CT ENGINEERING

INC

180 Nickerson St. Suite 302 Seattle, WA 98109 (206) 285-4512(V) (206) 285-0618(F) bmccann@ctengineering.com

#19193

Structural Calculations For:

Vashon Housing

AT

9914 SW 188th ST Vashon, WA 98070

Client:

Form + Function Architecture 1800 Westlake Ave. N #205 Seattle, WA 98109

Vashon Island Housing Center

Latitude, Longitude: 47.436949, -122.460848

SW	188th St	Vashon Lutheran Church Pacific Research Laboratories SW 188th St SW 188th St
Good	glenon l	orest Stewards Map data ©2019
Date		11/25/2019, 12:13:48 PM
Design (Code Refe	rence Document ASCE7-10
Risk Cat	egory	II
Site Clas	ŝS	C - Very Dense Soil and Soft Rock
Туре	Value	Description
Ss	1.502	MCE _R ground motion. (for 0.2 second period)
S ₁	0.566	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.502	Site-modified spectral acceleration value
S _{M1}	0.736	Site-modified spectral acceleration value
S _{DS}	1.001	Numeric seismic design value at 0.2 second SA
S _{D1}	0.491	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	D	Seismic design category
Fa	1	Site amplification factor at 0.2 second
Fv	1.3	Site amplification factor at 1.0 second
PGA	0.618	MCE _G peak ground acceleration
F_{PGA}	1	Site amplification factor at PGA
PGA _M	0.618	Site modified peak ground acceleration
TL	6	Long-period transition period in seconds
SsRT	1.502	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.591	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	2.851	Factored deterministic acceleration value. (0.2 second)
S1RT	0.566	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.61	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.91	Factored deterministic acceleration value. (1.0 second)
PGAd	1.019	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.944	Mapped value of the risk coefficient at short periods

СТ	ENG	INC.	180 Nickerson St. Suite 302 Seattle, WA
Туре	Value	Description	(206) 285-4512
C _{R1}	0.929	Mapped value of the risk coefficient at a period of 1 s	FAX:
			(206) 285-0618

Page 4 of 38

180 Nickerson St. Suite 302 Seattle, WA 98109 (206) 285-4512 FAX: (206) 285-0618

Design Response Spectrum

DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

11/25/2019

CTENGINEERING				180 Nickerson St. Suite 302 Seattle, WA
IBC2012 (1613), ASCE 7-10 CHAPTER 11, 12, 13 SEISMI	C DESIGN C	RITERIA		(206) 285-4512
Response Spectral Acc. (0.2 sec) Ss = 1.502 g		Figure 22-1,22-3,22-5,22-6		FAX:
Response Spectral Acc.(1.0 sec) S ₁ = 0.566 g		Figure 22-2,22-4,22-5,22-6		(206) 285-0618
Soil Site Class C	Table 20-3	-1, Default = D		
Site Coefficient $F_a = 1.000$		Table 11.4-1		
Site Coefficient F_v = 1.300		Table 11.4-2		
Max Considered Earthquake Acc. S_{MS} = $F_a.S_s$	= 1.502g	(11.4-1)		
Max Considered Earthquake Acc. $S_{M1} = F_v.S_1$	= 0.736g	(11.4-2)		
@ 5% Damped Design $S_{DS} = 2/3(S_{MS})$	= 1.001g	(11.4-3)		
$S_{D1} = 2/3(S_{M1})$	= 0.491g	(11.4-4)		
Building Rick Categories II Standard	▼	Table 1604 5		
Design Category Consideration:	m 🔻	with dist, between seismic resisting	system >10ft	
Seismic Design Category for 0 1sec D	•	Table 11 6-1	system >40h	
Seismic Design Category for 1.0sec D		Table 11.6-2		
S1 < .75g NA		Section 11.6		
Since Ta < .8Ts (see below), SDC = D	Control (ex	ception of Section 11.6 does not ap	oply)	
IBC, Seismic Design Category D	I	IRC, Seismic Design Category= D2	T-R301.2.2.1.1	
12.8 Equivalent lateral force procedure A. BEARING W	ALL SYSTEM	S		T-12.2-
Seismic Force Resisting Systems 15. Light-framed	(wood) walls she	athed with wood structural panels rated for	shear resistance or st	eel 🤉 🔻
$C_{t} = 0.02$	х	= 0.75 T-1	2.8-2	
Building bt $H = 20$	ft	Limited Building Height (ft) = 65		
C = 1.400	for S	of 0.401 m Table 12.8.1		
Approx Eupdomental period $T = C (h)^{x}$	– 0 190	12.87 T = 4.0	00 500	
Approxi undamental period, $\frac{1}{4} = O_{t}(\Pi_{n})$	- 0.109			
Calculated I shall not exceed Cu. Ia	= 0.265	Use $I = 0.13$	Se dece not ann	C.
$0.015 = 0.0(3_{D1}/3_{DS})$	- 0.392		.o does not apply	()
Is structure Regular &≤ 5 stories ? Yes ■		12.8.1.3		
Response Spectral Acc. (0.2 sec) S = 1.500g		$Max SS \leq 1.5g$		
$F_a = 1.00$	4 000			
@ 5% Damped Design $S_{DS} = \gamma_3(F_a, S_s)$	= 1.000g	(11.4-3)		
Response Modification Coef. R = 6.5		Table-12.2-1		
Over Strength Factor $\Omega_0 = 2.5$		foot note g		
Importance factor I = 1		T 1.5-2		
Seismic Base Shear V = $C_s W$				
$C_s = \frac{S_{DS}}{S_{DS}}$	=0.154		(12.8-2)	
R/I			(40.0.0)	
or need not to exceed, $Q = \frac{S_{D1}}{(R/I) T}$	= 0.399	For T≤ T _L	(12.8-3)	
S _{D4} T ₁			(12.8-4)	
or $C_s = \frac{D \Gamma L}{T^2(R/I)}$	— N/A	For $T > T_L$	(1210-1)	
C_s shall not be less than = 0.044S _{DS} .I≥.0 ⁻	1 = 0.044		(12.8-5)	
Min C₅ = 0.5S₁I/R	N/A	For S ₁ ≥ 0.6g	(12.8-6)	
Use C _s = 0.154			· · · ·	
Design base shear $\tilde{V} = 0.154 \text{ W}$	Control			
12 14 Simplified Seismic base shear	(wood) walls sho	athed with wood structural papels rated for	shear resistance or st	T-12.14
@ 5% Damped Design S _{De} = 1 0.01		= D T-11.6-1	l imitatione. D	
F = 1.2	For three e	tory building	R = 6	5
$V = FS_{ne}(W)$	= 0.185 W		(1	- 2.14-11)
R	_		()	,

CT ENGINEERING			180 Nickerson St. Suite 302
INC. 13.3 Seismic Demands on Nonstructural Compone	ents		Seattle, WA 98109
$F_{\rm p} = 0.4a_{\rm s}S_{\rm ps}$	W _n (1+2z/h)	(13.3-1)	$S_{DS} = 1.00^{(206)} 285-4512$
μ <u>μ</u>	l _p)		FAX: (206) 285-0618
a _p = 1	$R_{p} = 2.5$	T-13.	5-1 or 13.6-1
I _p = 1.5			13.1.3
z = 10 ft	h = 10 ft		F _p = 0.721 Wp
$Max F_p = 1.6S_{DS}$	$I_pW_p = 2.403Wp$		(13.3-2)
$Min F_{p} = 0.3S_{DS}$	$I_pW_p = 0.451Wp$		(13.3-3)
F _P = 0.721 W	р		
12.11.1 Design for Out-of-Plane Forces			
F _p = 0.40S _{DS} I	Ww		12.11.1
= 0.401(W)		
12.11.2 Anchorage of structural Walls and Transfe	r of Design Force into Diaphragn	n	
or $F_p = 0.4S_{DS}K_a$	I _e VV _p	(12.1)	1-1)
k _a = 1+L _f /100	$L_f = 50 ft$		
Amplification factor for diaphragm, لإ = 1.50			
F _p = 0.600Wp)		
12.4.3 Seismic Load Effect Including Overstrength	$E_{\rm M} = \Omega_{\rm o} Q_{\rm E} \pm 0.2 S_{\rm DS} D$	(12.4	-5, 12.4-6)
Where Ω_{o} = 2.5	$0.2S_{DS}D = 0.201(D)$		
Deflection Amplification factor G = 4		T 12.2-1	
15.3 Nonbuilding structures			
Response Modification Coef. R =6	From T-15.4-1		
Importance factor I= 1	Min Deguinement from Cool	15.4.1.1	
For flexible honbuilding, $c_{\rm g} = 0.167$ W	Min Requirement from Sec		(15 4 4)
$101110_{\rm s} = 0.0443_{\rm DS}$	$S_{3.1} = 0.044$		(15.4-1)
or $U_s = 0.8 S_1 / R$	N/A, 51<0.0		(13.4-2)
V = 0.167 W			(15 4 5)
			(15.4-5)
= 0.300 W			

CHAPTER 28 WIND LOADS ON BUILDINGS—MWFRS (ENVELOPE PROCEDURE)

multiplied by the wall area of the building and 8 lb/ft^2 (0.38 kN/m²) multiplied by the roof area of the building projected onto a vertical plane normal to the assumed wind direction.

PART 2: ENCLOSED SIMPLE DIAPHRAGM LOW-RISE BUILDINGS

28.5 GENERAL REQUIREMENTS

The steps required for the determination of MWFRS wind loads on enclosed simple diaphragm buildings are shown in Table 28.5-1.

User Note: Part 2 of Chapter 28 is a simplified method to determine the wind pressure on the MWFRS of enclosed simple diaphragm *low-rise buildings* having a flat, gable or hip roof. The wind pressures are *obtained directly from a table* and applied on horizontal and vertical projected surfaces of the building. This method is a simplification of the Envelope Procedure contained in Part 1 of Chapter 28.

28.5.1 Wind Load Parameters Specified in Chapter 26

The following wind load parameters are specified in Chapter 26:

- Basic Wind Speed V (Section 26.5)
- Exposure category (Section 26.7)
- Topographic factor K_{zt} (Section 26.8)
- Enclosure classification (Section 26.10)

Table 28.5-1Steps to Determine Wind Loads onMWFRS Simple Diaphragm Low-Rise Buildings

Step 1: Determine risk category of building or other structure, see Table 1.5-1

- Step 2: Determine the basic wind speed, V, for applicable risk category, see Fig. 26.5-1A, B or C
- Step 3: Determine wind load parameters:
 - Exposure category B, C or D, see Section 26.7
 Topographic factor, K_u, see Section 26.8 and Fig. 26.8-1
- Step 4: Enter figure to determine wind pressures for h = 30 ft (9.1 m)., p_{530} , see Fig. 28.6-1
- Step 5: Enter figure to determine adjustment for building height and exposure, λ, see Fig. 28.6-1
- Step 6: Determine adjusted wind pressures, p_s see Eq. 28.6-1

28.6 WIND LOADS—MAIN WIND-FORCE RESISTING SYSTEM

28.6.1 Scope

A building whose design wind loads are determined in accordance with this section shall meet all the conditions of Section 28.6.2. If a building does not meet all of the conditions of Section 28.6.2, then its MWFRS wind loads shall be determined by Part 1 of this chapter, by the Directional Procedure of Chapter 27, or by the Wind Tunnel Procedure of Chapter 31.

28.6.2 Conditions

" Š

Ì

۱۱

Coord

For the design of MWFRS the building shall comply with all of the following conditions:

- 1. The building is a simple diaphragm building as defined in Section 26.2.
- 2. The building is a low-rise building as defined in Section 26.2.
- 3. The building is enclosed as defined in Section 26.2 and conforms to the wind-borne debris provisions of Section 26.10.3.
- 4. The building is a regular-shaped building or structure as defined in Section 26.2.
- 5. The building is not classified as a flexible building as defined in Section 26.2.
- 6. The building does not have response characteristics making it subject to across wind loading, vortex shedding, instability due to galloping or flutter; and it does not have a site location for which channeling effects or buffeting in the wake of upwind obstructions warrant special consideration.
- 7. The building has an approximately symmetrical cross-section in each direction with either a flat roof or a gable or hip roof with $\theta \le 45^{\circ}$.
- 8. The building is exempted from torsional load cases as indicated in Note 5 of Fig. 28.4-1, or the torsional load cases defined in Note 5 do not control the design of any of the MWFRS of the building.

28.6.3 Design Wind Loads

Simplified design wind pressures, p_s , for the MWFRS of low-rise simple diaphragm buildings represent the net pressures (sum of internal and external) to be applied to the horizontal and vertical projections of building surfaces as shown in Fig. 28.6-1. For the horizontal pressures (Zones A, B, C, D), p_s is the combination of the windward and

MINIMUM DESIGN LOADS

h: Mean roof height, in feet (meters), except that eave height shall be used for roof angles $<10^{\circ}$.

 θ : Angle of plane of roof from horizontal, in degrees.

CHAPTER 28 WIND LOADS ON BUILDINGS-MWFRS (ENVELOPE PROCEDURE)

01	Main Wind Force Resisting System – Method 2 $h \le 60$ ft.												
	Figure 28.6-1	(cont'd)		De	sign Wi	nd Pres	sures			Wal	1. 0. 1	Doofe	
0	Enclosed 1	Buildings							wans & Roois				
•	Siı	mplified	Des	sign W	ind Pre	essure	, p _{s30}	(psf) (E	xposure	Bath=	30 ft. wi	th I = 1.0))
w 6- 8-00	Basic Wind	Roof	Case					Zoi	nes			0	
39.33	Speed	Angle	ad (Horizontal	Pressure	s `		Vertical F	ressures	·····	Oven	nangs
	(mpn)			A 10.2	В -10.0	12.7	-5 9	-23.1	-13.1	-16 0	-10.1	=32.3	-25 3
NNN		10° *	1	21.6	-9.0	14.4	-5.2	-23.1	-13.1	-16.0	-10.8	-32.3	-25.3
N T T		15°	1	24.1	-8.0	16.0	-4.6	-23.1	-15.1	-16.0	-11.5	-32.3	-25.3
Co al	110	20°	1	26:6	-7.0	17.7 ⁻	-3.9	-23.1	-16.0	-16.0	-12.2	-32.3	-25.3
		25°	1	24.1	3.9	17.4	4.0	-10.7	-14.6	-7.7	-11.7	-19.9	-17.0
		30 to 45	2	21.6	1/ 8	17.2	11.8	-4.1	-7.9	-1.1	-5.1	-7.6	-8.7
		30 10 43	2	21.6	14.8	17.2	11.8	8.3	-6.5	7.2	-4.6	-7.6	-8.7
		0 to 5°	1	21.0	-10.9	13.9	-6.5	-25.2	-14.3	-17.5	-11.1	-35.3	-27.6
		10°	1	23.7	-9.8	15.7	-5.7	-25.2	-15.4	-17.5	-11.8	-35.3	-27.6
00		15°	1	26.3	-8.7	17.5	-5.0	-25.2	-16.5	-17.5	-12.6	-35.3	-27.6
5 4 6	115	20°	1	29.0	-/./	19.4	-4.2	-25.2	-17.5	-17.5	-13.3	-35.3	-27.6
4 00 0		25	2	20.3	4.2	19.1	4.5	-11.7	-15.9	-0.5	-12.0	-21.0	-10.5
1 1		30 to 45	1	23.6	16.1	18.8	12.9	1.8	-14.3	0.6	-12.3	-8.3	-9.5
an at ap			2	23.6	16.1	18.8	12.9	9.1	-7.1	7.9	-5.0	-8.3	-9.5
N N N		0 to 5°	1	22.8	-11.9	15.1	-7.0	-27.4	-15.6	-19.1	-12.1	-38.4	-30.1
		10°	1	25.8	-10.7	17.1	-6.2	-27.4	-16.8	-19.1	-12.9	-38.4	-30.1
10 4 S		15°	1	28.7	-9.5	19.1	-5.4	-27.4	-17.9	-19.1	-13.7	-38.4	-30.1
	120	20 25°	1	28.6	-0.3	21.1	4.0	-27.4	-17.3	-19.1	-14.5	-30.4	-20.2
\searrow		20	2					-4.8	-9.4	-1.3	-6.0		
-		30 to 45	1	25.7	17.6	20.4	14.0	2.0	-15.6	0.7	-13.4	-9.0	-10.3
			2	25.7	17.6	20.4	14.0	9.9	-7.7	8.6	-5.5	-9.0	-10.3
٤.		0 to 5°	1	26.8	-13.9	17.8	-8.2	-32.2	-18.3	-22.4	-14.2	-45.1	-35.3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10° 15°	1	30.2	-12.5	20.1	-7.3	-32.2	-19.7	-22.4	-15.1	-45.1	-35.3
8240 2		20°	1	37.1	-9.8	24.7	-5.4	-32.2	-22.4	-22.4	-17.0	-45.1	-35.3
64 2	130	25°	1	33.6	5.4	24.3	5.5	-14.9	-20.4	-10.8	-16.4	-27.8	-23.7
5			2					-5.7	-11.1	-1.5	-7.1		
		30 to 45	1	30.1	20.6	24.0 24.0	16.5	2.3 11.6	-18.3 _9.0	0.8	-15.7 -64	-10.6 -10.6	-12.1
84		0 to 5°	1	31.1	-16.1	20.6	-9.6	-37.3	-21.2	-26.0	-16.4	-52.3	-40.9
\$		10°	1	35.1	-14.5	23.3	-8.5	-37.3	-22.8	-26.0	-17.5	-52.3	-40.9
		15°	1	39.0	-12.9	26.0	-7.4	-37.3	-24.4	-26,0	-18.6	-52.3	-40.9
X	140	20°	1	43.0	-11.4	28.7	-6.3	-37.3	-26.0	-26.0	-19.7	-52.3	-40.9
		25°	1	39.0	6.3	28.2	6.4	-17.3	-23.6	-12.5	-19.0	-32.3	-27.5
		30 to 45	2	35.0	23.0	27.8	10 1	-0.0	-12.8	-1.8	-0.2	-123	-14.0
1 2 0		30 10 43	2	35.0	23.9	27.8	19.1	13.4	-10.5	11.7	-7.5	-12.3	-14.0
		0 to 5°	1	35.7	-18.5	23.7	-11.0	-42.9	-24.4	-29.8	-18.9	-60.0	-47.0
2		10°	1	40.2	-16.7	26.8	-9.7	-42.9	-26.2	-29.8	-20.1	-60.0	-47.0
· - P		15°	1	44.8	-14.9	29.8	-8.5	-42.9	-28.0	-29.8	-21.4	-60.0	-47.0
	150	20°		49.4	-13.0	32.9	-1.2	-42.9	-29.8	-29.8	-22.6	-60.0	-41.0
		25	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	44.8	1.2	32.4	1.4	-19.9	-27.1	-14.4	-21.8 -94	-37.0	-31.0
		30 to 45	1	40.1	27.4	31.9	22.0	3.1	-24.4	1.0	-20.9	-14.1	-16.1
			2	40.1	27.4	31.9	22.0	15.4	-12.0	13.4	-8.6	-14.1	-16.1

Unit Conversions – 1.0 ft = 0.3048 m; 1.0 psf = 0.0479 kN/m^2

304

11:12=425

	Main Wind Force Resisting System – Method 2								h ≤ 60 ft.				
Figu	ure 28.6-1 ((cont'd)		De	esign W	ind Pres	ssures		Walls & Poofs				
	Enclosed Buildings			•									
	Simplified Design Wind Pressure , p_{s30} (psf) (Exposure B at $h = 30$ ft.)												
	Basic Wind Boof												
	Speed	Angle	о р	l	Horizontal	Pressure	s		Vertical F	Pressures		Over	hangs
	(mph)	(degrees)	Loa	А	В	С	D	E	F	G	н	Еон	Goн
		0 to 5°	1	40.6	-21.1	26.9	-12.5	-48.8	-27.7	-34.0	-21.5	-68.3	-53.5
		10°	1	45.8	-19.0	30.4	-11.1	-48.8	-29.8	-34.0	-22.9	-68.3	-53.5
	1	15°	1	51.0	-16.9	34.0	-9.6	-48.8	-31.9	-34.0	-24.3	-68.3	-53.5
	160	20°	1	56.2	-14.8	37.5	-8.2	-48.8	-34.0	-34.0	-25.8	-68.3	-53.5
		25°	1	50.9	8.2	36.9	8.4	-22.6	-30.8	-16.4	-24.8	-42.1	-35.9
			2					-8.6	-16.8	-2.3	-10.7		
		30 to 45	1	45.7	31.2	36.3	25.0	3.5	-27.7	1.2	-23.8	-16.0	-18.3
			2	45.7	31.2	36.3	25.0	17.6	-13.7	. 15.2	-9.8	-16.0	-18.3
		0 to 5°	1	51.4	-26.7	34.1	-15.8	-61.7	-35.1	-43.0	-27.2	-86.4	-67.7
		10°	1	58.0	-24.0	38.5	-14.0	-61.7	-37.7	-43.0	-29.0	-86.4	-67.7
	· ·	15°	1	64.5	-21.4	43.0	-12.2	-61.7	40.3	-43.0	-30.8	-86.4	-67.7
	100	20°	1	71.1	-18.8	47.4	-10.4	-61.7	-43.0	-43.0	-32.6	-86.4	-67.7
		25°	1	64.5	10.4	46.7	10.6	-28.6	-39.0	-20.7	-31.4	-53.3	-45.4
			2					-10.9	-21.2	-3.0	-13.6		
		30 to 45	1	57.8	39.5	45.9	31.6	4.4	-35.1	1.5	-30.1	-20.3	-23.2
		<u> </u>	2	57.6	39.5	40.9	31.0	22.2	-17.3	19.3	-12.3	-20.3	-23.2
	,	U to 5	1	63.4	-32.9	/ 42.1	-19.5	-76.2	-43.3	-53.1	-33.5	-106.7	-83.5
		10°	1	71.5	-29.7	47.6	-17.3	-76.2	-46.5	-53.1	-35.8	-106.7	-83.5
		15°		/9./	-26.4	53.1	-15.0	-76.2	-49.8	-53.1	-38.0	-106.7	-83.5
	200	20*	1	87.8	-23.2	58.5	-12.8	-76.2	-53.1	-53.1	-40.2	-106.7	-83.5
		25°	1	79.6	12.8	57.6	13.1	-35.4	-48.2	-25.6	-38.7	-65.9	-56.1
		20 45 45	2		40.0	 FC 7		-13.4	-26.2	-3./	-16.8		
		3U TO 45	1.	71.3	48.8 48.8	56.7	39.0 39.0	5.5 271	-43.3	1.8 23.8	-37.2	-25.0	-28.7 -28.7

ich top 201 to 200 to 200

1

for Building Height and Exposure, λ									
Mean roof	Exposure								
height (ft)	В	С	D						
15	1.00	1.21	1.47						
20	1.00	1.29	1.55						
25	1.00	1.35	1.61						
30	1.00	1.40	1.66						
35	1.05	1.45	1.70						
40	1.09	1.49	1.74						
45	1.12	1.53	1.78						
50	1.16	1.56	1.81						
55	1.19	1.59	1.84						
60	1.22	1.62	1.87						

Adjustment Factor

Roop & < 10°

Unit Conversions – 1.0 ft = 0.3048 m; 1.0 psf = 0.0479 kN/m²

leeward net pressures. p_s shall be determined by the following equation:

$$p_s = \lambda \, K_{zt} \, p_{S30} \tag{28.6-1}$$

where

- λ = adjustment factor for building height and exposure from Fig. 28.6-1
- K_{zt} = topographic factor as defined in Section 26.8 evaluated at mean roof height, *h*

 p_{s30} = simplified design wind pressure for Exposure B, at h = 30 ft (9.1 m) from Fig. 28.6-1

28.6.4 Minimum Design Wind Loads

The load effects of the design wind pressures from Section 28.6.3 shall not be less than a minimum load defined by assuming the pressures, p_s , for zones A and C equal to +16 psf, Zones B and D equal to +8 psf, while assuming p_s for Zones E, F, G, and H are equal to 0 psf.

	ALLOWABLE SHEAR VALUES										
		sw_type_	b_7/161	31_2_1/2_16	oc_or_long_h						
mark	species		E asd	Table 4.3A		W asd	Table 4.3A				
P6TN	DF	sw_type_b_p6tn_df_e	150	NDS 4.1.7	sw_type_b_p6tn_df_w	150	NDS 4.1.7				
	HF	sw_type_b_p6tn_hf_e	150		sw_type_b_p6tn_hf_w	150					
P6	DF	sw_type_b_p6_df_e	260	520	sw_type_b_p6_df_w	365	730				
	HF	sw_type_b_p6_hf_e	242		sw_type_b_p6_hf_w	339					
P4	DF	sw_type_b_p4_df_e	380	760	sw_type_b_p4_df_w	533	1065				
	HF	sw_type_b_p4_hf_e	(353)		sw_type_b_p4_hf_w	495					
P3	DF	sw_type_b_p3_df_e	490	980	sw_type_b_p3_df_w	685	1370				
	HF	sw_type_b_p3_hf_e	456		sw_type_b_p3_hf_w	637					
P2	DF	sw_type_b_p2_df_e	640	1280	sw_type_b_p2_df_w	895	1790				
	HF	sw_type_b_p2_hf_e	595		sw_type_b_p2_hf_w	832					
2P4	DF	sw_type_b_2p4_df_e	760	1520	sw_type_b_2p4_df_w	1065	2130				
	HF	sw_type_b_2p4_hf_e	707		sw_type_b_2p4_hf_w	990					
2P3	DF	sw_type_b_2p3_df_e	980	1960	sw_type_b_2p3_df_w	1370	2740				
	HF	sw_type_b_2p3_hf_e	911		sw_type_b_2p3_hf_w	1274					
2P2	DF	sw_type_b_2p2_df_e	1280	2560	sw_type_b_2p2_df_w	1790	3580				
	HF	sw_type_b_2p2_hf_e	1190		sw_type_b_2p2_hf_w	1665					

180 Nickerson St. Suite 302 Seattle, WA 98109 (206) 285-4512 FAX: (206) 285-0618

19193 180 Nickerson St. ENGINEERING Suite 302 Seattle, WA Project: VASchord Iscarlo yoursently Contree. Date: 01/16/2020 98109 (206) 285-4512 FAX: Client: Page Number: (206) 285-0618 CARERA MANJENS. DIA SouthWEST 188D STREET & 47.436949° -122.460848 VASSFORT ISCAND, WASHINGTON clampule 384' Wines Loms Cornoro by inspection TRANSVERSE WIND LOSOS. - Rook Level Confos. 0.6W $(536/2)(16PSF) = 42904 = 25744; \frac{25744}{(5+7)} = 1984, \overline{P6}ok$ $(536/2)(16PSF) = 42904 = 25744; \frac{25744}{(647)} = 1984, Rook$ CAPACITY Ro = 3397 OVERNING = 198(8')= 1584 \$ \$ +03 7/16; 131×212; HE MIST 48 CAPACITY & 4200 4+ ok. WRAP MOND JAMISFOR Big NOSIGN MANSFOR BOAM FOR 1584 (-2) = 3960 A 6000 4 Com Appliento. BOAM OK - MM + STORy (Gree Corros. <u>HSD</u> $<math display="block">(478 St/2)(6PSF)(0.6) + 157144 = 4868 = 3244/1 \Rightarrow P4 + 4954,$ $(478 St/2)(6PSF)(0.6) + 257144 = 4868 = 3244/1 \Rightarrow P4 + 4954,$ (478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954,(478 St/2)(16PSF)(0.6) + 25744 = 48684 = 3244, \$\$ P4 + 4954, \$\$ P4 + 4954oventure 198 ,193(17)+ ,176(9) = 4.95" HOUILON 4×6 - CAP = BO30 # > 4950 81 6×6 - CAPE 80302 > 4950 5,176 1 1C 91 Phoneso Manue Horz For HOULI TYPE AMALIANS Page 14 of 38

Structural Engineers

180 Nickerson St. ст GINEE Ξ Suite 302 Seattle, WA Project: VASADAN Housenly Date: 01/16/2020 98109 (206) 285-4512 FAX: Client: Page Number: _ (206) 285-0618 Contona Animy SIS (Contr.) Longenour dino long Root LEVGL GARS. (296/2)(16ps+)(0.6)= 1420 4 1420 4.5+10+10+45= 494, 2) Ablok (296/2)+8:2 (16 psf) (0.6) = 15004 1500 # = 167 #1, 2 [P6] orc. Uput . 167 (8)= 1.3" matthe or an HO3 monue Mand Lover Lons abi' = 570ry $1420 \neq + 169(16)(a6) = 30424 = 3042 = 104 \notin$, Abou 29!abe. STORY 1500 # + 180(16)(0.6) = 3228 # 3228 = 358 % [P4]on OVONTUNING ,167(17) + · 192(9) = 4,5h 406 - SAHOIY DEEP FON SAHOIY RJ. 2640 \$ M/6" N/6 STEM WALL 7 USE HOUB ON (2) 2X - 5820 = AP) .049(17) + .056(9) = 1.4" \$ SAHOIY OK 4520. 8.056 406 mmil H) 1 manu

180 Nickerson St. Suite 302 Seattle, WA 98109 (206) 285-4512 FAX: (206) 285-0618

GRAVITY LOAD ANALYSIS - BEAM MAP

INC.

GRAVITY LOAD ANALYSIS - BEAM MAP

INC.

180 Nickerson St. Suite 302 Seattle, WA 98109 (206) 285-4512 FAX: (206) 285-0618

1

GRAVITY LOAD ANALYSIS - BEAM MAP

INC.

180 Nickerson St. Suite 302 Seattle, WA 98109 (206) 285-4512 FAX: (206) 285-0618

JOB SUMMARY REPORT

19193 Vashon Island Housing Center

ROOI							
Member Name	Results	Current Solution	Comments				
Wall: Header - Typ at roof - BM1	Passed	1 piece(s) 4 x 6 Douglas Fir-Larch No. 2					
Roof: Drop Beam - BM2	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam					
Wall: Header - BM3	Passed 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2						
UPPER LEVEL							
Member Name	Results	Current Solution	Comments				
Floor: Joist - Typ at upper level - BM4	Passed	1 piece(s) 2 x 12 Hem-Fir No. 2 @ 16" OC					
Floor: Flush Beam -BM5	Passed	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam					
Floor: Flush Beam - BM6	Passed	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam					
Floor: Flush Beam -BM7	Passed	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam					
Floor: Flush Beam - BM8	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam					
Wall: Header - Typ hdr - BM9	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2					
Floor: Drop Beam - BM10	Passed	1 piece(s) 4 x 8 Douglas Fir-Larch No. 2					
Floor: Flush Beam - BM11	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam	Multiple Failures/Errors					
Floor: Drop Beam - BM12	Passed	1 piece(s) 4 x 6 Douglas Fir-Larch No. 2					

Job Notes

1/16/2020 5:09:25 PM UTC ForteWEB v2.3 File Name: 19193 Vashon Island Housing Center Page 19 of 38

Roof, Wall: Header - Typ at roof - BM1 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1142 @ 0	3281 (1.50")	Passed (35%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	888 @ 7"	2657	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1499 @ 2' 7 1/2"	1979	Passed (76%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.052 @ 2' 7 1/2"	0.131	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.096 @ 2' 7 1/2"	0.262	Passed (L/658)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 5' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 3" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	518	623	1141	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	518	623	1141	None

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	4.9		
1 - Uniform (PSF)	0 to 5' 3"	9' 6"	20.3	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

Roof, Roof: Drop Beam - BM2 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2176 @ 2"	12031 (3.50")	Passed (18%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1648 @ 1' 1/2"	10057	Passed (16%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	4314 @ 4' 3 1/2"	17078	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.048 @ 4' 3 1/2"	0.275	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.088 @ 4' 3 1/2"	0.412	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 7" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 7" o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Snow	Total	Accessories	
1 - Stud wall - DF	3.50"	3.50"	1.50"	996	1180	2176	Blocking	
2 - Stud wall - DF	3.50"	3.50"	1.50"	996	1180	2176	Blocking	
Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed								

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	12.0		
1 - Uniform (PSF)	0 to 8' 7" (Front)	11'	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

Roof, Wall: Header - BM3 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	662 @ 0	3281 (1.50")	Passed (20%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	515 @ 7"	2657	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	870 @ 2' 7 1/2"	1979	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.030 @ 2' 7 1/2"	0.105	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.056 @ 2' 7 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/600) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 5' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 3" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	302	361	663	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	302	361	663	None

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	4.9		
1 - Uniform (PSF)	0 to 5' 3"	5' 6"	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

UPPER LEVEL, Floor: Joist - Typ at upper level - BM4 1 piece(s) 2 x 12 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	603 @ 2 1/2"	1215 (2.00")	Passed (50%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	515 @ 1' 2 3/4"	1688	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2225 @ 7' 8"	2577	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.257 @ 7' 8"	0.373	Passed (L/697)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.385 @ 7' 8"	0.746	Passed (L/465)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 4' 1" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 15' 1" o/c based on loads applied, unless detailed otherwise.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories		
1 - Stud wall - HF	3.50"	2.00"	1.50"	204	409	613	1 1/2" Rim Board		
2 - Stud wall - HF	3.50"	2.00"	1.50"	204	409	613	1 1/2" Rim Board		
Dire Desud is service adds service all leads south									

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 15' 4"	16"	20.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2196 @ 3 1/2"	3413 (1.50")	Passed (64%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1715 @ 1' 2"	6493	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	4391 @ 4' 3 1/2"	12863	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.055 @ 4' 3 1/2"	0.200	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.083 @ 4' 3 1/2"	0.400	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8'.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 10 1/2" DF beam	3.50"	Hanger ¹	1.50"	808	1545	2353	See note 1
2 - Hanger on 10 1/2" DF beam	3.50"	Hanger ¹	1.50"	808	1545	2353	See note 1
At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger							

1 Con Connector and below for additional information and (or new increases)

¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A			

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 8' 3 1/2"	N/A	8.9		
1 - Uniform (PSF)	0 to 8' 7" (Front)	9'	20.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

UPPER LEVEL, Floor: Flush Beam - BM6 1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2499 @ 2"	4375 (2.00")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2408 @ 1' 2"	6493	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	6720 @ 3'	12863	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.225 @ 6' 7 3/4"	0.353	Passed (L/752)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.355 @ 6' 8"	0.706	Passed (L/478)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 14' 2" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 14' 2" o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 1 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	3.50"	2.00"	1.50"	897	1611	2508	1 1/2" Rim Board
2 - Hanger on 10 1/2" DF beam	3.50"	Hanger ¹	1.50"	416	692	1108	See note 1

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• At hanger supports, the rotal bearing differsion is equal to the width of the material that is su

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 14' 3 1/2"	N/A	8.9		
1 - Uniform (PSF)	0 to 14' 7" (Front)	1' 3 5/8"	20.0	40.0	Default Load
2 - Point (lb)	3' (Front)	N/A	808	1545	Linked from: Floor: Flush Beam -BM5, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by BJM

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

1/16/2020 5:09:25 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.1.1 Page 25 of 38 File Name: 19193 Vashon Island Housing Center Page 7 / 13

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5152 @ 2"	7963 (3.50")	Passed (65%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3993 @ 8' 11"	6493	Passed (62%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	10070 @ 5' 1 1/2"	12863	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.188 @ 5' 11/16"	0.244	Passed (L/621)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.287 @ 5' 11/16"	0.488	Passed (L/407)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 1" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 1" o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories		
1 - Column Cap - steel	3.50"	3.50"	2.26"	1797	3355	5152	Blocking		
2 - Column Cap - steel	3.50"	3.50"	2.21"	1747	3272	5019	Blocking		
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed									

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 1"	N/A	8.9		
1 - Uniform (PSF)	0 to 10' 1" (Front)	13'	20.0	40.0	Default Load
2 - Point (lb)	6" (Front)	N/A	416	692	Linked from: Floor: Flush Beam - BM6, Support 2
3 - Point (Ib)	9' (Front)	N/A	416	692	Linked from: Floor: Flush Beam - BM6, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512	
(206) 285-4512 bmccann@ctengineering.com	

UPPER LEVEL, Floor: Flush Beam - BM8 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2862 @ 0	5363 (1.50")	Passed (53%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1946 @ 1'	11733	Passed (17%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-lbs)	4472 @ 3' 1 1/2"	23244	Passed (19%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.017 @ 3' 1 1/2"	0.156	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.033 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 6' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 6' 3" o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			L	oads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	1368	938	1055	3361	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	1368	938	1055	3361	None

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	14.0			
1 - Uniform (PSF)	0 to 6' 3" (Front)	7' 6"	20.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 6' 3" (Front)	13' 6"	20.3	-	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

UPPER LEVEL, Wall: Header - Typ hdr - BM9 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1764 @ 0	3281 (1.50")	Passed (54%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1150 @ 8 3/4"	3045	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2089 @ 2' 7 1/2"	2989	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.035 @ 2' 7 1/2"	0.131	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.065 @ 2' 7 1/2"	0.262	Passed (L/975)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 5' 3" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 5' 3" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	804	788	492	2084	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	804	788	492	2084	None

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	6.4			
1 - Uniform (PSF)	0 to 5' 3"	7' 6"	20.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 5' 3"	7' 6"	20.0	-	25.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

UPPER LEVEL, Floor: Drop Beam - BM10 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1366 @ 4"	12031 (5.50")	Passed (11%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1041 @ 1' 3/4"	3045	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2607 @ 4' 5 1/2"	2989	Passed (87%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.117 @ 4' 5 1/2"	0.206	Passed (L/845)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.180 @ 4' 5 1/2"	0.412	Passed (L/551)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 11" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 11" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	474	892	1366	Blocking
2 - Stud wall - DF	5.50"	5.50"	1.50"	474	892	1366	Blocking
2 - Stud wall - DF	5.50" 5.50"	5.50" 5.50"	1.50" 1.50"	474 474	892 892	1366 1366	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 11"	N/A	6.4		
1 - Uniform (PSF)	0 to 8' 11" (Front)	5'	20.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

UPPER LEVEL, Floor: Flush Beam - BM11 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2848 @ 9 1/2"	39325 (11.00")	Passed (7%)		1.0 D + 0.7 E (All Spans)
Shear (lbs)	2817 @ 1' 11"	18656	Passed (15%)	1.60	1.0 D + 0.7 E (All Spans)
Pos Moment (Ft-Ibs)	14549 @ 6'	42240	Passed (34%)	1.60	1.0 D + 0.7 E (All Spans)
Neg Moment (Ft-Ibs)	-13912 @ 6'	32560	Passed (43%)	1.60	0.6 D - 0.7 E (All Spans)
Live Load Defl. (in)	-0.303 @ 7' 6 15/16"	0.369	Passed (L/584)		0.6 D - 0.7 E (All Spans)
Total Load Defl. (in)	0.315 @ 7' 7 1/8"	0.738	Passed (L/562)		1.0 D + 0.7 E (All Spans)

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 16' 4" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 16' 4" o/c based on loads applied, unless detailed otherwise.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 9".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads 1	o Supports (
Supports	Total	Available	Required	Dead	Seismic	Total	Accessories
1 - Column Cap - steel	11.00"	11.00"	1.50"	131	3881/-3881	4012/- 3881	Blocking
2 - Column Cap - steel	11.00"	11.00"	1.50"	131	2119/-2119	2250/- 2119	Blocking
 Placking Dapole are accumed to carry no load 	c applied dire	ctly above the	m and the ful	Lload is appli	ad to the more	hor hoing	docianod

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

			Dead	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 16' 4"	N/A	16.0		
1 - Point (lb)	6' (Front)	N/A	-	6000	Default Load

Member Notes

Transfer beam supporting uplift from above at over-strength level (E*Omega).

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by BJM

 ForteWEB Software Operator
 Job Notes

 Benjamin J. McCann
 CT Engineering Inc.

 (206) 285-4512
 bmccann@ctengineering.com

1/16/2020 5:09:25 PM UTC ForteWEB v2.3, Engine: V8.0.0.21, Data: V7.3.1.1 Page 30 of 38 File Name: 19193 Vashon Island Housing Center Page 12 / 13

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

0

1

MEMBER REPORT

UPPER LEVEL, Floor: Drop Beam - BM12 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	890 @ 2"	7656 (3.50")	Passed (12%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	734 @ 9"	2657	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1764 @ 4' 3 1/2"	1979	Passed (89%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.151 @ 4' 3 1/2"	0.206	Passed (L/656)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.278 @ 4' 3 1/2"	0.412	Passed (L/356)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

2

• Deflection criteria: LL (L/480) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 7" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8' 7" o/c based on loads applied, unless detailed otherwise.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Column Cap - steel	3.50"	3.50"	1.50"	407	483	890	Blocking
2 - Column Cap - steel	3.50"	3.50"	1.50"	407	483	890	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	4.9		
1 - Uniform (PSF)	0 to 8' 7" (Front)	4' 6"	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Benjamin J. McCann CT Engineering Inc. (206) 285-4512 bmccann@ctengineering.com	

CT ENGINEERING

DEEP FOUNDATION ANALYSIS

180 Nickerson St. Suite 302 Seattle, WA 98109 (206) 285-4512 FAX: (206) 285-0618

SCALE: 1/4" = 1'-0"

180 Nickerson St. Suite 302 Seattle, WA 98109 (206) 285-4512 FAX: (206) 285-0618

CONVENTIONAL FOUNDATION ANALYSIS

INC

1

19193 180 Nickerson St. ENGINEERIN СТ Suite 302 Seattle, WA Project: VASHON ISLAND HOUSING CENTER HOMES. 11/05/2019 98109 (206) 285-4512 FAX: Client: Page Number: (206) 285-0618 Foundation Antacepsis. LNO OPAD IST FLOOR - SOG O Ð 2000 FLOOR - FRANCED 20 PSF 90 PSF Roof - TRUSSES 20 PSF + 10 PSF SUAR ALCONGALO 25 psp SIBC - 1606.3 leamore barning SPSF maint Rook w/ Intrenor Bomarky WML? (8+2)(25+30) = 550 *1, 2.10 (8') (40+20) = 480 #/1, FON/ 118" > 18" GRADE BA W/ 6"XIN" STER ATOP &SSUMED) Grand Bug (18/12) (18/12) (1) (150 PCK) = 345 ch STEAN Ean (8/12)(11")(11")(150 per) = 75"/1 Torm = 1445 #/1 Interior Bereines Unto hoop " 15 (25+30) = 825 44 2,10 15 (40 + 20) = 900 % FON - (18"x18" GRADO BAA ws/ 6"×12" Storg ATOP (SIM to ATOV) A15 41, Torme 2140 t. Pue Pue Sparney mar game pue Seriely 2" enpriency = 3Ton/s = 6,000th Penuneren "Intrenice 4:15'(4'.1') 2,80'(2:9") 2" CAPACIANY = & TENS = 12,000 of 831(8:3") 5.61 (5-7")

19193 180 Nickerson St. ENGINEERING Suite 302 Seattle, WA Vasilar Isconio Harsnily Contron Hongos 98109 (206) 285-4512 FAX. Client: (206) 285-0618 18-1/2"-112"-1"- 5/2"-5/8"-3" GRADO BODM DESIGN. 2.45 tope = 9,75 400 18/2 2 4.9 25 HEEP 18" wind that 7 60770mg. W/ 498 9"0, C, J108, Rearres Smontent. ALLOW FOR AND ALC toceenarles 1,40 (16-1) de 18"- 1/2"- 9/2 1.20+1.6L+0.55 (16-2) is = 17.19 is d/2 = 8.59 " 12 Deramio Ag intreason begreinty 14 Whe 1.4 (1165 4) = 1631 #1, (16-1) TIESE 810, C, MOETS d/2 Wy = 1.2 (11654)+ 1.6 (600)+ 0.5 (27541) er/ Requirejan 1261 = 2595 \$ (16-2) 2012" fips Mu = Wu la²/14 Pos. Monart. 1 12/10 Grep Sport. Pupe GE 18×18 Comported for Wu 12/10 Read. 18.13.3.2 2545 4/ (8.2)2/8 TIE SPACING -= 21,915 \$1 = 21.910 1/2 SAMILOST ORABGO. M. DINGONUS AND 12" ; gil Spacerly ore Estimate As = Multiple 21.9" = .32 AN Montingung Az = 200 burd = 200 (18") (17.2") = 1,03 Au As = 2(.31)=.62724 Sy 60,000 PSi 9.6.1.3 As frances 2 1.3 As Recurred by Antonyous ? a = As fy = .624"(60) = .973" .85 feb .85(2.5)(18) TABLE 9.5.11 1/18.5 = 8:3'(12"/1) = 5:38" Mn = As fy (d-a/2)=, 62" (60,000) (n,2" - "2") 18">> 5.4" ok = 621,742 \$11 (1 Kip) (17th) = 51.8Kl \$MA = 0.9 (51.8") = 46.6 KI ≤ Mu = 21.9KI 46.8" ≤ 1.3(21.9) = 28.5" MUNINAVIA REINF SPER IS NOT REQUIRED Stere Realt. (Assume Cons. berry. 460 SPANA) Note Genee BERNAS Vinay = . 607 wil = . 607 (254541,)(8:21)= 12,8214 = 12.8K 1 2-45Page \$ \$38/4 = 6 Structural Engineers

180 Nickerson St. С N EERING • Suite 302 Seattle, WA VASABAL ISCAND ADJONNA CALTER Homes Date: 11/05/2019 98109 Project: (206) 285-4512 FAX: Client: Page Number: (206) 285-0618 GRADO BOARD DESIGNI (CONT.) 16 SHEAR ROUTEORCIAN, CHOCK Contro $\begin{array}{rcl} 41,mml &= 50\,bm = 50\,(18) = .015 & .015 & .015(s) = .135'' \, k .2011 \, ope \\ \hline fyk & 60,000 \, ps_1 & \mbox{Fonded} & \mbox{Fondedd} & \mbox{Fondedd}$ 50(18) = .0275. 40,000 For \$3 \$Vn > Vu Auge . 112 . 2025 NG. Ve = 2× Vfl bwd = 30,960 # $\frac{d}{d} = \frac{4}{12} \frac{1}{2} \frac$ PROVIDE \$4909"0.C CLOSED TIES (2 PONT) fy 2 60 lesi mal. $\phi V_n = \phi (30.9^k + 22.9^k) = 33.7^k \ge 12.8^k$ 0.7 0.7 to Fy a to les i Vs = 0.11 (40,000)(17.2") = 84084 - 16.

Structural Engineers

19193 180 Nickerson St. ст ENGINEERING Suite 302 Project: VASCHON ISCANO GUSSING CALTER HONDES Seattle, WA 98109 Date: 11 (206) 285-4512 FAX: Client: Page Number (206) 285-0618 Famepanor Antacyses (Contr.) Conversionlas Fornossiond. (Accounted Beaming PRESSIND = 3000 PSF PER Sous REPORT) bous Report Rounduiss STRIP ROOTINES WI 15" MAIN WIDTH daeis vour Capacity of STRIP FOOTNLY dac 16" ipin. 2-44 BAR CTR (16/12)(1')(3000 PSF) = 4,000 PCF Peningeren Bernully = 1495 PLF 1400plf D 8" INTERIOR BERNILLY - 2140 PUE & 4000 FUE FOOTH TENAR Reinte , 0018 (8)(16")=,23.4" 1-14" 4 2. 49 = . 2(2) 2 . 4¹¹ , 23¹¹ GEOTECHNICA OKINEOPS Muluning What Recorden 1205001 " PROMINE 2. AG CTP. FOOTHAS Contrais DESIGN. 6" STERA Noro - Vario calculeenally LINGLY A 18" x 16" GIRADO BEAND Jannene Steer (mains) Will Supplie & & Simican A1 = . 0012 . Ag = . 2 4, SE 28" IN WIDTH TO THE 15" Wind 4 qeis" Vent STRIP ROOTING - VINUE Edg. Harzontom Speal Mini 324 AM (x) = 256 411 21% LOSS AH = . 002 Ag = .2 ": S2 16.7" Xe . 19 Contentoro \$4 @ 16" your W/ 16"×16" GRANO BM.