u>		+											<u> </u>	 		—		1	4

_

\tilde{c}	SIV	$\langle $												JOB: _ DATE:		1 DE	14	55	[3Y:	-	ra	-			·	4
	SULTI SIXTH						EATT	LE. V	NASI	HING	TON	9812		SUBJI	ECT:												/
	E 206														-		6	Sh		συ							
							-												:		1						1
-	For	T 1-	Les.	Ē	Si	Ŧ	<u>a</u>	-1E	_ ₹	\$-7												:					1
	EH	E R_	B	ĉ,	Ð	STP	ا لر			u	STE	(3-	3	Σ	X7 7	Ξ>	52	4	30		s ۲	(5 70	571	NT	uś	4
												4	4	16	ンコ	4	, i	Δ τ	, î	2	50			ጉ ና	2	B	1
														Ľ ۲	2	41	Tu	oi							- c		
														#4		<u>-</u>		e H			۔ د		B	7p	الدوج	ISU	ER
																•	• •					.					
C	1	V.	2	EP			STA	rell	17																		
	LIF					лŧ,	!			4	ก.	Ζ.	18	0	·	12.9	51	ĸ			. :						
1		Ì					_11_					-	1				{						<u> </u>			,	
Þs	Þv		<u> </u>	C15-	-		181	, (•-								= 1	26	
	¥4.	•			~			1		4.8	29	61	10	<u>ر</u> ا	+6	5)/		53A 1533)/ <u>a</u>	= 1					629	ľ.
	01		4				- p			<u>a</u>						•• 6	1.10	032	,	<u> </u>	3)					0	•••••
-	11	60		Л		=	17/	2)(11	48	BJ	1.5	5)(1		.)										3.4	
									¥			<u> </u>											2	2	1	1(2.	T
Ţ	F.o.	l	X.	_ ,_	15	P	up		-				4 1 7	76 1 -	T	5		97								81.64	
	1.0					Б	×	>					T	28		2	= 1	1-1-1-1					≻ ר	50		0	1
																							-		+		-
L	-171	4/																						-		+	
	िन		-0	20	7.00	ST		1		h	=		* +	14	r+	130	5		6	₽ 1 1	Ьл	41	1			5-3	1
		$\overline{}$						// 			-	95	15	<u> </u>				1 -	-				2.4			2	
					+							N.V.											1	ļ	+		t
1	<u>sh</u>		,	0.	<	≤[≫	4/1	5		- (417	4	<u>م (</u>	0/2	ച					,	<u> </u>		l	· .		14	ų,
		Vir	n -	- Kina Ce	د م		_ <u>.</u>	<u> </u>				<u> </u>						1									
1									1						1		L							1		+	
	Fc	2 1	, ¥	40	- lyle	57	5	410	1.1	<u>,</u>	-	ľ	ųψ	3			12	41		Ż	l .c			06			
	1					Ŧ	1					Ő	ΞŢ _{Pe}			<u> </u>		≈ ¶			1.0		+	1	1	+	+
					+								70						1								-
	50	eri	irel	4 1 4	4					+													-		+	+	
	MR	-('	4(<u>2 u</u>	50	31-	7) -	•	1.	0.1	46	1											+			1
	<u> </u>			<u> (</u>	\int		/	<u> </u>					•				-			}			+		+		+
	Mъ	÷ -	19		2	1	$\frac{1}{1}$	+	2			<u> </u>		-							-			1	-		+
		<u> </u>		<u>1.</u>			7 /	-		151-	<u> </u>	-												+		1	+
+	E		•	* -				<u> </u>			+			1	, ·		4.1	8.6		1	·	- 1	61	0	~	>	1
	<u> </u>		<u>7 + 7</u>	-u	<u> </u>	W 57			22	14	2 6-2 6(~~	-		ه رب ا	•¥ (10	216	1 4	55	1.2	·	1- "		2	-7	1.4
						-				+			•		+	<u> </u>	-		<u> </u>			+	+		+		
<u> </u>		Ψ α	527	بلدي ا		to	->21	<u> </u>	14		41	22	<u>r</u>	(<	4	57	4	≤ R	+77.	ye.	4		-	+	<u> </u>		

Beam on Elastic Foundation

Lic. # : KW-06001622 Description :

Footing for Frame #8 & #9 Columns

CODE REFERENCES

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : IBC 2015

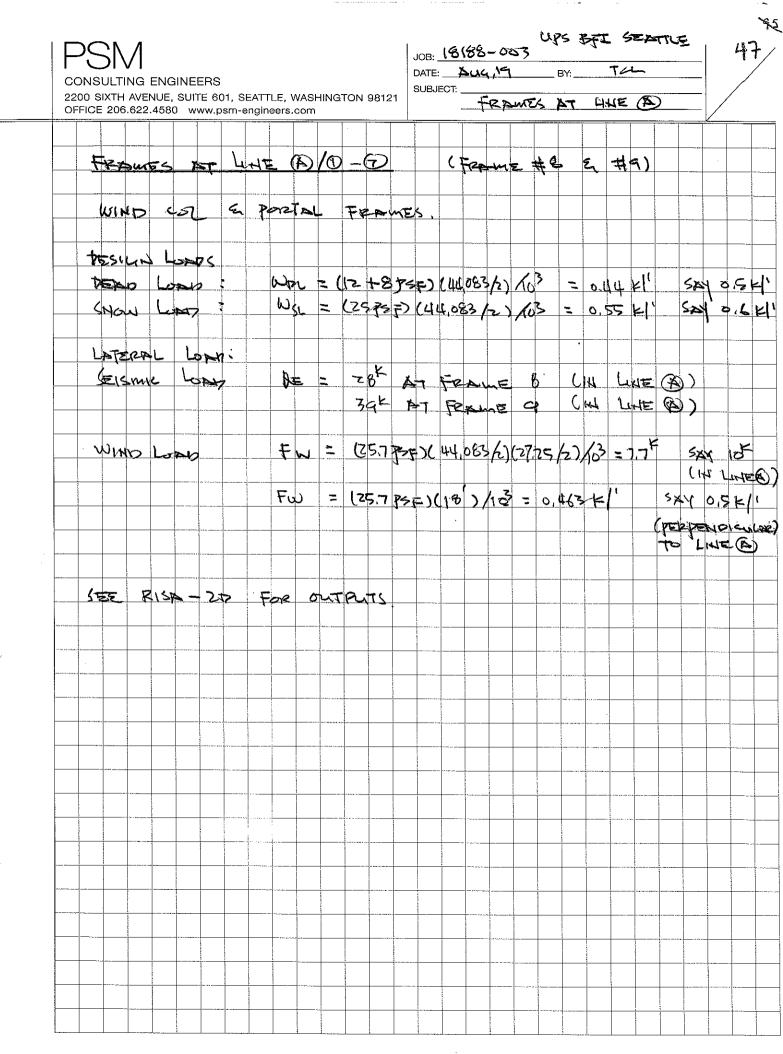
Material Properties 3.0 ksi 0.90 Flexure : fc $fr = fc^{1/2} * 7.50$ 410.792 psi 0.750 Shear: Ψ Density 145.0 pcf 0.850 β_1 = = 1.0 λ Lt Wt Factor = Elastic Modulus = 3,122.0 ksi Soil Subgrade Modulus = 250.0 psi / (inch deflection) 24 in Load Combination IBC 2015 fv - Main Rebar = 60.0 ksi Fy - Stirrups 40.0 ksi -E - Main Rebar = 29,000.0 ksi E - Stirrups = 29.000.0 ksi Stirrup Bar Size # 3 ----# Number of Resisting Legs Per Stirrup 2 Beam is supported on an elastic foundation, 36 in

5080 928528581

Cross Section & Reinforcing Details Rectangular Section, Width = 36.0 in, Height = 24.0 in Span #1 Reinforcing

6-#6 at 3.0 in from Bottom, from 0.0 to 285.833 ft in this span

Applied Loads


Beam self weight calculated and added to loads Point Load : D = 12.60, S = 5.30, W = -7.70, E = -32.30 k @ 5.0 ft Point Load : D = 14.30, S = 10.0, W = 1.50, E = 41.80 k @ 25.0 ft Point Load : D = 14.10, S = 9.70, W = -5.50, E = -5.0 k @ 40.0 ft Point Load : D = 14.80, S = 11.0, W = -4.90, E = 2.90 k @ 58.0 ft Point Load : D = 14.60, S = 10.80, W = -4.80, E = 3.0 k @ 76.0 ft Point Load : D = 15.20, S = 10.80, W = -4.90, E = 2.70 k @ 94.0 ft Point Load : D = 15.20, S = 10.80, W = -4.80, E = 2.90 k @ 112.0 ft Point Load : D = 14.60, S = 10.80, W = -4.90, E = 2.30 k @ 130.0 ft Point Load : D = 14.60, S = 10.80, W = -4.80, E = 3.0 k @ 148.0 ft Point Load : D = 15.20, S = 10.80, W = -4.90, E = 2.70 k @ 156.0 ft Point Load : D = 15.20, S = 10.80, W = -4.80, E = 2.90 k @ 184.0 ft Point Load : D = 14.60, S = 10.80, W = -4.90, E = 2.30 k @ 202.0 ft Point Load : D = 45.40, S = 32.80, W = -14.40, E = 2.80 k @ 220.0 ft Point Load : D = 11.50, S = 7.90, W = -14.70, E = -75.0 k @ 247.130 ft Point Load : D = 9.70, S = 2.50, W = 10.20, E = 80.0 k @ 267.0 ft

6-#6 at 3.0 in from Top, from 0.0 to 285.833 ft in this span Service loads entered. Load Factors will be applied for calculations.

File = L\Jobs\2018\18188 - UPS BFI Seattle\EngineeringWain Bldg Frame 100 Col Reactions\Design\design.ec6

ENERCALC, INC. 1983-2016, Build 6 16 2 18, Ver.6 16 2 18

Licensee : PETERSON-STREHLE-MARTINSON, INC

	PSN	1				JOB:	5188-05	3 UPS	SFL	SUTTARY	48/
	CONSULTIN	IG ENGINE	EERS			DATE:	percher	BY:	Ta-		
2	2200 SIXTH A	WENUE, SU	ITE 601, SEAT		NGTON 98121	SUBJECT:	Ra	Ph 10	2		
(522.4580 v	www.psm-engi	neers.com		<u> </u>					
	FERRI	15 #2	5 5 #	F9	ROB-20	. esh	m RE	Actics	ĸ		
		U K									
			×								
											<u> </u>
_											
	NI NZ										
	NI NZ	_1		45 NG		NB N	9 NID 1	1 10	18 J	3 NICH NIL	NI6 NI7
	10 ×			15	18 18		18 18			DIDL	18 8.935
		X	n y	X,	Y		Y	X	Y		
	Nave	\frown							\		
		0.5	12.6	0,44	5.2	-29	- 77	- 1G .			
	14	v >					- 7.7	-181	-42.,		
_	NZ	-	143			-0.3		41,4	41.8		
-	NZ	-	14,1		G .7	-0.3	- 5.5	-1.7	-5.0		
	414		14.8		<u>م ۱۱</u>	- 0,3	-4,9	-1.8	2,9		
	415	-	14.2		10.8	- 0.3	-4.8	4.8	3.4		
	47	+	15.2	_	10.8	-0.5	-49	-1.6	Z.7		
	147	+	15.2		0.8	-0.3	-4.8	-1,4	2.0		
	148	-	14.6		10.8	-0,2	-4.9	1.8	7		
	64	-	14.6		10,8	-0.5	-48	-1.8		.0	
	P	-			(0.5	-0.3	49	-(, (
-	NIO		15.2		·····			-1.6	Z.		
	NU		152			-013	-4.8		<i>ž.</i> ,		
	- NR		14.6		-	-0.3	<u> </u>		Z		
	NB	-	14,6		10,8	-0, 3	-4.8	-1.8	3	0	
	MA	-	15.1		107	-03	- 48	-1.6	Z	8	
	NIS		157	+	11.3	-0.3	-4,g	-1,6	્ય	1/2	
、	NIL	-	11.5		7-9	-0.3	-14,7	····		S .	
	NIT	-0.3	97	-0.3	2.5	-30	-10,2	- r (.r.A.) (60	
			= 241.6					= 67.			
\vdash								- 10/1			
⊢											-
									<u> </u>		
											<u> </u>
F											
		1									

×.

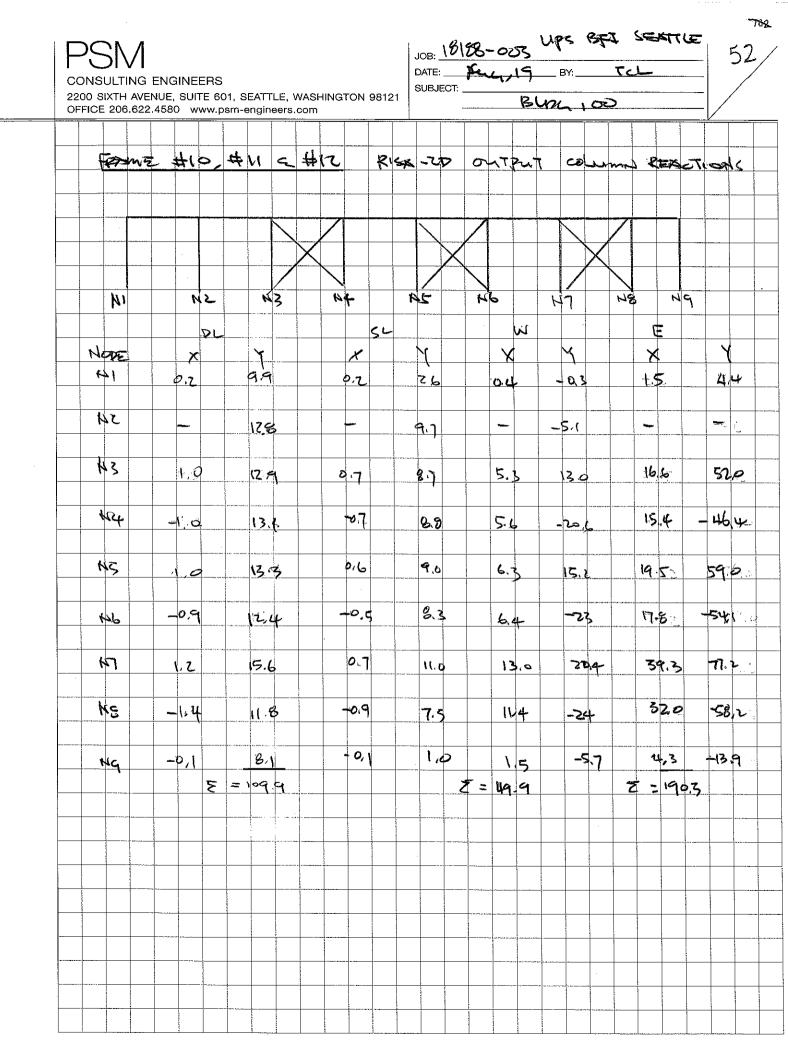
PS consul 2200 six office 2	TH AVEI	NUE, SU	TE 60				HING	τον	9812		Job: <u>-</u> Date: Subji	18 ECT: _	4		153 159 BL				<u>र</u> ह	52 yr -	77.			49	/
	ERC	5 Fe	1	Free 7 pm	1	2 4			s Se	V	z∕-	(9)	#(b_1	7=1	<u></u>	5	<u>۷८</u>	Ţ	٦	8	TINI Lot VEX	101 441 285	TUP	
	teck NFT			1	<u>٥ کَر</u>	4 - 5	15.		1	11	2.2	, K													
we Go	2 5 11 w	rseilli FCG Eillty WEI	WE		= (2158	(z)(533)	275. (2-	883 1)(⁷	3.%)(ol' _8	kui	(2)	(3.0 (110	2)(Z	75	B33(0.(5		Σ	=		3,:4		
- Sta	1010-12									2.3			3	8						5.	>		K		
		- H22	25157	DH C		~ ((72	8,2		(o,								7			221	84		×	
	ERT	R. 15= = (7)	k.							6	7.(
· · · · · · · · · · · ·	M _{st}	= (& , N W	1 .(5)	(ب)	·			-2	2.68	<u>, Ц</u>	<u>-</u> (, (4)	(0.)	4)	/26	2. J		2.4			7	1.0		ok	
0	4-30° A	u s	[<u>A</u> 8)			1 1 =	ek	<u></u> (५		ie-t	\S₹	* (πο	EN	\										
														-											

File = L'Jobs\2018\18188 - UPS BFI Seattle\Engineering\Main Bidg Frame 100 Col Reactions\Design\design.ec6 Beam on Elastic Foundation ENERCALC, INC. 1983-2016, Build:6.16.2.18, Ver.6.16.2.18 Lic. # : KW-06001622 PETERSON-STREHLE-MARTINSON, INC Description : Footing for Frame #8 & #9 Columns CODE REFERENCES AL 315-44 Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10, ASCE T-16 Load Combinations Used : IBC 2015 , 13-2018 **Material Properties** 3.0 ksi Flexure : 0.90f'c $fr = fc^{1/2} * 7.50$ 410.792 psi Shear : 0.750 Ψ Density 145.0 pcf 0.850 βı _ λ Lt Wt Factor 1.0 Elastic Modulus 3.122.0 ksi Soil Subgrade Modulus 250.0 psi / (inch deflection) = Load Combination IBC 2015 24

fy - Main Rebar	= 60.0 ksi	Fy - Stirrups	=	- 40	0.0 ksi	
E - Main Rebar	= 29,000.0 ksi	E - Stirrups	=2	9,00	0.0 ksi	
		Stirrup Bar Size #	=	#	3	
	Number of Res	isting Legs Per Stirrup			2	
Beam is supporte	d on an elastic found	ation,				

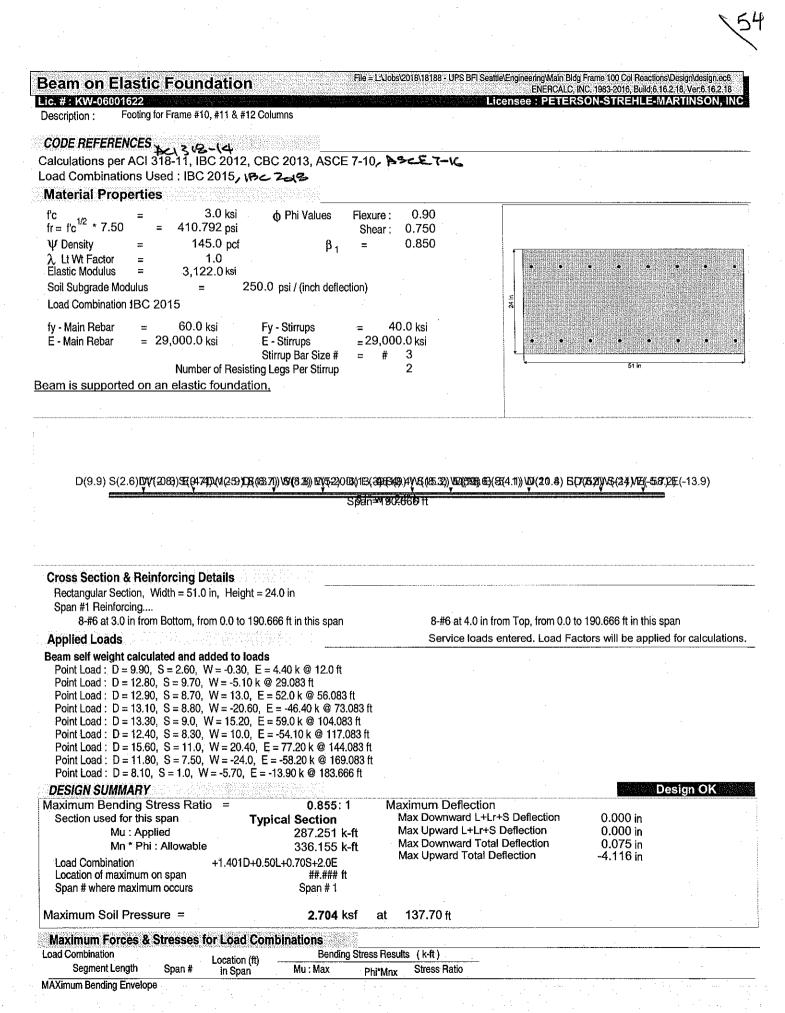
D(12.6) \$2(618) 30(3) (403) (4

Cross Section & Reinforcing Details

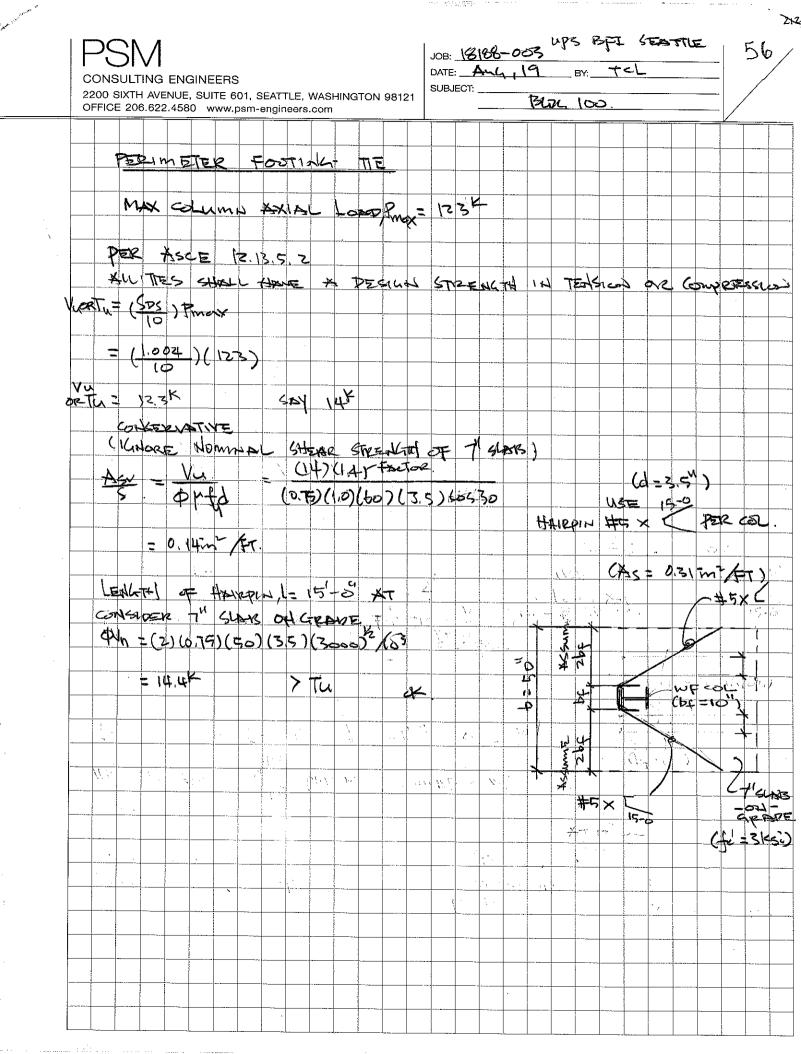

Rectangular Section, Width = 36.0 in, Height = 24.0 in Span #1 Reinforcing....

6-#6 at 3.0 in from Bottom, from 0.0 to 285.833 ft in this span

Applied Loads Beam self weight calculated and added to loads Point Load : D = 12.60, S = 5.30, W = -7.70, E = -32.30 k @ 5.0 ft Point Load : D = 14.30, S = 10.0, W = 1.50, E = 41.80 k @ 25.0 ft Point Load : D = 14.10, S = 9.70, W = -5.50, E = -5.0 k @ 40.0 ft Point Load : D = 14.80, S = 11.0, W = -4.90, E = 2.90 k @ 58.0 ft Point Load : D = 14.60, S = 10.80, W = -4.80, E = 3.0 k @ 76.0 ft Point Load : D = 15.20, S = 10.80, W = -4.90, E = 2.70 k @ 94.0 ft Point Load : D = 15.20, S = 10.80, W = -4.80, E = 2.90 k @ 112.0 ft Point Load : D = 14.60, S = 10.80, W = -4.90, E = 2.30 k @ 130.0 ft Point Load : D = 14.60, S = 10.80, W = -4.80, E = 3.0 k @ 148.0 ft Point Load : D = 15.20, S = 10.80, W = -4.90, E = 2.70 k @ 156.0 ft Point Load : D = 15.20, S = 10.80, W = -4.80, E = 2.90 k @ 184.0 ft Point Load : D = 14.60, S = 10.80, W = -4.90, E = 2.30 k @ 202.0 ft Point Load : D = 45.40, S = 32.80, W = -14.40, E = 2.80 k @ 220.0 ft Point Load : D = 11.50, S = 7.90, W = -14.70, E = -75.0 k @ 247.130 ft Point Load : D = 9.70, S = 2.50, W = 10.20, E = 80.0 k @ 267.0 ft


6-#6 at 3.0 in from Top, from 0.0 to 285.833 ft in this span Service loads entered. Load Factors will be applied for calculations.

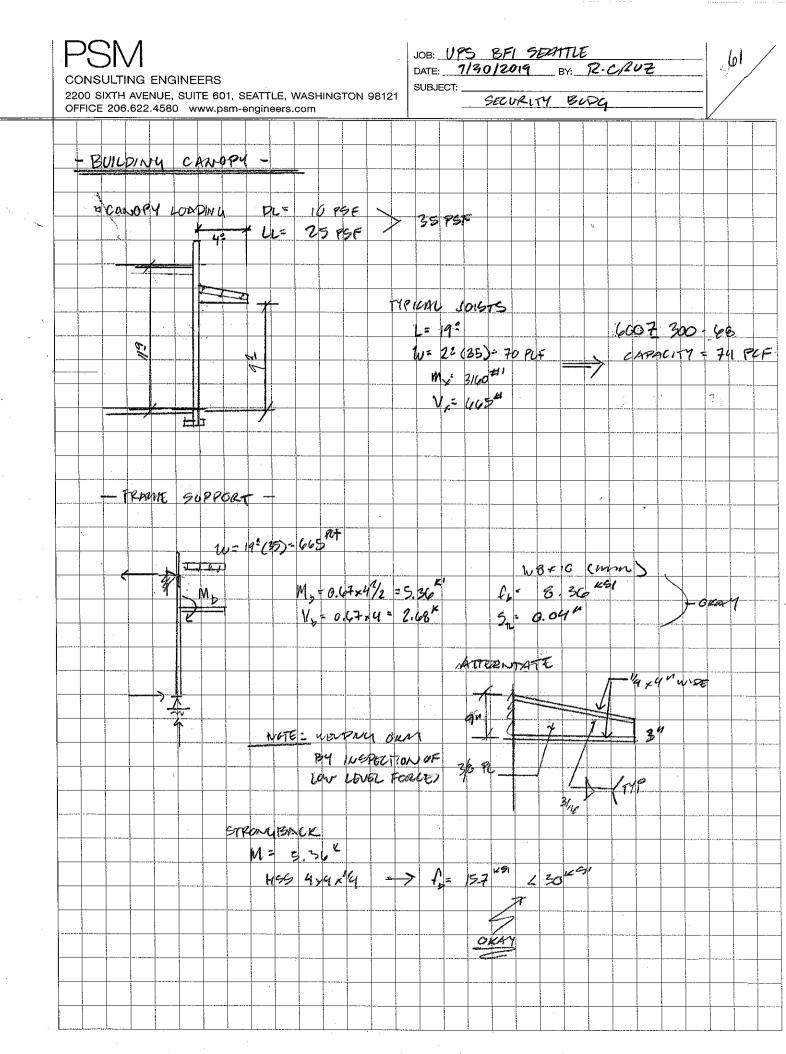
			TOL
	PSM	JOB: 18188-003 UPS EFI SEXTLE DATE: Aug 19 BY: Ich	51/
	CONSULTING ENGINEERS	DATE: Auli 19 BY: Ich	<u> </u>
	2200 SIXTH AVENUE, SUITE 601, SEATTLE, WASHINGTON 98121	SUBJECT:	
	OFFICE 206.622.4580 www.psm-engineers.com	FRAMES AT LINE (D.	/
	FEXMES AT LINES D/B-E	(Terme # 10 # 11 2 # 1	(2)
		(FRANE # 10, # 11 2, # 1	
	(A) 11 (B) 11 0		E
	(A) $44'-1"$ (B) $44'-3"$	Q 44'-0" (D) 34'-	<u> </u>
			$\boldsymbol{\Lambda}$
			+ + + + + + + + + + + + + + + + + + +
		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
		0, 17-0, 27-0, 25-0	9-7
· · ·	DESILIN LONALS		
	$\frac{DEXED LODDO : WPL = (12 + 295F)1}{SMOD LODDO : WSL = (25P5F)1}$	(25(2)/03 = 0.25, 4/ 5×10	1.341
	SMOW LOPEN : WSL = (25755)	(25/2)/103 = 0.313 E/1 SAN 0	0.4 KM
			$\left\{ \begin{array}{c} \mathbf{T} \\$
			~
	LATERAL LODES		
	SEISME LORD : QE = 65.1+	- 40.7 + 40.7 = 146.5	
	WIND LOOD : FW = (25.7 p	35)(275,833 2)(27,25/2)/03 = 4834 <	507 100
	SEE RISA - 20 FOR OUTPUTS		
			1

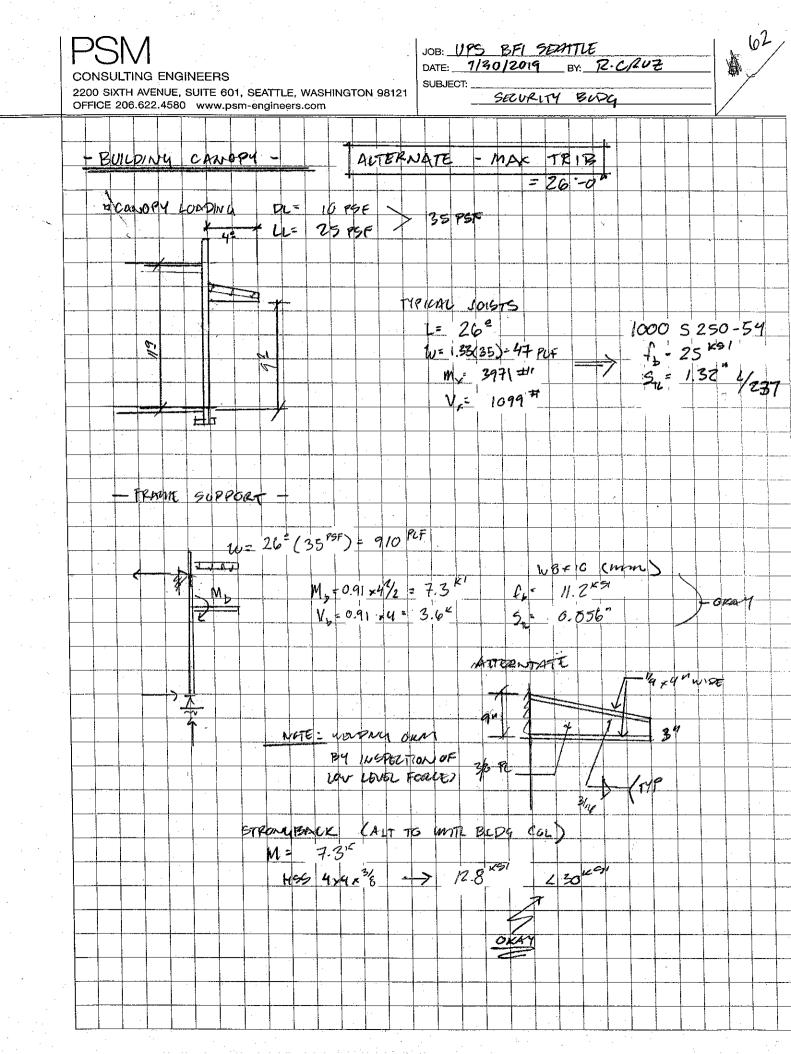


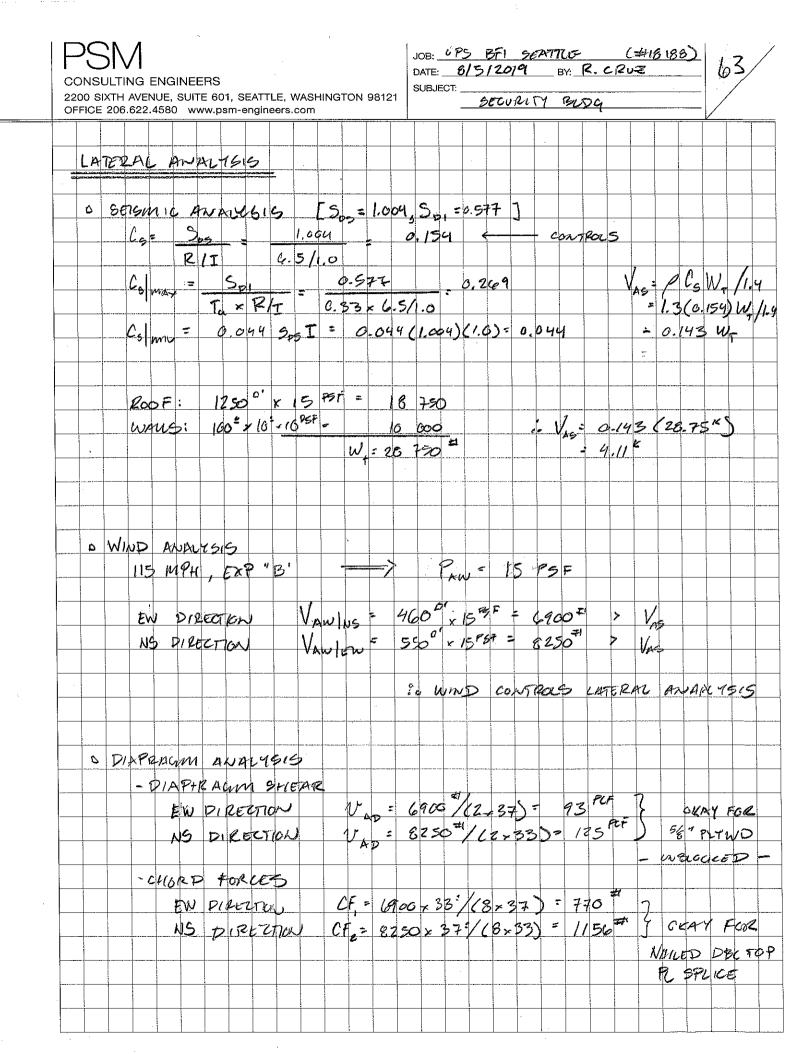
- · ·			ENC										2	Job: _ Date: Subje	CT:		41					res					5
			ENUE 2.458							HING	TON	9812	!1					R	N	1 1	<u> </u>						/
																											_
	<u> </u>	σī	NIC	£	<u>~</u>	<u>-</u>	20	ME		<u>4</u> 10	,	#1	۱ -	<u>i</u> 1	\$12												
	ENG	ser	-		s.	put	۲S					USE	<u> </u>	4-3	1 . v	sur	C \	12	a, 1	ÆE	<u>P \</u>	رد	TUN	124	222	ँ	t
					ļ								رى) + 1	6	/ 7	6.	4".	oc	Τ	5	3	حا	24	44	DI	4
		<u> </u>	-									÷	16	**	· 12	י' נו	٤	T	E	в		TRE	sh's	NE.	RST	-	
																									<u>_</u>		
			<u>du</u>	1	124	316	1-1		<u>er</u> !	ē.	×	· ·											<u> </u>			<u> </u>	-
	~ v	5-	11-	7	۹.	0.1	6 -	- 6	ء (*	- ·	71	+	76	÷	183	= 7	25	ญ.	4					<u> </u>		-
		-																									-
}	1		20			 	2	100	1,9	K		w.7						-70	1.6			-	10	ج م	9		
			· FT	<u>i</u> (, , ,	-77									(چ) -						(6.)5)	-		23			_
	-21L		****				1		1	1	,	1 2.		ope	•	Z)(110	λ S	3			-	Ì	81			
	145	24			-		; (7/12	pq	66.6	s66)	CIT	<u>7</u> 70	21 IS	2			ŀ			_			18		-	-
						}					_		<u>;</u>					-			2		<u>; (</u>	39	<u>[</u>]		-
					-						1.				• `							-	<u> </u>		+		
	<u>+.</u>	<u>, s</u>		Li	× 104	<u>st</u>	<u>u</u>	<u>zr</u>	7-1	<u> </u>	6		47	<u>م ۹</u>	<u>,)</u>		1	<u>a</u> 5				7	_ 	.5	+	0	ł
			~~				-							11				1							-		-
	1.											-															+
	1		40	1					(<u> </u>		12	-									1	+		
		1.4		ns	20	<u> </u>	17 Cont					†	1-10	>				-					-		-	-	┢
	4.			P			1/2		- (720	1.5	Ye	3	5)	1.1				<u> </u>	1			-			o ic	
	/		-reg					1				70-				<u> </u>		<u> </u>					1				1.
	E	/>	ς 🔺				21						zere	4		t	31	2					0		OF		-
			>	-U-(1=1		- {				-			190	1	7				1		C	- ·				Ţ	T
		-					1			1																	
	0v5	-p	the	2000	4																						T
•						5)(25	h			203	3 (- F	1												1
									1																		
	۲	ησ	T .	- 1	(19)	<u>, 3</u>)(4)	-	<u> </u>	76(. 2	F.		ļ											
<u> </u>	F	: 0	<u> </u>	<u>, </u>	se.	p1	451	•	0	رعو	27.	yer	312	4 3	-	60	6	10-	207	3.	د ک	- 2	4	60		21	_
																		76									ļ
	o	u E	200		50	Lr.	14	4	L	150	X		15		~ 7	√~ŗ	A	27.	a	٩.			-			_	
													_			×	`						\perp		_		
										1								1									

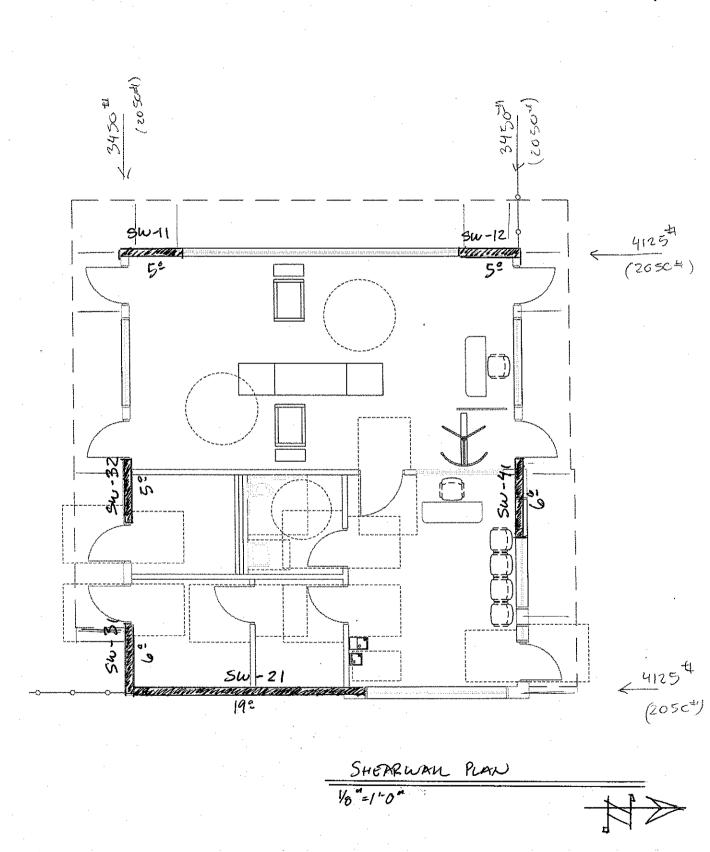
------ ··· · •

	SM NSULTING ENGINEERS		JOB: 18186-003 UPS BFT SEATLE DATE: AUG, 19 BY: TCL	55/
	O SIXTH AVENUE, SUITE 601, ICE 206.622.4580 www.psr	, SEATTLE, WASHINGTON 98121 n-engineers.com	SUBJECT: BUDY 100	
	10 ^M CONC STE		Winto Col	
	- MXX TRIBUTAR	E WIND PRESSURE EN WOTH BTUIN	$z = 25 \cdot 19 = 7 + 1$	57500E 5.#9
		JUND COL BTOUN	= 27.25 [°]	
		TAL LODO AT WIT	mp = 0.35 K (1 02875 + 1 210 concStem we	=0 - P - P
	- MAX Hozizons	Tel Louis Are Wind		
	(0.3039) (25) x 4,4		52evative =)(44.05)/2/25/63=114	
	SET PATA HER	PSL = (+5/20) ENERCAL CIT		
	-10" CONCRET! 15 POEQUATO LOADS.	E STEIN WALL W. E FOR WIND CA	TTH # C PST 12" - C EF (VERTU UND (8) MEDEL BLOW MARNUFACTU	2 ~L)
	- USE SHER RT Belts		AT C" OC. ONLY FOR WIND CLANd	
	$\frac{A_{SV}}{SV} = \frac{V_{U}}{\Phi SV}$	$\frac{-(8,75)(1,4)}{(7,15)(6-3)(6)}$	$-= 0.05 \text{ Try fr} \qquad (150 \text{ Try fr} = 0.4)$	
· · · · · · · · · · · · · · · · · · ·				


18188 JOB: <u>UPS BFI</u> DATE: <u>8/19/19</u> BY: <u>PCR</u> 57 SMCONSULTING ENGINEERS SUBJECT: ______CASTER CANOPY 2200 SIXTH AVENUE, SUITE 601, SEATTLE, WASHINGTON 98121 OFFICE 206.622.4580 www.psm-engineers.com WL = 22.8 psf (ULT)= 16.3 psf (ASD)Exp = CWORST CASE UPLIFT (ASD) $UPLIFT = \frac{60 + 48}{2} \times \frac{41}{2} \times 0.0163 \text{ Ksf}$ = 18.1 K 0.6NL = 19.6K > 18.1K OK USE 6'-0'×6'-0"×2'-0" FTG 1'-6"×1'-6"×3'-8" PLINTH TOP OF FTG (-)2'-0"


	C 22		ULT SIXTF	I AVE	NUE,	, sur	TE 60	01, S 0sm-e				HING	TON	981:	i :	JOB: _ DATE: SUBJI	U9 	3 5 8	BF1 1201 ECU	50 9 RIT	7 	UE 3Y: BUI	R. DG	CR	#/ UZ	18 18	<u>(3</u>			/
			-											1	<u></u>								Ĭ					<u>~</u>		
		SE	201	217	1	BL	29																			-				
			Æ	516		CR	٦E	R.14	4		Г с	513(201	5	1														
	=							54		D			15	Pa	- F															
								-~1		L	p lp	= 4	, 15 25	ec,	Ŧ	(5	NON	5											•	
			77	90	GIA	r.	10	(The	11	A.'	1	R.C.		-	TT `									~~~~						
				1 10.5	- <u>-</u> 1		مرب اردس	11	<i>y17</i>	•		ç. •		50		r	<i>C</i> =	12-	сід	GL I				ፍ			,u	\rightarrow		
				LON	4:	- 12	2.2	17E	4			29- 5 ₁ :	<i>0.</i>	575		-		<u> </u>		22	2	>		S _{PI}	2 - - (1.00 2.57	7			
															1															
			b					NA KPO					AT K																	<u> </u>
) =/			· ·			Ē	<u> </u>	/, C															
•				\$G10		10.		- 2 (P			1	en.	60.1	T	ERIZ	. ~ CC	х- т "	61	05	110						>/20				
			<u>.</u>				120	e (p p p e						$\int_{-\infty}^{\infty}$	100		1 *	# 01	100	112		PAT	ビン	14	/ 24	720	18			
	-			×	un	12/9	4	THE CO	540	LE U	-	500	χο ř	77							 								<u> </u>	
				P				TH F1					16	6n																
· .								ale							1														· · ·	-
						1									1	HED	Ro	eĸ	19AU	Nº C	0112	9F								
		1				M0-7	UA!	o of	2)	00	RA	TF.		2	50	PCI										1				
												-																		
								<u> </u>								ļ		-		<u> </u>		-								
															<u> </u>								 							
																		<u> </u>			ļ		1	ļ	-		<u> </u>			
										<u> </u>		_					ļ								<u> </u>		ļ			
									1										<u> </u>								<u> </u>		<u> </u>	_
				1														ļ								<u> </u>		ļ		\vdash
			. <u> </u>	-															<u> </u>		<u> </u>							 	<u> </u>	<u> </u>
- 					2									_					<u> </u>					-	-	+			<u> </u>	
		-									-		-	-			-	-		-						+		<u> </u>	<u> </u>	\vdash
						1	ļ							-		<u> </u>					<u> </u>							<u> </u>		


C	ONS	ULTI														UP 	5 I 8/5	3F1 /20	56		<u>115</u> 3Y:	R	<u></u>	+/8 CR	07 UZ	·)	- 2	59 - /
						re 60 ww.p					HING	TON	9812	1			SE	:UF	2 17	Y	BL	DC)					
																	1											
	R	DOF	F	2.1xn	110	7																						
							-													~								
	17	Pe	316	N	60	ra D	•																					
				26,	2=) 2	5	PG	F																			
				U	2-	2	25	Pe	F																			
																							-					
	σ	7 ^	191	cal		Roc)F	Joi	575	5							•						1					
			لي سا	. <i>.</i>	12	, u												2	- I	z		ZF.	មរ					- 1 74
				w	: 2	EC19 3 7	5+5	255	= 9	0	RF						f		17	23	PSI		۲.		12	75	751	
				W	∿ [€]	3	240	3#1		1		-			⇒		(v=		5	93 F	P51 151							
				L	1 20	7	20	#								i I	27.				a							
					_ # N												<u> </u>			-		1.9	70					
	a	740	201	N	4115	AD	-0	N-7	67-	c le						- 74	2 4	-	$\overline{\mathcal{D}}$	A	144.5	Orte	./					
				124		49			70	05		172	10			411	<u>, ra</u>	EAD	<u>, 1</u>	41	w.m		<u>N</u>			- и.	×8	DE :
			,				(-D	A	F				(2. 73		 I			Lm	×	4	n F	СŦ			0			11 -
					1214 V	a	@0 ∕/∩ [₫]	р 1'-			>	۲ <u>۲</u>	65	р 991				14) ~	7¢ 20	0 F 70#	;' =		\Rightarrow	1	= 8 4		
						9				1	1		0.0		ท										5			ท
				V	*	-1	ω			•		Ra.		727				V	7	13	ୄଌଡ଼ୖ୕୕				24	~ 0	.01	
					0																							
	4				Į	ey			44									4						1			¹	
			HEI	×VE	مر ۽		Lon	=y= W=	-1	201	<u>الم</u>						72	c8	<u> </u>	-7-1 1 P(1								
							-	$(u)^{-}$	0	ω	- ##	1 -				4	5	4	42	- 51								
				ļ				M,	<u> </u>	64		H			\Rightarrow		<u>ب</u>	6	<u>,0</u> '	51								
								V,	÷.	164	0#					5	をし	O	.0:	>							<u> </u>	
	+								-/		 					ļ			1,									
			BE	nn	r		Lng	**************************************	99	- 1	7.F							× 10	5'z	6	LB				ļ			-
		:				1		W	± 8	20		<u>_1 /</u>			5	f f	<u>,</u>		[7:	35	891 061			•	<u> </u>			-
			<u> </u>					M	¥٢	8	300	/ الم ر بد			7				13	6	991 		1			<u> </u>	<u> </u>	
					1		-	<u> </u>	1 VE	Æ	369	6#				ક્ર	<u>،</u> د	6	9.2	36	61	44	57					<u> </u>
										-			<u> </u>									<u> </u>					<u> </u>	<u> </u>
		1								<u> </u>			<u> </u>			1		<u> </u>	<u>-</u>		-						<u> </u>	<u> </u>
				1										1		1					ŀ					l	1	
	1											1				-					1						<u> </u>	+


.

	CONSULTING 2200 SIXTH AVE OFFICE 206.622		JOB: UPS BFI- SEATTLE (#18188) DATE: 9/4/2019 BY: R. CRUZ SUBJECT: SEZURINT BUDG	0
	1 INTERI	MEDIATE HDR AT UNDU		
	L	= 12 =	3'8×12 918	
		W= 460 PLF	fu= 1325 PD1	
			fr= 92 PS1 - 0 14 a.2	-
		Vx= 2760 ²¹	$ \frac{3^{16} \times 18^{2} \text{ G} \text{ G}}{f_{0}^{5}} \frac{1325^{\text{P}}}{1325^{\text{P}}} \\ = \frac{1}{4} \frac{92^{\text{P}}}{92^{\text{P}}} \frac{1}{10000000000000000000000000000000000$	
		1 SPAN HEDDED AT VIEW MADOW		
		-= 2,4*	5'E × 18 44B	
		W = 500 PUF	$f_{p}^{2} = 1561^{+51}$	
		M_= 36 000 ⁴⁵¹	$f_{1} = \frac{1561}{561} \frac{751}{-0000} - \frac{1561}{510} \frac{1}{-0000} - \frac{1}{5000} \frac{1}{5000} - \frac{1}{5000} \frac{1}{5000} - \frac{1}{5000} \frac{1}{50000} - \frac{1}{50000} \frac{1}{50000} - \frac{1}{50000000} - \frac{1}{500000000000000000000000000000000000$	
		V× 6000 [₽]	$g_{\pi} = 0.63^{-1} 4_{346}$	
-				
	-			
				-
ł				

Shearwall Calculations - Wind

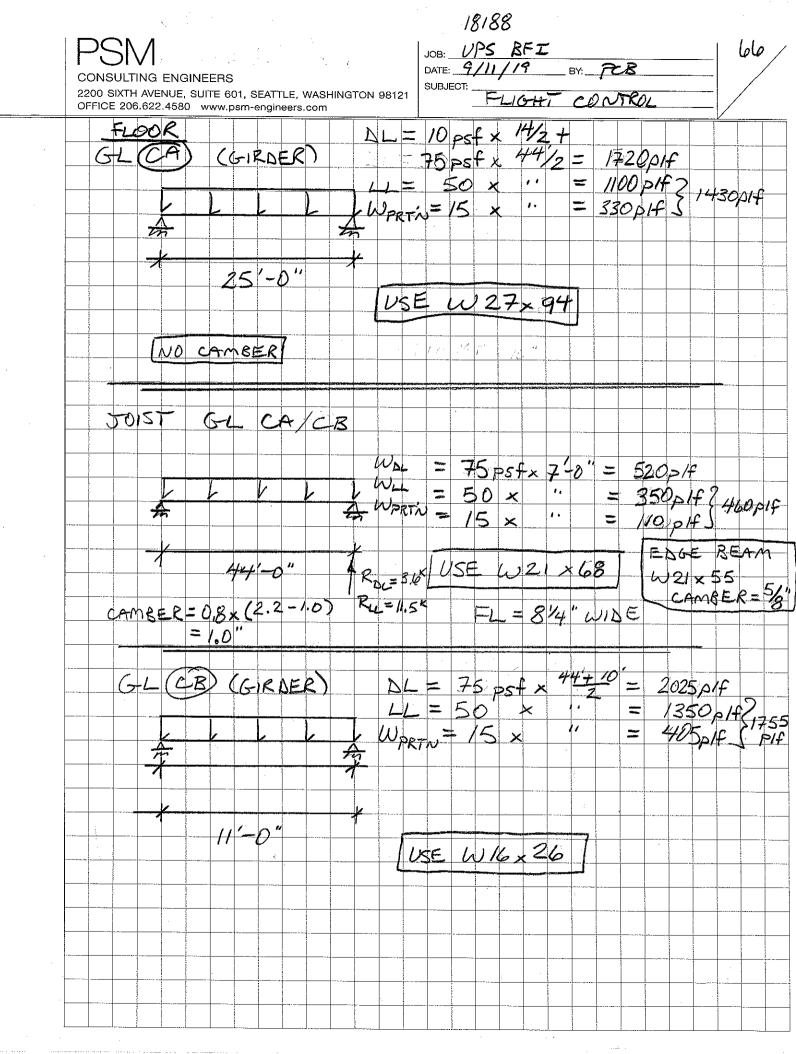
Wall Mark	Dimensions L - ft	H - ft	H/L Ratio	SW Cap. Coeff.	Unit shear - plf	Shear / Coeffplf	OTM k-ft.	DL on wall wall (k)	Uplift (k)	Compat ends-k	Holdown	Shearwall Type
11	5	12	2.4	0.83	413	495	24.8	1.3	5.1	5.6	HDU5	W3
12	5	12	2.4	0.83	413	495	24.8	1.3	5.1	5.6	HDU5	W3
21	19	12	0.6	1.00	217	217	49.5	4.8	1.1	5.0	HDU2	W6
31	6	12	2.0	1.00	314	314	22.6	0.9	3.8	4.2	HDU4	W6
32	5	12	2.4	0.83	314	376	18.8	0.8	3.9	4.1	HDU4	W6
41	6	12	2.0	1.00	575	575	41.4	0.9	7.2	7.4	HDU8	W3

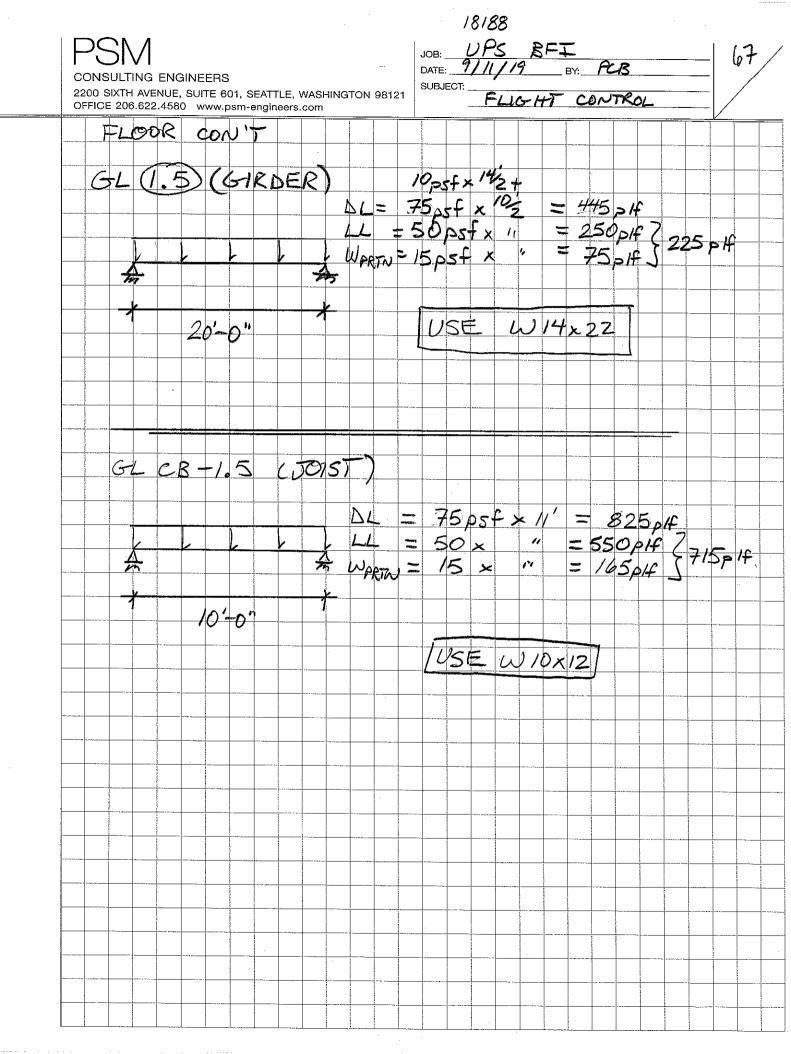
Wind Shearwall Capacities

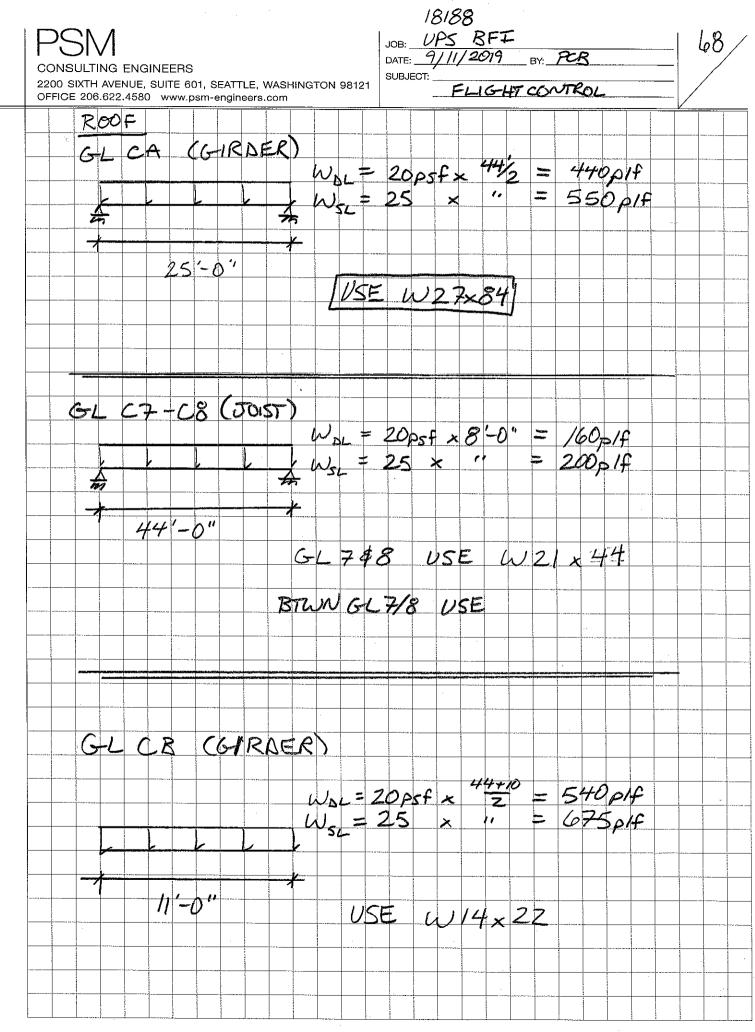
1/2" plywood (1-side) 10d com at 6" oc at panel edges 1/2" plywood (1-side) 10d com at 3" oc at panel edges W6 W3

Doug-Fir Capacity = 434 plf Doug-Fir Capacity = 840 plf

Shearwall Calculations - Seismic


Wall Mark	Dimensions L - ft	H - ft	H/L Ratio	SW Cap. Coeff.	Unit shear - plf	Shear / Coeffplf	OTM k-ft.	DL on wall wall (k)	Uplift (k)	Comp at ends - k	Holdown	Shearwall Type
11	5	12	2.4	0.83	205	246	12.3	1.3	2.3	3.1	HDU5	W3
12	5	12	2.4	0.83	205	246	12.3	1.3	2.3	3.1	HDU5	W3
21	19	12	0.6	1.00	108	108	24.6	4.8	-	3.7	HDU2	W6
31	6	12	2.0	1.00	186	186	13.4	0.9	2.1	2.7	HDU4	W6
32	5	12	2.4	0.83	186	224	11.2	0.8	2.2	2.6	HDU4	W6
41	6	12	2.0	1.00	342	342	24.6	0.9	4.2	4.6	HDU8	W3


 Seismic Shearwall Capacities


 W6
 1/2" plywood (1-side) 10d com at 6" oc at panel edges

 W3
 1/2" plywood (1-side) 10d com at 3" oc at panel edges

Doug-Fir Capacity = 310 plf Doug-Fir Capacity = 600 plf

.

18188 69 JOB: UPS BFI DATE: 9/11/19 BY: PCB SM CONSULTING ENGINEERS SUBJECT: FLIGHT CONTROL 2200 SIXTH AVENUE, SUITE 601, SEATTLE, WASHINGTON 98121 OFFICE 206.622.4580 www.psm-engineers.com ROOF CONT (GIRDER) G-L 1.5 $\frac{W_{0L}}{W_{0L}} = \frac{20\rho_{5}f \times 10'_{2}}{12} = \frac{100\rho_{1}f}{12}$ 4 201-0" (W10 x 15 USE GL CB/1.5 (JOIST) $W_{\text{NL}} = 20psf \times 11' - 0'' = 220plf$ $W_{\text{SL}} = 25 \times 11' = 275plf$ 4 *f* 10'-0" USE W 5x 16 OR/ H55 5x2x1/4

	Title Block Line 1					1. A	Project 7							
• •	You can change this an using the "Settings" me			·			Enginee Project I	r. D:	·					
·	and then using the "Pri						Project [•	
	Title Block" selection.													
	Title Block Line 6									-	·	rinted: 20 S		
	Steel Beam							File = L:\	obs\2018\18188	-UPS	BFI Seattl	e\Engineering\	Enercalc\181	188.ec6
	Lic. # .: KW-0600162							Lice	nsee : PE1	ERS	ON-ST	REHLE-M	ARTINS	ON, IN
	Description : FC	- GL CA (Floor G	irder)											
	CODE REFERI	ENCES										-		
•	Calculations per A		IBC 2012	CBC 201	3 ASCE 7	7.10								
	Load Combination			., 000 201	0,70021	-10								
	Material Prope													
	Analysis Method :		renath De	sian				Ev:	Steel Yield :		Ę	50.0 ksi		
	Beam Bracing :	Beam is Fully E	Braced agair		sional bucklir	ng			iodulus :			00.0 ksi		
	Bending Axis :	Major Axis B	ending											
	-						· · ·							
·	·		÷		D	(1.72) L(1	(.43)		÷					4
•						W27x8	4							Q
	A The second sec									·		1. s		A h
					s	Span = 25	.0 ft	-						
														i
	Applied Loads						Service	e loads en	ered. Load	Facto	ors will	he annlied	for calcu	lations
	Beam self weight		colculated a	nd addad			001110					ne applied	101 00.00	
	DESIGN SUMI Maximum Bend Section used for	ling Stress R or this span	atio =		0.404 : 1 /27x84			on used fo	this span	*			sign O 0.160 W27x84 20.274):1 4
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi	ling Stress R or this span a : Applied a / Omega : Allo on imum on span	owable	2	/27x84 46.094 k-f 08.782 k-f +D+L 12.500 ft	ť	Sectio Load C Locatio	on used for Va : Appli Vn/Omega Combination on of maxim	this span ed a : Allowable um on span				0.160 W27x84 39.375 245.640 +D+ 0.00):1 4 5 k) k L 0 ft
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m	ling Stress R or this span a : Applied a / Omega : Allo on imum on span naximum occurs	owable	2	/27x84 46.094 k-f 08.782 k-f +D+L	ť	Sectio Load C Locatio	on used for Va : Appli Vn/Omega Combination on of maxim	this span ed a : Allowable				0.160 W27x84 39.378 245.640 +D+):1 4 5 k) k L 0 ft
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle	ling Stress R or this span a : Applied a / Omega : Allo on imum on span naximum occurs action	owable	2	/27x84 46.094 k-ft 08.782 k-f +D+L 12.500ft Span # 1	ť	Sectio Load C Locatio Span #	on used for Va : Appli Vn/Omega Combination on of maxim t where ma	this span ed a : Allowable um on span				0.160 W27x84 39.375 245.640 +D+ 0.00):1 4 5 k) k L 0 ft
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m	ling Stress R or this span a : Applied a / Omega : Allo on imum on span naximum occurs action d Transient De	owable	2	/27x84 46.094 k-fi +D+L 12.500ft Span # 1 0.153 in 0.000 in	t t Ratio = Ratio =	Sectio Load C Locatio	on used for Va : Appli Vn/Omega Combination on of maxim where ma =360	this span ed a : Allowable um on span				0.160 W27x84 39.375 245.640 +D+ 0.00):1 4 5 k) k L 0 ft
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward	ling Stress R or this span a : Applied a / Omega : Allo on imum on span naximum occurs ection d Transient Defleo d Total Deflect	owable flection ction ion	2	/27x84 46.094 k-fi 08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in	t t Ratio = Ratio = Ratio =	Section Load C Location Span # 1,963 >= 0 <0 892 >=	on used for Va : Appli Vn/Omega Combination on of maxim where ma =360 =360 =240	this span ed a : Allowable um on span				0.160 W27x84 39.375 245.640 +D+ 0.00):1 4 5 k) k L 0 ft
	Maximum Bend Section used fo Ma Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Downward Max Downward Max Upward T	ling Stress R or this span a : Applied on imum on span naximum occurs ection d Transient Deflect d Total Deflect otal Deflection	ntection flection ction	26	/27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in	t t Ratio = Ratio = Ratio =	Section Load C Location Span # 1,963 >= 0 <3	on used for Va : Appli Vn/Omega Combination on of maxim where ma =360 =360 =240	this span ed a : Allowable um on span				0.160 W27x84 39.375 245.640 +D+ 0.00):1 4 5 k) k L 0 ft
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Upward T	ling Stress R or this span a : Applied on imum on span naximum occurs ection d Transient Deflect d Total Deflect otal Deflection	flection ction ion	2 6 Load Col	/27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in	t t Ratio = Ratio = Ratio = Ratio =	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2	on used for Va : Appli Vn/Omega Combination on of maxin f where ma =360 =360 =240 240	this span ed a : Allowable um on span kimum occur				0.160 W27x84 39.375 245.640 +D+ 0.00 Span #):1 4 5 k 0 k L 0 ft 1
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Upward T Max Upward T Max Upward T	ling Stress R or this span a : Applied of Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres	flection ction ion sses for Max Stres	2 6 Load Col	/27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in	t t Ratio = Ratio = Ratio = ns	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2	on used for Va : Appli Vn/Omega Combination on of maxim t where ma =360 =360 =240 240	ed a : Allowable um on span kimum occur	ŝ	Rm	Summ	0.160 W27x84 39.375 245.640 +D+ 0.000 Span #):1 4 5 k 0 k L 0 ft 1 ar Value
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defile Max Downward Max Upward T Max Downward Max Upward T Max Upward T Max Upward T Load Combination Segment Length D Only	ling Stress R or this span a : Applied on imum on span naximum occurs ection d Transient Deflect d Total Deflect otal Deflection	flection ction ion sses for <u>Max Stres</u> <u>M</u>	2 6 Load Col Is Ratios V	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio	t t Ratio = Ratio = Ratio = Ratio =	Load C Locatic Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max	on used for Va : Appli- Vn/Omega Combination on of maxim f where ma =360 =360 =240 240 Moment Value Mnx	this span ed a : Allowable um on span kimum occur	ŝ	Rm		0.160 W27x84 39.375 245.640 +D+ 0.000 Span #): 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defile Max Downward Max Upward T Max Downward Max Upward T Max Upward T Max Upward T Max Upward T Max Upward T Max Upward T Max Upward T Donly Dsgn. L = 25.00 ft	ling Stress R or this span a : Applied of Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres	flection ction ion sses for Max Stres	2 6 Load Col s Ratios	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in	t t Ratio = Ratio = Ratio = ns	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2	on used for Va : Appli Vn/Omega Combination on of maxim t where ma =360 =360 =240 240	ed a : Allowable um on span kimum occur	ŝ		Summ	0.160 W27x84 39.375 245.640 +D+ 0.000 Span #):1 4 5 k 1 k 1 0 ft 1 ar Value Vnx/Om
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defile Max Downward Max Upward T Max Downward Max Upward T Max Upward T Max Upward T Load Combination Segment Length D Only	ling Stress R or this span a : Applied of Omega : Alle on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres Span #	flection ction ion sses for <u>Max Stres</u> <u>M</u>	2 6 Load Col Is Ratios V	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio	t t Ratio = Ratio = Ratio = ns	Load C Locatic Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max	on used for Va : Appli- Vn/Omega Combination on of maxim f where ma =360 =360 =240 240 Moment Value Mnx	ed a : Allowable um on span kimum occur es Mnx/Omega	rs Cb	1.00	Summ Va Max	0.160 W27x84 39.375 245.640 +D+ 0.00 Span #): 1 4 5 k 1 0 ft 1 ar Value Vnx/Om 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Downward Max Upward T Max Downward Max Upward T Max Upward T Load Combination Segment Length D Only Dsgn. L = 25.00 ft +D+L Dsgn. L = 25.00 ft +D+0.750L	ling Stress R or this span : Applied of Omega : Allo on imum on span naximum occurs ection d Transient Deflect ortal Deflection ces & Stres Span #	flection ction ion <u>Max Stree</u> <u>M</u> 0.221 0.404	2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/27x84 46.094 k-f 08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio Mmax + 134.38 246.09	t t Ratio = Ratio = Ratio = ns	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09	on used for Va : Appli- Vn/Omega Combination on of maxim f where ma =360 =240 =240 Aoment Value Mox 1,016.67 1,016.67	es 608.78 608.78	S Cb 1.00	1.00 1.00	Summ Va Max 21.50 39.38	0.160 W27x84 39.375 245.640 +D+ 0.000 Span # Span # Nary of She Vnx 368.46 368.46): 1 4 5 k 0 k L 0 ft 1 ar Value Vnx/Om 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Upward T Upward T Donly Dsgn. L = 25.00 ft +D+0.750L Dsgn. L = 25.00 ft +0.60D	ling Stress R or this span : Applied of Omega : Allo on imum on span naximum occurs ection d Transient Deflect ortal Deflection ces & Stres Span #	owable flection ction ion sses for <u>Max Stres</u> <u>M</u> 0.221	2 6 <u>Load Col</u> s Ratios V 0.088	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio Mmax + 134.38	t t Ratio = Ratio = Ratio = ns	Load C Locatic Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38	on used for Va : Appli Vn/Omega Combination on of maxim # where ma =360 =240 240 Moment Value Mox 1,016.67	this span ed a : Allowable um on span kimum occur es <u>Mnx/Omega</u> 608.78	rs Cb 1.00	1.00 1.00	Summ Va Max 21.50	0.160 W27x84 39.375 245.640 +D+ 0.00 Span # Span #): 1 4 5 k) k L 0 ft 1 <u>ar Value</u> Vnx/Om 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Downward Max Upward T Max Upward T Max Upward T Max Upward T Load Combination Segment Length D Only Dsgn. L = 25.00 ft +D+0.750L Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft	ling Stress R or this span a : Applied of Omega : Alle on imum on span naximum occurs ection d Transient Deflect d Total Deflect otal Deflection ces & Stres <u>Span #</u> 1 1 1 1	flection ction ion <u>Max Stree</u> <u>M</u> 0.221 0.404 0.358 0.132	2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/27x84 46.094 k-f 08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio Mmax + 134.38 246.09	t t Ratio = Ratio = Ratio = ns	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09	on used for Va : Appli- Vn/Omega Combination on of maxim f where ma =360 =240 =240 Aoment Value Mox 1,016.67 1,016.67	es 608.78 608.78	S Cb 1.00	1.00 1.00 1.00	Summ Va Max 21.50 39.38	0.160 W27x84 39.375 245.640 +D+ 0.000 Span # Span # Nary of She Vnx 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 24: 24: 24:
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Upward T Segnent Length D Only Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft	ling Stress R or this span a : Applied of Omega : Alle on imum on span naximum occurs ection d Transient Deflect d Total Deflect otal Deflection ces & Stres <u>Span #</u> 1 1 1 1	flection ction ion <u>sses for</u> <u>Max Stres</u> <u>M</u> 0.221 0.404 0.358 0.132 tions	2 6 Load Col <u>s Ratios</u> <u>V</u> 0.088 0.160 0.142 0.053	/27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio Mmax + 134.38 246.09 218.16 80.63	t t Ratio = Ratio = Ratio = S Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16 80.63	on used for Va : Appli Vn/Omega Combination on of maxim where ma =360 =240 240 Moment Value Mnx 1,016.67 1,016.67 1,016.67	es Mnx/Omega 608.78 608.78 608.78	S Cb 1.00 1.00	1.00 1.00 1.00 1.00	Summ Va Max 21.50 39.38 34.91 12.90	0.160 W27x84 39.375 245.640 +D+ 0.00 Span # Span # 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Downward Max Upward T Max Downward Max Downward Segnen Legth Donly Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft -0.60D Dsgn. L = 25.00 ft	ling Stress R or this span a : Applied of Omega : Alle on imum on span naximum occurs ection d Transient Deflect d Total Deflect otal Deflection ces & Stres <u>Span #</u> 1 1 1 1	flection ction ion <u>Max Stree</u> <u>M</u> 0.221 0.404 0.358 0.132	2 6 Load Co is Ratios V 0.088 0.160 0.142 0.053 Max. "-" Defi	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbination Mmax + 134.38 246.09 218.16 80.63 Location	t t Ratio = Ratio = Ratio = <u>S</u> Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16	on used for Va : Appli Vn/Omega Combination on of maxim where ma =360 =240 240 Moment Value Mnx 1,016.67 1,016.67 1,016.67	es Mnx/Omega 608.78 608.78 608.78	S Cb 1.00 1.00	1.00 1.00 1.00 1.00	Summ Va Max 21.50 39.38 34.91 12.90 x. "+" Defi	0.160 W27x84 39.375 245.64(+D+ 0.00 Span # 368.46 368.46 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Upward T Donly Dsgn. L = 25.00 ft +0+0.750L Dsgn. L = 25.00 ft +006D Dsgn. L = 25.00 ft -0.60D Dsgn. L = 25.00 ft -0.60D Dsgn. L = 25.00 ft -0.60D Dsgn. L = 25.00 ft -0.60D Dsgn. L = 25.00 ft -0.60D	ling Stress R or this span : Applied i / Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres <u>Span #</u> 1 1 1 1 1 1	flection ction ion <u>sses for</u> <u>Max Stres</u> <u>M</u> 0.221 0.404 0.358 0.132 tions	2 6 Load Col <u>s Ratios</u> <u>V</u> 0.088 0.160 0.142 0.053	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbination Mmax + 134.38 246.09 218.16 80.63 Location	t t t Ratio = Ratio = Ratio = Mmax - <u>S</u> Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16 80.63 Load Cor	on used for Va : Appli- Vn/Omeg: Combination on of maxim where ma =360 360 =240 240 240 240 240 240 240 240 240 240	es Mnx/Omega 608.78 608.78 608.78	Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Summ Va Max 21.50 39.38 34.91 12.90 x. *+* Defl 0.0000	0.160 W27x84 39.375 245.64(+D+ 0.00 Span # 368.46 368.46 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Upward T Load Combination Segment Length D Only Dsgn. L = 25.00 ft +D+0.750L Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft Overall Maxim Load Combination +D+L Vertical Reac	ling Stress R or this span : Applied i / Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres <u>Span #</u> 1 1 1 1 1 1	flection ction ion <u>Max Stree</u> <u>M</u> 0.221 0.404 0.358 0.132 tions Span 1	2 6 Load Col Is Ratios V 0.088 0.160 0.142 0.053 Max. *- Defi 0.3365	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbination Mmax + 134.38 246.09 218.16 80.63 Location	t t t Ratio = Ratio = Ratio = Mmax - <u>S</u> Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16 80.63	on used for Va : Appli- Vn/Omeg: Combination on of maxim where ma =360 360 =240 240 240 240 240 240 240 240 240 240	es Mnx/Omega 608.78 608.78 608.78	Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Summ Va Max 21.50 39.38 34.91 12.90 x. *+* Defl 0.0000	0.160 W27x84 39.375 245.64(+D+ 0.00 Span # 368.46 368.46 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Downward Segment Length D Only Dsgn. L = 25.00 ft +D+0.750L Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft +0.40D Dsgn. L = 25.00 ft	ling Stress R or this span : Applied i / Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres <u>Span #</u> 1 1 1 1 1 1	flection ction ion <u>Max Stree</u> <u>M</u> 0.221 0.404 0.358 0.132 tions Span 1 Support 1	2 6 Load Col Is Ratios V 0.088 0.160 0.142 0.053 Max. "-" Defl 0.3365 Support 2	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbination Mmax + 134.38 246.09 218.16 80.63 Location	t t t Ratio = Ratio = Ratio = Mmax - <u>S</u> Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16 80.63 Load Cor	on used for Va : Appli- Vn/Omeg: Combination on of maxim where ma =360 360 =240 240 240 240 240 240 240 240 240 240	es Mnx/Omega 608.78 608.78 608.78	Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Summ Va Max 21.50 39.38 34.91 12.90 x. *+* Defl 0.0000	0.160 W27x84 39.375 245.64(+D+ 0.00 Span # 368.46 368.46 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Upward T Load Combination Segment Length D Only Dsgn. L = 25.00 ft +D+0.750L Dsgn. L = 25.00 ft +0.60D Dsgn. L = 25.00 ft Overall Maxim Load Combination +D+L Vertical Reac	ling Stress R or this span : Applied i / Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres <u>Span #</u> 1 1 1 1 1 1	flection ction ion <u>Max Stree</u> <u>M</u> 0.221 0.404 0.358 0.132 tions Span 1	2 6 Load Col Is Ratios V 0.088 0.160 0.142 0.053 Max. *- Defi 0.3365	27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbination Mmax + 134.38 246.09 218.16 80.63 Location	t t t Ratio = Ratio = Ratio = Mmax - <u>S</u> Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16 80.63 Load Cor	on used for Va : Appli- Vn/Omeg: Combination on of maxim where ma =360 360 =240 240 240 240 240 240 240 240 240 240	es Mnx/Omega 608.78 608.78 608.78	Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Summ Va Max 21.50 39.38 34.91 12.90 x. *+* Defl 0.0000	0.160 W27x84 39.375 245.64(+D+ 0.00 Span # 368.46 368.46 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Upward T Segment Length Donly Donly Core all Maximum Overall Minimum D Only	ling Stress R or this span : Applied i / Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres <u>Span #</u> 1 1 1 1 1 1	flection ction ion Sses for Max Stres M 0.221 0.404 0.358 0.132 tions Span 1 Support 1 39.375 12.900 21.500	2 6 Load Col <u>s Ratios</u> <u>V</u> 0.088 0.160 0.142 0.053 <u>Max. "-" Dell</u> 0.3365 <u>Support 2</u> <u>39.375</u> 12.900 21.500	/27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio Mmax + 134.38 246.09 218.16 80.63 Location	t t t Ratio = Ratio = Ratio = Mmax - <u>S</u> Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16 80.63 Load Cor	on used for Va : Appli- Vn/Omeg: Combination on of maxim where ma =360 360 =240 240 240 240 240 240 240 240 240 240	es Mnx/Omega 608.78 608.78 608.78	Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Summ Va Max 21.50 39.38 34.91 12.90 x. *+* Defl 0.0000	0.160 W27x84 39.375 245.64(+D+ 0.00 Span # 368.46 368.46 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Upward T Donly HD-L Dagn L = 25.00 ft Overall Maxim Upward T Nation Overall Maximum Overall Minimum D Only HD-L	ling Stress R or this span : Applied i / Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres <u>Span #</u> 1 1 1 1 1 1	flection ction ion sses for Max Stress M 0.221 0.404 0.358 0.132 tions Span 1 39.375 12.900 21.500 39.375	2 6 Load Col Is Ratios V 0.088 0.160 0.142 0.053 Max. "-" Dell 0.3365 Support 2 39.375 12.900 21.500 39.375	/27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio Mmax + 134.38 246.09 218.16 80.63 Location	t t t Ratio = Ratio = Ratio = Mmax - <u>S</u> Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16 80.63 Load Cor	on used for Va : Appli- Vn/Omeg: Combination on of maxim where ma =360 360 =240 240 240 240 240 240 240 240 240 240	es Mnx/Omega 608.78 608.78 608.78	Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Summ Va Max 21.50 39.38 34.91 12.90 x. *+* Defl 0.0000	0.160 W27x84 39.375 245.64(+D+ 0.00 Span # 368.46 368.46 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245 245
	Maximum Bend Section used fo Ma Mn Load Combinatio Location of maxi Span # where m Maximum Defle Max Downward Max Upward T Max Downward Max Upward T Max Downward Max Upward T Max Upward T Segment Length Donly Donly Core all Maximum Overall Minimum D Only	ling Stress R or this span : Applied i / Omega : Allo on imum on span naximum occurs ection d Transient Deflect oral Deflection ces & Stres <u>Span #</u> 1 1 1 1 1 1	flection ction ion Sses for Max Stres M 0.221 0.404 0.358 0.132 tions Span 1 Support 1 39.375 12.900 21.500	2 6 Load Col <u>s Ratios</u> <u>V</u> 0.088 0.160 0.142 0.053 <u>Max. "-" Dell</u> 0.3365 <u>Support 2</u> <u>39.375</u> 12.900 21.500	/27x84 46.094 k-f i08.782 k-f +D+L 12.500ft Span # 1 0.153 in 0.000 in 0.337 in 0.000 in mbinatio Mmax + 134.38 246.09 218.16 80.63 Location	t t t Ratio = Ratio = Ratio = Mmax - <u>S</u> Mmax -	Section Load C Location Span # 1,963 >= 0 <2 892 >= 0 <2 Summary of M Ma Max 134.38 246.09 218.16 80.63 Load Cor	on used for Va : Appli- Vn/Omeg: Combination on of maxim where ma =360 360 =240 240 240 240 240 240 240 240 240 240	es Mnx/Omega 608.78 608.78 608.78	Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Summ Va Max 21.50 39.38 34.91 12.90 x. *+* Defl 0.0000	0.160 W27x84 39.375 245.64(+D+ 0.00 Span # 368.46 368.46 368.46 368.46 368.46 368.46) : 1 4 5 k) k L 0 ft 1 ar Value Vnx/Om 245 245 245 245 245

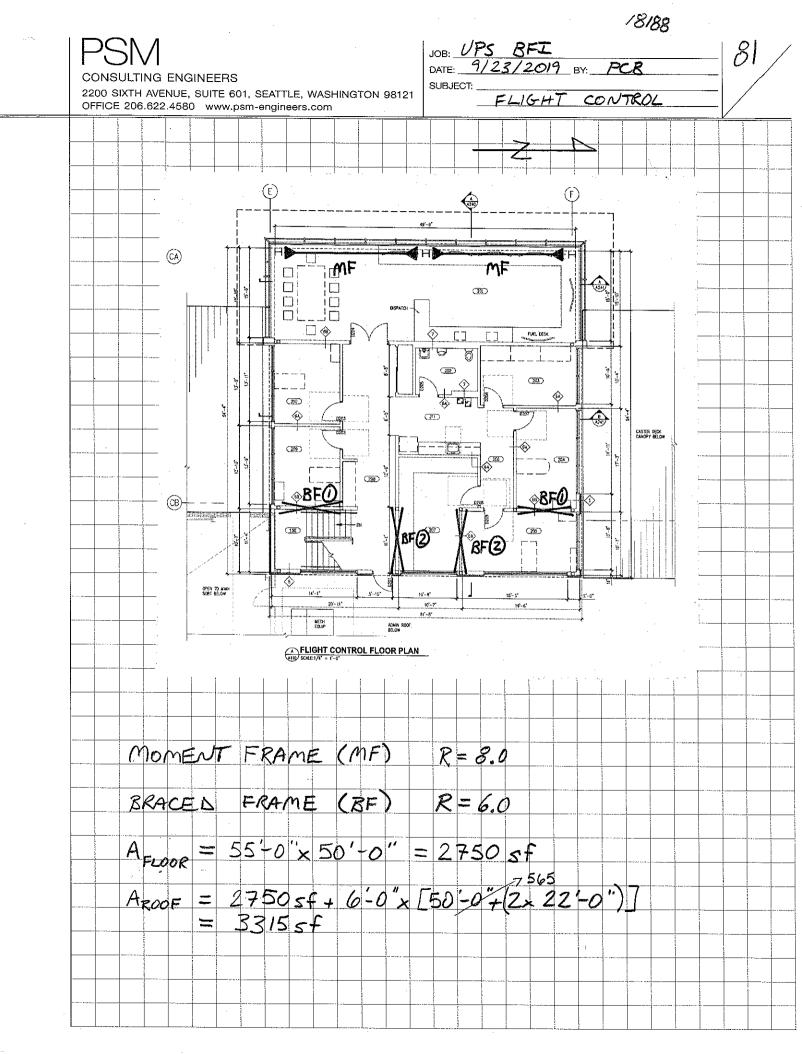
u can change this area ng the "Settings" menu	item			·····		Project II	:):						
d then using the "Printin						Project D)escr:						· N
le Block" selection.	•						÷.						
le Block Line 6							F -3 4 6				Printed: 28 O		
teel Beam							File = LA	obs\2018\1818	3-UPS	BH Seatt	ie\Engineering	Enercalc) 18	188.600
c. # : KW-06001622							Lice	insee : PE	rer\$	ON-ST	REHLE-M	ARTINS	ON, INC
escription : FC - C	A/CB (Floor Jo	DIST)											
CODE REFEREN	CES												
alculations per AIS	C 360-10,	IBC 2012,	CBC 20	3, ASCE	7-10								
oad Combination Se	et : ASCE	7-10											
Material Properti	es												
Analysis Method : All								Steel Yield	·.		50.0 ksi		
		braced agains	st lateral-to	sional buck	ding		E: N	lodulus :		29,00	00.0 ksi		
Bending Axis : Ma	njor Axis B	enaing											
· .													
				C	<u>)(0.525) L(</u>	0.46)	·		<u>.</u>				
							10000.200		, (*				Ĩ
A					W21x6	7							Ŷ
A					992 IXO.								
					Span = 44	1.0 ft					19 - A		.1
													•
· · · ·								÷					
Applied Loads						Service	loads en	tered. Load	Fact	ors will	be applied	for calc	ulations
Beam self weight NO	T internally (calculated an	habhe hr										
Uniform Load :				Width = 1.	0 ft								
DESIGN SUMMA	RV											sian A	ĸ
DESIGN SUMMA Maximum Bendinc	/A 36. A W M A WA W A V LOT 16 /6 - A / A	atio =		0.663 : 1	1 Max	ximum She	ear Stres	s Ratio =		-	De	esign O 0 12	
Maximum Bending Section used for the) Stress R his span	atio =	v	0.663 : 1 V21x62	1 Max	ximum Sho Sectio		s Ratio = this span		-	De	sign 0 0.12 W21x6	9:1
Maximum Bending Section used for the Ma : A) Stress Ra his span Applied			V21x62 238.370 k	-ft	Section	n used foi Va : Applie	this span ed		<u> </u>	De	0.12 W21x6 21.67	99:1 22 0 k
Maximum Bending Section used for the Ma : A Mn / C) Stress R his span			V21x62 238.370 k 359.281 k	-ft	Section N	n used for Va : Applie Vn/Omega	this span ed a : Allowabl	e	ļ	De	0.12 W21x6 21.67 168.	99:1 2 0k 0k
Maximum Bending Section used for the Ma : A Mn / C Load Combination	y Stress Ra his span Applied Omega : Allo			V21x62 238.370 k 359.281 k +D+L	-ft -ft	Section N Load Co	n used for Va : Applie Vn/Omega ombinatior	r this span ed a : Allowabl 1			De	0.12 W21x6 21.67 168. +D+	99:1 22 0k 0k
Maximum Bending Section used for the Ma : A Mn / C	y Stress Ra his span Applied Omega : Allo m on span			V21x62 238.370 k 359.281 k	-ft -ft	Section N Load Co Locatio	n used for Va : Applie Vn/Omega ombination n of maxim	this span ed a : Allowabl num on spar	I		De	0.12 W21x6 21.67 168. +D+ 0.00	99:1 27 0k 0k -L 00ft
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maximu Maximum Deflection	y Stress Ra his span opplied Dmega : Allo m on span mum occurs on	owable		V21x62 238.370 k 359.281 k +D+L 22.000ft	-ft -ft	Section N Load Co Locatio	n used for Va : Applie Vn/Omega ombination n of maxim	r this span ed a : Allowabl 1	I		De	0.12 W21x6 21.67 168. +D+	99:1 27 0k 0k -L 00ft
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maximu Maximum Deflection Max Downward The) Stress Ra his span opplied Dmega : Allo m on span mum occurs on ransient De	owable		V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in	-ft -ft n Ratio =	Section Load C Locatio Span # 522 >=	n used for Va : Applie Vn/Omega ombinatior n of maxim where ma 360	this span ed a : Allowabl num on spar	I		De	0.12 W21x6 21.67 168. +D+ 0.00	99:1 27 0k 0k -L 00ft
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maximu Maximum Deflection Max Downward Tran) Stress Ra his span opplied Dmega : Allo m on span mum occurs on ransient Defleo	flection		V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in	-ft -ft 1 Ratio = 1 Ratio =	Section Load C Locatio Span # 522 >= 0 <3	n used for Va : Applie Vn/Omega ombinatior n of maxim where ma 360 60	this span ed a : Allowabl num on spar	I		De	0.12 W21x6 21.67 168. +D+ 0.00	99:1 27 0k 0k -L 00ft
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maximu Maximum Deflection Max Downward The) Stress Ra his span opplied Drega : Allo m on span mum occurs on ransient De sient Deflect	flection		V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in	-ft -ft n Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >=	n used for Va : Applie Vn/Omega ombinatior n of maxim where ma 360 60 240	this span ed a : Allowabl num on spar	I		De	0.12 W21x6 21.67 168. +D+ 0.00	99:1 27 0k 0k -L 00ft
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Tran Max Downward Tran Max Upward Tota	Stress Ra his span opplied Dmega : Allo m on span mum occurs on ransient De sient Deflect I Deflection	flection ction		V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 2.164 in 0.000 in	-ft -ft 1 Ratio = 1 Ratio = 1 Ratio =	Section Load C Locatio Span # 522 >= 0 <3	n used for Va : Applie Vn/Omega ombinatior n of maxim where ma 360 60 240	this span ed a : Allowabl num on spar	I		De	0.12 W21x6 21.67 168. +D+ 0.00	99:1 27 0k 0k -L 00ft
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maximu Maximum Deflection Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota	Stress Ra his span opplied Dmega : Allo m on span mum occurs on ransient De sient Deflect I Deflection	flection tion ion	Load Co	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 2.164 in 0.000 in	-ft -ft -ft -ft -ft -ft -ft -ft -ft -ft	Section Load C Location Span # 522 >= 0 <3 244 >= 0 <2	n used for Va : Applie Vn/Omega ombinatior n of maxim where ma 360 60 240 40	r this span ed a : Allowabl um on spar ximum occu	I			0.12 W21x6 21.67 168. +D4 0.00 Span #	99:1 20 0 k 0 k -L 10 ft 1
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maximu Maximum Deflection Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota	Stress Ra his span oplied mega : Allo mon span mum occurs on ransient De sient Deflect I Deflection s & Stres	flection ction ion Ses for L Max Stress	oad Co	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in	-ft -ft -ft Ratio = Ratio = Ratio = Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2	n used for Va : Applie Vn/Omega ombination n of maxim where ma 360 60 240 40	ethis span ed a : Allowabl n num on spar ximum occu	rs	Rm	Sumn	0.12 W21x6 21.67 168. +D+ 0.00 Span #	9:1 2 0 k 0 k -L 0 ft 1 2
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Maximum Forces	Stress Ra his span opplied Dmega : Allo m on span mum occurs on ransient De sient Deflect I Deflection	flection tion ion	Load Co	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 2.164 in 0.000 in	-ft -ft -ft -ft -ft -ft -ft -ft -ft -ft	Section Load C Location Span # 522 >= 0 <3 244 >= 0 <2	n used for Va : Applie Vn/Omega ombinatior n of maxim where ma 360 60 240 40	r this span ed a : Allowabl um on spar ximum occu	rs	Rm		0.12 W21x6 21.67 168. +D+ 0.00 Span #	9:1 2 0 k 0 k -L 0 ft 1 2
Maximum Bending Section used for the Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Ta Max Upward Tran Max Upward Tota Max Upward Tota	Stress Ra his span oplied mega : Allo mon span mum occurs on ransient De sient Deflect I Deflection s & Stres	flection ction ion Ses for L Max Stress	oad Co	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in	-ft -ft -ft Ratio = Ratio = Ratio = Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2	n used for Va : Applie Vn/Omega ombination n of maxim where ma 360 60 240 40	ethis span ed a : Allowabl n num on spar ximum occu	rs		Sumn	0.12 W21x6 21.67 168. +D+ 0.00 Span #	9:1 2 0 k 0 k -L 0 ft 1 sar Value Vnx/Om
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Tra Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Maximum Force Dad Combination Segment Length Only Dsgn. L = 44.00 ft D+L	Stress Ra his span pplied Omega : Allo m on span mum occurs on ransient De sient Deflect total Deflection s & Stres Span #	flection tion ion Max Stress M 0.354	Load Co Ratios V 0.069	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic Mmax + 127.05	-ft -ft -ft Ratio = Ratio = Ratio = Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05	n used for Va : Applie Vn/Omega ombination n of maxim where ma 360 60 240 40 loment Valu Mnx 600.00	ethis span ed a : Allowabl num on spar ximum occu es Mnx/Omega 359.28	rs <u>Cb</u> 1.00	1.00	Sumn Va Max 11.55	0.12 W21x6 21.67 168. +D+ 0.00 Span # nary of She Vnx 252.00	9:1 2 0 k 0 k -L 00 ft 1 ear Value Vnx/Om
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Segment Length Only Dsgn. L = 44.00 ft D+L Dsgn. L = 44.00 ft D+0.750L	Stress Ra his span oplied mega : Allo mon span mum occurs on ransient De sient Deflect I Deflection s & Stres	flection ction ion Max Stress M	oad Co Ratios V	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic	-ft -ft -ft Ratio = Ratio = Ratio = Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 Ioment Valu Mnx	ethis span ed a : Allowabl um on span ximum occu es Mnx/Omega	rs I Cb	1.00	Sumn Va Max	0.12 W21x6 21.67 168. +D+ 0.00 Span # nary of She Vnx	9:1 2 0 k 0 k -L 00 ft 1 ear Value Vnx/Om
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Dogn L = 44.00 ft D-L Dsgn L = 44.00 ft	Stress Ra his span pplied Omega : Allo m on span mum occurs on ransient De sient Deflect total Deflection s & Stres Span #	flection tion ion Max Stress M 0.354	Load Co Ratios V 0.069	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic Mmax + 127.05	-ft -ft -ft Ratio = Ratio = Ratio = Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05	n used for Va : Applie Vn/Omega ombination n of maxim where ma 360 60 240 40 loment Valu Mnx 600.00	ethis span ed a : Allowabl num on spar ximum occu es Mnx/Omega 359.28	rs 1.00 1.00	1.00	Sumn Va Max 11.55	0.12 W21x6 21.67 168. +D+ 0.00 Span # nary of She Vnx 252.00	9:1 2 0 k 0 k -L 00 ft 1 2 2 2 3 4 3 4 3 4 3 4 5 4 5 4 5 4 5 4 5 4 5 4
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Segment Length Only Dsgn. L = 44.00 ft D+L Dsgn. L = 44.00 ft D+0.750L	Stress Ra his span pplied Dmega : Allo m on span mum occurs on ransient De sient Deflect otal Deflect I Deflection s & Stres Span # 1	flection ction ion ses for L <u>Max Stress</u> <u>M</u> 0.354 0.663	_oad Co s Ratios V 0.069 0.129 0.114	V21x62 238.370 k. 359.281 k. +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatio Mmax + 127.05 238.37 210.54	-ft -ft -ft Ratio = Ratio = Ratio = Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 loment Valu Mnx 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00	Sumn Va Max 11.55 21.67 19.14	0.12 W21x6 21.67 168. +D+ 0.00 Span # nary of She Vnx 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L)0 ft 1 2 2 2 3 4 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflectin Max Downward Tr Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Dogn. L = 44.00 ft D-L Dsgn. L = 44.00 ft D-60D Dsgn. L = 44.00 ft) Stress Ra his span opplied Drega : Allo m on span mum occurs on ransient De sient Deflect I Deflection s & Stres Span # 1 1 1	flection ction ion <u>Max Stress</u> <u>M</u> 0.354 0.663 0.586 0.212	<u>-oad Co</u> s Ratios V 0.069 0.129	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 2.164 in 0.000 in mbinatic Mmax + 127.05 238.37	-ft -ft -ft Ratio = Ratio = Ratio = Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37	n used for Va : Applie Vn/Omega ombinatior n of maxim where mai 360 60 240 40 loment Valu Mnx 600.00 600.00	ethis span ed a : Allowabl ium on spar ximum occu es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00	Sumn Va Max 11.55 21.67	0.12' W21x6 21.67' 168. +D+ 0.00 Span # nary of She Vnx 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 3 4 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Ta Max Upward Tota Max) Stress Ra his span opplied Drega : Allo m on span mum occurs on ransient De sient Deflect I Deflection s & Stres Span # 1 1 1	flection tion ion <u>Max Stress</u> <u>M</u> 0.354 0.663 0.586 0.212 tions	<u>−oad Co</u> Ratios V 0.069 0.129 0.114 0.041	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft -ft -ft -ft -ft -ft -ft -ft	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54 76.23	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 Ioment Valu Mnx 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Sumn Va Max 11.55 21.67 19.14 6.93	0.12' W21x6 21.67' 168. +D+ 0.00 Span # nary of She Vnx 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 3 4 4 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflectin Max Downward Tr Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Dogn. L = 44.00 ft D-L Dsgn. L = 44.00 ft D-60D Dsgn. L = 44.00 ft) Stress Ra his span opplied Drega : Allo m on span mum occurs on ransient De sient Deflect I Deflection s & Stres Span # 1 1 1	flection ction ion <u>Max Stress</u> <u>M</u> 0.354 0.663 0.586 0.212	<u>-oad Co</u> Ratios V 0.069 0.129 0.114 0.041 Max. "-" Def	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft Ratio = Ratio = Ratio = Ratio =	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 Ioment Valu Mnx 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Sumn Va Max 11.55 21.67 19.14 6.93 x. "+" Defi	0.12: W21x6 21.67 168. +D-4 0.00 Span # nary of She Vnx 252.00 252.00 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Tran Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Dogn. L = 44.00 ft Dogn. L = 44.00 ft	Stress Rinks span splied mega : Allo mon span mum occurs on ransient Deflect otal Deflection s & Stres Span # 1 1 1 1 n Deflec	flection ction ion <u>ses for l</u> <u>Max Stress</u> <u>M</u> 0.354 0.663 0.586 0.212 tions Span	<u>−oad Co</u> Ratios V 0.069 0.129 0.114 0.041	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft -ft -ft -ft -ft - - - - - -	Section Load Cd Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54 76.23 Load Corr	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 240 40 240 40 600.00 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma:	Sumn Va Max 11.55 21.67 19.14 6.93 x. "+" Defl 0.0000	0.12: W21x6 21.67 168. +D-4 0.00 Span # nary of She Vnx 252.00 252.00 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 3 4 4 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Downward Tr Max Upward Tota Max Upward Tota Downward To Max Upward Tota Max Upward Tota Max Upward Tota Downward Tota Max Upward Tota Max Upward Tota Max Upward Tota Downward Tota Max Upward Tota Downward Tota Max Upward Tota Downward Tota Max Upward Tota Downward Tota Max Upward Tota Dogn. L = 44.00 ft Dogn. L = 44.00 ft Ocerall Maximum Load Combination	Stress Ra his span pplied Omega : Allo mon span mum occurs on ransient Deflect otal Deflection s & Stress Span # 1 1 1 1 n Deflec	flection ction ion <u>ses for l</u> <u>Max Stress</u> <u>M</u> 0.354 0.663 0.586 0.212 tions Span 1	<u>-oad Co</u> Ratios V 0.069 0.129 0.114 0.041 Max. "-" Def	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft -ft -ft -ft -ft - - - - - -	Section Load C Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54 76.23	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 240 40 240 40 600.00 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Sumn Va Max 11.55 21.67 19.14 6.93 x. "+" Defl 0.0000	0.12: W21x6 21.67 168. +D-4 0.00 Span # nary of She Vnx 252.00 252.00 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Maximum Bending Section used for ti Ma : A Mn / C Load Combination Location of maximu Span # where maxii Maximum Deflectio Max Downward Tran Max Downward Tran Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Dogn L = 44.00 ft Dogn L = 44.0	Stress Ra his span pplied Omega : Allo mon span mum occurs on ransient Deflect otal Deflection s & Stress Span # 1 1 1 1 n Deflec	flection ction ion <u>ses for l</u> <u>Max Stress</u> <u>M</u> 0.354 0.663 0.586 0.212 tions Span	<u>-oad Co</u> s Ratios V 0.069 0.129 0.114 0.041 Max. '-' Def 2.1635	V21x62 238.370 k 359.281 k +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft -ft -ft -ft -ft - - - - - -	Section Load Cd Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54 76.23 Load Corr	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 240 40 240 40 600.00 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma:	Sumn Va Max 11.55 21.67 19.14 6.93 x. "+" Defl 0.0000	0.12: W21x6 21.67 168. +D-4 0.00 Span # nary of She Vnx 252.00 252.00 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Maximum Bending Section used for ti Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Tran Max Downward Tran Max Downward Tran Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Dogn. L = 44.00 ft Dogn. L = 44.00 ft Do	Stress Ra his span pplied Omega : Allo mon span mum occurs on ransient Deflect otal Deflection s & Stress Span # 1 1 1 1 n Deflec	flection ction ion ises for L Max Stress M 0.354 0.663 0.586 0.212 Elions Span 1 Support 1 21.670 6.930	_oad Co s Ratios V 0.069 0.129 0.114 0.041 Max. "-" Def 2.1635 Support 2 21.670 6.930	V21x62 238.370 k. 359.281 k. +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatic Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft -ft -ft -ft -ft - - - - - -	Section Load Cd Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54 76.23 Load Corr	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 240 40 240 40 600.00 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma:	Sumn Va Max 11.55 21.67 19.14 6.93 x. "+" Defl 0.0000	0.12: W21x6 21.67 168. +D-4 0.00 Span # nary of She Vnx 252.00 252.00 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Maximum Bending Section used for ti Ma : A Mn / C Load Combination Location of maximu Span # where maxii Maximum Deflectio Max Downward Tran Max Downward Tran Max Downward Tran Max Upward Tran Max Upward Tota Max Upward Tota Dog. L = 44.00 ft Dog. L = 40.00 ft Dog. L = 40	Stress Ra his span pplied Omega : Allo mon span mum occurs on ransient Deflect otal Deflection s & Stress Span # 1 1 1 1 n Deflec	flection ction ion isses for l Max Stress M 0.354 0.663 0.212 fions Span 1 Support 1 21.670 6.930 11.550	Load Co Ratios V 0.069 0.129 0.114 0.041 Max. "-" Def 2.1635 Support 2 21.670 6.930 11.550	V21x62 238.370 k. 359.281 k. +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatio Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft -ft -ft -ft -ft - - - - - -	Section Load Cd Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54 76.23 Load Corr	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 240 40 240 40 600.00 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma:	Sumn Va Max 11.55 21.67 19.14 6.93 x. "+" Defl 0.0000	0.12: W21x6 21.67 168. +D-4 0.00 Span # nary of She Vnx 252.00 252.00 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Maximum Bending Section used for ti Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflection Max Downward Tran Max Downward Tran Max Downward Tran Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Dogn. L = 44.00 ft Dogn. L = 44.00 ft Do	Stress Ra his span pplied Omega : Allo mon span mum occurs on ransient Deflect otal Deflection s & Stress Span # 1 1 1 1 n Deflec	flection ction ion ises for L Max Stress M 0.354 0.663 0.586 0.212 Elions Span 1 Support 1 21.670 6.930	_oad Co s Ratios V 0.069 0.129 0.114 0.041 Max. "-" Def 2.1635 Support 2 21.670 6.930	V21x62 238.370 k. 359.281 k. +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatis Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft -ft -ft -ft -ft - - - - - -	Section Load Cd Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54 76.23 Load Corr	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 240 40 240 40 600.00 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma:	Sumn Va Max 11.55 21.67 19.14 6.93 x. "+" Defl 0.0000	0.12: W21x6 21.67 168. +D-4 0.00 Span # nary of She Vnx 252.00 252.00 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Maximum Bending Section used for th Ma : A Mn / C Load Combination Location of maximu Span # where maxin Maximum Deflectio Max Downward Tran Max Upward Tran Max Upward Tran Max Upward Tota Max Upward Tota Dogn L = 44.00 ft Dogn L = 44.00	Stress Ra his span pplied Omega : Allo mon span mum occurs on ransient Deflect otal Deflection s & Stress Span # 1 1 1 1 n Deflec	Sees for I Max Stress M 0.354 0.663 0.586 0.212 filons Span 1 21.670 6.930 11.550 21.670	Load Co Ratios V 0.069 0.129 0.114 0.041 Max. "-" Def 2.1635 Support 2 2.1635 Support 2 2.1670 6.930 11.550 21.670	V21x62 238.370 k. 359.281 k. +D+L 22.000ft Span # 1 1.010 in 0.000 in 2.164 in 0.000 in mbinatis Mmax + 127.05 238.37 210.54 76.23	-ft -ft -ft -ft -ft -ft -ft - - - - - -	Section Load Cd Locatio Span # 522 >= 0 <3 244 >= 0 <2 Summary of M Ma Max 127.05 238.37 210.54 76.23 Load Corr	n used for Va : Applie Vn/Omega ombination n of maxim where mat 360 60 240 40 240 40 240 40 600.00 600.00 600.00 600.00	es Mnx/Omega 359.28 359.28	rs 1 Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma:	Sumn Va Max 11.55 21.67 19.14 6.93 x. "+" Defl 0.0000	0.12: W21x6 21.67 168. +D-4 0.00 Span # nary of She Vnx 252.00 252.00 252.00 252.00 252.00	9 : 1 2 0 k 0 k -L 00 ft 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

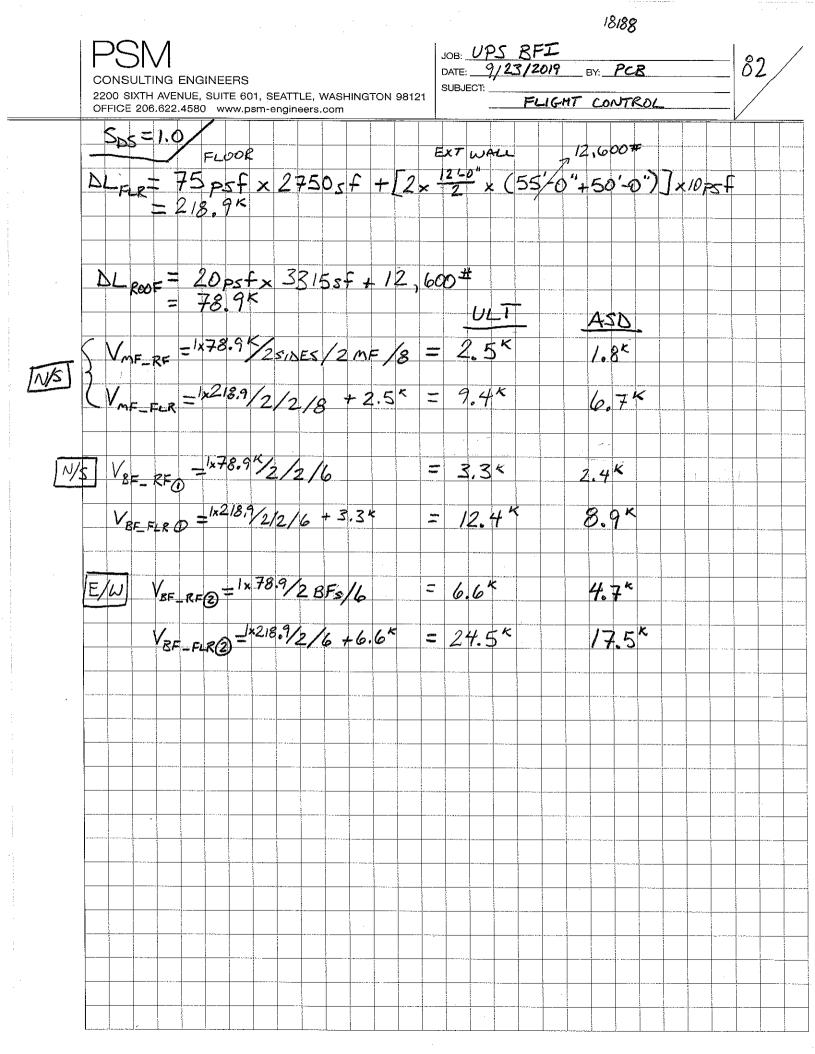
a change this area e "Settings" menu item n using the "Printing & ock" selection. ock Line 6 1 Beam #KW-06001622 #KW-06001622 ption : FC - CA/CB (Floor Joist - edge)	Engineer: Project ID: Project Descr: File = L:Vobs/2018/18188	Director (100	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
n using the "Printing & ock" selection. ock Line 6 I Beam #KW <u>-06001622</u> #KW <u>-06001622</u> ption : FC - CA/CB (Floor Joist - edge)		Detector de 200	
ock Line 6 I Beam KW-06001622 ption : FC - CA/CB (Floor Joist - edge)	File = L:\Jobs\2018\18188	Drinte de 20 (
1 Beam KW-06001622 Frank Water How And And And And And And And And And And	File = L:\Jobs\2018\18188	Delete de 00 (
tion: FC - CA/CB (Floor Joist - edge)	File = L:Wobs\2018\18188		SEP 2019, 4:16PM
ption : FC - CA/CB (Floor Joist - edge)		- UPS BHI Seattle)Engineering	JEnercaic/18188.ecb
	Licensee : PET	ERSON-STREHLE-N	AARTINSON, INC
E REFERENCES			
lations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10			
Combination Set : ASCE 7-10			. 1
erial Properties	•		
iysis Method : Allowable Strength Design	Fy : Steel Yield :	50.0 ksi	
m Bracing : Beam is Fully Braced against lateral-torsional buckling	E: Modulus :	29,000.0 ksi	
ding Axis Major Axis Bending			
· · · · · · · · · · · · · · · · · · ·			
D(0.3) L((♥	0.26) *		
W21x5	55		
1 Shon = 4	4.0.8		
Span = 4	4 U II		
			-
fied Loads	Service loads entered. Load	Factors will be applie	d for calculations.
am self weight NOT internally calculated and added	· .		
Uniform Load : D = 0.30, L = 0.260 k/ft, Tributary Width = 1.0 ft			
Ma : Applied 135.520 k-ft Mn / Omega : Allowable 314.371 k-ft	Va : Applied Vn/Omega : Allowable	÷	12.320 k 156.0 k
oad Combination +D+L	Load Combination		+D+L
ocation of maximum on span 22.000ft pan # where maximum occurs Span # 1	Location of maximum on span		0.000 ft Span # 1
· · · ·	Span # where maximum occur	5	Span # 1
ximum Deflection fax Downward Transient Deflection 0.666 in Ratio =	792 >= 360		
fax Upward Transient Deflection 0.000 in Ratio =	0 <360		
Max Downward Total Deflection 1.435 in Ratio = Max Upward Total Deflection 0.000 in Ratio =	368 >=240		
	0 <240		······································
timum Forces & Stresses for Load Combinations			
	Summary of Moment Values		mary of Shear Values
gment Length Span # M V Mmax + Mmax -	Ma Max Mnx Mnx/Omega	Cb Rm Va Max	Vnx Vnx/Omega
a. L = 44.00 ft 1 0.231 0.042 72.60	72.60 525.00 314.37	1.00 1.00 6.60	234.00 156.00
n.L = 44.00 ft 1 0.431 0.079 135.52 50L	135.52 525.00 314.37	1.00 1.00 12.32	234.00 156.00
a. L = 44.00 ft 1 0.381 0.070 119.79	119.79 525.00 314.37	1.00 1.00 10.89	234.00 156.00
n.L= 44.00 ft 1 0.139 0.025 43.56	43.56 525.00 314.37	1.00 1.00 3.96	234.00 156.00
rall Maximum Deflections	43.56 525.00 314.37	1.00 1.00 3.96	201.00 100.00
Combination Span Max. "-' Defl Location in Span	Load Combination	Max. *+* Defl	Location in Span
L 1 1.4350 22.126		0.0000	0.000
	t notation · Far loff is #1	Values in KIPS	0.000
Combination Support 1 Support 2	t notation : Far left is #1	values III NIFO	
rall MAXimum 12.320 12.320			
rall MINimum 3.960 3.960			
nly 6,600 6,600			
L 12.320 12.320 0.750L 10.890 10.890			1. A. 1. A.
0D 3.960 3.960			
nty 5.720 5.720	· .		

Title Block Line 1 You can change this are		· · · · ·	· · · · · · · · · · · · · ·			Project T Engineer Project I	r: .			···	· ···· · · · · · · · · · · · · · · · ·		5
using the "Settings" mer and then using the "Prin						Project I						· · ·	
Title Block" selection.	unyα				-	•						· · ·	
Title Block Line 6							• •			F	Printed: 20 S	EP 2019, 3	:55PN
Steel Beam							File = L'U	obs\2018\18188	-UPS	8FI Seatt	le\Engineering	Enercalc\1818	8.ec6
Lic. # : KW-0600162	2							ensee : PET	ਤਰਵ	ON-ST	REHIEM	ARTINSO	N IN
	GL CB (Floor	Girder)											
					. •		•						
									· · · ·	· .	·		
Calculations per Al Load Combination			, CBC 20	13, ASCE	7-10	· · ·							
Material Proper Analysis Method : A		Strongth De						01			0.01-1		
		Braced again		rsional buck	dina			Steel Yield : lodulus :			50.0 ksi 00.0 ksi		
	Major Axis				ung		1	odulus .		20,01			
						· · · · · · · · · · · ·							
•		÷		L) <u>(2.025) I</u>	_(1.755)			,				V
And a state of the state	for the second			and the second							101 X 2 1		
						10. 11. 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973 - 1973							
	States and States												
				And the second second	W16x	(26							
			а. 1. т.									r	
					Span = ·	11.0 ft							
·								•					٦.
Applied Loads						Service	e loads enf	tered. Load	Facto	ors will	be applied	for calcula	ation
Beam self weight N	IOT internally	y calculated a	ind added										
Mn / Load Combination Location of maxin Span # where ma	num on span	1 ⁻		110.279 k +D+L 5.500ft Span # 1		Load C Locatio	combination	a : Allowable 1 1um on span ximum occur	Ι.			70.509 +D+L 0.000 Span # 1	
Maximum Deflec		•		Opan # 1		Opan #	WIEFE HIA	Amum occu	3			υμαιι π ι	· .
Max Downward	Transient D				n Ratio =		-360						
Max Upward Tra Max Downward					n Ratio =						÷		
Max Upward To					n Ratio = n Ratio =								
Maximum Forc	oc & Stre	beene for		mhinati	one								-
Load Combination	es d'one	Max Stres		momau	0115	Summary of N	/oment Valu	es			Summ	nary of Shear	Valu
Segment Length	Span #	M	٧	Mmax +	Mmax -		Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx Vr	
D Only Dsgn. L = 11.00 ft	4	0.070	0.450	30.00	· .		404 47	440.00	4.00	1.00			_
+D+L	I	0.278	0.158	30.63		30.63	184.17	110.28	1.00	1.00	11.14	117.75	7
Dsgn. L = 11.00 ft	1, *	0.518	0.295	57.17		57.17	184.17	110.28	1.00	1.00	20.79	117.75	7
+D+0.750L Dsgn. L = 11.00 ft	1	0.458	0.261	50.54	•	50.54	184.17	110.28	1.00	1.00	18.38	117.75	7
+0.60Ď	•		1 A										
Dsgn. L = 11.00 ft	1	0.167	0.095	18.38	· .	18.38	184.17	110.28	1.00	1.00	6.68	117.75	7
Overall Maxim	um Defle										· .		
Load Combination		Span	Max De		on in Span	Load Con	nbination			Ma	x. "+" Defl	Location in	
́-Ф+L		1	0.1433	; 	5.531						0.0000	0.	000
Vertical Reacti	ons	AND A REAL PROPERTY OF A			Suppo	ort notation : Fa	r left is #1	· · · · · · · · · · · · · · · · · · ·	· · ·	Values	in KIPS		
Load Combination		Support 1	Support 2									·	·
Overall MAXimum Overall MINimum	· · ·	20.790 6.683	20.790 6.683			··· ··· ··· ··· ··· ··· ··· ··· ··· ··	· . · · · · · · · · · · · · · · · · · ·		· ··· ·	··· ·· -			
D Only	· · .	11.138	11.138			1. 1			· . · ·	·	2.5	e e e e	
+D+L		20.790	20.790	0 .						j.	× .		
		18.377	18.377	7 .		· ·							
+D+0.750L													
+D+0.750L +0.60D L Only		6.683 9.653	6.683 9.653	3		· .	-						· .

ou can change this area		5.				Project T Engineer							- 7º
sing the "Settings" menu	item	· · · · · · · · · · · · · · · · · · ·	······	·····		Project II):	1997 - State			·	· · · · · · · · · · · · · · · · · · ·	
nd then using the "Printin						Project D	escr:						
tle Block" selection.													
tle Block Line 6	· · · ·								-			SEP 2019, 3	
Steel Beam							File = L'L	lobs\2018\18188	-UPS	BFI Seattle	a\Engineering	\Enercalc\181	88.ec6
.ic. # : KW-06001622		darin texter (dalar marit da					Lice	ensee : PET	ERS	ON-ST	REHLE-N	ARTINSC	ON, INC
Description : FC - GI	L 1.5 (Floor G	irder)						,			:	-	
						÷							
CODE REFEREN						1		·					
Calculations per AIS			, CBC 201	3, ASCE	7-10								
oad Combination Se	······································	7-10											
Material Properti			berenen maar ood maaidaa Sanat Sanat wood maarii										
Analysis Method : All	owable St	rength De	sign					Steel Yield :			0.0 ksi		
			st lateral-tors	sional buck	ling		E: N	lodulus :		29,00	0.0 ksi		
Bending Axis : Ma	ajor Axis B	ending											
<u> </u>			· · · ·	D	(0.445) L(0.225)							<u> </u>
		•		104 (1990) (1990) 1990				*				na segur	¢
		***************************************			W14x2	2							
													Ann
Ĺ					Span = 20	D.O ft						•	.1
4													
							÷ .	•					
Applied Loads						Service	loads en	tered. Load	Fact	ors will I	be applied	d for calcul	lations.
Beam self weight NO)T internally	calculated a	nd added										
Uniform Load :				v Width = 1	I.0 ft								
DESIGN SUMMA	RY										D	esign Ok	٢
Maximum Bending	A 4 4 4 5 4 11 5 5 1 1 1 2 1 2 1 1 1 1 1 1 1 1	atio =		0.404 : 1	Ma	ximum Sh	ear Stree	s Ratio =				0.106	
Section used for the	nis span		W	14x22	· · ·		n used fo						2
Ma : A	pplied		••	/14x22 33.500 k-	-ft	Sectio	n used fo Va:Appli	r this span				W14x22 6.70	
Ma : A Mn / C	-	owable		33.500 k- 82.834 k-		Sectio	Va : Appli Vn/Omeg	r this span ed a : Allowable	e		·	W14x22 6.70 63.020	k k
Ma:A Mn / C Load Combination	Applied Omega : Alle	owable		33.500 k- 82.834 k- +D+L	-ft	Sectio Load C	Va : Appli Vn/Omeg ombinatio	r this span ed a : Allowable 1				W14x22 6.70 63.020 +D+L	k k
Ma:A Mn / C Load Combination Location of maximu	Applied Omega : Allo Im on span			33.500 k- 82.834 k- +D+L 10.000ft	-ft	Sectio Load C Locatio	Va : Appli Vn/Omeg ombination n of maxin	r this span ed a : Allowable n num on span		··· ·		W14x22 6.70 63.020 +D+L 0.000) k) k) ft
Ma:A Mn / C Load Combination Location of maximu Span # where maxi	Applied Omega : Allo Im on span mum occurs			33.500 k- 82.834 k- +D+L	-ft	Sectio Load C Locatio	Va : Appli Vn/Omeg ombination n of maxin	r this span ed a : Allowable 1				W14x22 6.70 63.020 +D+L) k) k) ft
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti	Applied Dmega : Allo m on span mum occurs on			33.500 k- 82.834 k- +D+L 10.000ft Span # 1	-ft	Sectio Load C Locatio Span #	Va : Appli Vn/Omeg ombination n of maxin where ma	r this span ed a : Allowable n num on span		··· ·		W14x22 6.70 63.020 +D+L 0.000) k) k) ft
Ma:A Mn / C Load Combination Location of maximu Span # where maxi	Applied Dmega : Allo m on span mum occurs on ransient De	flection		33.500 k- 82.834 k- +D+L 10.000ft	-ft Ratio =	Sectio Load C Locatio	Va : Appli Vn/Omeg ombination n of maxin where ma 360	r this span ed a : Allowable n num on span		··· ·		W14x22 6.70 63.020 +D+L 0.000) k) k) ft
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Ti Max Upward Tran Max Downward Tran	Applied Dmega : Allo m on span mum occurs on ransient Defie otal Deflect	flection ction ion		33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.000 in 0.420 in	-ft Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >=	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240	r this span ed a : Allowable n num on span		··· ·		W14x22 6.70 63.020 +D+L 0.000) k) k) ft
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran	Applied Dmega : Allo m on span mum occurs on ransient Defie otal Deflect	flection ction ion		33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.000 in 0.420 in	-ft Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240	r this span ed a : Allowable n num on span				W14x22 6.70 63.020 +D+L 0.000) k) k) ft
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Ti Max Upward Tran Max Downward Tran	Applied Dmega : Alle m on span mum occurs on ransient Defisient Defise otal Deflect I Deflection	flection ction ion		33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.420 in 0.000 in	ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >=	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240	r this span ed a : Allowable n num on span		· · ·		W14x22 6.70 63.020 +D+L 0.000) k) k) ft
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran Max Downward To Max Upward Tota	Applied Dmega : Alle m on span mum occurs on ransient Defisient Defise otal Deflect I Deflection	flection ction ion	Load Co	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.420 in 0.000 in	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >=	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40	r this span ed a : Allowable n num on span ximum occur		· ·	Sumr	W14x22 6.70 63.020 +D+L 0.000) k) k
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran Max Downward Tran Max Upward Tota Max Upward Tota	Applied Dmega : Alle m on span mum occurs on ransient Defisient Defise otal Deflect I Deflection	flection ction ion ises for	Load Co	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.420 in 0.000 in	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40	r this span ed a : Allowable n num on span ximum occur	S		Sumr Va Max	W14x22 6.70 63.020 +D+L 0.000 Span # 1) k) k) ft
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran Max Downward To Max Upward Tota Max Upward Tota Max Upward Tota Coad Combination Segment Length	Applied Drega : Alle m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span #	flection ction ion SSES for <u>Max Stres</u> <u>M</u>	Load Col s Ratios V	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.000 in 0.420 in 0.000 in mbinatic Mmax +	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40 foment Valu Mnx	r this span ed a : Allowable n num on span ximum occur ximum occur es Mnx/Omega	S Cb		Va Max	W14x22 6.70 63.020 +D+L 0.000 Span # 1 Nan yof Shea) k) k) ft ar Values /nx/Ome
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tri Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Coad Combination Segment Length D Only Dsgn. L = 20.00 ft	Applied Drega : Alle Im on span mum occurs on ransient Defle otal Deflect I Deflection s & Stres	flection ction ion SSES for Max Stres	Load Col s Ratios	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.000 in 0.420 in 0.000 in	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40	r this span ed a : Allowable n um on span ximum occur	S Cb	Rm 1.00		W14x22 6.70 63.020 +D+L 0.000 Span # 1) k) k) ft ar Values /nx/Ome
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran Max Downward To Max Upward Tota Max Upward Tota Max Upward Tota Coad Combination Segment Length	Applied Drega : Alle m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span #	flection ction ion SSES for <u>Max Stres</u> <u>M</u>	Load Col s Ratios V	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.000 in 0.420 in 0.000 in mbinatic Mmax +	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40 toment Valu Mnx 138.33	r this span ed a : Allowable num on span ximum occur ies Mnx/Omega 82.83	s Cb 1.00	1.00	Va Max	W14x22 6.70 63.020 +D+L 0.000 Span # 1 nary of Shea Vnx V 94.53) k) k) ft ar Values /nx/Ome 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflectii Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Donly Degen. L = 20.00 ft +D+L Dsgn. L = 20.00 ft +D+0.750L	Applied Drega : Alle m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span #	flection ction sses for 1 <u>Max Stres</u> <u>M</u> 0.269 0.404	Load Co s Ratios V 0.071 0.106	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 <u>Summary of M</u> Ma Max 22.25 33.50	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33	r this span ed a : Allowable num on span ximum occur nes Mnx/Omega 82.83 82.83	S Cb 1.00 1.00	1.00 1.00	Va Max 4.45 6.70	W14x22 6.70 63.020 +D+L 0.000 Span # 1 mary of Shea Vnx V 94.53 94.53) k) k) ft ar Values /nx/Ome 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflectii Max Downward Tran Max Downward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Dognet Length Donly Dsgn. L = 20.00 ft +D+L Dsgn. L = 20.00 ft +D+0.750L Dsgn. L = 20.00 ft	Applied Drega : Alle m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span #	flection ction ion SES for Max Stres M 0.269	Load Cor s Ratios V 0.071	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.000 in 0.420 in 0.000 in mbinatic Mmax + 22.25	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40 toment Valu Mnx 138.33	r this span ed a : Allowable num on span ximum occur ies Mnx/Omega 82.83	S Cb 1.00 1.00	1.00	Va Max 4.45	W14x22 6.70 63.020 +D+L 0.000 Span # 1 nary of Shea Vnx V 94.53) k) k) ft ar Values /nx/Ome 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxii Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Donly Dsgn. L = 20.00 ft HD+L Dsgn. L = 20.00 ft HD+0.750L Dsgn. L = 20.00 ft H0+0.750L	Applied Drega : Alle m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span #	flection ction ion sses for 1 <u>Max Stres</u> <u>M</u> 0.269 0.404 0.370	Load Co s Ratios V 0.071 0.106 0.097	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.000 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33	r this span ed a : Allowable 1 num on span ximum occur es Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00	Va Max 4.45 6.70 6.14	W14x22 6.70 63.020 +D+L 0.000 Span # 1 mary of Shea Vnx V 94.53 94.53 94.53) k) k) ft ar Values /nx/Ome 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Donly Dsgn. L = 20.00 ft +D+L Dsgn. L = 20.00 ft +0.60D Dsgn. L = 20.00 ft	Applied Dmega : All m on span mum occurs on ransient Defiection il Deflection s & Stres Span # 1 1 1	flection ction sses for 1 Max Stres M 0.269 0.404 0.370 0.161	Load Co s Ratios V 0.071 0.106	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50	-ft Ratio = Ratio = Ratio = Ratio =	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 <u>Summary of M</u> Ma Max 22.25 33.50	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33	r this span ed a : Allowable num on span ximum occur nes Mnx/Omega 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00	Va Max 4.45 6.70	W14x22 6.70 63.020 +D+L 0.000 Span # 1 mary of Shea Vnx V 94.53 94.53) k) k
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Maximum Force Load Combination Segment Length Only Dsgn. L = 20.00 ft +D+L Dsgn. L = 20.00 ft +D+0.750L Dsgn. L = 20.00 ft +0.60D Dsgn. L = 20.00 ft Overall Maximum	Applied Dmega : Allo mon span mum occurs on ransient Defiection il Deflection s & Stres Span # 1 1 1	flection ction ion SES for Max Stres M 0.269 0.404 0.370 0.161 tions	Load Cor s Ratios V 0.071 0.106 0.097 0.042	33.500 k- 82.834 k- +D+L 10.000ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35	-ft Ratio = Ratio = Ratio = ONS Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40 toment Valu Mnx 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Va Max 4.45 6.70 6.14 2.67	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53) k) k) ft ar Values /nx/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Dogn. L = 20.00 ft HD+U.750L Dsgn. L = 20.00 ft HO-00 Dsgn. L = 20.00 ft Overall Maximum Load Combination	Applied Dmega : Allo mon span mum occurs on ransient Defiection il Deflection s & Stres Span # 1 1 1	flection ction ion <u>Max Stres</u> <u>M</u> 0.269 0.404 0.370 0.161 tions Span	Load Coi s Ratios V 0.071 0.106 0.097 0.042 Max. *-* Defi	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = ONS Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69	Va : Appli Vn/Omeg ombination n of maxin where ma 360 60 240 40 toment Valu Mnx 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Va Max 4.45 6.70 6.14 2.67	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft nt/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Dogn. L = 20.00 ft +D+L Dogn. L = 20.00 ft +D-0.750L Dogn. L = 20.00 ft +D-0.60D Dogn. L = 20.00 ft +D-0.60D Dogn. L = 20.00 ft +D-0.750L Dogn. L = 20.00 ft +D-0.750L Dogn. L = 20.00 ft +D-0.750L Dogn. L = 20.00 ft +D-0.750L Dogn. L = 20.00 ft	Applied Drega : All m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span # 1 1 1 1 1 1 1	flection ction ion SES for Max Stres M 0.269 0.404 0.370 0.161 tions	Load Cor s Ratios V 0.071 0.106 0.097 0.042	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = DNS Mmax - Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35 Load Com	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Va Max 4.45 6.70 6.14 2.67 (, "+" Defl 0.0000	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft ar Values /nx/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Dogn. L = 20.00 ft +D+L Dogn. L = 20.00 ft +D=0.750L Dogn. L = 20.00 ft	Applied Drega : All m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span # 1 1 1 1 1 1 1	flection ction ion sses for 1 <u>Max Stres</u> <u>M</u> 0.269 0.404 0.370 0.461 tions Span 1	Load Coj s Ratios V 0.071 0.106 0.097 0.042 Max. "-" Deff 0.4199	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = DNS Mmax - Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Va Max 4.45 6.70 6.14 2.67 (, "+" Defl 0.0000	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft nt/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxii Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Segment Length O Only Dsgn. L = 20.00 ft Dsgn. L = 20.00 ft Dsgn. L = 20.00 ft Overall Maximum Load Combination +D+L Vertical Reactio Load Combination	Applied Drega : All m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span # 1 1 1 1 1 1 1	flection ction ion Ses for Max Stres M 0.269 0.404 0.370 0.461 tions Span 1 Support 1	Load Col s Ratios V 0.071 0.106 0.097 0.042 Max. "-" Defl 0.4199 Support 2	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = DNS Mmax - Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35 Load Com	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Va Max 4.45 6.70 6.14 2.67 (, "+" Defl 0.0000	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft nt/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxii Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Segment Length Oonly Dsgn. L = 20.00 ft HD+L Dsgn. L = 20.00 ft Dogn. L = 20.00 ft Dogn. L = 20.00 ft Dogn. L = 20.00 ft Dogn. L = 20.00 ft Overall Maximum Load Combination Overall Maximum	Applied Drega : All m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span # 1 1 1 1 1 1 1	flection ction ion sses for 1 Max Stres M 0.269 0.404 0.370 0.161 tions Span 1 Support 1 6.700	Load Col s Ratios V 0.071 0.106 0.097 0.042 Max. "-" Deff 0.4199 Support 2 6.700	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = DNS Mmax - Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35 Load Com	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Va Max 4.45 6.70 6.14 2.67 (, "+" Defl 0.0000	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft nt/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxii Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Dota Dota Dota Dota Dota Dota Dota D	Applied Drega : All m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span # 1 1 1 1 1 1 1	flection ction ion sses for 1 <u>Max Stres</u> <u>M</u> 0.269 0.404 0.370 0.161 tions Span 1 Support 1 6.700 2.250	Load Co s Ratios V 0.071 0.106 0.097 0.042 Max. *-* Defi 0.4199 Support 2 6.700 2.250	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = DNS Mmax - Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35 Load Com	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Va Max 4.45 6.70 6.14 2.67 (, "+" Defl 0.0000	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft nt/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxii Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Segment Length Oonly Dsgn. L = 20.00 ft HD+L Dsgn. L = 20.00 ft Dogn. L = 20.00 ft Dogn. L = 20.00 ft Dogn. L = 20.00 ft Dogn. L = 20.00 ft Overall Maximum Load Combination Overall Maximum	Applied Drega : All m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span # 1 1 1 1 1 1 1	flection ction ion sses for 1 Max Stres M 0.269 0.404 0.370 0.161 tions Span 1 Support 1 6.700	Load Col s Ratios V 0.071 0.106 0.097 0.042 Max. "-" Deff 0.4199 Support 2 6.700	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = DNS Mmax - Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35 Load Com	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Va Max 4.45 6.70 6.14 2.67 (, "+" Defl 0.0000	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft nx/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tran Max Upward Tran Max Upward Tota Max Upward Tota Donly Hota Hota Max Upward Tota Donly Hota Hota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Donly Hota Hota Hota Max Upward Tota Donly Hota Hota Hota Max Upward Tota Donly Hota Hota Donly Hota Hota Donly Hota Hota Donly Hota Hota Donly Hota Hota Donly Hota Hota Donly	Applied Drega : All m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span # 1 1 1 1 1 1 1	flection ction ion SSES for Max Stres M 0.269 0.404 0.370 0.161 tions Span 1 Support 1 6.700 2.250 4.450 6.700 6.138	Load Coi s Ratios V 0.071 0.106 0.097 0.042 Max. "-" Defi 0.4199 Support 2 6.700 2.250 4.450 6.700 6.138	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = DNS Mmax - Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35 Load Com	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33 138.33 138.33	r this span ed a : Allowable um on span ximum occur nes Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Va Max 4.45 6.70 6.14 2.67 (, "+" Defl 0.0000	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft nt/Ome 63. 63. 63. 63.
Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tr Max Upward Tran Max Upward Tota Max Upward Tota Donly Hotel Max Upward Tota Max Upward Tota Donly Hotel Hotel Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Donly Hotel Hotel Hotel Max Upward Tota Donly Hotel Hot	Applied Drega : All m on span mum occurs on ransient Defle otal Deflect otal Deflect I Deflection s & Stres Span # 1 1 1 1 1 1 1	flection ction ion sses for 1 <u>Max Stres</u> <u>M</u> 0.269 0.404 0.370 0.404 0.370 0.161 tions Span 1 <u>Support 1</u> 6.700 2.250 4.450 6.700	Load Cor s Ratios V 0.071 0.106 0.097 0.042 Max. "-" Defi 0.4199 Support 2 6.700 2.250 4.450 6.700	33.500 k- 82.834 k- +D+L 10.000 ft Span # 1 0.141 in 0.420 in 0.000 in mbinatic Mmax + 22.25 33.50 30.69 13.35 Location	-ft Ratio = Ratio = Ratio = Ratio = ONS Mmax - Mmax -	Sectio Load C Locatio Span # 1,702 >= 0 <3 572 >= 0 <2 Summary of M Ma Max 22.25 33.50 30.69 13.35 Load Com	Va : Appli Vn/Omeg. ombination n of maxin where ma 360 60 240 40 foment Valu Mnx 138.33 138.33 138.33 138.33 138.33	r this span ed a : Allowable 1 num on span ximum occur es Mnx/Omega 82.83 82.83 82.83	S Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Va Max 4.45 6.70 6.14 2.67 (, "+" Defl 0.0000	W14x22 6.70 63.020 +D+L 0.000 Span # 1 94.53 94.53 94.53 94.53 94.53) k) k) ft nx/Ome 63. 63. 63. 63.

You can change this area			· · · · ·	Engineer: Project ID:					· · · · · · · · · · · · · · · · · · ·		$\sum $
using the "Settings" menu and then using the "Printin			· · ·	Project ID. Project De	scr:						
Title Block" selection.	~ . .							•			
Title Block Line 6						-	GODING		Printed: 20		
Steel Beam					File = L'Uot	os\2018\18188	s-UPS I	8FI Seat	ttle\Engineerin	g\Enercalc\18	\$188.ec6
Lic. # : KW-06001622					Licen	isee : PE	TERS	ON-ST	TREHLE	MARTINS	ON, IN
Description : FC - G	L CB/1.5 (Floor Joist)										
CODE REFEREN	IGES										
Calculations per AIS		CBC 201	3, ASCE 7-10								
Load Combination S			· · · · · · · · ·								
Material Properti	es										·
Analysis Method : All	lowable Strength De					teel Yield :	}		50.0 ksi		
	am is Fully Braced again	st lateral-tors	ional buckling		E: Mo	dulus :		29,0	00.0 ksi		
Bending Axis : Ma	ajor Axis Bending										
			D(0.825) L	(0.165)							
↓	÷		<u> </u>			› ب	7 2010-00-00	4			
											ų,
			W10x	12							
			Span = 1	0.0 ft				ŗ			
.						· · ·					→ }
n na na na na na na na na na na na na na											
Applied Loads				Service lo	oads ente	red. Load	Facto	ors will	I be applie	d for calc	ulations
	D = 0 8250 L = 0 1650										
Uniform Load :	D = 0.8250, L = 0.1650	vit, Tributary	y wiath = 1.0 ft						•		
				and the second second second second second second second second second second second second second second second							
DECIPAL CHARAC	1 DV									ocian O	17 ALL DOCUMENT
DESIGN SUMMA Maximum Bending	and all the set of a last of fair of a last of the fair of a last of the fair of the set of the fair of the fair		0.397:1 Ma	ximum Shea	r Stress	Ratio =			D	esign O 0.13	
Maximum Bending Section used for t	g Stress Ratio = his span	W	10x12	aximum Shea Section	r Stress used for t				D	esign O 0.13 W10x1	2 :1
Maximum Bending Section used for t Ma : A	g Stress Ratio = his span Applied	W	10x12 12.375 k-ft	Section Va	used for t	this span			D	0.13 W10x1 4.95	2:1 2 0 k
Maximum Bending Section used for t Ma : / Mn / C	g Stress Ratio = his span	W	1 0x12 12.375 k-ft 31.207 k-ft	Section Va Vr	used for t : Applied /Omega	this span	e		D	0.13 W10x1 4.95 37.50	22:1 200k 06k
Maximum Bending Section used for t Ma : A	g Stress Ratio = his span Applied Omega : Allowable	W	10x12 12.375 k-ft	Section Va Vn Load Con	used for t : Applied /Omega ibination	this span			D	0.13 W10x1 4.95 37.50 +D+	22:1 200k 06k
Maximum Bending Section used for t Ma : / Mn / C Load Combination	g Stress Ratio = his span Applied Omega : Allowable um on span	W	10x12 12.375 k-ft 31.207 k-ft +D+L	Section Va Vn Load Con Location	used for t : Applied /Omega nbination of maximu	this span 1 : Allowabl	ì		D	0.13 W10x1 4.95 37.50 +D+	22:1 20k 96k +L 90ft
Maximum Bending Section used for t Ma : / Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti	g Stress Ratio = his span Applied Omega : Allowable um on span imum occurs ion	W	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1	Section Va Vn Load Con Location Span # w	used for t : Applied /Omega nbination of maximu here maxi	this span 1 : Allowabl m on span	ì		D	0.13 W10x1 4.95 37.50 +D4 0.00	22:1 20k 06k +L 00ft
Maximum Bending Section used for t Ma : / Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti	g Stress Ratio = this span Applied Dmega : Allowable um on span imum occurs ion Transient Deflection	W	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000ft Span # 1 0.024 in Ratio =	Section Va Vn Load Con Location o Span # w 5,020 >=36	used for t : Applied /Omega hbination of maximu here maxi	this span 1 : Allowabl m on span	ì		D	0.13 W10x1 4.95 37.50 +D4 0.00	22:1 20k 96k +L 90ft
Maximum Bending Section used for t Ma : A Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Downward T	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection rotal Deflection	W	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio =	Section Va Vn Load Con Location o Span # w 5,020 >=36 0 <360 837 >=24	used for f : Applied /Omega nbination of maximu here maxi 0 0	this span 1 : Allowabl m on span	ì			0.13 W10x1 4.95 37.50 +D4 0.00	22:1 20k 96k +L 90ft
Maximum Bending Section used for t Ma : / Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection rotal Deflection	W	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000ft Span # 1 0.024 in Ratio = 0.000 in Ratio =	Section Va Vn Load Con Location o Span # w 5,020 >=36 0 <360	used for f : Applied /Omega nbination of maximu here maxi 0 0	this span 1 : Allowabl m on span	ì			0.13 W10x1 4.95 37.50 +D4 0.00	22:1 20k 96k +L 90ft
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Tota Max Upward Tota	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection rotal Deflection al Deflection s & Stresses for	W S	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio =	Section Va Vr Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240	used for f : Applied /Omega ubination of maximu here maxi	this span 1 : Allowabl m on span mum occu	ì			0.13 W10x1 4.95 37.50 +D+ 0.00 Span #	22:1 20 66 16 100 11
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Tota Max Upward Tota Max Upward Tota Load Combination	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection rotal Deflection al Deflection es & Stresses for Max Stress	W S S Ratios	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio =	Section Va Vn Load Con Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240	used for f : Applied /Omega ubination of maximu here maxi 0 0	this span 1 : Allowabl m on span mum occu s	rs _		Sum	0.13 W10x1 4.95 37.50 +D+ 0.00 Span #	2:1 2 6 k 6 k +L 0 ft 1 ear Value
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Tota Max Upward Tota Downward T Max Upward Tota Maximum Force	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection rotal Deflection al Deflection s & Stresses for	W S	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio =	Section Va Vr Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240	used for f : Applied /Omega ubination of maximu here maxi 0 0	this span 1 : Allowabl m on span mum occu	rs _	Rm		0.13 W10x1 4.95 37.50 +D+ 0.00 Span #	22:1 20 66 16 100 11
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Downward T Max Upward Tota Max Upward Tota Max Upward Tota Load Combination Segment Length D Only Dsgn. L = 10.00 ft	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection rotal Deflection al Deflection es & Stresses for Max Stress	W S S Ratios	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio =	Section Va Vn Load Con Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240	used for f : Applied /Omega ubination of maximu here maxi 0 0	this span 1 : Allowabl m on span mum occu s	rs _		Sum	0.13 W10x1 4.95 37.50 +D- 0.00 Span #	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflectit Max Downward T Max Upward Trar Max Upward Trar Max Upward Tota Maximum Force Load Combination Segment Length D Only Dsgn. L = 10.00 ft +D+L	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection otal Deflection al Deflection es & Stresses for Max Stress Span # M 1 0.330	W S S S Ratios V 0.110	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 10.000 in Ratio = 10.31	Section Va Vr Load Con Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240 Summary of Mor Ma Max 10.31	used for f : Applied /Omega abination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl m on span mum occu s <u>s</u> Mnx/Omega 31.21	a Cb 1.00	1.00	Sum Va Max 4.13	0.13 W10x1 4.95 37.50 +D+ 0.00 Span #	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 37
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Tran Max Upward Tran Max Upward Tota Max Upward Tota Max Upward Tota Donly Load Combination Segment Length D Only Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L	g Stress Ratio = this span Applied Dmega : Allowable um on span imum occurs ion ransient Deflection otal Deflection al Deflection ses & Stresses for <u>Max Stress</u> <u>Span #</u> 1 0.330 1 0.397	W 5 5 5 7 0.110 0.132	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 10.000 in Ratio = nbinations Mmax + Mmax - 10.31 12.38	Section Va Vr Load Con Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240 Summary of Mor Ma Max 10.31 12.38	used for f : Applied /Omega abination of maximu here maximu here maxi 0 0 0 0 0 52.12 52.12	this span f : Allowabl m on span mum occu s Mnx/Omega 31.21 31.21	a Cb 1.00 1.00	1.00 1.00	<u>Sum</u> Va Max 4.13 4.95	0.13 W10x1 4.95 37.50 +D-1 0.00 Span #	2 : 1 2 : 1 6 k 6 k +L 00 ft 1 ear Value Vnx/Om 37 37
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Trar Max Upward Trar Max Upward Trar Max Upward Tota Donly Degret Length D Only Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection otal Deflection al Deflection es & Stresses for Max Stress Span # M 1 0.330	W S S S Ratios V 0.110	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 10.000 in Ratio = 10.31	Section Va Vr Load Con Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240 Summary of Mor Ma Max 10.31	used for f : Applied /Omega abination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl m on span mum occu s <u>s</u> Mnx/Omega 31.21	a Cb 1.00	1.00 1.00	Sum Va Max 4.13	0.13 W10x1 4.95 37.50 +D-1 0.00 Span #	2 : 1 2 : 1 6 k 6 k +L 00 ft 1 <u>ear Value</u> Vnx/Om 37 37
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward Trar Max Upward Trar Max Upward Trar Max Upward Tota Maximum Force Load Combination Segment Length D Only Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L	g Stress Ratio = this span Applied Dmega : Allowable um on span imum occurs ion ransient Deflection otal Deflection al Deflection ses & Stresses for <u>Max Stress</u> <u>Span #</u> 1 0.330 1 0.397	W 5 5 5 7 0.110 0.132	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 10.000 in Ratio = nbinations Mmax + Mmax - 10.31 12.38	Section Va Vr Load Con Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240 Summary of Mor Ma Max 10.31 12.38	used for f : Applied /Omega abination of maximu here maximu here maxi 0 0 0 0 0 52.12 52.12	this span f : Allowabl m on span mum occu s Mnx/Omega 31.21 31.21	a Cb 1.00 1.00	1.00 1.00 1.00	<u>Sum</u> Va Max 4.13 4.95	0.13 W10x1 4.95 37.50 +D- 0.00 Span #	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 37 37 37
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Trar Max Upward Tota Day Donly Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L Dsgn. L = 10.00 ft +0.60D	g Stress Ratio = this span Applied Dmega : Allowable um on span imum occurs ion ransient Deflection otal Deflection al Deflection set Stresses for 1 <u>Max Stress</u> <u>Span # M</u> 1 0.330 1 0.397 1 0.380 1 0.198	W S S S S S S S S S S S S S S S S S S S	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 10.31 12.38 11.86	Section Va Vn Load Con Location of Span # w 5,020 >=36 0 <360 837 >=24 0 <240 Summary of Mor Ma Max 10.31 12.38 11.86	used for f : Applied /Omega hbination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00	1.00 1.00 1.00	Sum Va Max 4.13 4.95 4.74	0.13 W10x1 4.95 37.50 +D- 0.00 Span #	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 37 37 37
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Tota Max Upward Tota Max Upward Tota Dagen L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft Uoverall Maximu	g Stress Ratio = this span Applied Dmega : Allowable um on span imum occurs ion ransient Deflection otal Deflection al Deflection set Stresses for 1 <u>Max Stress</u> <u>Span # M</u> 1 0.330 1 0.397 1 0.380 1 0.198	W -oad Con a Ratios V 0.110 0.132 0.126 0.066 Max. *- Defi	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 10.31 12.38 11.86 6.19 Location in Span	Section Va Vn Load Con Location of Span # w 5,020 >=36 0 <360 837 >=24 0 <240 Summary of Mor Ma Max 10.31 12.38 11.86	used for f : Applied /Omega ubination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00	1.00 1.00 1.00 1.00	Sum Va Max 4.13 4.95 4.74	0.13 W10x1 4.95 37.50 +D+ 0.00 Span #	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 3 3 3 3 3
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Trar Max Upward Trar Max Upward Tota Contine Donly Donly Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L Dsgn. L = 10.00 ft +D+0.00D Dsgn. L = 10.00 ft -0.60D Dsgn. L = 10.00 ft -0.60D Dsgn. L = 10.00 ft -0.60D Dsgn. L = 10.00 ft -0.60D Dsgn. L = 10.00 ft	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection al Deflection S & Stresses for <u>Max Stress</u> <u>Span #</u> 1 0.330 1 0.397 1 0.380 1 0.198 <u>m Deflections</u> <u>Span</u> 1	W 20ad Con 3 Ratios V 0.110 0.132 0.126 0.066	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 10.000 in Ratio = 10.011 12.38 11.86 6.19	Section Va Vr Load Con Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240 <u>Summary of Mor</u> Ma Max 10.31 12.38 11.86 6.19	used for f : Applied /Omega ubination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma	Sum Va Max 4.13 4.95 4.74 2.48 ax. "+" Defl 0.0000	0.13 W10x1 4.95 37.50 +D-1 0.00 Span # mary of Sho 56.26 56.26 56.26 56.26 56.26	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 37 37 37
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Tota Max Upward Tota Max Upward Tota Donly Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft +0.40C Dsgn. L = 10.00 ft +0.40C Dsgn. L = 10.00 ft +0.40C Dsgn. L = 10.00 ft +0.40C Dsgn. L = 10.00 ft	g Stress Ratio = this span Applied Dmega : Allowable um on span imum occurs ion ransient Deflection otal Deflection al Deflection s & Stresses for 1 Max Stress Span # M 1 0.330 1 0.397 1 0.380 1 0.198 m Deflections Span 1 0.198	W 	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = nbinations Mmax + Mmax - 10.31 12.38 11.86 6.19 Location in Span 5.029	Section Va Vr Load Con Location (Span # w 5,020 >=36 0 <360 837 >=24 0 <240 <u>Summary of Mor</u> Ma Max 10.31 12.38 11.86 6.19	used for f : Applied /Omega abination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma	<u>Sum</u> Va Max 4.13 4.95 4.74 2.48 ax. "+" Defl	0.13 W10x1 4.95 37.50 +D-1 0.00 Span # mary of Sho 56.26 56.26 56.26 56.26 56.26	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 3 3 3 3 3 1 n in Spar
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Max Upward Tota Dage Upward Tota Segment Length D Only Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft Overall Maximu Load Combination +D+L Vertical Reactio Load Combination	g Stress Ratio = this span Applied Dmega : Allowable um on span imum occurs ion ransient Deflection al Deflection al Deflection s & Stresses for I <u>Max Stress</u> <u>Span # M</u> 1 0.330 1 0.397 1 0.380 1 0.198 m Deflections <u>Span</u> 1 Dns	W - Coad Com - Ratios V 0.110 0.132 0.126 0.066 Max.*- Defl 0.1434 Support 2	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = nbinations Mmax + Mmax - 10.31 12.38 11.86 6.19 Location in Span 5.029	Section Va Vn Load Con Location of Span # w 5,020 >=36 0 <360 837 >=24 0 <240 <u>Summary of Mor</u> Ma Max 10.31 12.38 11.86 6.19 Load Combi	used for f : Applied /Omega abination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma	Sum Va Max 4.13 4.95 4.74 2.48 ax. "+" Defl 0.0000	0.13 W10x1 4.95 37.50 +D-1 0.00 Span # mary of Sho 56.26 56.26 56.26 56.26 56.26	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 3 3 3 3 3 3
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Trar Max Upward Tota Max Upward Tota Dagenet Length D Only Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft Overall Maximu Load Combination +D+L Vertical Reactio Load Combination Overall MAXimum	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection otal Deflection al Deflection s & Stresses for I <u>Max Stress</u> <u>Span # M</u> 1 0.330 1 0.397 1 0.380 1 0.198 m Deflections <u>Span</u> 1 Dns <u>Support 1</u> 4.950	W - Coad Con S Ratios V 0.110 0.132 0.126 0.066 Max. *- Defl 0.1434 Support 2 4.950	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = nbinations Mmax + Mmax - 10.31 12.38 11.86 6.19 Location in Span 5.029	Section Va Vn Load Con Location of Span # w 5,020 >=36 0 <360 837 >=24 0 <240 <u>Summary of Mor</u> Ma Max 10.31 12.38 11.86 6.19 Load Combi	used for f : Applied /Omega abination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma	Sum Va Max 4.13 4.95 4.74 2.48 ax. "+" Defl 0.0000	0.13 W10x1 4.95 37.50 +D-1 0.00 Span # mary of Sho 56.26 56.26 56.26 56.26 56.26	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 3 3 3 3 3 3
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Tota Max Upward Tota Dage Upward Tota Maximum Force Load Combination Segment Length D Only Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L Dsgn. L = 10.00 ft +D-0.750L Dsgn. L = 10.00 ft Overall Maximu Load Combination +D+L Vertical Reaction Load Combination	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection al Deflection S & Stresses for <u>Max Stress</u> <u>Span # M</u> 1 0.330 1 0.397 1 0.380 1 0.198 <u>m Deflections</u> <u>Span</u> 1 Dns <u>Support 1</u> 4.950 0.825 4.125	W 	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = nbinations Mmax + Mmax - 10.31 12.38 11.86 6.19 Location in Span 5.029	Section Va Vn Load Con Location of Span # w 5,020 >=36 0 <360 837 >=24 0 <240 <u>Summary of Mor</u> Ma Max 10.31 12.38 11.86 6.19 Load Combi	used for f : Applied /Omega abination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma	Sum Va Max 4.13 4.95 4.74 2.48 ax. "+" Defl 0.0000	0.13 W10x1 4.95 37.50 +D-1 0.00 Span # mary of Sho 56.26 56.26 56.26 56.26 56.26	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/On 3 3 3 3 3 3
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Tota Maximum Force Load Combination Segment Length D Only Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+0.750L Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft Overall Maximu Load Combination +D+L Vertical Reactio Load Combination Overall MAXimum Overall MINimum D Only +D+L	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection otal Deflection otal Deflection s & Stresses for <u>Max Stress</u> <u>Span # M</u> 1 0.330 1 0.397 1 0.380 1 0.198 <u>m Deflections</u> <u>Span</u> 1 Dns <u>Support 1</u> 4.950 0.825 4.125 4.950	W -oad Cor Ratios V 0.110 0.132 0.126 0.066 Max. ** Defl 0.1434 Support 2 4.950 0.825 4.125 4.950	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = nbinations Mmax + Mmax - 10.31 12.38 11.86 6.19 Location in Span 5.029	Section Va Vn Load Con Location of Span # w 5,020 >=36 0 <360 837 >=24 0 <240 <u>Summary of Mor</u> Ma Max 10.31 12.38 11.86 6.19 Load Combi	used for f : Applied /Omega abination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma	Sum Va Max 4.13 4.95 4.74 2.48 ax. "+" Defl 0.0000	0.13 W10x1 4.95 37.50 +D-1 0.00 Span # mary of Sho 56.26 56.26 56.26 56.26 56.26	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/On 3 3 3 3 3 3
Maximum Bending Section used for t Ma : A Mn / C Load Combination Location of maximu Span # where maxi Maximum Deflecti Max Downward T Max Upward Trar Max Upward Trar Max Upward Trar Max Upward Tota Maximum Force Load Combination Segment Length D Only Dsgn. L = 10.00 ft +D+L Dsgn. L = 10.00 ft +D+D, Sol Dsgn. L = 10.00 ft +0.60D Dsgn. L = 10.00 ft Overall Maximu Load Combination +D+L Vertical Reactio Load Combination Overall MAXimum Overall MINimum D Only	g Stress Ratio = this span Applied Dmega : Allowable Im on span imum occurs ion ransient Deflection al Deflection S & Stresses for <u>Max Stress</u> <u>Span # M</u> 1 0.330 1 0.397 1 0.380 1 0.198 <u>m Deflections</u> <u>Span</u> 1 Dns <u>Support 1</u> 4.950 0.825 4.125	W 	10x12 12.375 k-ft 31.207 k-ft +D+L 5.000 ft Span # 1 0.024 in Ratio = 0.000 in Ratio = 0.143 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = 0.000 in Ratio = nbinations Mmax + Mmax - 10.31 12.38 11.86 6.19 Location in Span 5.029	Section Va Vn Load Con Location of Span # w 5,020 >=36 0 <360 837 >=24 0 <240 <u>Summary of Mor</u> Ma Max 10.31 12.38 11.86 6.19 Load Combi	used for f : Applied /Omega abination of maximu here maxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	this span 1 : Allowabl Im on span mum occu s Mnx/Omega 31.21 31.21 31.21	a Cb 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Ma	Sum Va Max 4.13 4.95 4.74 2.48 ax. "+" Defl 0.0000	0.13 W10x1 4.95 37.50 +D-1 0.00 Span # mary of Sho 56.26 56.26 56.26 56.26 56.26	2 : 1 2 0 k 6 k +L 00 ft 1 ear Value Vnx/Om 3 3 3 3 3 1 n in Spar


u can change this area						Enginee							\ 7
ng the "Settings" menu i			· · ·			Project Project				···· · · ·	····- · · · · · · · ·		
d then using the "Printing le Block" selection.	you -												
e Block Line 6		- . .									Printed: 11 S		
teel Beam							File = LA	Jobs\2018\1818	8 - UPS	BFI Seatt	le\Engineering	Enercalc\1	8188.ec6
c. # : KW-06001622							Lice	ensee : PE	TERS	ON-ST	REHLE-M	ARTINS	ON, INC
escription : FC - GL	CA (roof gird	er)	• •				• •	· ·			•		
ODE REFEREN	CES												
alculations per AIS0		BC 2012	CBC 201	3 4805	7 10				•				
ad Combination Se			, 000 201	3, A30E	. 7-10								
Aaterial Propertie				0.000									
Analysis Method : Allo		enath De	sian				Ev :	Steel Yield		f	50.0 ksi		
	am is Fully B			sional buck	dina			Modulus :	•		00.0 ksi		•
	jor Axis B												
· ·	- ·												
÷					D(0.44) L(0.55)							
		, v			v Na second				7 41. spine				
										1			
					W27x8	34				÷			
					Span = 2	50#							
.	<u>.</u>				opan – z.	5.0 IL							
· ·													1
Applied Loads						Servic	e loads en	itered. Load	Fact	ors will	be applied	for calc	ulations
Beam self weight NO	T internally c	alculated a	habhe hn										
Uniform Load : [D = 0.440, L	= 0.550 k/f	t. Tributary \	Nidth = 1.0	1 ft					•			
DESIGN SUMMA Maximum Bending Section used for th	Stress Ra			0.127 : ´ /27x84	1 Ma	Section	on used fo	ss Ratio = r this span	·			W27x8	0:1 4
Maximum Bending Section used for th Ma : A	Stress Ra	ntio =		0.127 : 1	1 Ma ft	Section	on used fo Va : Appli	r this span				0.05	0:1 14 15 k
Maximum Bending Section used for th Ma : A Mn / O Load Combination	Stress Ra his span pplied mega : Allo	ntio =		0.127 : /27x84 77.344 k 08.782 k +D+L	1 Ma ft ft	Section Load (on used fo Va : Appli Vn/Omeg Combination	r this span ied a : Allowab n	e	I		0.05 W27x8 12.37 245.64 +D-	0:1 5-k 0-k +L
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur	Stress Ra nis span pplied mega : Allo m on span	ntio =	Мариальна 6	0.127 : /27x84 77.344 k :08.782 k +D+L 12.500ft	1 Ma ft ft	Section Load (Location	on used fo Va : Appli Vn/Omeg Combination	r this span ied a : Allowab n num on spar	le 1			0.05 W27x8 12.37 245.64 +D- 0.00	00:1 34 35 k 0 k +L 00 ft
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim	Stress Ra nis span pplied mega : Allo m on span num occurs	ntio =	Мариала 6	0.127 : /27x84 77.344 k 08.782 k +D+L	1 Ma ft ft	Section Load (Location	on used fo Va : Appli Vn/Omeg Combination	r this span ied a : Allowab n	le 1			0.05 W27x8 12.37 245.64 +D-	00:1 34 35 k 0 k +L 00 ft
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection	Stress Ra nis span pplied mega : Allo m on span num occurs on	atio = wable	Мариала 6	0.127 : / 27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1	1 Ma -ft -ft	Section Load (Location Span	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma	r this span ied a : Allowab n num on spar	le 1			0.05 W27x8 12.37 245.64 +D- 0.00	00:1 34 35 k 0 k +L 00 ft
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Def	atio = wable lection	Мариала 6	0.127 : /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir	1 Ma -ft -ft 1 Ratio =	Section Load C Location Span # 5,105 >	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360	r this span ied a : Allowab n num on spar	le 1			0.05 W27x8 12.37 245.64 +D- 0.00	00:1 34 35 k 0 k +L 00 ft
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Trans Max Upward Trans Max Downward To	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflection tal Deflection	atio = wable lection tion	Мариала 6	0.127 : /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir	1 Ma -ft -ft 1 Ratio = 1 Ratio = 1 Ratio =	Sectio Load (Locatii Span # 5,105>: 0 < 2837 >:	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240	r this span ied a : Allowab n num on spar	le 1			0.05 W27x8 12.37 245.64 +D- 0.00	00:1 34 35 k 0 k +L 00 ft
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Trans	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflection tal Deflection	atio = wable lection tion	Мариала 6	0.127 : /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir	1 Ma -ft -ft 1 Ratio = 1 Ratio =	Sectio Load (Locatii Span # 5,105>: 0 <	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240	r this span ied a : Allowab n num on spar	le 1			0.05 W27x8 12.37 245.64 +D- 0.00	00:1 34 35 k 0 k +L 00 ft
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Trans Max Upward Trans Max Downward To	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflection Deflection	atio = wable lection tion on Ses for	M 6 Load Cor	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.106 ir	1 Ma -ft -ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 Ratio =	Load (Locati Span + 5,105 >: 0 < 2837 >: 0 <	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 =240 240	r this span led a : Allowab n num on spar aximum occu	le 1			0.05 W27x8 12.37 245.64 +D- 0.00	00:1 34 35 k 0 k +L 00 ft
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflectio Max Downward Trans Max Downward Trans Max Upward Trans Max Upward Total Maximum Forces ad Combination	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflec btal Deflection Deflection s & Stres	atio = wable lection tion on ses for <u>Max Stres</u>	M 6 <u>5</u> S Ratios	0.127 : /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.000 ir	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio =	Load (Locatio Span # 5,105 > 0 < 2837 > 0 < 2837 > 0 <	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240	r this span led a : Allowab n num on span xximum occu	le n rs		Sumn	0.05 W27×8 12.37 245.64 +D- 0.00 Span #	0:1 4 5 k 0 k -1 00 ft 1 ear Values
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tr Max Upward Trans Max Downward To Max Upward Total Maximum Forces ad Combination Segment Length	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflection Deflection	atio = wable lection tion on Ses for	M 6 Load Cor	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.106 ir	1 Ma -ft -ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 Ratio =	Load (Locati Span + 5,105 >: 0 < 2837 >: 0 <	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 =240 240	r this span led a : Allowab n num on spar aximum occu	le n rs	Rm		0.05 W27×8 12.37 245.64 +D- 0.00 Span #	0:1 4 5 k 0 k 4 1 00 ft 1 ear Values
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflectio Max Downward Tr Max Upward Trans Max Upward Total Max Upward Total MaxImum Forces ad Combination Segment Length Only	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflec btal Deflection Deflection s & Stres	atio = wable lection tion on ses for 1 <u>Max Stres</u> <u>M</u>	M 6 <u>Coad Co</u> s Ratios V	0.127 : 7 /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio =	Section Load (Location Span at 5,105 >= 0 < 2837 >= 0 < 2837 >= 0 < Summary of 1 Ma Max	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx	r this span led a : Allowab n num on span ximum occu usimum occu	le rs a Cb		Sumn Va Max	0.05 W27×8 12.37 245.64 +D- 0.00 Span #	0:1 4 5 k 0 k -L 00 ft 1 ear Values Vnx/Ome
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tor Max Upward Total MaxImum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflec btal Deflection Deflection s & Stres	atio = wable lection tion on <u>ses for</u> <u>Max Stres:</u> <u>M</u>	M 6 <u>Load Cor</u> s Ratios V 0.022	0.127 : 7 /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.000 ir 0.106 ir 0.000 ir mbinati Mmax +	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio =	Section Load (Location Span at 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 =360 =240 240 Moment Valu Mnx 1,016.67	r this span led a : Allowab n num on span aximum occu ues Mnx/Omega 608.78	le rs a Cb 1.00	1.00	Sumn Va Max 5.50	0.05 W27×8 12.37 245.64 +D- 0.00 Span #	0:1 4 5 k 0 k 4 20 ft 1 ear Values Vnx/Ome 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tor Max Upward Total MaxImum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflec btal Deflection Deflection s & Stres	atio = wable lection tion on ses for 1 <u>Max Stres</u> <u>M</u>	M 6 <u>Coad Co</u> s Ratios V	0.127 : 7 /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio =	Section Load (Location Span at 5,105 >= 0 < 2837 >= 0 < 2837 >= 0 < Summary of 1 Ma Max	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx	r this span led a : Allowab n num on span ximum occu usimum occu	le rs a Cb 1.00		Sumn Va Max	0.05 W27×8 12.37 245.64 +D- 0.00 Span #	0:1 4 5 k 0 k 4 20 ft 1 ear Values Vnx/Ome 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tor Max Upward Total MaxImum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflec btal Deflection Deflection s & Stres	atio = wable lection tion on <u>ses for</u> <u>Max Stres:</u> <u>M</u>	M 6 <u>Load Cor</u> s Ratios V 0.022	0.127 : 7 /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.000 ir 0.106 ir 0.000 ir mbinati Mmax +	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio =	Section Load (Location Span at 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 =360 =240 240 Moment Valu Mnx 1,016.67	r this span ied a : Allowab n num on spar aximum occu ues Mnx/Omeg: 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00	Sumn Va Max 5.50	0.05 W27×8 12.37 245.64 +D- 0.00 Span #	0:1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflectic Max Downward Tr Max Upward Trans Max Upward Trans Max Upward Trans Max Upward Trans Max Upward Total Maximum Forces nad Combination Segment Length Only Dsgn. L = 25.00 ft H-U Dsgn. L = 25.00 ft H-0.750L Dsgn. L = 25.00 ft H-0.750L	Stress Ra nis span pplied mega : Allo m on span num occurs on ansient Deflec btal Deflection Deflection s & Stres	atio = wable lection tion on <u>Ses for 1</u> <u>Max Stres</u> <u>M</u> 0.056 0.127 0.109	M 6 5 2 2 2 2 0.022 0.050 0.043	0.127 : 7 /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir mbinatle Mmax + 34.38 77.34 66.60	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio =	Section Location Span 4 5,105 >= 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38 77.34 66.60	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 =240 240 <u>Moment Valu</u> Mnx 1,016.67 1,016.67 1,016.67	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00	Sumn Va Max 5.50 12.38 10.66	0.05 W27×8 12.37 245.64 +D- 0.00 Span #	0:1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tr Max Upward Trans Max Downward To Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft 0+0.750L Dsgn. L = 25.00 ft 0-0.750L Dsgn. L = 25.00 ft	Stress Ra nis span pplied omega : Allo m on span num occurs on ransient Deflection i Deflection s & Stres Span # 1 1 1	atio = wable lection tion on <u>Ses for</u> <u>Max Stres</u> <u>M</u> 0.056 0.127 0.109 0.034	M 6 Load Cor s Ratios V 0.022 0.050	0.127 : 7 /27x84 77.344 k 08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir mbinatia Mmax + 34.38 77.34	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio =	Section Location Span # 5,105 >= 0 < 2837 >= 0 < <u>Summary of 1</u> <u>Ma Max</u> 34.38 77.34	Don used fo Va : Appli Vn/Omeg Combination Combination Don of maxin # where ma =360 360 =240 240 Moment Valu Mnx 1,016.67 1,016.67	r this span ied a : Allowab n num on spar aximum occu ues Mnx/Omeg: 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00	Sumn Va Max 5.50 12.38	0.05 W27×8 12.37 245.64 +D- 0.00 Span #	0:1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward To Max Upward Total Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft 0-12 Dsgn. L = 25.00 ft 0-15 Dsgn. L = 25.00 ft 0-15 Combination Dsgn. L = 25.00 ft 0-15 Combination Dsgn. L = 25.00 ft 0-15 Combination Dsgn. L = 25.00 ft 0-25 Combination Dsgn. L = 25.00 ft	Stress Ra nis span pplied omega : Allo m on span num occurs on ransient Deflection i Deflection s & Stres Span # 1 1 1	atio = wable lection tion on Ses for Max Stress M 0.056 0.127 0.109 0.034 Jons	M 6 5 8 Ratios V 0.022 0.050 0.043 0.013	0.127 : 7 /27x84 77.344 k 608.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir mbinatia Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft n Ratio = n Ratio = n Ratio = n Ratio = ONS	Section Load C Locatin Span 4 5,105 >: 0 < 2837 >: 0 < 2837 >: 0 < 34.38 77.34 66.60 20.63	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00	Sumn Va Max 5.50 12.38 10.66 3.30	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0:1 4 5 k 0 k 4 20 ft 1 ear Values Vnx/Ome 245. 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxin Maximum Deflection Max Downward Tr Max Downward Tr Max Upward Total Max Upward Total MaxImum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft HL Dsgn. L = 25.00 ft HC Dsgn. L = 25.00 ft Bogn. L = 25.00 ft Column Dsgn. L = 25.00 ft	Stress Ra nis span pplied omega : Allo m on span num occurs on ransient Deflection i Deflection s & Stres Span # 1 1 1	atio = wable lection tion on <u>Max Stres</u> <u>M</u> 0.056 0.127 0.109 0.034	Coad Coi s Ratios V 0.022 0.050 0.043 0.013 Max. "-" Defi	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir Mmax + 34.38 77.34 66.60 20.63	1 Ma -ft -ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 NS Mmax -	Section Load C Locatin Span 4 5,105 >: 0 < 2837 >: 0 < 2837 >: 0 < 34.38 77.34 66.60 20.63	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 =240 240 <u>Moment Valu</u> Mnx 1,016.67 1,016.67 1,016.67	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00	Sumn Va Max 5.50 12.38 10.66 3.30 x. *+* Defi	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0 : 1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245. 245. 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflectic Max Downward Tr Max Upward Trans Max Upward Trans Max Upward Total Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft H-U Dsgn. L = 25.00 ft H-U Dsgn. L = 25.00 ft Overall Maximun Load Combination +D+L	Stress Ra nis span pplied mega : Allo mon span num occurs on ansient Deflection s & Stres Span # 1 1 1 1 1 1 1	atio = wable lection tion on Ses for Max Stress M 0.056 0.127 0.109 0.034 Jons	M 6 5 8 Ratios V 0.022 0.050 0.043 0.013	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft n Ratio = n Ratio = n Ratio = n Ratio = ONS	Section Load C Locatin Span 4 5,105 >: 0 < 2837 >: 0 < 2837 >: 0 < 34.38 77.34 66.60 20.63	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumn Va Max 5.50 12.38 10.66 3.30 x. "+" Defi 0.0000	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0:1 4 5 k 0 k 4 20 ft 1 ear Values Vnx/Ome 245. 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tr Max Upward Trans Max Downward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft 0+L Dsgn. L = 25.00 ft 0+D Dsgn. L = 25.00 ft 0+D Dsgn. L = 25.00 ft 0+U Dsgn. L = 25.00 ft	Stress Ra nis span pplied omega : Allo m on span num occurs on ansient Deflection is a Stres Span # 1 1 1 1 1 1 1	atio = wable lection tion on <u>ses for</u> <u>Max Stres</u> <u>M</u> 0.056 0.127 0.109 0.034 Jons Span 1	M 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 ns Mmax - 1 Max -	Section Load C Locatin Span 4 5,105 >: 0 < 2837 >: 0 < 2837 >: 0 < 34.38 77.34 66.60 20.63	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67 1,016.67 mbination	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00	Sumn Va Max 5.50 12.38 10.66 3.30 x. "+" Defi 0.0000	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0 : 1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245. 245. 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tr Max Upward Trans Max Upward Trans Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft 0-0.750L Dsgn. L = 25.00 ft	Stress Ra nis span pplied omega : Allo m on span num occurs on ansient Deflection is a Stres Span # 1 1 1 1 1 1 1	atio = wable lection tion on <u>ses for</u> <u>Max Stres</u> <u>M</u> 0.056 0.127 0.109 0.034 ions Span 1 Support 1	M 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 ns Mmax - 1 Max -	Section Load (Location Span # 5,105 >= 0 < 2837 >= 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38 77.34 66.60 20.63 Load Con	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67 1,016.67 mbination	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumn Va Max 5.50 12.38 10.66 3.30 x. "+" Defi 0.0000	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0 : 1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245. 245. 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tr Max Upward Trans Max Upward Trans Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft 0-0.750L Dsgn. L = 25	Stress Ra nis span pplied omega : Allo m on span num occurs on ansient Deflection is a Stres Span # 1 1 1 1 1 1 1	atio = wable lection tion on <u>ses for</u> <u>Max Stres</u> <u>M</u> 0.056 0.127 0.109 0.034 Jons Span 1 Support 1 12.375	M 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 ns Mmax - 1 Max -	Section Load (Location Span # 5,105 >= 0 < 2837 >= 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38 77.34 66.60 20.63 Load Con	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67 1,016.67 mbination	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumn Va Max 5.50 12.38 10.66 3.30 x. "+" Defi 0.0000	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0 : 1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245. 245. 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxin Maximum Deflection Max Downward Tr Max Upward Trans Max Upward Trans Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft 0-0.750L Dsgn. L = 25	Stress Ra nis span pplied omega : Allo m on span num occurs on ansient Deflection is a Stres Span # 1 1 1 1 1 1 1	atio = wable lection tion on ses for Max Stres M 0.056 0.127 0.109 0.034 lons Span 1 Support 1 12.375 3.300	M 6 6 6 7 7 8 Ratios 7 7 0.022 0.050 0.043 0.013 0.013 0.013 Max. *-* Defi 0.1058 Support 2 12.375 3.300	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 ns Mmax - 1 Max -	Section Load (Location Span # 5,105 >= 0 < 2837 >= 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38 77.34 66.60 20.63 Load Con	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67 1,016.67 mbination	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumn Va Max 5.50 12.38 10.66 3.30 x. "+" Defi 0.0000	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0 : 1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245. 245. 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflection Max Downward Tr Max Upward Trans Max Upward Trans Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft 0-0.750L Dsgn. L = 25	Stress Ra his span pplied mega : Allo m on span num occurs on ansient Deflection is & Stres Span # 1 1 1 1 1 1 1 1 1 1 1 1 1	atio = wable lection tion on <u>ses for</u> <u>Max Stres</u> <u>M</u> 0.056 0.127 0.109 0.034 Jons Span 1 Support 1 12.375	M 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 ns Mmax - 1 Max -	Section Load (Location Span # 5,105 >= 0 < 2837 >= 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38 77.34 66.60 20.63 Load Con	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67 1,016.67 mbination	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumn Va Max 5.50 12.38 10.66 3.30 x. "+" Defi 0.0000	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0 : 1 4 5 k 0 k +L 00 ft 1 ear Values Vnx/Ome 245. 245. 245. 245. 245. 245.
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflectic Max Downward Tr Max Upward Trans Max Upward Trans Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft H-U Dsgn. L = 25.00 ft H-U Dsgn. L = 25.00 ft Overall Maximum Load Combination +D+L Vertical Reaction Overall MAXimum Overall MAXimum Overall MINimum D Only +D+L +D+0.750L	Stress Ra his span pplied mega : Allo m on span num occurs on ansient Deflection is & Stres Span # 1 1 1 1 1 1 1 1 1 1 1 1 1	atio = wable lection tion on Ses for 1 Max Stres M 0.056 0.127 0.109 0.034 ions Span 1 Support 1 12.375 3.300 5.500 12.375 10.656	M Eoad Co s Ratios V 0.022 0.050 0.043 0.013 Max. "-" Defi 0.1058 Support 2 12.375 3.300 5.500 12.375 10.656	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 ns Mmax - 1 Max -	Section Load (Location Span # 5,105 >= 0 < 2837 >= 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38 77.34 66.60 20.63 Load Con	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67 1,016.67 mbination	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumn Va Max 5.50 12.38 10.66 3.30 x. "+" Defi 0.0000	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0:1 4 5 k 0 k 1 0 ft 1 ear Values Vnx/Omeg 245.0 245.0 245.0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Maximum Bending Section used for th Ma : A Mn / O Load Combination Location of maximur Span # where maxim Maximum Deflectic Max Downward Tr Max Upward Trans Max Upward Trans Max Upward Total Maximum Forces ad Combination Segment Length Only Dsgn. L = 25.00 ft HL Dsgn. L = 25.00 ft HL Dsgn. L = 25.00 ft Overall Maximum Load Combination +D+L Vertical Reaction Overall MAXimum Overall MINimum D Only +D+L	Stress Ra his span pplied mega : Allo m on span num occurs on ansient Deflection is & Stres Span # 1 1 1 1 1 1 1 1 1 1 1 1 1	atio = wable lection tion on ses for 1 Max Stres M 0.056 0.127 0.109 0.034 Jons Span 1 Support 1 12.375 3.300 5.500 12.375	M 6 6 6 7 7 8 Ratios 7 7 0.022 0.050 0.043 0.013 0.013 0.1058 0.1058 0.1058 5 500 12.375 3.300 5.500 12.375	0.127 : 7 /27x84 77.344 k :08.782 k +D+L 12.500ft Span # 1 0.059 ir 0.000 ir 0.106 ir 0.000 ir 0.106 ir 0.000 ir mbinatii Mmax + 34.38 77.34 66.60 20.63	1 Ma ft ft 1 Ratio = 1 Ratio = 1 Ratio = 1 Ratio = 0 ns Mmax - 1 Max -	Section Load (Location Span # 5,105 >= 0 < 2837 >= 0 < 2837 >= 0 < Summary of 1 Ma Max 34.38 77.34 66.60 20.63 Load Con	on used fo Va : Appli Vn/Omeg Combination on of maxin # where ma =360 360 =240 240 Moment Valu Mnx 1,016.67 1,016.67 1,016.67 1,016.67 mbination	r this span ied a : Allowab n num on spar aximum occu jes Mnx/Omega 608.78 608.78 608.78	le rs <u>a Cb</u> 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumn Va Max 5.50 12.38 10.66 3.30 x. "+" Defi 0.0000	0.05 W27×8 12.37 245.64 +D- 0.00 Span # nary of Sh Vnx 368.46 368.46 368.46	0:1 44 5 k 0 k +L 00 ft 1 ear Values Vnx/Omeq 245.0 245.0 245.1 245.1 245.1 245.1 1


Y	itle Block Line 1 ou can change this a sing the "Settings" m nd then using the "Pl	ienu item	•.•.•.	· · · · · · · · · · · · · · · · · · ·	<u></u>		Project T Engineer Project-II Project D	r: D:		- 				7
	itle Block" selection.	intung &									·			· · · ·
	itle Block Line 6		· · · · ·										1 SEP 2019	
	Steel Beam							File = LA	lobs\2018\18188	- UPS	BFI Sea	ttle\Engineer	ing\Enercalc\	18188.ec6
1	.ic. # : KW-060016	622						Lice	ensee : PET	TERS	ON-S	TREHLE	-MARTIN	SON, INC
	Description : FO	C - GL C7/C8 (roo	f joist)											:
2000	CODE REFER	ENCES												
	Calculations per		IDC 2012	CBC 204	2 4805	7.40	• •• •		· · · · ·					
	oad Combinatio			., CDC 201	S, ASUE	7-10								
-	Material Prop			ageneze e regel acteurs a No. 1										
	Analysis Method :		trenath De	sian				Ev :	Steel Yield :			50.0 ksi		
	Beam Bracing : Bending Axis :		Braced agair		ional buckl	ling	* .		lodulus :			00.0 ksi		
1-1-10			······································											
	↓	and the second second				D(0.16) L((0.2)							∢
						W21x4	4							
	A has a second s													
				· · ·		Span = 44	4.0 ft	·]
	-													•
		· · · · · · · · · · · · · · · · · · ·												
	Applied Load	Societation in the second					Service	e loads en	tered. Load	Fact	ors wil	l be appli	ied for cal	culations.
	Beam self weigh	t NOT internally					•	. •						
	Uniform Loa	ad: $D = 0.160$,	L = 0.20 k/ft,	, Tributary W	idth = 1.0 ft		-					• .		
		a : Applied n / Omega : Al ion	lowable		21x44 87.120 k- 38.024 k- +D+L 22.000 ft		Load C	Va : Appli Vn/Omega ombination	a : Allowabl				.144 +E	44 20 k 90 k)+L)00 ft
		naximum occurs	S		Span # 1				ximum occui				Span	
	Maximum Defl	ection	flaatter		0.000									. *
		rd Transient De Fransient Defle			0.693 in 0.000 in		761>= 0 <3				•			
	Max Downwa	rd Total Deflec	tion		1.248 in	Ratio =	423 >=					÷		
-	Max Upward	Total Deflectio	า		0.000 in	Ratio =	0 <2	40						
	Maximum Fo	rces & Stre	sses for	Load Cor	nbinatio	ons								
1	Load Combination		Max Stres	· · ·			Summary of M			-				hear Values
	Segment Length	Span #	M	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Ma	ax Vnx	Vnx/Omega
I	Dsgn. L = 44.00 ft	1	0.163	0.024	38.72		38.72	397.50	238.02	1.00	1.00	3.5	2 217.3	5 144.90
	+D+L Dogn L = 44.00 ft													
	Dsgn. L = 44.00 ft +D+0.750L	I	0.366	0.055	87.12		87.12	397.50	238.02	1.00	1.00	7.9	2 217.3	5 144.90
	Dsgn. L = 44.00 ft	1	0.315	0.047	75.02		75.02	397.50	238.02	1.00	1.00	6.8	32 217.3	5 144.90
	+0.60D Dsgn. L = 44.00 ft	1	0.098	0.015	23.23		23.23	397.50	238.02	1.00	1.00	2.1	1 217.3	5 144,90
. 99	Overall Maxir	num Deflec										_,,		
ä	Load Combination		Span	Max. "-" Defi	Location	i in Span	Load Con	bination			Ma	ax. "+" Defi	Locati	on in Span
	+D+L		1	1.2475		2.126						0.0000	···	0.000
122274	Vertical Read	tions				Support	notation : Far	r left is #1			Values	s in KIPS		
	Load Combination		Support 1	Support 2		- •								
	Overall MAXimum		7.920	7.920										·····
ς.	Overall MINimum D Only		2.112 3.520	2.112 3.520		· · ·		• • • •	an an an an an an an an an an an an an a	•.	. ·	·		
	+D+L		7.920	7.920					· ·			•	·.	v.
	+D+0.750L		6.820	6.820										· · · · ·
			A 4 4 A	~										
	+0.60D L Only		2.112 4.400	2.112 4.400					-		· .	· · · ·		

You can change this area using the "Settings" menu item		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Project Ti Engineer Project IE	:):				· · · · · · · · · · · · · · · · · · ·		7
and then using the "Printing & Title Block" selection.				Project D	escr:						
Title Block Line 6					File=1 Vioh	\$\2018\18188	JIPS		Printed: 11 S tle\Engineering\		
Steel Beam											
Lic. # : KW-06001622 Description : FC - GL CE	3 (roof girder)				Licen	see : PE	FERS	ON-S	TREHLE-M	ARTINSO	IN, IN
					• . •						
Calculations per AISC 3	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF	2, CBC 201	3, ASCE 7-10								
Load Combination Set :			• • • •								
Material Properties		nen losta dabli c.dati abbo							~		
Analysis Method : Allows Beam Bracing : Beam i	able Strength D is Fully Braced aga		ional buckling		Fy : St E: Moo	eel Yield :			50.0 ksi 00.0 ksi		
	r Axis Bending		aonai buckiing			10105.		29,0	00.0 KSI		
			D(0.54)) L(0.675)							;
	*			\$ ·		4					Ň
											Щ.
	•		W1	14x22							\mathbf{X}
1			Span	= 11.0 ft							
		· · · · ·	· · · · · · · · · · · · · · · · · · ·			•		•			→
Applied Loads				Senico	loads enter	ed I oad	Facto	re will	he applied	for calcul	ations
Beam self weight NOT in	beteluoleo vilemetr	bobbe bre		Service	IDaus eriter	eu. Luau		713 Win			auona
Uniform Load : D =			Width = 1.0 ft						· ·		
DESIGN SUMMAR Maximum Bending St			0.222:1	Maximum She	oor Stross	Datio -			De	esign OK 0.106	a service and service
Section used for this		w	14x22		n used for t				· · · · ·	W14x22	
Ma : Appl	lied		18.377 k-ft	$\sim 10^{-1}$ $\sim 10^{-1}$	/a : Applied					6.683	
Mn / Ome Load Combination	ega : Allowable		82.834 k-ft +D+L		/n/Omega : ombination	Allowabl	e			63.020 +D+L	
Location of maximum o	on span		5.500ft		ombination n of maximul	n on span			•	0.000	
Span # where maximur	n occurs		Span # 1	Span #	where maxir	num occu	rs			Span #1	
Maximum Deflection Max Downward Trans	sient Deflection		0.039 in Ratio	o= 3,410>=;	260				• •		
Max Upward Transie			0.000 in Ratio								
Max Downward Total Max Upward Total De			0.070 in Ratio 0.000 in Ratio						•		
				0 - 0 < <u>2</u> 4	40						
Maximum Forces 8		Load Col ess Ratios	nbinations	Summary of M	oment Values				Sumn	nary of Shea	r Value
	Span # M	V	Mmax + Mma			/inx/Omega	Cb	Rm	Va Max	Vnx V	
D Only Dsgn. L = 11.00 ft	1 0.099	0.047	8.17	8.17	138.33	82.83	1.00	1.00	2.97	94.53	63
+D+L Dsgn. L = 11.00 ft	1 0.222		18.38	18.38			1.00		6.68	94.53	63
+D+0.750L				•	138.33	82.83					
Dsgn. L = 11.00 ft +0.60D	1 0.191	0.091	15.82	15.82	138.33	82.83	1.00	1.00	5.75	94.53	63
Dsgn. L = 11.00 ft	1 0.059	0.028	4.90	4.90	138.33	82.83	1.00	1.00	• • 1.78	94.53	63
Overall Maximum I		N 11 D - 7									
Load Combination	Span 1	Max. "-" Defi 0.0697	Location in Spa 5.531	an Load Com	IDINATION			Ma	ax. "+" Defl 0.0000	Location i	in Spar
+D+L			*****	pport notation : Far	left is #1			Values	in KIPS		
+D+L Vertical Reactions	A VANDOW AND WAS BEEN AND AND AND AND AND AND AND AND AND AN	THE REPORT OF THE POOL	2012(25)		······································				<u> </u>	·	
+D+L Vertical Reactions Load Combination	Support 1	Support 2									
Vertical Reactions Load Combination Overall MAXimum	Support 1 6.683	6.683		· · · · · · · · · · · · · · · · · · ·	· · · · · ·						
Vertical Reactions Load Combination Overall MAXimum Overall MiNimum	Support 1 6.683 1.782	6.683 1.782			•						
Vertical Reactions Load Combination Overall MAXimum Overall MINimum D Only +D+L	Support 1 6.683 1.782 2.970 6.683	6.683 1.782 2.970 6.683	· · · · ·		· · · · ·			······································	··· · · · · · · · · · · · · · · · · ·	· · · ·	
Vertical Reactions Load Combination Overall MAXimum Overall MINimum D Only	Support 1 6.683 1.782 2.970	6.683 1.782 2.970	· · · · · · · · · · · · · · · · · · ·				<u>.</u>	· · ·			

	Title Block Line 1 You can change this area using the "Settings" menu		· · · · · · · · · · · · · · · · · · ·	1	· · · · · · · · ·	······	Project Til Engineer: Project ID	• . • • •	· · · · ·	-		······	· · · · · · · · · · · · · · · · · · ·	79
^{та, с} . Т	and then using the "Printi Title Block" selection. Title Block Line 6	ng &			· .	2	Project De	escr:			F	Printed: 11 S	EP 2019, {	5:25PM -
	Steel Beam	GL 1.5 (roof gir	der)							1		le\Engineering\ REHLE		an 12 an
	CODE REFEREN													:
	Calculations per AIS Load Combination S	SC 360-10, Set : ASCE		, CBC 201	3, ASCE	7-10		· · · · · · · · · · · · · · · · · · ·			· ·			
	Material Propert				-									
			Braced agair	sign st lateral-ton	sional buckli	ing	÷		ieel Yield dulus :			50.0 ksi 00.0 ksi		
					···· .	D(0.1) L(0.1	125)							
	÷					<u>, (0. 17 Ę(0.</u>	1207	· .		⊅				*
						W10x12								5
		• • •				Span = 20		н 1					· .	
	4			-	•••• •	· · · · ·						•		
	Applied Loads			boon in contraction of the			Service	loads ente	red Loar	Eactr	nrs will	be applied	for calcul	ations
	Beam self weight N	OT internally	calculated a	added								00 00000	101 001001	410110.
	Uniform Load :	D = 0.10, L	= 0.1250 k/l	ft, Tributary	Width = 1.0 f	ft	•			÷				
- 100 - 100	DESIGN SUMM	0.000/00/00/00/00/00/00/00/00/00/00/00/0									l	De	esign OK	
	Maximum Bendin Section used for		atio =	. 14	0.360 : 1 /10x12	Max	imum She	ar Stress					0.060	
		Applied		¥1	11.250 k-	ft		a : Applied					W10x12 2.250	
		Omega : All	owable		31.207 k-	ft		/n/Omega :	Allowab	le			37.506	
	Load Combination Location of maxim Span # where max	um on span	S		+D+L 10.000ft Span # 1		Location	mbination of maximu where maxii					+D+L 0.000 Span # 1) ft
	Maximum Deflect Max Downward Max Upward Tra Max Downward Max Upward Tot	Fransient De nsient Defle Fotal Deflec	ction tion		0.290 in 0.000 in 0.522 in 0.000 in	Ratio = Ratio =	828>=3 0 <36 460 >=2 0 <24	0 240				• •		. •
	Maximum Force	es & Stre	the second	a hour far a far a har har har har har har har har har	mbinatio	ns								
	Load Combination Segment Length	Span #	Max Stres	s Ratios V	Mmax +	S Mmax -	ummary of Mo Ma Max		: /Inx/Omega	. Ch	Rm	Summ Va Max	nary of Shea	ar Values /nx/Ome
	D Only	Opail #	IVI	¥	IVIIIIA -	Williax ~		WILA D	and Onicya	1.00	rau	Va IViax	¥11X ¥	11X/OIIIC
	Dsgn. L = 20.00 ft +D+L	1	0.160	0.027	5.00		5.00	52.12	31.21	1.00		1.00	56.26	37.
· ·	Dsgn. L = 20.00 ft +D+0.750L Dsgn. L = 20.00 ft	1	0.360 0.310	0.060 0.052	11.25 9.69		11.25 9.69	52.12 52.12	31.21 31.21	1.00 1.00		2.25	56.26 56.26	37. 37.
	+0.60D Dsgn. L = 20.00 ft	1	0.096	0.016	3.00		3.00	52.12	31.21	1.00	1.00	0.60	56.26	37.
	Overall Maximu	ım Deflec	tions											
	Load Combination		Span	Max. "-" Defi		•	Load Comb	bination			Ма	x. "+" Defl	Location i	
	+D+L		1	0.5215	1 Marina	0.057		فيد زريما			Voluoo	0.0000 in KIPS).000
	Vertical Reaction	2018	Support 1	Support 2		Support	notation : Far I	ien is #1			values	III NIFO		
	Overall MAXimum	· · · · ·	2.250	2.250	· · · · ·			· · · · · · · · ·		· · ···		· · · · · · · · · · · · · · · · · · ·		
	Overall MINimum		0.600	0.600	· · · ·		т. 14 г.	· ·				1.1		
···· :			1.000											
···· : - · · · · · · · ·	D Only +D+L		2.250	2.250			1 A A A A A A A A A A A A A A A A A A A							
· · · · · · · · · · · · · · · · · · ·	D Only +D+L +D+0.750L		1.938	1.938				· ·						•
· · · · · · · · · · · · · · · · · · ·	D Only +D+L													

You can change th using the "Settings and then using the	"menu item "Printing &	· · · ·		· · · ·	 	Engineer: Project ID Project De	;	<u></u>			· · · · · · · · · · · · · · · · · · ·		81
Title Block" selecti Title Block Line 6	on.									F	vinted 1 O	CT 2019, 5:	46PM
Steel Bear	n						File = L:\Jol	s\2018\1818(- UPS			Enercalc\18188	
Lic. # : KW-060							Licen	see : PE	TERS	ON-ST	REHLE-M	ARTINSO	N. INC
Description :	FC - GL CB/1.5 (roc	of joist)						•					· . ·
CODEREE	ERENGES									· .			
A CONTRACTOR AND A	er AISC 360-10,	. IBC 2012	. CBC 201	3. ASCE 7	7-10								•
	tion Set : ASCE		,	-,									
Material Pro													
	od : Allowable S			alanal huaklir				teel Yield :			50.0 ksi		
Beam Bracing Bending Axis :			IST lateral-tors	sional Duckiii	ng		E: MO	dulus :		29,00	0.0 ksi		
Dentaing / one .													
		1990 - 1990 - 1990 1990 - 1990 - 1990		D.4	0.0001.00	075		•					
		÷			0.22) <u>L(</u> 0.	273)		1	7				÷
i 👗	· · ·				W5x16							<u>م</u> `	
				s	Span = 10	.0 ft		·.					I.
4													•
	· · · · · · · · · · · · · · · · · · ·												
Applied Lo	ads					Service I	loads ente	red. Load	Facto	ors will	be applied	for calcula	tions.
	ight NOT internally				_			÷ .					
Uniform	Load : D = 0.220,	L = 0.2750 K	vit, Fributary	v width = 1.0	π								
	ending Stress R ed for this span	Ratio =		0.258 : 1 W5x16			used for t	his span			De	sign OK 0.103 W5x16	: 1
Maximum B Section use Load Comb Location of	ending Stress R ed for this span Ma : Applied Mn / Omega : Al	lowable			ft	Section V V Load Co Location		his span I : Allowabl m on spar	L.		De	0.103	: 1 k k
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Down	ending Stress R ed for this span Ma : Applied Mn / Omega : All ination maximum on span ore maximum occurs	lowable s eflection ection		W5x16 6.188 k-f 24.027 k-f +D+L 5.000 ft	ft ft Ratio = Ratio = Ratio =	Section V V Load Co Location	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40	his span I : Allowabl m on spar	L.		De	0.103 W5x16 2.475 24.048 +D+L 0.000	: 1 k k
Maximum B Section use Locat Comb Location of Span # whe Maximum D Max Down Max Down Max Upwa Max Upwa	ending Stress R ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs beflection ward Transient Defle ward Total Deflec	lowable s eflection ection n		W5x16 6.188 k-f 24.027 k-f +D+L 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in	ft ft Ratio = Ratio = Ratio = Ratio =	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0	his span 1 : Allowabl m on spar mum occu	L.			0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1	:1 k k ft
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Down Max Upwa Max Upwa Load Combination	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs beflection ward Transient Deflect rd Transient Deflect rd Total Deflection Forces & Stre	lowable s effection ection tion n sses for <u>Max Stres</u>	Load Co	W5x16 6.188 k-f 24.027 k-f 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio	ft ft Ratio = Ratio = Ratio = Ratio = NS	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wnent Value	his span 1 : Allowabl m on spar mum occu	rs		Sumr	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1	: 1 k k ft
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Down Max Upwa Max Upwa	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs beflection ward Transient Deflect rd Transient Deflect rd Total Deflection Forces & Stre	lowable s eflection ection tion n sses for	Load Co	W5x16 6.188 k-f 24.027 k-f +D+L 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in	ft ft Ratio = Ratio = Ratio = Ratio =	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wnent Value	his span 1 : Allowabl m on spar mum occu	rs	Rm		0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1	: 1 k k ft
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Down Max Upwa Max Down Max Upwa Max Down Max Upwa Down Max Upwa Down Max Lent D Only Dsgn. L = 10.00	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs beflection ward Transient Deflection ward Total Deflection Forces & Stre gth Span #	lowable s effection ection tion n sses for <u>Max Stres</u>	Load Co	W5x16 6.188 k-f 24.027 k-f 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio	ft ft Ratio = Ratio = Ratio = Ratio = NS	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wnent Value	his span 1 : Allowabl m on spar mum occu	rs		Sumr	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1	: 1 k k ft Value xx/Ome
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Down Max Upwa Max Down Max Upwa Max Down Max Upwa Down Max Upwa	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs Deflection ward Transient Deflect ward Total Deflection Forces & Stre gth Span #	lowable s effection ection tion n SSES for <u>Max Stres</u> <u>M</u>	Load Co ss Ratios V	W5x16 6.188 k-f 24.027 k-f +D+L 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio	ft ft Ratio = Ratio = Ratio = Ratio = NS	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 ment Value Mnx	his span 1 : Allowabl m on spar mum occu s s Mnx/Omega	rs n Cb	1.00	Sumr Va Max	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1	: 1 k k ft Value: xx/Ome 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Down Max Upwa Max Upwa Max Upwa Donn Load Combination Segment Lene D Only D Sgn. L = 10.00 +D+L Dsgn. L = 10.00 +D+0.750L	ending Stress R ed for this span Ma : Applied Mn / Omega : All ination maximum on span ore maximum occurs Deflection ward Transient Deflect ward Total Deflection Forces & Stre gth Span # 0 ft 1	lowable s eflection ection fin sses for <u>Max Stres</u> M 0.114 0.258	Load Co ss Ratios V 0.046 0.103	W5x16 6.188 k-f 24.027 k-f +D+L 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19	ft ft Ratio = Ratio = Ratio = Ratio = NS	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19	used for f a : Applied n/Ornega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13	his span I Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03	rs <u>1.00</u> 1.00	1.00 1.00	Summ Va Max 1.10 2.48	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 mary of Shear Vnx Vr 36.07 36.07	: 1 k k ft Value: xx/Ome 24 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Down Max Upwa Max Down Max Upwa Max Down Max Upwa Max Down Max Down Donly Donly Dogn. L = 10.00 +D+L Dogn. L = 10.00 +D+0.750L Dogn. L = 10.00 +D.60 Dogn. L = 10.00	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs beflection ward Transient Deflection rd Transient Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1	lowable s effection ection tion m Sses for <u>Max Stres</u> M 0.114 0.258 0.222	Load Co s Ratios V 0.046 0.103 0.089	W5x16 6.188 k-f 24.027 k-f +D+L 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19 5.33	ft ft Ratio = Ratio = Ratio = Ratio = NS	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13 40.13	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00	1.00 1.00 1.00	Summ Va Max 1.10 2.48 2.13	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1	: 1 k k ft t Values 24 24 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Down Max Upwa Max Upwa Max Upwa Down Max Upwa Down Max Upwa Down Max Upwa Down Max Upwa Load Combination Segment Lene Donly Dsgn. L = 10.00 +D+0.750L Dsgn. L = 10.00 +0.60D Dsgn. L = 10.00	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span ore maximum occurs Deflection ward Transient Deflection ward Total Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1	lowable s effection ection tion m <u>Sses for</u> <u>Max Stres</u> <u>M</u> 0.114 0.258 0.222 0.069	Load Co ss Ratios V 0.046 0.103	W5x16 6.188 k-f 24.027 k-f +D+L 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19	ft ft Ratio = Ratio = Ratio = Ratio = NS	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19	used for f a : Applied n/Ornega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13	his span I Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03	rs <u>1.00</u> 1.00	1.00 1.00 1.00	Summ Va Max 1.10 2.48	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 mary of Shear Vnx Vr 36.07 36.07	: 1 k k ft ft <u>Value</u> 24 24 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Donly D	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs Deflection ward Transient Deflec ward Total Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1 ximum Deflect	lowable s effection section tion m <u>sses for</u> <u>Max Stres</u> <u>M</u> 0.114 0.258 0.222 0.069 ctions	Load Co s Ratios V 0.046 0.103 0.089 0.027	W5x16 6.188 k-f 24.027 k-f +D+L 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatic Mmax + 2.75 6.19 5.33 1.65	ft ft Ratio = Ratio = Ratio = Si Mmax -	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33 1.65	used for f a : Applied n/Ornega mbination of maximu where maxi 60 0 40 0 0 ment Value Mnx 40.13 40.13 40.13 40.13	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Summ Va Max 1.10 2.48 2.13 0.66	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 hary of Shear Vnx Vr 36.07 36.07 36.07 36.07	: 1 k k ft t Value 24 24 24 24 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Donly Donly Donly Dsgn. L = 10.00 +D+0.750L Dsgn. L = 10.00	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs Deflection ward Transient Deflec ward Total Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1 ximum Deflect	lowable s effection ection tion m <u>Sses for</u> <u>Max Stres</u> <u>M</u> 0.114 0.258 0.222 0.069	Load Co ss Ratios V 0.046 0.103 0.089 0.027 Max. "-" Defi	W5x16 6.188 k-f 24.027 k-f +D+L 5.000 ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19 5.33 1.65 Location Location	ft ft Ratio = Ratio = Ratio = Mmax -	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33	used for f a : Applied n/Ornega mbination of maximu where maxi 60 0 40 0 0 ment Value Mnx 40.13 40.13 40.13 40.13	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Summ Va Max 1.10 2.48 2.13 0.66	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 hary of Shear Vnx Vr 36.07 36.07 36.07 36.07 36.07 26.07	: 1 k k ft tt Value x/Om 24 24 24 24 24 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Down Max Upwa Max Down Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Dogn L = 10.00 +D+L Dsgn. L = 10.00 +D+0.750L Dsgn. L = 10.00 +0.60D Dsgn. L = 10.00 +0.60D Dsgn. L = 10.00 +0.60D Dsgn. L = 10.00 +0.60D	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs beflection ward Transient Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1 ximum Deflection	lowable s eflection ction m <u>Sses for</u> <u>Max Stres</u> <u>M</u> 0.114 0.258 0.222 0.069 Ctions Span	Load Co s Ratios V 0.046 0.103 0.089 0.027	W5x16 6.188 k-f 24.027 k-f +D+L 5.000 ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19 5.33 1.65 Location Location	ft ft Ratio = Ratio = Ratio = Mmax - <u>Si</u> <u>Mmax -</u> in Span 5.029	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33 1.65 Load Comt	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13 40.13 40.13 40.13 bination	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumr Va Max 1.10 2.48 2.13 0.66 x. "+" Defi 0.0000	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 hary of Shear Vnx Vr 36.07 36.07 36.07 36.07 36.07 26.07	: 1 k k ft t Value x/Om 24 24 24 24 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Donly Donly Donly Dsgn. L = 10.00 +D+0.750L Dsgn. L = 10.00	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs Deflection ward Transient Deflect rd Transient Deflect rd Total Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1 ximum Deflect n	lowable s eflection ction m <u>Sses for</u> <u>Max Stres</u> <u>M</u> 0.114 0.258 0.222 0.069 Ctions Span	Load Co ss Ratios V 0.046 0.103 0.089 0.027 Max. "-" Defi	W5x16 6.188 k-f 24.027 k-f +D+L 5.000 ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19 5.33 1.65 Location Location	ft ft Ratio = Ratio = Ratio = Mmax - <u>Si</u> <u>Mmax -</u> in Span 5.029	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33 1.65	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13 40.13 40.13 40.13 bination	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	Sumr Va Max 1.10 2.48 2.13 0.66 x. "+" Defi 0.0000	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 hary of Shear Vnx Vr 36.07 36.07 36.07 36.07 36.07 26.07	: 1 k k ft tt Value: xx/Ome 24 24 24 24 24 24 24
Maximum B Section use Load Comb Location of Span # whee Maximum D Max Down Max Upwa Max Down Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Down Max Upwa Dogn L = 10.00 +D+L Dsgn. L = 10.00 +D+0.750L Dsgn. L = 10.00 +D+0.60D Dsgn. L = 10.00 +D+L Coad Combinatio +D+L Load Combinatio Overall MAXimu	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs Deflection ward Transient Deflection rd Transient Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1 0 ft 1 ximum Deflection n	lowable s effection ection tion m Sses for Max Stres M 0.114 0.258 0.222 0.069 Ctions Span 1 Support 1 2.475	Load Co s Ratios V 0.046 0.103 0.089 0.027 Max. "-" Defi 0.1803 Support 2 2.475	W5x16 6.188 k-f 24.027 k-f +D+L 5.000 ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19 5.33 1.65 Location Location	ft ft Ratio = Ratio = Ratio = Mmax - <u>Si</u> <u>Mmax -</u> in Span 5.029	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33 1.65 Load Comt	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13 40.13 40.13 40.13 bination	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumr Va Max 1.10 2.48 2.13 0.66 x. "+" Defi 0.0000	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 hary of Shear Vnx Vr 36.07 36.07 36.07 36.07 36.07 26.07	: 1 k k ft tt Value x/Om 24 24 24 24 24 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Upwa Max Down Max Upwa Max Down Max Upwa Max Down Max Upwa Max Down Max Upwa Max Down Max Down Max Down Max Upwa Max Down Max Down Dogn, L = 10.00 Hoto Coverall Max Minimu Overall Maxim	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs Deflection ward Transient Deflection rd Transient Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1 0 ft 1 ximum Deflection n	lowable s effection ection tion m Sses for Max Stres M 0.114 0.258 0.222 0.069 Ctions Span 1 1 Support 1 2.475 0.660	Load Co s Ratios V 0.046 0.103 0.089 0.027 Max. "-" Defi 0.1803 Support 2 2.475 0.660	W5x16 6.188 k-f 24.027 k-f +D+L 5.000 ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19 5.33 1.65 Location Location	ft ft Ratio = Ratio = Ratio = Mmax - <u>Si</u> <u>Mmax -</u> in Span 5.029	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33 1.65 Load Comt	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13 40.13 40.13 40.13 bination	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumr Va Max 1.10 2.48 2.13 0.66 x. "+" Defi 0.0000	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 hary of Shear Vnx Vr 36.07 36.07 36.07 36.07 36.07 26.07	: 1 k k ft tt Value: xx/Ome 24 24 24 24 24 24 24
Maximum B Section use Load Comb Location of Span # whee Maximum D Max Down Max Upwa Max Down Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Down Max Upwa Dogn L = 10.00 +D+L Dsgn. L = 10.00 +D+0.750L Dsgn. L = 10.00 +D+0.60D Dsgn. L = 10.00 +D+L Coad Combinatio +D+L Load Combinatio Overall MAXimu	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs Deflection ward Transient Deflection rd Transient Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1 0 ft 1 ximum Deflection n	lowable s effection ection tion m Sses for Max Stres M 0.114 0.258 0.222 0.069 Ctions Span 1 Support 1 2.475	Load Co s Ratios V 0.046 0.103 0.089 0.027 Max. "-" Defi 0.1803 Support 2 2.475	W5x16 6.188 k-f 24.027 k-f +D+L 5.000 ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19 5.33 1.65 Location Location	ft ft Ratio = Ratio = Ratio = Mmax - <u>Si</u> <u>Mmax -</u> in Span 5.029	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33 1.65 Load Comt	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13 40.13 40.13 40.13 bination	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumr Va Max 1.10 2.48 2.13 0.66 x. "+" Defi 0.0000	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 hary of Shear Vnx Vr 36.07 36.07 36.07 36.07 36.07 26.07	: 1 k k ft tt Value: xx/Ome 24 24 24 24 24 24 24
Maximum B Section use Load Comb Location of Span # whe Maximum D Max Down Max Down Max Down Max Upwa Max Down Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Upwa Max Down Max Upwa Max Down Max Upwa Max Down Max Upwa Max Down Max Down Donly Dogn L = 10.00 +D+L Dogn L = 10.00 +D+L	ending Stress F ed for this span Ma : Applied Mn / Omega : All ination maximum on span re maximum occurs Deflection ward Transient Deflection rd Transient Deflection Forces & Stre gth Span # 0 ft 1 0 ft 1 0 ft 1 ximum Deflection n	lowable s effection ection tion m sses for <u>Max Stres</u> M 0.114 0.258 0.222 0.069 stions Span 1 1 <u>Support 1</u> 2.475 0.660 1.100	Load Co s Ratios V 0.046 0.103 0.089 0.027 Max. "-" Defi 0.1803 Support 2 2.475 0.660 1.100	W5x16 6.188 k-f 24.027 k-f +D+L 5.000ft Span # 1 0.100 in 0.000 in 0.180 in 0.000 in mbinatio Mmax + 2.75 6.19 5.33 1.65 Location	ft ft Ratio = Ratio = Ratio = Mmax - <u>Si</u> <u>Mmax -</u> in Span 5.029	Section V Load Co Location Span # v 1,198 >=3 0 <36 666 >=2 0 <24 ummary of Mo Ma Max 2.75 6.19 5.33 1.65 Load Comt	used for f a : Applied n/Omega mbination of maximu where maxi 60 0 40 0 wment Value Mnx 40.13 40.13 40.13 40.13 40.13 bination	his span 1 : Allowabl m on spar mum occu s Mnx/Omega 24.03 24.03 24.03	rs 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 Max	Sumr Va Max 1.10 2.48 2.13 0.66 x. "+" Defi 0.0000	0.103 W5x16 2.475 24.048 +D+L 0.000 Span # 1 hary of Shear Vnx Vr 36.07 36.07 36.07 36.07 36.07 26.07	: 1 k k ft tt Value: xx/Ome 24 24 24 24 24 24 24

Peterson Strehle Martinson, Inc. Consulting Engineers 2200 Sixth Avenue Suite 601, Seattle, WA 98121-1849

ph: 206 622 4580 | fx: 206 622 0422

Braced Frame on grid line

at floor

<u>Input</u>

	Ge	ometry			Load			Material Prop	erties
	H_{STR}^{1}		11.3 ft	P _U ³		8.6 k		F _{y_BM}	50 ksi
	W _{BAY} ²		10.8 ft	ρ		1.29		F _{y_COL}	50 ksi
	W _{COL_LT}		6 in	Ω_0		2.0		F _{y_BRC}	46 ksi
	W _{COL_RT}		6 in	Ry	÷	1.4		F _{y_GP}	36 ksi
	D _{BM_TOP}		16 in						· ·
	D _{BM_BOT}		16 in						
	assut	ned thickness	es						
	t _{BR}		0.23 in	OK	• •				
· · ·	t _{BM_FL}		0.35 in	ОК					
	tc		0.25 in	OK					
	t_{GP}		1/2 in	OK				· ·	
	Brace C	onfiguration						·	
,	Working Col Point cen	umn & Beam Iterline			-				
	Type⁴	X							
	Ľ		7.15 ft						
	θ		46.43 deg					·	
		• ,							
<u>Outpu</u>	F								
<u>outpu</u>	<u>-</u>								
	HSS [°] 4 X	4 X 1/4				P _{CONN} ⁶	205 k		
	φ _c P _n		104 k	ОК		P _{ut}	21 7 k		
Г	I _{B_MIN}		7 in	4	sixteer	ths weld	t		

 Image: left minipage
 16 in
 4
 sixteenths weld

 Iv_min
 12 in
 4
 sixteenths weld

1/2 in

Note 1. H_{STR} refers to story height from top of beam to top of beam.

Note 2. W_{BAY} refers to distance from centerline of column to centerline of column.

Note 3. $P_U = \rho Q_E$ perASCE 7-02. This is the force in brace member under design.

Note 4. "X" for cross-bracing and "V" for chevron bracing.

t_{GP}

Note 5. Most efficient member automatically picked. Engineer may overwrite. Beware of syntax.

NO

stiffener

Note 6. Maximum of $P_U R_y \Omega_0 / \rho$ and 1.1 $P_n R_y (P_n$ function of actual unbraced length)

83

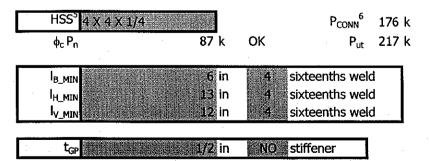
Job: UPS BFI (18188)

Re: E/W top floor

Date:

By:

Peterson Strehle Martinson, Inc. Consulting Engineers	Job: UPS BFI (18188)	
2200 Sixth Avenue Suite 601, Seattle, WA 98121-1849 ph: 206 622 4580 fx: 206 622 0422	By: Re: E/W	


Braced Frame on grid line

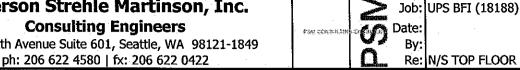
at floor

<u>Input</u>

Geometry		L	oad	Material Properties		
	17.7 ft	P_{U}^{3}	31.9 k	F _{y_BM} 50 ksi		
W _{BAY} ²	10.8 ft	ρ	1.29	F _{y_COL} 50 ksi		
W _{COL_LT}	6 in	Ω_0	2.0	F _{y_BRC} 46 ksi		
W _{COL_RT}	6 in	R _v	1.4	F _{y_GP} 36 ksi		
D _{BM_TOP}	16 in	,	• •			
D _{BM_BOT}	16 in					
assume	d thicknesses					
t _{BR}	0.23 in	ОК				
t _{BM_FL}	0.35 in	OK				
t _c	0.25 in	ОК				
t _{GP}	1/2 in	ОК				
Working Colum Point cente						
Type⁴	Х		•			
L	9.64 ft			·		
θ	58.69 de <u>c</u>]	· .			

<u>Output</u>

Note 1. H_{STR} refers to story height from top of beam to top of beam.

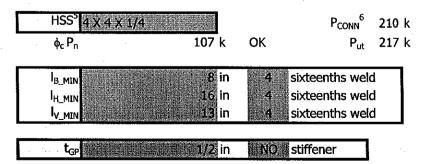

Note 2. W_{BAY} refers to distance from centerline of column to centerline of column.

Note 3. $P_U = \rho Q_E$ perASCE 7-02. This is the force in brace member under design.

Note 4. "X" for cross-bracing and "V" for chevron bracing.

Note 5. Most efficient member automatically picked. Engineer may overwrite. Beware of syntax. Note 6. Maximum of $P_U R_y \Omega_0 / \rho$ and 1.1 $P_n R_y (P_n$ function of actual unbraced length)

Peterson Strehle Martinson, Inc. **Consulting Engineers** 2200 Sixth Avenue Suite 601, Seattle, WA 98121-1849


Re: N/S TOP FLOOR

85

Braced Frame on grid line at floor ROOF Δ

Input

Geometry		Loa	d	Material Properties		
	H _{STR} ¹	11.3 ft	Pu ³	4.3 k	F _{y_BM}	50 ksi
	W _{BAY} ²	9.7 ft	ρ.	1.29	F _{y_COL}	46 ksi
	W _{COL_LT}	6 in	Ω_0	2.0	F _{y_BRC}	46 ksi
	W _{COL_RT}	6 in	Ry	1.4	F _{y_GP}	36 ksi
	D _{BM_TOP}	16 in	· .			
÷	D _{BM_BOT}	16 in				
	assumed th	icknesses				
1 - F	t _{BR}	0.23 in	ОК			
	t _{BM_FL}	0.35 in	OK			
	tc	0.25 in	OK			
	t _{GP}	1/2 in	OK		-	. *
	· · · · ·					
	Brace Configu Working Column & Point centerline	Beam				
	⊤ype⁴	Х				
	Ĺ	6.76 ft				
	θ	49.23 deg				
<u>Outp</u>	<u>ut</u>	·				· · ·

Note 1. H_{STR} refers to story height from top of beam to top of beam.

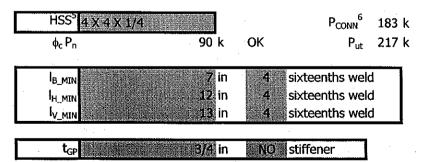
Note 2. W_{BAY} refers to distance from centerline of column to centerline of column.

Note 3. $P_U = \rho Q_E$ perASCE 7-02. This is the force in brace member under design.

Note 4. "X" for cross-bracing and "V" for chevron bracing.

Note 5. Most efficient member automatically picked. Engineer may overwrite. Beware of syntax. Note 6. Maximum of $P_U R_y \Omega_0 / \rho$ and 1.1 $P_n R_y (P_n$ function of actual unbraced length)

				- 4
Peterson Strehle Martinson, Inc.	_	N	Job:	UPS BFI (18188)
Consulting Engineers	P381-004868,388	ssi (a fin	Date:	
2200 Sixth Avenue Suite 601, Seattle, WA 98121-1849		X	By:	
ph: 206 622 4580 fx: 206 622 0422			Re:	N/S


ROOF

86

Braced Frame on grid line A at floor

<u>Input</u>

					÷			
•	Geometry		Loa	d	Mate	erial Prop	oerties	
. · ·	H _{STR} ¹	17.7 ft	P_0^3	16.2 k		F _{y_BM}	50 ksi	
	W _{BAY} ²	9.7 ft	ρ	1.29		F _{y_COL}	46 ksi	
	W _{COL_LT}	6 in	Ω_0	2.0		F _{y_BRC}	46 ksi	
. · .	W _{COL_RT}	6 in	Ry	1.4		F _{y_GP}	36 ksi	
	D _{BM_TOP}	16 in				,		
	D _{BM_BOT}	16 in						
	assumed thickness	ies						
	t _{BR}	0.23 in	OK					
	t _{BM_FL}	0.35 in	OK					:
	tc	0.25 in	ОК					
	t _{GP}	3/4 in	OK					
	Brace Configuration Working Column & Beam Point centerline Type ⁴ X L θ	9.38 ft 61.24 deg	· ·		· · · · ·	· · · · ·		
Outp	out		·					

Note 1. H_{STR} refers to story height from top of beam to top of beam.

Note 2. W_{BAY} refers to distance from centerline of column to centerline of column.

- Note 3. $P_U = \rho Q_E$ perASCE 7-02. This is the force in brace member under design.
- Note 4. "X" for cross-bracing and "V" for chevron bracing.

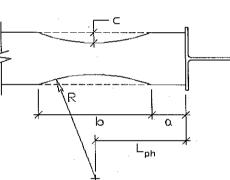
Note 5. Most efficient member automatically picked. Engineer may overwrite. Beware of syntax. Note 6. Maximum of $P_{ij} R_y \Omega_0 / \rho$ and 1.1 $P_n R_y (P_n$ function of actual unbraced length)

PETERSON STREHLE MARTINSON, INC.

Consulting Engineers 2200 Sixth Avenue, Suite 601 Seattle, Washington 98121 Office (206) 622-4580 / Fax (206) 622-0422

JOB: UPS BFI DATE: Oct 29,19 BY: PCB SUBJECT: Reduced Beam Section Design SHEET NO. OF

Description


This speadsheet calculates and checks the plastic moment capacity for a "reduced beam section" (RBS). This speadsheet assumes a non-composite steel beam section.

Beam Input Data

Section	W27X94	
L _{cir} ≕	25	ft.: Clear span of beam member
d =	27	in.: Depth of beam
t _w =	0.49	in.: Web thickness
b _f =	10	in.: Flange width
t _f =	0.745	in.: Flange thickess
Z _x =	278	in. ³ : Plastic section modulus
V _{u,g}	20	kips: Factored gravity shear load at RBS
F _y =	50	ksi: Yield strength of steel
R _y =	1.1	Ration of expected yield stength to minimum steel strength
C _{pr} =	1.15	Coefficient used to account for peak strenght of connection

Reduced Beam Section Data

a =	6	in.		
b =	18	in.		
c =	1.75	in.		
$R = (4c^2 + b^2)$	/(8c) =		24.0	in
$L_{ph} = a + (b/2)$) = '		15	in.

RBS is okay.

Calculations

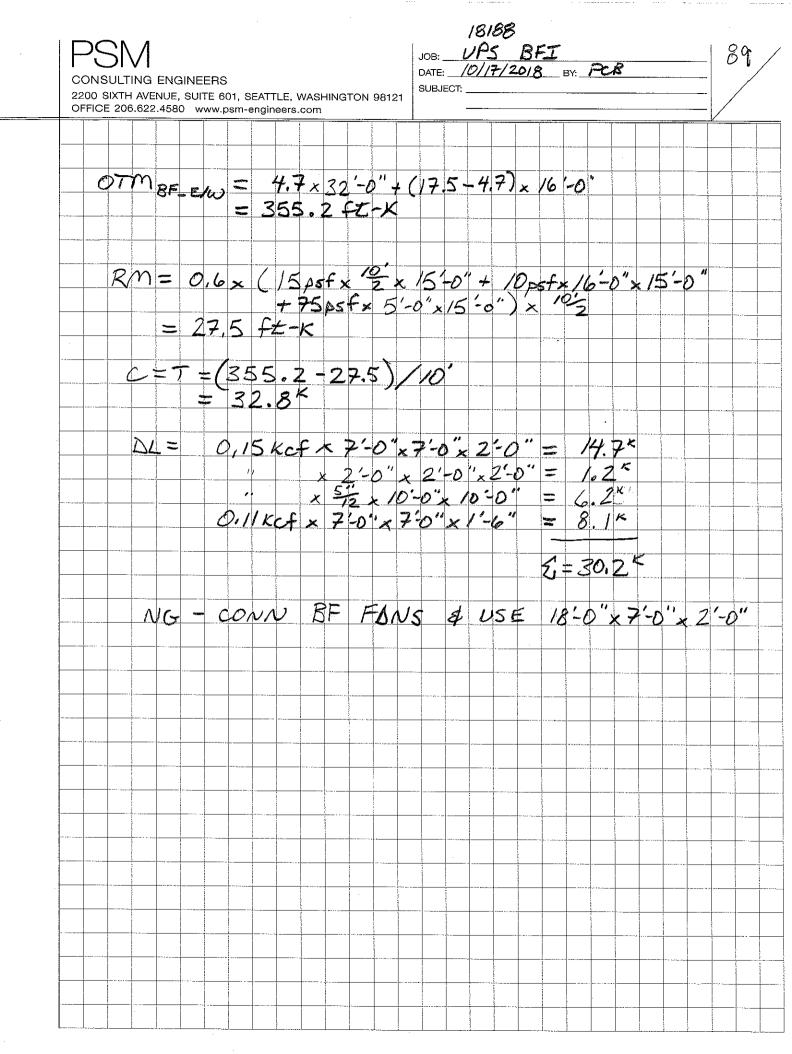
Check moment resistance of flanges

 $Z_{xf} = (b_{f}t_{f}) \times (d - t_{f}) = 197.4995 \text{ in.}^{3}$ $Z_{xf}/Z_{p} = 0.71 > 0.7 - Okay$

Check RBS local flange stability

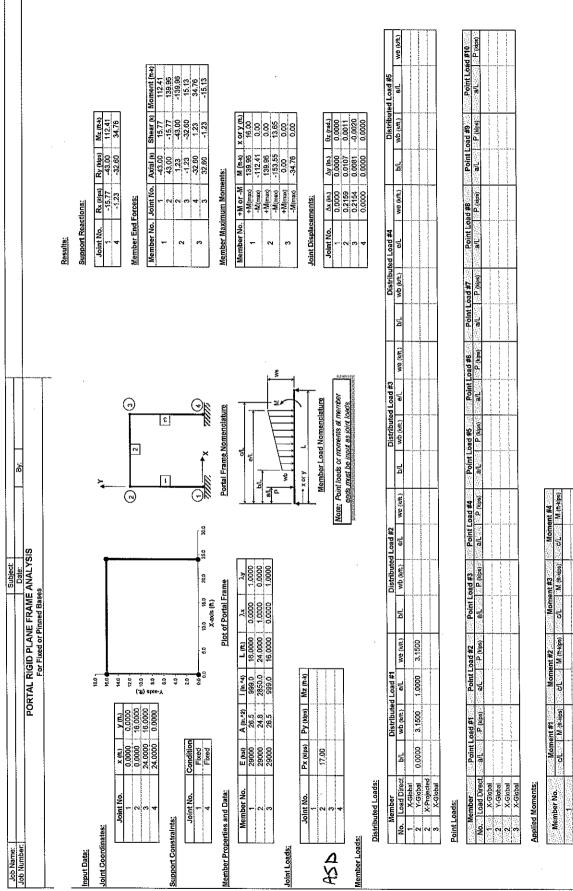
b _{f,eff} = 2(R-c) + b _f - (2 √[$R^2 - (b_f/3)^2] =$	6.96	ln.
$b_{f,eff}/(2t_f) =$	4.67		
52/√(F,,) =	7.35 Local Flang	e Stabilit	tv at

Calculate Z_{RBS}


 $Z_{RBS} = Z_x - 2ct_f(d - t_f) = 209.54 \ln^3$

Calculate M_{RBS} and V_{RBS}

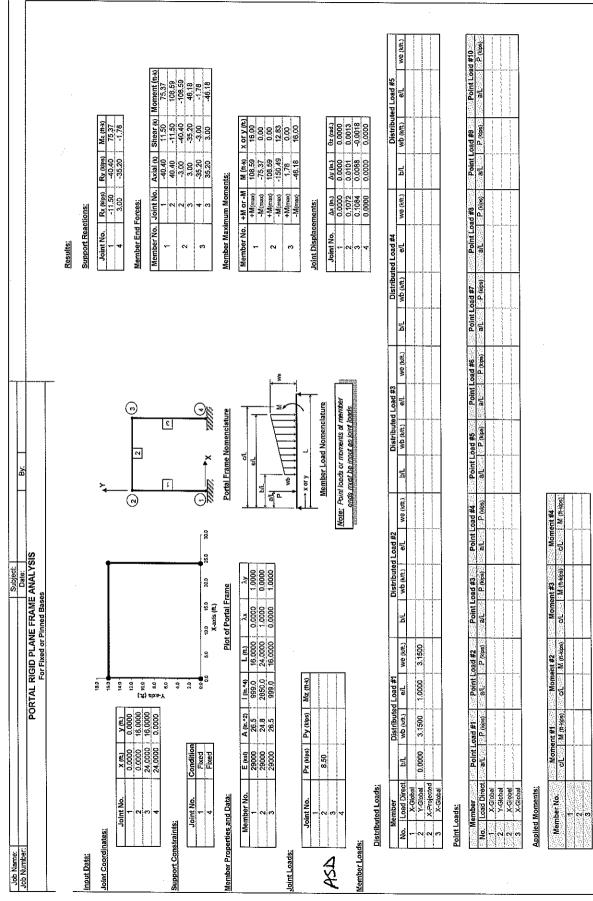
$M_{RBS} = C_{pr} \times R_y \times Z_{RBS} \times F_y =$	1104.45	k-ft. <to <math="" be="" display="inline" used="" with="">\varphi</to>
$V_{RBS} = [2M_{RBS} / (L_{clr} - 2L_{ph})] + V_{u,g} =$	118.17	kips <to <math="" be="" used="" with="">\phi</to>
$V_{RBS} = [-2M_{RBS} / (L_{cir} - 2L_{ph})] + V_{u,g} =$	9.50	kips <to <math="" be="" used="" with="">\phi</to>


Calculate and check M_F $M_F = M_{RBS} + V_{RBS}L_{ph} = 1252.17$ k-ft. $R_v \times Z_x \times F_v = 1274.17$ k-ft. **RBS is okay.**

18/88 88 JOB: UPS BFI DATE: 10/15/2019 BY: FCB CONSULTING ENGINEERS SUBJECT: 2200 SIXTH AVENUE, SUITE 601, SEATTLE, WASHINGTON 98121 OFFICE 206.622.4580 www.psm-engineers.com $OTM_{mF} = 2 \times (1.8^{K} \times 32' - 0'' + (6.7 - 1.8)^{K} \times 16' - 0'') = 272.0 \times -62$ $RM = 0.6 \times \left[\frac{15}{5} + 5f \times \left(\frac{42' - 0}{2} + 5' - 0'' \right) \times \frac{50' - 0'' + 10}{50' - 0'' + 50' + 5$ = 1695 At+K < 272 K-ft (NO UPLIFT OTM BF_N/S = 2.4 x 32'-0" + 8.9 x /6'-0" = 219.2 FE-K $\frac{2M}{2} = 0.6 \times \left[\frac{15}{5} \text{psf} \times \frac{42}{2} + \frac{10}{7} + \frac{24}{7} + \frac{10}{7} + \frac{10}{7} + \frac{10}{7} \text{psf} \times \frac{10}{7} - \frac{10}{7} + \frac{10}{7}$ $T = C = (2!9, 2 - 82, 7) F_{4-k} / 10' - 0''$ $DL_{FTG} = 10' - 0'' \times (4' - 0'' \times 2' - 0'' + 2' - 0'' \times 1 - 0'') \times 0.15 \text{ kef}$ = 15.0 K > 13.7 K BK

PSM Engineers

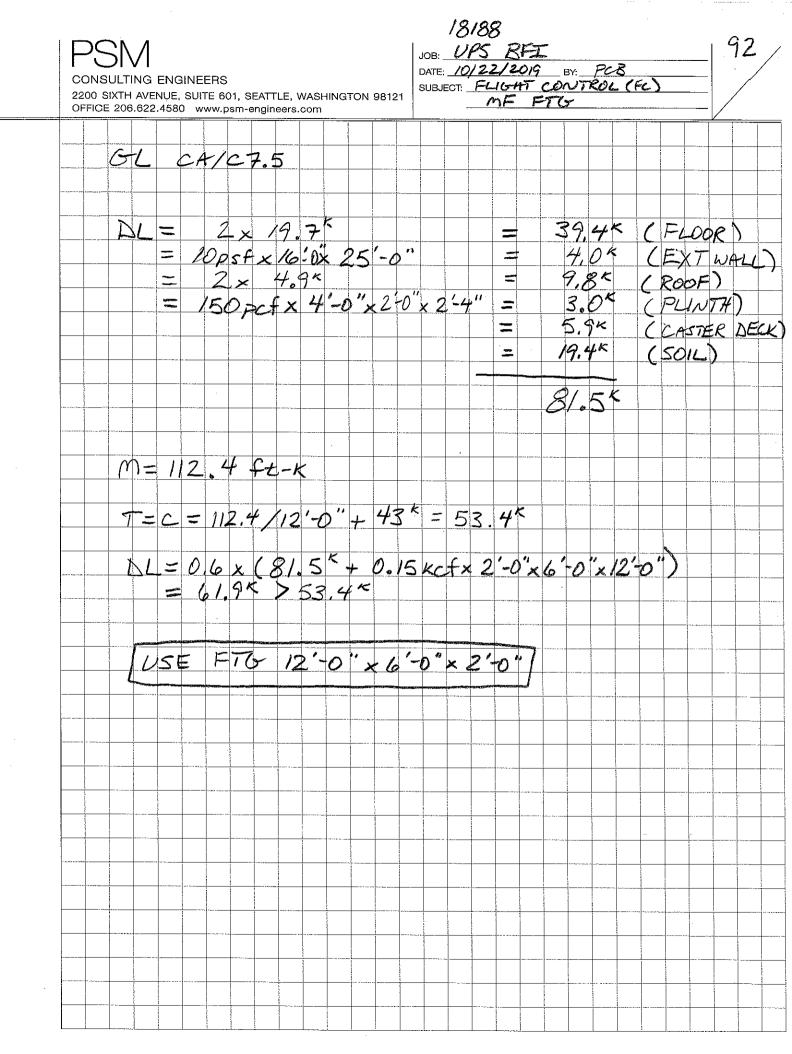
1		
2		
7700 OIII VAGING" #001 Codine, 910 BUL		
Š		
Ş		
ĥ		
		Γ
5		
3		
٩		L


osm-engineere.com

90

frame analysis

206.622.4580


2200 6th Avenue., #601, Seattle, WA 98121 **PSM Engineers**

1	_			_ I	
14	6	- 1	- 1	_ I	
-1	्रभ	- 1		_ I	
ы	1 ¥ I	- 1		_ I	
t l	1 at 1	- 1		- i	
-	-	1		- 1	
Momenca	5	- 1	- 1	- 1	
Ē		- 1	- 1	- 1	
	1.1				
-1	1.1	1	- 1	- 1	1
Di	135	- 1	- 1		i.
÷1	F 1	- 1			L
-	15		- 1		L
	0				L
		- 1	- 2		L
33	1.5		- 8		L
	> N		-		L
14	3.00				L
94 I			5		L
21	18				L
- 21	1.51				L
	12.	- 1	- 1		L
2	I E	- 1			L
		•			L
ا ما		- 1			L
-	15	- 1	- 1		1
as l	<u> </u>	·		• • • • •	1
ė	16 1	- 1	;		Ľ
÷	$>$ λ_{i}	- 1	- 1		1
D		- 3			L
5	121	- 1			L
-		- 1	- 1		L
		- 1	- 3		L
	1 A 1	. 1	- 1		L
- 1	121	: 1	- 1		L
					Į.
	1			-	L
1			-		E
	1 22	1 8			1
		2	-		L
2.3	1.		-		L
Ξ.	15.				L
н.					L
-	12				L
Ξ.	1.0				L
ä					L
=	1.2		-		L
E S	1321		-		L
≚		1 3	-		L
2		- 5			L
100	ιđ				L
÷.	- T.	1 1	-		L
	1 A A	1 3			L
-9	1.0				L
			_		L
е,					L
24	0				8
Q.	日湯				1
55	1.27				٤
	1 ×				ł
н.	L.~~				ţ.
-	15				f
⊆	1.				Í
蝍	نبر				ſ
두	1				L
=	£				L
≚					L
2	12				L
-7	18				L
12	1.7.				L
vę.	15.5				L
1.1	1256				L
		-		-	ſ
QY.					í
	-18 E			6 d.	í
1	2.5	÷ .		44	í
24	•			14	í
	÷				1
. •	<u>ا</u>	1.5			۱
24	-	100		1.1	١
1	φ.	<u> </u>			ł
. 1	0.0	<u>г</u> .	11		í
1	c	140			J
. 1	5.	133			ţ
Q	ω .».			143	J
- 2	2		1.5	. Ve	1
1.7		1.5			
20	20				

91

frame enalysis

18188 JOB: <u>UPS BFI</u> DATE: <u>/0/22/20A</u> BY: <u>PEB</u> 93 CONSULTING ENGINEERS SUBJECT: MF FTG FLIGHT CONTROL (FC) 2200 SIXTH AVENUE, SUITE 601, SEATTLE, WASHINGTON 98121 OFFICE 206.622.4580 www.psm-engineers.com GL CA/748 $= 8 p_{5} f_{x} \frac{33'-0''}{2} + \frac{12'-0''}{2} = 2.7K$ $= 75p_{5} f_{x} \frac{25'0'}{2} \times 21'-0'' = 19.7K$ $= 10p_{5} f_{x} \frac{16'-0''}{2} (12.5'+21') = 5.4K$ $= 15p_{5} f_{x} \frac{12.5'}{2} \times (21'+5') = 4.9K$ $= 150p_{5} f_{x} \frac{12.5'}{2} \times (21'+5') = 4.9K$ $= 150p_{5} f_{x} \frac{12.5'}{2} \times (21'+5') = 4.9K$ $= 150p_{5} f_{x} \frac{41'-0''}{2} \frac{2.4''}{4} \frac{4'-6''}{4} = 6.3K$ $= 150p_{5} f_{x} \frac{41'-0''}{2} \frac{2.4''}{4} \frac{4'-6''}{4} = 5.9K$ $= 150p_{5} f_{x} \frac{41'-0''}{2} \frac{2.4''}{4} \frac{4'-6''}{4} = 5.9K$ $= 10p_{5} f_{x} \frac{2'-0''}{11'-0''} \times 8'-0'' = 19.4K$ ROOF) ΔI (FC FLOOR) (EXT WALL-FC (ROOF - FC)(PLINTH) (CASTER DECK) (5012) 2=64.3K M = 75.4 ft - k $T = C = 75.4 ft - k / 12' - 0" + 40.4^{K}$ = 46.7" $\Delta L = 0.6 \times (64.3 \pm 0.15 \text{ pcf} \times 2^{\circ}0^{\circ} \times 6^{\circ}0^{\circ} \times 2^{\circ}0^{\circ})$ = 51.5 × 746.7 × USE FTG 12'-0"x6'-0"x2'-0"

LIGHT POLE DESIGN

Catalog Number

Notes

Туре

FEATURES & SPECIFICATIONS

CONSTRUCTION — The pole shaft sections shall be high strength low alloy steel conforming to ASTM A572 Grade 55 or ASTM A595 Grade A. Cross section shall be round. Each section is a constant tapered hollow steel section and shall be up to 55 feet in length with a minimum 1–1/2 times diameter slip joint as standard for two section poles. The plate shall be single thickness - no laminations.

Anchor base is fabricated from hot-rolled carbon steel plate that conforms to ASTM A36. Base plate and shaft are circumferentially welded top and bottom or full penetration groove welded.

Oval shaped reinforced handhole having a nominal dimension of 4" x 6.5". Cover with attachment screws included. Handhole is located 18" above the base.

Top cap provided with all drill mount plates.

Fasteners are high-strength galvanized, zinc-plated or stainless steel.

Finish: Must specify finish.

Grounding: Provision located inside handhole rim. Grounding hardware is not included (provided by others).

Anchor bolts: Top portion of anchor blot is galvanized per ASTM A-153. Made of steel rod having a minimum yield strength of 55,000 psi.

WARRANTY — 1-year limited warranty. Complete warranty terms located at www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx

Actual performance may differ as a result of end-user environment and application. Note: Specifications subject to change without notice.

ROUND TAPERED STEEL SPORTSLIGHTING

ORDERING INFORMATION Lead times will vary depending on options selected. Consult with your sales representative.

Example: SPRTS 40 HT01 ACR2 DDB

SPRTS								
Series	Nominal fixture mounting height ¹	Nominal shaft base size/wall thickness	Mounting ¹		Options		Finish⁴	
SPRTS	40 – 80 feet (see back page)	(see back page)	ACR33 fixtuACR44 fixtuACR55 fixtuACR66 fixtuTubular crossarmCR22 fixtuCR33 fixtuCR44 fixtuCR55 fixtuCR66 fixtuCR77 fixtu	ure angle arm ure angle arm ure angle arm ure angle arm ure angle arm	Shipped inst L/AB FBC VD TP H1-185xx FDLxx CPL12xx CPL12xx CPL1xx NPL12xx NPL12xx NPL34xx NPL1xx EHHxx MAEX	alled Less anchor bolts Full base cover Vibration damper Tamper proof Horizontal arm bracket (1 fixture) ^{2,3} Festoon outlet less electrical ² 1/2" coupling ² 3/4" coupling ² 1/2" threaded nipple ² 3/4" threaded nipple ² 1" threaded nipple ² Extra handhole ² Match existing	Standard DDB DWH DBL DMB DNA GALV Classic co DSS DGC DTG DBR DSB Architectt (powder 1	Dark bronze White Black Medium bronze Natural aluminum Galvanized finish lors Sandstone Charcoal gray Tennis green Bright red Steel blue ural colors

IMPORTANT INSTALLATION NOTES:

- Do not erect poles without fixtures in place.
- Factory-supplied templates must be used when setting anchor bolts. Lithonia will not accept claim for incorrect anchorage placement due to failure to use Lithonia Lighting factory template.
- If poles are stored outside, all protective wrapping must be removed immediately upon delivery to prevent finish damage.

Notes

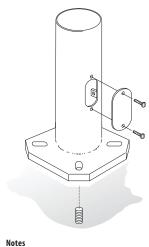
- 1 Mounting height is to lowest fixture when multiple arms are utilized, unless otherwise specified.
- 2 Specify location and orientation when ordering option. For 1st "x": Specify the height in feet above base of pole.
 - Example: 5ft = 5 and 20ft = 20
- For 2nd "x": Specify orientation from handhole (A,B,C,D) Refer to the Handhole Orientation diagram on this page.
- 3 Horizontal arm is 18" x 2-3/8" O.D. tenon standard.
- 4 Finish must be specified. Additional colors available; see <u>www.lithonia.com/archcolors</u> or Architectural Colors brochure (Form No. 794.3). Powder finish standard.

SPRTS Round Tapered Steel Poles Sportslighting

For 40' pole, we have used "SPRT40HT02" design number

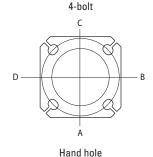
[TECHNICAL INFORMATION																
		Nominal BOTTOM SECTION TOP SECTION AASHTO 2009 ALLOWABLE LOADING ³ ANCHOR BOLTS															
	Design	pole	Base	Wall	Base	Wall	90	МРН	100	МРН	110	О МРН	Bolt	Bolt size	Number	Approximate ship weight	
	Number	height (feet) ¹	diameter (inch) ²	thickness (inch)	diameter (inch) ²	thickness (inch)	EPA sq.ft.	Weight (lbs)	EPA sq. ft.	Weight (lbs)	EPA sq. ft.	Weight (lbs)	circle (inch)	(in. x in. x in.)		(lbs) ⁴	
	SPRTS 40 HT01	38.75	9.00	0.1793			26,1	654	21.0	525	17.2	430	12.5	1.25 x 42 x 6	4	474	
{ }	SPRTS 40 HT02	38.75	10.00	0.1793			41.0	1025	33.5	838	28.0	700	14.00	1.50 x 54 x 6	4	551	
\neg	SPRTS 50 HT01	50.00	10.00	0.1793			18.0	450	14.0	350	11.0	275	13.50	1.25 x 42 x 6	$\frac{1}{4}$		\mathcal{L}
[SPRTS 50 HT02	50.00	10.00	0.1793			22.5	563	18.7	470	15.5	390	14.00	1.50 x 54 x 6	4	633	
ļ	SPRTS 50 HT03	50.00	11.00	0.1793			31.5	790	26.0	650	21.5	540	15.00	1.50 x 54 x 6	4	733	
- F	SPRTS 50 HT04	50.00	13.00	0.1793			50.4	1260	40.5	1020	34.0	850	17.50	1.75 x 84 x 6	4	933	
ŀ	SPRTS 50 HT05	50.00	13.00	0.2391			70.5	1770	58.5	1475	49.0	1225	18.00	2.00 x 84 x 6	4	1223	
H	SPRTS 55 HT01	55.00	10.50	0.1793	4.08	0.1793	15.3	381	11.5	288	8.8	225	14.00	1.25 x 42 x 6	4	728	
E F	SPRTS 55 HT02	55.00	11.00	0.1793	4.59	0.1793	24.0	600	20.0	500	16.5	420	15.00	1.50 x 54 x 6	4	785	
ŀ	SPRTS 55 HT03	55.00	13.00	0.1793	6.62	0.1793	43.8	1075	34.8	875	28.5	725	17.50	1.75 x 84 x 6	4	1015	
7 Y	SPRTS 55 HT04	55.00	13.00	0.2391	8.26	0 1793	57.0	1425	47.5	1200	40.5	1025	18.00	2.00 x 84 x 6	4	1275	\sim
X	SPRTS 60 HT01	60.00	13.00	0.2391	10.76	0.1793	15.0	750	15.0	750	15.0	750	17.00	1.25 x 42 x 6	6	1263	1.3
- F	SPRTS 60 HT02	60.00	14.44	0.2500	12.00	0.1793	22.0	1100	22.0	1100	21.5	645	18.50	1.25 x 42 x 6		1507	l
	SPRTS 60 HT03	60.00	14.44	0.3125	12.00	0.1793	33.0	1650	33.0	1650	33.0	1650	19.50	1.50 x 54 x 6	6	1692	N
- F	SPRTS 60 HT04	60.00	14.44	0.3750	12.00	0.1793	44.0	2200	44.0	1320	37.0	1110	19.50	1.50 x 54 x 6	6	1876	
- F	SPRTS 60 HT05	60.00	15.58	0.3750	13.00	0.1793	52.5	2625	50.5	1515	41.0	1230	21.00	1.50 x 54 x 6	6		ole, we have
H	SPRTS 60 HT06	60.00	18.50	0.3750	17.00	0.1875	78.0	3900	78.0	2340	64.0	1920	23.50	1.50 x 54 x 6	8		PRT60HT01"
E F	SPRTS 70 HT01	70.00	14.44	0.2500	12.00	0.1793	14.0	700	14.0	700	14.0	700	19.00	1.25 x 42 x 6	6		
- F	SPRTS 70 HT02	70.00	14.44	0.3125	12.00	0.1793	23.5	1175	23.5	1175	23.5	1011	21.00	1.50 x 54 x 6	6	design n	umber
H	SPRTS 70 HT03	70.00	14.44	0.3750	12.00	0.1793	33.0	1452	30.0	900	25.0	750	21.00	1.50 x 54 x 6	6	1987	
	SPRTS 70 HT04 SPRTS 70 HT05	70.00	15.44 17.50	0.3750	13.00 13.00	0.1793	38.5 52.0	1925 2600	37.0 52.0	1110 2600	30.5 49.0	915 1470	21.00	1.50 x 54 x 6 1.50 x 54 x 6	6	2102 2952	
ŀ	SPRTS 70 HT05 SPRTS 70 HT06		17.50	0.3750	13.00	0.1793	67.0	3350	52.0 66.5	1995	49.0 53.0	1470	23.00	1.50 x 54 x 6	8	2952 3061	
H	SPRTS 70 HT06	70.00 80.00	19.50	0.3750	17.08	0.1875	21.0	1050	21.0	1995	21.0	1050	25.00	1.50 x 54 x 6	6	2311	l I
	SPRTS 80 HT01	80.00	15.84	0.3750	12.00	0.1793	30.0	1050	21.0	855	21.0	675	21.00	1.50 x 54 x 6	6	2591	l I
ŀ	SPRTS 80 HT02	80.00	15.84	0.3750	12.00	0.1793	36.0	1800	35.0	1050	22.5	870	21.00	1.50 x 54 x 6	8	2391	1
H	SPRTS 80 HT05	80.00	18.50	0.3750	13.00	0.1793	45.0	2250	45.0	2250	38.0	1140	23.00	1.50 x 54 x 6	8	3511	l I
	SPRTS 80 HT04	80.00	20.50	0.3750	16.68	0.1795	58.0	2230	58.0	2230	51.5	1545	25.50	1.75 x 84 x 6	8	3773	
ŀ	SPRTS 80 HT06	80.00	20.50	0.3750	18.68	0.1875	71.0	3550	71.0	3550	64.0	1920	27.50	1.75 x 84 x 6	8	4271	
L	3PR13 00 1100	00.00	22.30	0.3/30	10.00	U.18/3	/ 1.0	1 3330	/1.0	1 3000	04.0	1920	27.50	1./3 X 84 X 6	Ŏ	42/1	1

Notes


1 Poles that are 55' or less have a socketed base connection. All others have a full penetration groove weld.

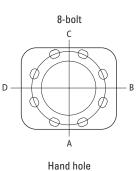
2 Sections that are 13.0" or less are ASTM A595 Grade 55. All other sections are ASTM A572 Grade 55.

3 Poles higher than 55' will be analyzed to fatigue category 1.


4 Does not include base place, anchor bolts, or cross arms.

BASE DETAIL

1 Base plate material: ASTM A36.


2 Hand holes are reinforced.

C R D Α

6-bolt

Hand hole

IMPORTANT:

P

• These specifications are intended for general purposes only. Lithonia reserves the right to change material or design, without prior notice, in a continuing effort to upgrade its products

POLE-SPRTS

LITHONIA LIGHTING® An **Acuity**Brands Company

One Lithonia Way, Conyers, GA 30012 Phone: 800-279-8041 Fax: 770-918-1209 www.lithonia.com © 1994-2014 Acuity Brands Lighting, Inc. All rights reserved. Rev. 06/03/14

WIND LOAD CALCULATION OF 40' LIGHT POLE

ASCE7-10 Wind loads Per Chapter 29

Consider 40' height round pole			
Base diameter	0.83	ft	assumed
Top diameter	0.50	ft	assumed
Wind parameters			
Structure class	П		
Exposure	В		Sect 26.7
Topographic category	1		Sect 26.8
V (3-sec gust) =	110	mph	Fig 26.5-1A
Kd =	0.95		Table 26.6-1
Pole Height	40	ft	
Wind load factor	1		
Zg =	1200		Table 26.9-1
Alpha =	7		Table 29.3-1

Wind on Pole	(assumed								
llaista -	1/-	17-t		0	- consrv.))	Dala ana a	(SD)	(SD)
Height, z (ft)	Kz	Kzt	qz (psf)	Gh	Cf Pole	Pressure on Pole (psf)	Pole area (sft)	shear (lb)	moment (lb-ft) (lb-ft)
5	0.70	1.00	20.6	0.85	1.2	21.03	4.06	85.43	214
10	0.70	1.00	20.6	0.85	1.2	21.03	3.85	81.05	608
15	0.70	1.00	20.6	0.85	1.2	21.03	3.65	76.67	958
20	0.70	1.00	20.6	0.85	1.2	21.03	3.44	72.29	1265
25	0.70	1.00	20.6	0.85	1.2	21.03	3.23	67.91	1528
30	0.70	1.00	20.6	0.85	1.2	21.03	3.02	63.52	1747
35	0.73	1.00	21.5	0.85	1.2	21.98	2.81	61.81	2009
40	0.76	1.00	22.4	0.85	1.2	22.83	2.60	59.45	2230
Reactions at base due wind on pole								568	10558

Additional load at pole top						(assumed						
						- consrv.)						
	Height, z (ft)	Kz	Kzt	qz (psf)	Gh	Cf	Pressure (psf)	Qty	Area (sqft)	Weight (lbs)	Wind force (lbs)	Moment (kft)
Light	40	0.76	1.00	22.38	0.85	1.2	22.83	4	0.53	12.2	48.40	1.94
Mount	40	0.76	1.00	22.38	0.85	1.2	22.83	4	0.3	5.49	27.40	1.10
Camera (assumed)	16	0.59	1.00	17.23	0.85	1.2	17.57	4	0.2	1.1	14.06	0.22
Reactions at base (additional)												3.26

	Moment (k-ft)	Shear (k)	
Reactions at base due wind on pole	10.56	0.57	_
Reactions at base due to additional load at pole top	3.26	0.09	
Total	13.81	0.66	
	(SD)	(SD)	_
Pole weight	0.6	kips	_
Additional weight	0.5	kips	(assumed)
Total	1.1	kips	

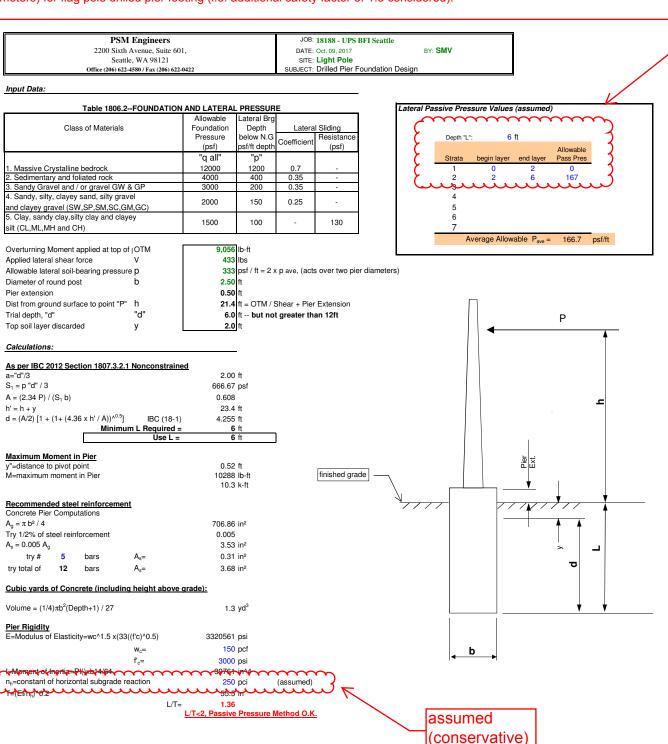
PSM Engineers	JOB: 18188 - UPS BFI Seattle	
2200 Sixth Avenue, Suite 601,	DATE: Oct. 09, 2017	BY: SMV
Seattle, WA 98121	SITE: Light Pole	
Office (206) 622-4580 / Fax (206) 622-0422	SUBJECT: Manufacturer Data	

Input Data:

Manufacturer base reactions:

	ASD	SD
Moment:	8.3 k-ft	14 k-ft
Shear:	0.4 k	0.7 k
Axial:	1.1 k	

Deisgn Wind Speed: 110 mph


Increase base wind reactions by 5 mph for foundation design:

Moment:		9 k-ft
Shear:		0.4 k

Minimum pier diameter:

Bolt circle diameter:	14.00 in
Pier diameter (min):	2.5 ft

Instead of 250 pcf value of passive earth pressure, we have considered allowable passive pressure of 167 pcf (acts over- two pier diameters) for flag pole drilled pier footing (i.e. additional safety factor of 1.5 considered).

Pier Foundation Design

		Engineers	01			18188 - UPS BFI Seattle	
		venue, Suite 6 WA 98121	01,			Oct. 09, 2017 Light Pole	BY: SM
	Office (206) 622-4		22-0422			Skin Friction	
Input Dat	<u>'a:</u>						
	Uplift		0.0				
	Axial vertical downwa Depth, D	aru ioau	1.1 6.0			assumed	
	Diameter, B		2.5		/		
	Soil density		100				
	Concrete Weight		150	pcf			
Allowable	End Bearing Capacity	:					
	End bearing			D/B	6.0	ksf	
	Limiting point of resis	stance		TSF		ksf	
				ion controls	6.0	ksf	
	Area = PI() x B^2/4					4.9 ft ²	
	Vol Pier = Area x (D	+ 0.5' pier ex	(t.)			31.9 ft ³ =	1.2 yd ³
	Allowable net end be	earing = Area	x Allow. En	d Bearing		29.5 kips	
	Weight Pier = Concr Soil Weight Remove			il Removed		4.8 kips -2.9 kips	
Skin frictio	วท						
			Allowable	Vertical	Surface		
	Strata boundary	Skin Friction	Skin Friction	distance in Strata	Area in Strata	Allowable friction	
	Upper Lower	TSF	KSF	(ft)	(ft ²)	(kips)	
	<u>{</u> 0 2	<u>(1</u>	0	2	15.71	0	
	2 6	0.05	0.100	4	31.42	3	
ed –⁄	/{	0.00	0.000 0	0	0.00	0	
	Cum	لمهيد	0	0	0.00	0	
			Foundation	n friction res	istance	3 kips	
			1 oundation		Istanoc	C Kips	
<u>Results:</u>							
COMPRE	SSION:						
	net end bearing				29.5		
	on friction resistance					kips kips	
Axial Vert						kips	
Pier Weig Removed	Soil Weight					kips kips	
	Pier Weight - Remove	ed Soil Weigh	it+ Axial Ver	tical Load		kips	
S.F. = Tot	tal Downward resistand	ce/ (SUM: P)			11.08	>1.00, OK	
	No Unlift Thoroford	OK					
UPLIFT:	No Uplift, Therefore						

1

Pole 40ft

15-10-2019

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

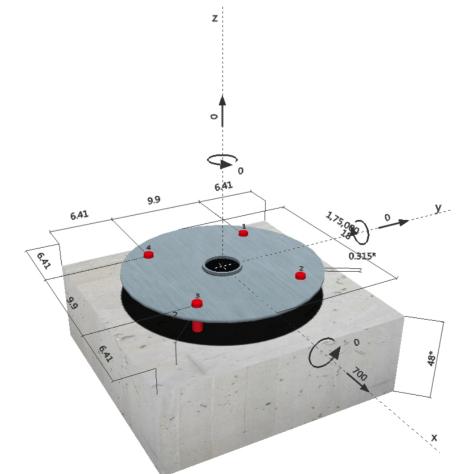
Specifier's comments: Anchorage Design

Ι

1 Input data

Anchor type and diameter:	Hex Head ASTM F 1554 GR. 36 7/8
Additional plate or washer (17.4.2.8):	d _{plate} = 3.000 in., t _{plate} = 0.500 in.
Effective embedment depth:	h _{ef} = 20.000 in., h _{ef,17.4.2.8} = 0.000 in.
Material:	ASTM F 1554
Proof:	Design method ACI 318-14 / CIP
Stand-off installation:	without clamping (anchor); restraint level (anchor plate): 1.00; $e_b = 2.000$ in.; t = 0.315 in.
Anchor plate:	$I_x \times I_y \times t = 18.000$ in. x 18.000 in. x 0.315 in.; (Recommended plate thickness: not calculated
Profile:	Round HSS (AISC); (L x W x T) = 3.500 in. x 3.500 in. x 0.188 in.
Base material:	uncracked concrete, 3000, fc' = 3,000 psi; h = 48.000 in.
Reinforcement:	tension: condition A, shear: condition A; anchor reinforcement: tension
	edge reinforcement: none or < No. 4 bar

Page:


Date:

Project:

Sub-Project I Pos. No.:

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

2 Load case/Resulting anchor forces

Ι

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	8,838	175	175	0
2	-8,838	175	175	0
3	-8,838	175	175	0
4	8,838	175	175	0
max. concrete c	ompressive strain:	-	[‰]	

max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(-4.950/0.000): 17,677 [lb] resulting compression force in (x/y)=(4.950/0.000): 17,677 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

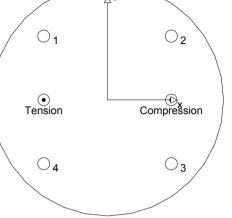
	Load N _{ua} [lb]	Capacity _φ N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	8,838	20,097	44	OK
Pullout Strength*	8,838	20,956	43	OK
Concrete Breakout Strength**1	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction x-**	17,677	50,005	36	OK

* anchor having the highest loading **anchor group (anchors in tension)

¹ Tension Anchor Reinforcement has been selected!

3.1 Steel Strength

N _{sa} = A _{se.N} f _{uta}	ACI 318-14 Eq. (17.4.1.2)
_φ N _{sa} ≥N _{ua}	ACI 318-14 Table 17.3.1.1


Variables

A _{se,N} [in. ²]	f _{uta} [psi] 58,000	_	
Calculations			
N _{sa} [lb] 26,796			
Results			
N _{sa} [lb]	∲ steel	φ N _{sa} [lb]	N _{ua} [lb]
26,796	0.750	20,097	8,838

15-10-2019

 $_{igstacleq} \mathbf{y}$

www.hilti.us

Company:		Page:	3
Specifier:		Project:	Pole 40ft
Address:		Sub-Project I Pos. No.:	
Phone I Fax:		Date:	15-10-2019
E-Mail:	-		

3.2 Pullout Strength

$N_{pN} = \psi_{c,p} N_p$	ACI 318-14 Eq. (17.4.3.1)
$N_p = 8 A_{brg} f_c$	ACI 318-14 Eq. (17.4.3.4)
φ N _{pN} ≥ N _{ua}	ACI 318-14 Table 17.3.1.1

Variables

Ψ _{c,p}	A _{brg} [in. ²]	λa	f _c [psi]
1.400	0.89	1.000	3,000

Calculations

N_p [lb] 21,384

Results

N _{pn} [lb]	∮ concrete	φ N _{pn} [lb]	N _{ua} [lb]
29,938	0.700	20,956	8,838

3.3 Concrete Side-Face Blowout, direction x-

N_{sb} = 160 $c_{a1} \sqrt{A_{brg}} \lambda_a \sqrt{f_c}$	ACI 318-14 Eq. (17.4.4.1)
$N_{sbg} = \alpha_{group} N_{sb}$	ACI 318-14 Eq. (17.4.4.2)
φ N _{sbg} ≥ N _{ua}	ACI 318-14 Table 17.3.1.1
$\alpha_{\text{group}} = \left(1 + \frac{s}{6 c_{a1}}\right)$	see ACI 318-14, Section 17.4.4.2, Eq. (17.4.4.2)

Variables

c _{a1} [in.]	c _{a2} [in.]	A _{brg} [in. ²]	λa	f _c [psi]	s [in.]
6.410	6.410	0.89	1.000	3,000	9.900
Calculations					
α_{group}	N _{sb} [lb]				
1.257	53,025	_			
Results					
N _{sbg} [lb]	∮ concrete	φ N _{sbg} [lb]	N _{ua,edge} [lb]		
66,674	0.750	50,005	17,677		

www.hilti.us		Profis Anchor 2.8.
Company:	Page:	4
Specifier:	Project:	Pole 40ft
Address:	Sub-Project I Pos. No	
Phone I Fax:	Date:	15-10-2019
E-Mail:		

4 Shear load

	Load V _{ua} [lb]	Capacity ϕ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	175	10,450	2	OK
Steel failure (with lever arm)*	175	412	43	OK
Pryout Strength**	700	63,826	2	OK
Concrete edge failure in direction x+**	700	8,932	8	OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= 0.6 A _{se,V} f _{uta}	ACI 318-14 Eq. (17.5.1.2b)
φ V _{ste}	_{el} ≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.46	58,000

Calculations

V_{sa} [lb] 16,078

Results

V _{sa} [lb]	∲ steel	ϕV_{sa} [lb]	V _{ua} [lb]
16,078	0.650	10,450	175

4.2 Steel failure (with lever arm)

V_{s}^{M}	$= \frac{\alpha_{M} \cdot M_{s}}{L_{b}}$	bending equation for stand-off
Ms	$= M_s^0 \left(1 - \frac{N_{ua}}{\phi N_{sa}} \right)$	resultant flexural resistance of anchor
M_s^0	= (1.2) (S) (f _{u,min})	characteristic flexural resistance of anchor
$\left(1 - \frac{N_{ua}}{\phi N_s}\right)$		reduction for tensile force acting simultaneously with a shear force on the anchor
S	$=\frac{\pi(d)^3}{32}$	elastic section modulus of anchor bolt at concrete surface
L _b	$= z + (n)(d_0)$	internal lever arm adjusted for spalling of the surface concrete
ϕV_s^M	≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

αΜ	f _{u,min} [psi]	N _{ua} [lb]	φ N _{sa} [lb]	z [in.]	n	d ₀ [in.]
1.00	58,000	8,838	20,097	2.158	0.500	0.875
Calculations						
M _s ⁰ [in.lb]	$\left(1 - \frac{N_{ua}}{\phi N_{sa}}\right)$	M _s [in.lb]	L _b [in.]			
2,937.209	0.560	1,645.465	2.595			
Results						
V _s ^M [lb]	∮ steel	ϕV_s^M [lb]	V _{ua} [lb]			
634	0.650	412	175			

Company:	
Specifier:	
Address:	
Phone I Fax:	
E-Mail:	

Ι

Page:	5
Project:	Pole 40ft
Sub-Project I Pos. No.:	
Date:	15-10-2019

4.3 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-14 Eq. (17.5.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$\Psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\Psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\begin{aligned} \psi_{cp,N} &= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \leq 1.0 \\ N_{b} &= k_{c} \lambda_{a} \sqrt{l_{c}} h_{ef}^{1.5} \end{aligned}$	ACI 318-14 Eq. (17.4.2.7b)
$N_{b} = K_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	4.273	0.000	0.000	6.410
Ψ c.N	c _{ac} [in.]	k _c	λa	f _c [psi]
1.250	-	24	1.000	3,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
516.20	164.35	1.000	1.000	1.000	1.000	11,612
Results						
V _{cpg} [lb]	∮ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
91,181	0.700	63,826	700			

Company:		Page:	6	ĺ
Specifier:		Project:	Pole 40ft	
Address:		Sub-Project I Pos. No).:	
Phone I Fax:		Date:	15-10-2019	
E-Mail:	·			

4.4 Concrete edge failure in direction x+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-14 Eq. (17.5.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-14 Table 17.3.1.1
A_{Vc} see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b) A_{Vc0} = 4.5 c_{a1}^2	ACI 318-14 Eq. (17.5.2.1c)
$\psi_{ec,V} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$\psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$ $V_b = 9 \lambda_a \sqrt{f_c} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.8)
$V_{\rm b} = 9 \lambda_{\rm a} \sqrt{f_{\rm c}} c_{\rm a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2b)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψ c,V	h _a [in.]
6.410	6.410	0.000	1.400	48.000
l _e [in.]	λa	d _a [in.]	ť _c [psi]	Ψ parallel,V
7.000	1.000	0.875	3,000	1.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	ψ ec,V	Ψ ed,V	Ψ h,V	V _b [lb]
218.45	184.90	1.000	0.900	1.000	8,000
Results					
V _{cbg} [lb]	∲ concrete	ϕV_{cbg} [lb]	V _{ua} [lb]		
11,909	0.750	8,932	700		

5 Combined tension and shear loads

β _N	βv	ζ	Utilization β _{N,V} [%]	Status	
0.440	0.425	5/3	50	OK	

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate
 assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and
 for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Anchor calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength!
- · Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Attention! In case of compressive anchor forces a buckling check as well as the proof of the local load transfer into and within the base material (incl. punching) has to done separately.
- The design of Anchor Reinforcement is beyond the scope of PROFIS Anchor. Refer to ACI 318-14, Section 17.4.2.9 for information about Anchor Reinforcement.
- · Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Anchor calculations.

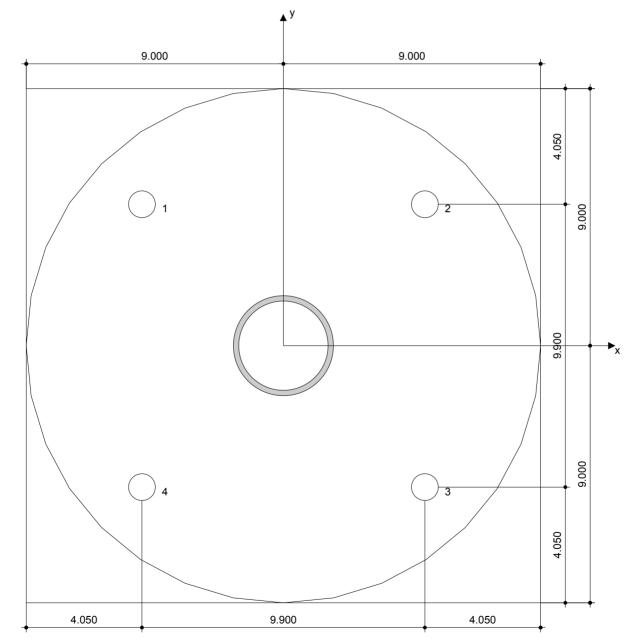
Company: Specifier: Address: Phone I Fax: E-Mail:

I

Page: Project: Sub-Project I Pos. No.: Date:

Pole 40ft 15-10-2019

Fastening meets the design criteria!



www.hilti.us			Profis Anchor 2.8.3
Company:		Page:	8
Specifier:		Project:	Pole 40ft
Address:		Sub-Project I Pos. No.:	
Phone I Fax:	1	Date:	15-10-2019
E-Mail:			

7 Installation data

Anchor plate, steel: -

Profile: Round HSS (AISC); (L x W x T) = 3.500 in. x 3.500 in. x 0.188 in. Hole diameter in the fixture: $d_f = 0.938$ in. Plate thickness (input): 0.315 in. Recommended plate thickness: not calculated Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 7/8 Installation torque: -Hole diameter in the base material: - in. Hole depth in the base material: 20.000 in. Minimum thickness of the base material: 21.052 in.

Coordinates Anchor in.

Anchor	х	У	C.,x	C+x	C _{-y}	C+y
1	-4.950	4.950	6.410	16.310	16.310	6.410
2	4.950	4.950	16.310	6.410	16.310	6.410
3	4.950	-4.950	16.310	6.410	6.410	16.310
4	-4.950	-4.950	6.410	16.310	6.410	16.310

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us			Profis Anchor 2.8.3
Company:		Page:	9
Specifier:		Project:	Pole 40ft
Address:		Sub-Project I Pos. No.:	
Phone I Fax:	1	Date:	15-10-2019
E-Mail:	·		

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

PSM Engineers

2200 6th Ave., #601, Seattle, WA 98121

ASCE7-10 Wind loads	Per Chapter 2	9	
Consider 60' height round pole			
Base diameter	1.08	ft	
Top diameter	0.50	ft	assumed
Wind parameters			
Structure class	11		
Exposure	В		Sect 26.7
Topographic category	1		Sect 26.8
V (3-sec gust) =	110	mph	Fig 26.5-1A
Kd =	0.95		Table 26.6-1
Pole Height	60	ft	
Wind load factor	1		
Zg =	1200		Table 26.9-1
Alpha =	7		Table 29.3-1

Wind on Pole					(assumed	ł			
	- consrv.)							(SD)	(SD)
Height, z	Kz	Kzt	qz	Gh	Cf	Pressure	Pole area	shear	moment (lb-ft)
(ft)			(psf)		Pole	on Pole (psf)	(sft)	(lb)	(lb-ft)
5	0.70	1.00	20.6	0.85	1.2	21.03	5.30	111.35	278
10	0.70	1.00	20.6	0.85	1.2	21.03	5.05	106.24	797
15	0.70	1.00	20.6	0.85	1.2	21.03	4.81	101.13	1264
20	0.70	1.00	20.6	0.85	1.2	21.03	4.57	96.02	1680
25	0.70	1.00	20.6	0.85	1.2	21.03	4.32	90.91	2045
30	0.70	1.00	20.6	0.85	1.2	21.03	4.08	85.79	2359
35	0.73	1.00	21.5	0.85	1.2	21.98	3.84	84.32	2740
40	0.76	1.00	22.4	0.85	1.2	22.83	3.59	82.05	3077
45	0.79	1.00	23.1	0.85	1.2	23.61	3.35	79.12	3362
50	0.81	1.00	23.9	0.85	1.2	24.33	3.11	75.62	3592
55	0.83	1.00	24.5	0.85	1.2	25.00	2.86	71.63	3761
60	0.85	1.00	25.1	0.85	1.2	25.63	2.62	67.20	3864
Reactions at base due wind on pole								1051	28820

Additional load at pole top (Light fi	ixures)					(assumed						
						- consrv.)						
	Height, z (ft)	Kz	Kzt	qz (psf)	Gh	Cf	Pressure (psf)	Qty	Area (sqft)	Weight (lbs)	Wind force (lbs)	Moment (kft)
Light	60	0.85	1.00	25.13	0.85	1.2	25.63	1	9.55	12.2	244.81	14.69
Mount	60	0.85	1.00	25.13	0.85	1.2	25.63	6	0.3	5.49	46.14	2.77
Reactions at base (additional)												17.46

	Moment (k-ft)	Shear (k)	
Reactions at base due wind on pole	28.82	1.05	
Reactions at base due to additional load at pole top	17.46	0.29	
Total	46.28	1.34	
	(SD)	(SD)	_
Pole weight	1.4	kips	_
Additional weight	0.5	kips	(assumed)
Total	1.9	kips	

206.622.4580

FOOTING DESIGN

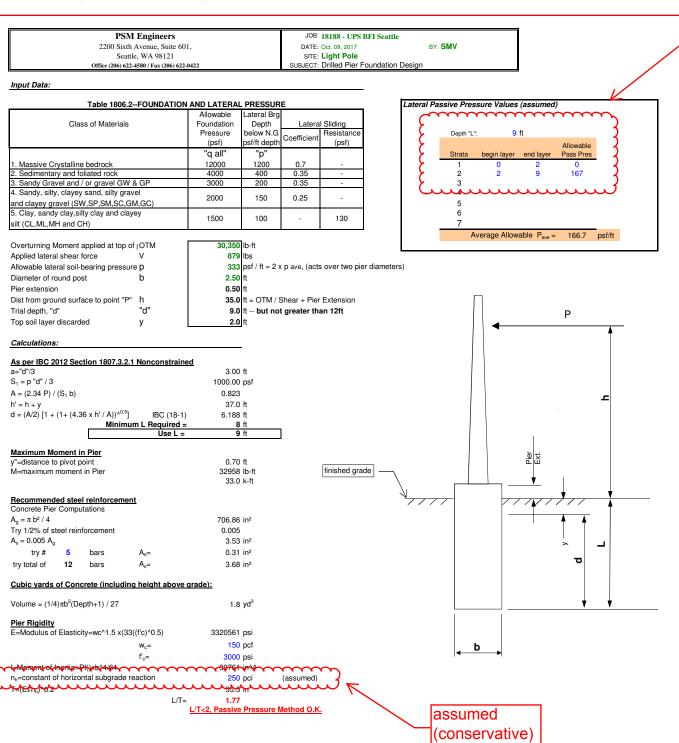
PSM Engineers	JOB: 18188 - UPS BFI Seattle	
2200 Sixth Avenue, Suite 601,	DATE: Oct. 09, 2017	BY: SMV
Seattle, WA 98121	SITE: Light Pole	
Office (206) 622-4580 / Fax (206) 622-0422	SUBJECT: Manufacturer Data	

Input Data:

Manufacturer base reactions:

	ASD	SD
Moment:	27.8 k-ft	46 k-ft
Shear:	<mark>0.8</mark> k	1.3 k
Axial:	1.9 k	

Deisgn Wind Speed: 110 mph


Increase base wind reactions by 5 mph for foundation design:

Moment:	30 k-ft
Shear:	0.9 k

Minimum pier diameter:

Bolt circle diameter:	17.00 in
Pier diameter (min):	2.5 ft

Instead of 250 pcf value of passive earth pressure, we have considered allowable passive pressure of 167 pcf (acts over- two pier diameters) for flag pole drilled pier footing (i.e. additional safety factor of 1.5 considered).

	PSM	Engineers			JOB:	18188 - UPS BFI Seattle	
		venue, Suite 6	01,			Oct. 09, 2017	BY: SM
		, WA 98121			SITE:	Light Pole	
	Office (206) 622-45	580 / Fax (206) 62	2-0422		SUBJECT:	Skin Friction	
Input Data:							
	Uplift		0.0				
	Axial vertical downwa Depth, D	ard load	1.9 9.0				
	Diameter, B		9.0 2.5		/	assumed	
	Soil density		100				
	Concrete Weight		150				
				p0.			
Allowable E	nd Bearing Capacity	<i>:</i> :		V			
			- <u> </u>	m			
	End bearing	atanaa			9.0		
	Limiting point of resis	stance Limiting poir			6.0 6.0		
			it of resistan		0.0		
	Area = PI() x B^2/4					4.9 ft ²	_
	Vol Pier = Area x (D					$46.6 \text{ ft}^3 =$	1.7 yd ³
	Allowable net end be	earing = Area	x Allow. End	d Bearing		29.5 kips	
,	Weight Pier = Concre	ete Weight x	Vol Pier			7.0 kips	
	Soil Weight Remove			I Removed		-4.4 kips	
Skin friction		Allowable	Allowable	Vertical	Surface		
		Skin	Skin	distance	Area	Allowable	
	Strata boundary	Friction	Friction	in Strata	in Strata	friction	
_	Upper Lower	TSF	KSF	(ft)	(ft ²)	(kips)	
-	<u> </u>	ره	0	2	15.71	0	
1	2 9	0.05)	0.100	7	54.98	5	
ed	5	0.00	0.000	0	0.00	0	
	Lunu	und la	0 0	0 0	0.00 0.00	0 0	
		-0-	U	0	0.00		
			Foundation	friction res	istance	5 kips	
Results:							
COMPRES	<i>SION:</i> et end bearing				29.5	kins	
	friction resistance					kips	
	ward resistance					kips	
	alload						
						kips kips	
Axial Vertica Pier Weight						NIDO	
Pier Weight							
Pier Weight Removed S		ed Soil Weigh	it+ Axial Verl	tical Load	-4	kips kips	
Pier Weight Removed S SUM: P = P	oil Weight ier Weight - Remove	_	t+ Axial Verl	tical Load	-4 4.5	kips kips	
Pier Weight Removed S SUM: P = P	oil Weight	_	t+ Axial Verl	tical Load	-4 4.5	kips	

UPLIFT: No Uplift, Therefore OK

1

Pole 60ft

15-10-2019

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

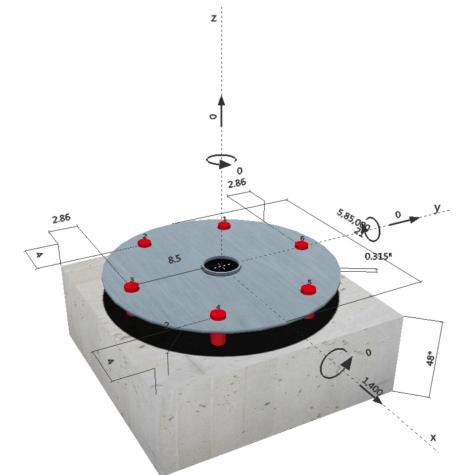
Specifier's comments: Anchorage Design

I

1 Input data

Anchor type and diameter:	Hex Head ASTM F 1554 GR. 36 1 1/4
Additional plate or washer (17.4.2.8):	$d_{plate} = 3.000$ in., $t_{plate} = 0.500$ in.
Effective embedment depth:	h _{ef} = 25.000 in., h _{ef,17.4.2.8} = 0.000 in.
Material:	ASTM F 1554
Proof:	Design method ACI 318-14 / CIP
Stand-off installation:	without clamping (anchor); restraint level (anchor plate): 1.00; $e_b = 2.000$ in.; t = 0.315 in.
Anchor plate:	$I_x \times I_y \times t = 21.000$ in. x 21.000 in. x 0.315 in.; (Recommended plate thickness: not calculated
Profile:	Round HSS (AISC); (L x W x T) = 3.500 in. x 3.500 in. x 0.188 in.
Base material:	uncracked concrete, 3000, fc' = 3,000 psi; h = 48.000 in.
Reinforcement:	tension: condition A, shear: condition A; anchor reinforcement: tension
	edge reinforcement: none or < No. 4 bar

Page:


Date:

Project:

Sub-Project I Pos. No.:

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company: Specifier: Address: Phone I Fax: E-Mail:

2 Load case/Resulting anchor forces

Ι

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	19,871	233	233	0
2	19,871	233	233	0
3	0	233	233	0
4	-19,871	233	233	0
5	-19,871	233	233	0
6	0	233	233	0
	ompressive strain: ompressive stress:		[‰] [psi]	

 $\begin{array}{ll} \mbox{max. concrete compressive stress:} & - \mbox{[psi]} \\ \mbox{resulting tension force in } (x/y) = (-7.360/0.000): & 39,742 \mbox{ [lb]} \\ \mbox{resulting compression force in } (x/y) = (7.360/0.000): & 39,742 \mbox{ [lb]} \\ \end{array}$

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity 🖕 N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	19,871	42,151	48	OK
Pullout Strength*	19,871	42,736	47	OK
Concrete Breakout Strength**1	N/A	N/A	N/A	N/A
Concrete Side-Face Blowout, direction x-**	39,742	47,990	83	OK

* anchor having the highest loading **anchor group (anchors in tension)

¹ Tension Anchor Reinforcement has been selected!

3.1 Steel Strength

N _{sa} = A _{se,N} f _{uta}	ACI 318-14 Eq. (17.4.1.2)
φ N _{sa} ≥N _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²] 0.97	f _{uta} [psi] 58,000	_	
Calculations			
N _{sa} [lb] 56,202	-		
Results			
N _{sa} [lb]	∮ steel	φ N _{sa} [lb]	N _{ua} [lb]
56,202	0.750	42,151	19,871

Page: Project: Sub-Project I Pos. No.: Date:

Pole 60ft 15-10-2019

2

O 1 O 1 O 1 O 1 O 5 Compression O 2 O 4

Company:	Page:	3
Specifier:	Project:	Pole 60ft
Address:	Sub-Project I Pos. No.:	
Phone I Fax:	Date:	15-10-2019
E-Mail:		

3.2 Pullout Strength

$N_{pN} = \psi_{c,p} N_p$	ACI 318-14 Eq. (17.4.3.1)
$N_p = 8 A_{brg} f_c$	ACI 318-14 Eq. (17.4.3.4)
φ N _{pN} ≥ N _{ua}	ACI 318-14 Table 17.3.1.1

Variables

Ψ с,р	A _{brg} [in. ²]	λa	ŕ _c [psi]
1.400	1.82	1.000	3,000

Calculations

N_p [lb] 43,608

Results

N _{pn} [lb]	∮ concrete	φ N _{pn} [lb]	N _{ua} [lb]
61,051	0.700	42,736	19,871

3.3 Concrete Side-Face Blowout, direction x-

N_{sb} = 160 $c_{a1} \sqrt{A_{brg}} \lambda_a \sqrt{f_c}$	ACI 318-14 Eq. (17.4.4.1)
$N_{sbg} = \alpha_{group} N_{sb}$	ACI 318-14 Eq. (17.4.4.2)
φ N _{sbg} ≥ N _{ua}	ACI 318-14 Table 17.3.1.1
$\alpha_{\text{group}} = \left(1 + \frac{s}{6 c_{a1}}\right)$	see ACI 318-14, Section 17.4.4.2, Eq. (17.4.4.2)

Variables

c _{a1} [in.]	c _{a2} [in.]	A _{brg} [in. ²]	λa	f _c [psi]	s [in.]
4.000	7.110	1.82	1.000	3,000	8.500
Calculations					
α_{group}	N _{sb} [lb]				
1.354	47,252	_			
Results					
N _{sbg} [lb]	∮ concrete	φ N _{sbg} [lb]	N _{ua,edge} [lb]		
63,987	0.750	47,990	39,742		

www.hilti.us		Profis Anchor 2.8.3
Company:	Page:	4
Specifier:	Project:	Pole 60ft
Address:	Sub-Project I Pos. No.	:
Phone I Fax:	Date:	15-10-2019
E-Mail:		

4 Shear load

	Load V _{ua} [lb]	Capacity ϕ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	233	21,919	2	OK
Steel failure (with lever arm)*	233	1,109	22	OK
Pryout Strength**	1,400	52,314	3	OK
Concrete edge failure in direction y+**	1,400	5,007	28	OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= 0.6 A _{se,V} f _{uta}	ACI 318-14 Eq. (17.5.1.2b)
φ V _{ste}	_{el} ≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,V} [in. ²]	f _{uta} [psi]
0.97	58,000

Calculations

V_{sa} [lb] 33,721

Results

V _{sa} [lb]	∲ steel	ϕV_{sa} [lb]	V _{ua} [lb]
33,721	0.650	21,919	233

4.2 Steel failure (with lever arm)

V_{s}^{M}	$= \frac{\alpha_{M} \cdot M_{s}}{L_{b}}$	bending equation for stand-off
M_{s}	$= M_s^0 \left(1 - \frac{N_{ua}}{\phi N_{sa}} \right)$	resultant flexural resistance of anchor
M_s^0	$= (1.2) (S) (f_{u,min})$	characteristic flexural resistance of anchor
$\left(1 - \frac{N_{ua}}{\phi N_s}\right)$		reduction for tensile force acting simultaneously with a shear force on the anchor
S	$=\frac{\pi(d)^3}{32}$	elastic section modulus of anchor bolt at concrete surface
L _b	$= z + (n)(d_0)$	internal lever arm adjusted for spalling of the surface concrete
ϕV^M_s	≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

α_{M}	f _{u,min} [psi]	N _{ua} [lb]	φ N _{sa} [lb]	z [in.]	n	d ₀ [in.]
1.00	58,000	19,871	42,151	2.158	0.500	1.250
Calculations						
M _s ⁰ [in.lb]	$\left(1 - \frac{N_{ua}}{\phi N_{sa}}\right)$	M _s [in.lb]	L _b [in.]			
8,981.110	0.529	4,747.263	2.783			
Results						
V _s ^M [lb]	∲ steel	φ V ^M _s [lb]	V _{ua} [lb]			
1,706	0.650	1,109	233			

Company:	
Specifier:	
Address:	
Phone I Fax:	
E-Mail:	

Ι

	T TONS AND
Page:	5
Project:	Pole 60ft
Sub-Project I Pos. No.:	
Date:	15-10-2019

4.3 Pryout Strength

$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-14 Eq. (17.5.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\Psi_{\text{ed,N}} = 0.7 + 0.3 \left(\frac{c_{a,\min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\begin{split} \psi_{cp,N} &= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \leq 1.0 \\ N_{b} &= k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5} \end{split}$	ACI 318-14 Eq. (17.4.2.7b)
$N_{\rm b} = k_{\rm c} \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	2.833	0.000	0.000	2.860
Ψ c,N	c _{ac} [in.]	k _c	λa	ŕ _c [psi]
1.250	-	24	1.000	3,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	Ψ ed,N	Ψ cp,N	N _b [lb]
381.99	72.25	1.000	1.000	0.902	1.000	6,269
Results						
V _{cpg} [lb]	∮ concrete	φ V _{cpg} [lb]	V _{ua} [lb]			
74,735	0.700	52,314	1,400			

Company:	Page:	6	
Specifier:	Project:	Pole 60ft	
Address:	Sub-Project I Pos. No	D.:	
Phone I Fax:	Date:	15-10-2019	
E-Mail:			

4.4 Concrete edge failure in direction y+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-14 Eq. (17.5.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Vc} see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
$A_{Vc0} = 4.5 c_{a1}^2$	ACI 318-14 Eq. (17.5.2.1c)
$\Psi_{ec,V} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\Psi_{\text{ed},V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$\psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$ $V_b = 9 \lambda_a \sqrt{f_c} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.8)
$V_{b} = 9 \lambda_{a} \sqrt{f_{c}} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2b)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψ c,V	h _a [in.]
2.860	11.360	0.000	1.400	48.000
l _e [in.]	λa	d _a [in.]	ť _c [psi]	Ψ parallel,V
10.000	1.000	1.250	3,000	2.000

Calculations

A _{Vc} [in. ²]	A _{Vc0} [in. ²]	Ψ ec,V	Ψ ed,V	Ψ h,V	V _b [lb]
36.81	36.81	1.000	1.000	1.000	2,384
Results					
V _{cbg} [lb]	∲ concrete	φ V _{cbg} [lb]	V _{ua} [lb]		
6,676	0.750	5,007	1,400		

5 Combined tension and shear loads

β _N	βv	ζ	Utilization _{βN,V} [%]	Status	
0.828	0.280	5/3	85	OK	

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate
 assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and
 for plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Anchor calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength!
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- Attention! In case of compressive anchor forces a buckling check as well as the proof of the local load transfer into and within the base material (incl. punching) has to done separately.
- The design of Anchor Reinforcement is beyond the scope of PROFIS Anchor. Refer to ACI 318-14, Section 17.4.2.9 for information about Anchor Reinforcement.
- Anchor Reinforcement has been selected as a design option, calculations should be compared with PROFIS Anchor calculations.

Company: Specifier: Address: Phone I Fax: E-Mail:

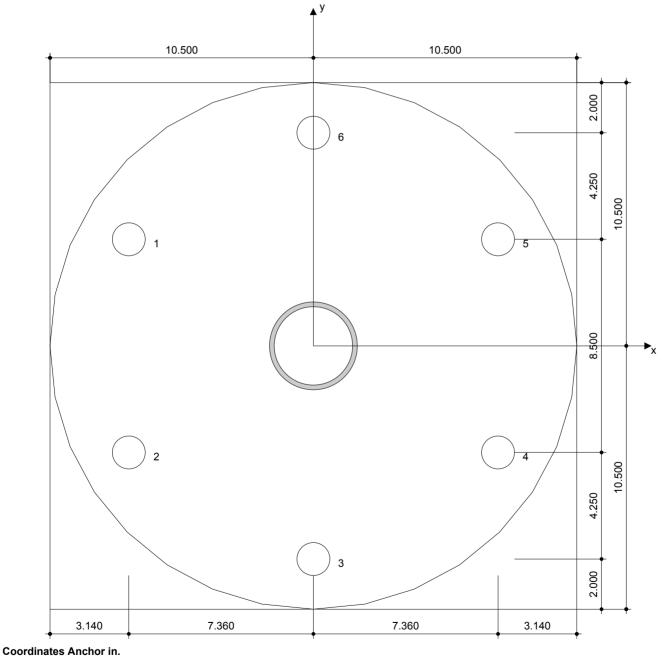
I

Page: Project: Sub-Project I Pos. No.: Date:

Pole 60ft 15-10-2019

Fastening meets the design criteria!

www.hilti.us			Profis Anchor 2.8.3
Company:		Page:	8
Specifier:		Project:	Pole 60ft
Address:		Sub-Project I Pos. No.:	
Phone I Fax:		Date:	15-10-2019
E-Mail:	·		


7 Installation data

Anchor plate, steel: -

Profile: Round HSS (AISC); (L x W x T) = 3.500 in. x 3.500 in. x 0.188 in. Hole diameter in the fixture: d_f = 1.313 in. Plate thickness (input): 0.315 in.

Recommended plate thickness: not calculated

Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 1 1/4 Installation torque: -Hole diameter in the base material: - in. Hole depth in the base material: 25.000 in. Minimum thickness of the base material: 26.344 in.

Anchor	x	У	C _{-x}	C+x	C _{-y}	C+y	Anchor	x	У	C-x	C+x	c _{-y}	C+y
1	-7.360	4.250	4.000	18.720	15.610	7.110	4	7.360	-4.250	18.720	4.000	7.110	15.610
2	-7.360	-4.250	4.000	18.720	7.110	15.610	5	7.360	4.250	18.720	4.000	15.610	7.110
3	0.000	-8.500	11.360	11.360	2.860	19.860	6	0.000	8.500	11.360	11.360	19.860	2.860

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us		Profis Anchor 2.8.3
Company:	Page:	9
Specifier:	Project:	Pole 60ft
Address:	Sub-Project I Pos. No.:	
Phone I Fax:	Date:	15-10-2019

8 Remarks; Your Cooperation Duties

E-Mail

- · Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.