PIER 53-55 SEDIMENT CAP AND ENHANCED NATURAL RECOVERY AREA REMEDIATION PROJECT 1996 DATA

ELLIOTT BAY/DUWAMISH RESTORATION PROGRAM

Prepared for the
Elliott Bay/Duwamish Restoration Program Panel
by
Dean Wilson and Pat Romberg
King County Water and Land Resources Division
Panel Publication 17

Elliott Bay/Duwamish Restoration Program c/o Restoration Center/NW National Marine Fisheries Service - NOAA 7600 Sand Point Way NE Seattle WA 98115-0070

> (206) 526-4338 (FAX) (206) 526-6665

Individuals and organizations wishing to receive further information about the Elliott Bay/Duwamish Restoration Program should contact the Administrative Director at the following address and telephone number:

Robert C. Clark, Jr., Administrative Director Elliott Bay/Duwamish Restoration Program NOAA Restoration Center Northwest National Marine Fisheries Service 7600 Sand Point Way NE Seattle, WA 98115-0070

(206) 526-4338

FAX (206) 526-6665

The Panel of Managers holds regularly scheduled meetings that are open to the public. Technical Working Group and committee meetings are scheduled on an as-needed basis, and are also open to the public. Meetings are generally held at the National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center auditorium, 2725 Montlake Boulevard East, Seattle. The Panel recommends that you contact Robert C Clark, Jr., Administrative Director, at (206) 526-4338 to confirm meeting schedules and locations. The Panel also holds periodic special evening and weekend public information meetings and workshops.

Panel and Committee Meeting Dates

Panel: Quarterly, first Thursday of the month, beginning January 1998, 9:30 a.m. to 12:30 p.m.

Sediment Remediation Technical Working Group: Scheduled as needed.

Public Participation Committee: Scheduled as needed.

Budget Committee: Scheduled as needed.

Environmental Review of Specific Projects

Formal hearings and comment periods on appropriate environmental documents for proposed sediment remediation and habitat development projects will be observed. Please contact the Administrative Director for more information.

This information is available on request in accessible formats for persons with disabilities by calling (206) 526-4338 (voice) or 1-800-833-6388 (TTY/TDD)

PREFACE

This report was prepared by the King County Water and Land Resources Division (KCWLRD). It documents the results of the 1996 environmental monitoring of the Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area Remediation Project. Monitoring in 1996 was part of monitoring in a scheduled 10-year program that began in 1992. Project construction information, project background, and 1992 monitoring results appear in the report, Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area Remediation Project (EB/DRP, 1993), and 1993 monitoring results appear in the report Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area Remediation Project 1993 Data (EB/DRP, 1995).

This project is conducted under the administration of the Elliott Bay/Duwamish Restoration Program Panel. The Panel is composed of representatives from the National Oceanic and Atmospheric Administration, the U.S. Fish and Wildlife Service, the Muckleshoot Indian Tribe, the Suquamish Tribe, the Washington State Department of Ecology, the City of Seattle, and KCWLRD. The Panel's goals are to identify, prioritize, and implement sediment remediation and habitat development projects, along with associated source control measures, and real estate acquisition for habitat purposes in Elliott Bay and the Duwamish River.

ACKNOWLEDGMENTS

Many individuals at several different agencies were part of the Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area remediation project. We wish to acknowledge the contributions of the following individuals to the project and the production of this document.

Sample Collection

King County Environmental Laboratory

Laboratory Project Manager Ben Budka

Environmental Services Section-Ray McClain, John Blaine, Ben Budka, Scott Mickelson, Marc Patten, Brian Mazikowski, Jeff Droker, Judy Ochs, Jean Power, Kevin Li, Steve Aubert

King County Modeling Assessment and Analysis-Dean Wilson, Pat Romberg, Jody Heintzman

Laboratory Analysis

King County Environmental Laboratory

Conventionals Laboratory-Despina Strong, Judi Ford, Bob Kruger, Romeo Aquino, Les Laris, Diana Davis, Svetlana Kagua, Terry Siebens

Trace Organics Laboratory-Dana Walker, Dave Fada, Jim Endres, Rex Robinson, Susan Dino, Glen Lagrou, Diane McElhany, Galina Mikhlin, Jim Fiscus, Mike Doubrava, Ann Bryant, Mike Henry

Trace Metals Laboratory-Cheryl Kamera, John Rowan, Philip Almonte, Debra Osada, Scott Carpenter, Sean McRae, Brian Mazikowski, Lisa Wanttaja

Laboratory Quality Assurance/Quality Control Review and Report-Ben Budka

Illustrations

King County Technical Publications-Don Mayton, Megann Devine, Barb Johnson

Contractors

Benthic taxonomy screening Fukuyama Hironaka Taxonomic and Environmental Services, Inc.

Benthic taxonomy identification Marine Taxonomic Services

Core samples Global Diving

Particle size distribution analysis AMTest

Elliott Bay Duwamish Restoration Panel Members

The Elliott Bay/Duwamish Restoration Panel approved funding for the Pier 53-55 project. The voting members were as follows:

Robert C. Clark Jr.

Alisa Ralph

Dan Cargill Glen St. Amant

Georgia George Kevin Clark

Bob Swartz

National Oceanic and Atmospheric

Administration

U.S. Fish and Wildlife Service

Washington State Department of Ecology

Muckleshoot Indian Tribe

Suguamish Tribe

City of Seattle

King County Water and Land Resources (Formerly Metro)

Sediment Remediation Technical Working Group

The Sediment Remediation Technical Working Group reviewed and recommended that the Panel fund the Pier 53-55 project. The group members were as follows:

Pat Romberg, chair, Boh Matsuda

Pat Cagney

Randy Carman, Rick Vining

Bob Chandler, Virginia Hassinger

Robert C. Clark Jr., Gail Siani

Doug Hotchkiss

David Jamison, Joan McGilton

Paul Johansen

Dan Cargill, Joanne Polayes-Wien

Glen St. Amant Margaret Duncan

Justine Barton

King County Water and Land Resources (formerly Metro)

U.S. Army Corps of Engineers

Washington Department of Fisheries

City of Seattle

National Oceanic and Atmospheric

Administration

Port of Seattle

Washington State Dept. of Natural

Resources

The Boeing Company

Washington State Department of Ecology

Muckleshoot Indian Tribe

Suguamish Tribe

U.S. Environmental Protection Agency

EXECUTIVE SUMMARY

In 1996, monitoring activities were conducted at the Pier 53-55 remediation area as part of a 10-year monitoring program. The area comprises 4.5 acres of contaminated bottom sediment in Seattle's Elliott Bay that were capped with clean sand in March 1992. The capped sediments are located offshore of Piers 53, 54, and 55 in downtown Seattle (Figure 1). The cap is designed to be 3 feet thick over the 2.9 acres farthest offshore and 1 foot thick over 1.6 acres nearshore. The thinner part of the cap is known as the enhanced natural recovery area (ENR).

The purpose of the monitoring program is to determine how stable the cap is, how well it is functioning to isolate the contaminated sediments, whether the cleanup continues to meet state sediment standards, and how the cap is biologically repopulated. It is also a means to evaluate the rate of possible recontamination. Bottom stakes were installed to measure cap thickness and stability, and sampling stations were established to monitor both chemistry and taxonomy (Figure 2).

METHODS AND RESULTS

Cap Thickness and Settlement

Cap thickness and settlement were measured directly using 13 measuring stakes and settling plate assemblies that were installed in the target capping area before the cap was placed (not shown on Figure 2). Divers measured both cap thickness and settlement at each of the 13 stakes soon after capping in 1992, a year later in 1993, and again in 1996 to determine whether the cap is eroding and the amount the seafloor is settling.

Cap thickness and settlement measurements taken in 1996 showed that the cap and ENR are stable and not eroding or sinking into the native bottom mud. Most of the changes in cap thickness that occurred between 1993 and 1996 were in the range of a few hundredths of a foot (Table 2-1). Four measured changes were equal to or slightly greater than 0.1 of a foot (3 cm). Cap thickness measurements were not available on the 3-foot cap at Stakes 5 and 8 and on the ENR at Stake 13 because the stakes were missing or broken.

The overlying burden of 22,000 cubic yards (16,700 m³) of sand caused some seafloor settlement as anticipated. In the 3-foot cap area, settlement ranged from 0.17 foot (5.2 cm) to 0.35 foot (10.7 cm). Settlement in the ENR ranged from 0.26 foot (7.9 cm) to 0.03 foot (0.9 cm). The ENR settled less than the 3-foot cap probably because of the smaller amount of overburden. The minimal amount of settlement shows that the cap is stable and not sinking into the native bottom muds.

Figure 1. Location of Remediation Area

Core Chemistry

Cores were taken at three stations on the 3-foot cap and ENR (C1, C4, and C5). Each core extended completely through the cap and into the underlying contaminated sediments by at least 1 foot. The cores were divided into 6-inch-long sections. For each core, one section from within the cap just above the cap/under-cap interface were analyzed for organic, metal, and conventional parameters.

Analysis of the 1996 core samples showed that no chemicals have migrated up into the cap from the underlying contaminated sediments. Only one organic compound was detected at one station (C1). Most metals found in the cap were in concentrations near detection limits.

Surface Sediment Chemistry

Seven surface sampling stations were monitored on the 3-foot cap and ENR (VG1 through VG7). The top 2 cm of sediment from three grab samples were

Figure 2. Sampling Stations

composited from each sampling station. The composite samples were analyzed for organic, metal, and conventional parameters. Additionally, samples representing the 0 to 10 cm depth were collected and analyzed.

Several new contaminants appeared on the Pier 53-55 remediation area for the first time in 1996. These contaminants included PCBs, pesticides, a chlorinated benzene, phthalates, and phenols. 4-Methylphenol was detected at every station in the Pier 53-55 remediation area and it exceeded the CSL at VG5 in the 2-cm-deep primary and replicate samples. It also exceeded the CSL in the 10-cm-deep sample at VG5. Phenol was detected at every station. It exceeded the CSL at VG5 in the 2-cm sample and exceeded the SQS at VG3, VG6, and the 2-cm replicate at VG5. Phenol also exceeded the SQS in the 10-cm sample at VG5.

A likely source of both phenols was not found during this study. Further study and an investigation of phenol and possibly phthalate sources along the waterfront are needed to understand the new contamination detected on the Pier 53-55 remediation area.

Benthic Recolonization

Benthic taxonomy samples were taken at four surface sampling stations across the remediation area. Two stations were in the ENR (VG3 and VG4), and two stations were in the 3-foot cap (VG1 and VG2). Five replicate samples were taken from each station. The samples were analyzed for the number of individual organisms, for the number of species, and for biomass (weight). Additionally in 1996, a benthic taxonomic reference station was sampled. The reference station was located just offshore of Richmond Beach and the results were compared to the taxonomic results from the Pier 53-55 remediation area. Reference stations are used to represent background or undisturbed conditions for comparison to the stations in the areas being studied.

The 1996 data showed that the number of polychaete individuals were lower while the numbers of mollusks and crustaceans were higher than in 1993. Polychaetes decreased at all stations, ranging from 47 to 86 percent. Mollusks increased at all stations, ranging from 82 to 224 percent and crustaceans increased at all stations, ranging from 26 to 200 percent.

The increase in the numbers of mollusks and crustaceans show that the recolonization process of the cap is continuing and that the benthic community is changing over time. The changes in the benthic community appear to be linked to a change toward a finer grain-size on the surface of the remediation area. This particle-size shift was expected because the sand cap was placed on top of the native, mostly fine-grain muds. Eventually the sedimentation process present along the Seattle waterfront will completely cover the cap with fine-grain muds.

Another factor in the change in community structure was the increase in chemical contamination. Chemical results in 1993 showed that the cap had been recontaminated with high levels of PAHs and mercury from construction activities at the nearby ferry terminal. At that time, however, the benthic community did not appear to show any adverse affects. It is possible that sampling was conducted too soon after the recontamination occurred in 1993 for the benthic community to show chronic effects. During the time between 1993 and 1996, the high PAH

concentrations have declined significantly but new contamination is now present. The source of this new contamination is not yet known. In 1993 the Ampharetid Asabellides lineata was dominant in the benthic community and in 1996 it was completely absent. Ampharetids have been used as an indicator species that are "sensitive or intolerant to toxic stress" (Metro 1987). Also, the Infaunal Trophic Index identifies Ampharetids as species that are common in control regions (Thom et al. 1979). Between the grain-size shift and continued recontamination of the remediation area, Ampharetids have decreased from 1,314 total individuals in 1993 to 57 in 1996.

A comparison of samples taken in 1996 to samples taken in March 1992 before the remediation area was capped showed that the post-cap benthic community is becoming more like the pre-cap community. The results showed that Axinopsida serricata was the top most dominant species at all pre-cap stations and was the top most dominant species at three of the four stations in 1996. Other infauna that were dominant in both studies include E carcharodonta, Prionospio jubata (formerly P. steenstrupi), Lumbrineridae, Macoma, and Parvilucina tenuisculpta. A serricata, P. jubata and E. carcharodonta have been dominant in all post-cap samples except the baseline samples, which were taken only a few months after capping.

CONCLUSIONS

Conclusions from the 1996 monitoring of the Pier 53-55 remediation area are as follows:

- The 3-foot cap and ENR are stable. They are not eroding or sinking into the native bottom muds.
- Contaminants are not migrating from the underlying sediments up into the 3-foot cap or ENR. Results show few chemicals were detected from within the 3-foot cap and ENR. When chemicals were detected, the concentrations were near the detection limits.
- High levels of PAHs found in 1993 have decreased. However, the surface of the 3-foot cap and ENR have been recontaminated by 4-methylphenol and phenol, as indicated by chemical analyses of 2-cm-deep and 10-cm-deep surface samples. These samples showed that the southeast corner of the remediation area exceeded state sediment standards. The source of the new contamination was not readily apparent and further study will be needed.
- The 1996 benthic taxonomy data indicated that the number of polychaete individuals was lower while the numbers of mollusks and crustaceans were higher than in 1993. This shift in species dominance shows that the recolonization process of the cap is

continuing and that the benthic community is changing over time. These changes in the benthic community appear to be linked to a greater percentage of fine-grain sediments in the remediation area. This particle-size shift was expected because the sand cap was placed on top of the native, mostly fine-grain muds. Another possible factor in the change in community structure has been the increase in chemical contamination. In 1993, the ampharetid Asabellides lineata was dominant in the benthic community, however, in 1996 it was completely absent. Ampharetids have been used as an indicator species that are "sensitive or intolerant to toxic stress" (Mctro 1987). Additionally, a comparison of samples taken in 1996 to samples taken in March 1992 before the remediation area was capped showed that the post-cap benthic community is becoming more like the pre-cap community.

The next monitoring of the Pier 53-55 remediation area is scheduled for August 2002.

CONTENTS

							•				•	•			iii v vii
SECTION															
1	INTRODUCTIO	ON .						•				•			1-1
	Project Site . Project Backgro Monitoring Pro	ound						•	•			•			1-1 1-1 1-3
2	CAP THICKNI	ESS A	AND	SE	TT	LE:	ME	NT			-	-		•	2-1
	Methods Results Discussion .													•	2-1 2-1 2-4
3	CORE CHEMI	STR	ζ.			•		•			•	•	•		3-1
														•	3-1 3-5
4	SURFACE SE	DIMI	ENT	CH	ŒN	ΔIS	TR	Y.				•		•	4-1
	11100110000		-												4-1 4-3 4-5
5	BENTHIC RE	COL	INC	ZAI	Oľ	N.	•	•	•	•			•		5-1
	Results	•									•	٠		•	5-1 5-3 5-10
6	CONCLUSIO	NS	•			٠	•					•		•	6-1
	Conclusions														6-1

APPENDIX

A	MONITORING PLAN FOR PIER 53	1
В	METRO ENVIRONMENTAL LABORATORY QUALITY ASSURANCE REVIEW	7
		-
C	CHEMISTRY DATA	1
D	1994 CHEMISTRY DATA	1
E	BENTHIC TAXONOMY DATA	1
	REFERENCES	1
FIGURE		
1-1	Location of the Pier 53 Remediation Area	2
1-2	Sampling Stations	5
2-1	Barge Tracks and Measuring Stakes Locations 2-2	2
2-2	Measuring Stake Assembly	
3-1	Core Sampling Stations	
3-2	Cross Section of Core Sample	1
4-1	Surface Sampling Stations 4-2	2
4-2	Spatial Concentrations of Total LPAHs 4-3	ľ0
4-3	Spatial Concentrations of Total HPAHs 4-1	L 1
4-4	Spatial Concentrations of 4-Methylphenol 4-1	
4-5	Spatial Concentrations of Mercury 4-3	
5-1	Benthic Taxonomy Stations	
5-2	Pre-can Benthic Taxonomy Stations	12

Pier 53-55 Capping Project

TABLE

2-1	Cap Thickness at Measuring Stakes			2-4
2-2	Seafloor Settlement			2-5
3-1	Core Stations: Detected Chemicals			3-6
3-2	Comparison to Sediment Standards			3-7
3-3	Core Stations: Particle Size Distribution .			3-8
4-1	Surface Stations: Detected Chemicals			4-14
4-2	Comparison to Sediment Standards			4-17
4-3	Surface Samples: Particle Size Distribution			4-20
5-1	Numbers of Individuals per Station			5-4
5-2	Number of Species per Station			5-4
5-3	Dominant Species at VG1			5-5
5-4	Dominant Species at VG2			5-5
5-5	Dominant Species at VG3			5-5
5-6	Dominant Species at VG4			5-6
5-7	Dominant Species at Reference Stations			5-6
5-8	Biomass Average per Station			5-7
5-9	Percent Fines Range From Pre-Cap to 1996 at			
	Benthic Taxonomy Stations			5-8
5-10	Percent TOC Range From Pre-Cap to 1996 at			
	Benthic Taxonomy Stations			5-8
5-11	Benthic Indices			5-9
5-12	Dominant Species at Pre-cap Station S1			5-13
5-13	Dominant Species at Pre-cap Station S2			5-13
5-14	Dominant Species at Pre-cap Station S9			5-13
5-15				5-14
5-16				5-14
5-17	Dominant Species at Pre-cap Station T2			5-14

SECTION 1 INTRODUCTION

In March 1992, contractors for the U.S. Army Corps of Engineers placed 22,000 cubic yards of clean sand offshore of Piers 53, 54, and 55 in Elliott Bay on Seattle's downtown waterfront, capping 4.5 acres of chemically contaminated bottom sediments. This action, known as the Pier 53 project, was the culmination of over 4 years of study and planning by many agencies, including the City of Seattle Department of Engineering, the King County Water and Land Resources Division (KCWLRD) (formerly the Municipality of Metropolitan Seattle or Metro), the U.S. Army Corps of Engineers (the Corps), the Washington State Department of Ecology (Ecology), the Washington State Department of Natural Resources (DNR), the Washington State Department of Fisheries, and the U.S. Environmental Protection Agency (EPA).

The purpose of this report is to document the methods, results, and conclusions of monitoring conducted on the Pier 53 project site in 1996 as part of the monitoring program established for the project. For further background information, see Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area Remediation Project (EB/DRP, 1993a) and Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area Remediation Project 1993 data (EB/DRP 1995a).

PROJECT SITE

The project site is an east-west-trending rectangular and trapezoidal area located offshore of Piers 53, 54, and 55 (Figure 1-1). The site is west and slightly north of the intersection of Madison Street and Alaskan Way in downtown Seattle. The project consists of a 3-foot-thick sediment cap covering the 2.9 acres farthest offshore and an experimental 1-foot-thick enhanced natural recovery area (ENR) covering the 1.6 acres nearshore.

PROJECT BACKGROUND

Planning for a remediation project along the Seattle waterfront began as part of Metro's Toxic Sediment Remediation Program, which was formed to coordinate and plan multi-agency efforts to clean up contaminated sediment in Elliott Bay and the lower Duwamish Estuary. An interagency committee was formed to provide guidance for this program. The Denny Way sediment cap—located north of Seattle's downtown waterfront—sponsored by Metro, and constructed in 1990, was the first project completed under the Toxic Sediment Remediation Program.

Figure 1-1. Location of the Pier 53 Remediation Area

The first major step in planning a new sediment remediation project along the Seattle waterfront was to contract Parametrix, Inc., to develop a risk assessment of potential remediation sites and to prioritize a list of 49 potential sites. The list was later expanded to include sites in the Duwamish River for a total of 68 sites. The sites were ranked on the basis of the number and types of chemicals present and the maximum concentration of these chemicals. Of the initial 49 sites, the two highest ranked sites were Seacrest Park, located south of the Seacrest Marina on the West Seattle side of Elliott Bay, and the Pier 53 site. A preliminary remediation plan was developed for these two sites as part of the Parametrix report (Parametrix, 1992).

Planning for remediation was suspended when the National Oceanic and Atmospheric Administration (NOAA) filed a lawsuit against the City of Seattle and Metro in 1990. The lawsuit alleged damages to natural resources resulting from hazardous substances released in and around Elliott Bay and the Duwamish River from combined sewer overflows (CSOs) and storm drains. It was settled out of court in 1991. The negotiated settlement among NOAA, the U.S. Fish and Wildlife Service, the Muckleshoot Indian Tribe, the Suquamish Tribe, Ecology, the City of

Seattle, and Metro created a fund designated for sediment cleanup and habitat restoration in Elliott Bay and the lower Duwamish River. It also created a panel, the Elliott Bay/Duwamish Restoration Program Panel (the Panel), to administer the fund. The settlement stipulated that money for the fund would come from the City of Seattle and Metro.

After the lawsuit was settled, planning for a remediation project in Elliott Bay was revived. The Pier 53 site was chosen when the City of Seattle expressed a willingness to take the lead in implementing a capping project at the site and the Corps was willing to provide capping sand from routine maintenance dredging in the Duwamish River.

No effort was made to reassemble the initial interagency committee. Instead, the City of Seattle and Metro decided to develop plans and coordinate agencies during the permit process. The Corps was committed to complete dredging in the Duwamish River by the end of March 1992 and would dispose of the sand at the open water disposal site in Elliott Bay if no beneficial capping project was possible. Because of this dredging schedule, the time frame for acquiring the necessary permits and the review period for the permitting agencies were very short. All permitting agencies were cooperative, and all permits were obtained.

After the Pier 53 sediment cap was installed, the project was presented to the Panel. The Panel reviewed the project and, after deciding it met certain criteria, declared that the project was eligible for reimbursement from the restoration fund. The management of the Pier 53 project then proceeded under the direction of the restoration panel with the City of Seattle as project sponsor. Metro and now KCWLRD agreed to conduct the monitoring program, which was established during the permitting process.

MONITORING PROGRAM

It was determined that environmental monitoring for the Pier 53 project should consist of short-term activities needed to place the cap and long-term activities needed to document the effectiveness of the cap. The long-term activities would include intensive sampling and observation during the first 2 years after capping, followed by less frequent monitoring thereafter. A 10-year monitoring plan was adopted and is currently under way (City of Seattle and Metro, 1992). The next and final Pier 53 monitoring study will be conducted in August 2002 (Appendix A).

Monitoring Plan

The monitoring plan (Appendix A) lists seven objectives and provides an outline for the periodic monitoring report. The objectives are as follows:

Provide pre-cap taxonomic data.

- · Guide and document the cap placement and thickness.
- Document how well the 3-foot cap and ENR function to isolate contaminated sediments from migrating upward into the cap.
- Determine whether offsite chemicals migrate and accumulate on the surface of the 3-foot cap and ENR.
- Determine the amount and type of benthic recolonization that occurs in the remediation area and whether benthic recolonization differs between the 3-foot cap and ENR.
- Review and evaluate the monitoring data to determine whether the cap is functioning as expected and whether further actions are warranted in the capped area.
- Provide data that may inform and assist the Panel and other agency teams in developing future cleanup plans for Elliott Bay.

To meet these objectives, the monitoring plan required the establishment of bottom stakes for measuring cap thickness, surface sediment stations for taking samples for chemical and taxonomical analysis, and core sediment stations for taking samples for chemical analysis (Figure 1-2). Sediment chemistry data collected during monitoring were to be normalized for total organic carbon and compared to the state Sediment Management Standards (SMS) (Ecology, 1991) to determine whether the site continues to meet the state cleanup criteria. The SMS include the Cleanup Screening Levels (CSL) and the more conservative Sediment Quality Standards (SQS).

Status Report on the Monitoring Program

Monitoring activities have been conducted in 1992, 1993, and 1996 at the Pier 53 site, both before and after the cap was placed.

The first monitoring activities took place in 1992 with the collection of pre-cap benthic taxonomy and sediment chemistry samples. Monitoring was conducted again in 1992 soon after capping to establish baseline conditions, in 1993 (1 year after capping), and in 1996 (4 years after capping). Monitoring data included cap placement, thickness, and settlement; benthic taxonomy; surface sediment chemistry; and core chemistry. A video camera survey of the cap was conducted in 1992 and 1993 and a sediment-profile camera survey was conducted in 1992. The report containing 1992 data results and discussions was issued as a draft and as a preliminary review draft to the Panel and to other regulatory agencies before being finalized in 1993 (EB/DRP, 1993a). The report containing 1993 data was issued as a draft and finalized in 1995 (EB/DRP, 1995a).

Figure 1-2. Sampling Stations

The pre-cap chemical analysis showed the expected high concentrations of organic and metallic contaminants at the Pier 53 site. Pre-cap sediment samples exceeded the CSL for mercury, cadmium, and silver. Pre-cap bioassays showed that the sediments were toxic. The pre-cap benthic taxonomy showed that the benthic community was composed of species most likely to inhabit a disturbed environment, however, it was not clear if this was related to the contamination present at the site.

Baseline cap thickness measurements and a sediment-profile camera survey taken after cap placement in 1992 showed that the cap placement proceeded as planned except for a small amount of sand that drifted offsite. The amount of sand used in the 3-foot cap and ENR was similar to the amount projected except for the area farthest offshore and in deeper water, which required more sand. The method of applying the capping sand directly and slowly from the barge worked well, and, by using available equipment, the project costs were kept to a minimum. All maps of the Pier 53 project that appear in this report include rectangles that represent the barge tracks—the areas where individual barge loads were deposited.

Post-cap baseline core samples taken in 1992 showed the expected high chemical concentrations in the under-cap samples and either undetected or low concentrations in the within-cap samples. The cap surface samples showed the cap to be clean and that the chemical concentrations were similar over the entire cap. As expected, the within-cap core and cap-surface chemistry levels were well below the state sediment standards. The post-cap baseline benthic taxonomy survey taken in 1992 showed that recolonization was beginning but that numbers and biomass were low. The video camera survey showed that benthic recolonization was beginning at the edges of the cap.

Scheduled monitoring continued in 1993. Thickness measurements showed that the cap remained stable and was not eroding. However, thickness measurements showed an additional 0.5 foot (15 cm) of sediment had accumulated on the southeast corner of the cap. The extra sediment was probably deposited during construction activities at the adjacent downtown ferry terminal. Settlement measurements showed that the seafloor under the cap remained stable and the cap was not sinking into the native bottom mud.

Core samples taken in 1993 showed that the cap continued to isolate the underlying contaminated sediments. Samples showed a dramatic contrast between the high concentrations in the underlying sediments and the low or undetected concentrations in the cap and ENR. Chemical results from the under-cap samples showed wide variability.

Surface samples taken in 1993 showed that the cap had become recontaminated. Chemical analyses of 2-cm deep surface samples showed that the southeast corner of the remediation area exceeded state sediment standards. Chemical concentrations and visual observations showed a strong correlation between the recontamination and construction activities at the adjacent downtown ferry terminal.

Despite the recontamination, benthic taxonomy samples indicated that the number of individuals, the number of species, and biomass were greater in 1993 than in the 1992 baseline study. The number of species and individuals was also higher in 1993 than before the cap was placed, although biomass was lower. These

increases show that improved sediment quality has had a positive effect on the benthic community. However, the benthic sampling stations were not located near the areas of highest recontamination, and, consequently, biological effects of the contamination could not be determined.

Modifications to the Monitoring Plan

Experience gained from monitoring at the Pier 53 project and at the Denny Way sediment cap has shown that not all of the scheduled activities listed in the monitoring plan for the Pier 53 project (Appendix A) were necessary to meet the objectives outlined in the plan. Difficulties with certain sampling methods and the usefulness of the collected data made it necessary to continually re-evaluate the effectiveness and costs of the original monitoring plan. The following is a discussion of modifications to the plan.

Core samples

Baseline monitoring and monitoring in 1993 at Pier 53 showed very low or undetected results for all chemicals that were analyzed for within the cap. Based on this, only the first 6-inch sections above the cap/under-cap interface in each core sample were analyzed in 1996 for organics, metals, and conventional parameters. The second 6-inch section taken from the ENR and the second, third, and fourth 6-inch sections taken from the 3-foot cap all were archived.

Chemical results from the under-cap samples in past years at Pier 53 (1992, 1993) and at the Denny Way cap (1990, 1991, 1992) have been widely variable. Coring through the cap sand and into the underlying mud has apparently resulted in inconsistent sample capture from the underlying mud. Because of this, the undercap samples have been archived.

Because previous core samples showed no migration of contamination from the underlying sediments up into the cap, the decision was made to reduce the number of core stations sampled from five to three. The three cores stations that were sampled were C1, C4, and C5. C1 was sampled because it was located in the area of the greatest pre-cap contamination. C4 and C5 were sampled because they were located in the thinner ENR. Cores were planned on the 3-foot cap at C2 and C3 but would have been sampled only if there were substantial erosion in those areas. Stake measurements during monitoring showed that there was no erosion and therefore, C2 and C3 were not sampled.

Surface samples

In 1996, samples were collected at all seven on-cap surface stations from the 0- to 2-cm depth as in all previous years. The 0- to 2-cm samples are taken to characterize the most recent contamination. Previous studies at the Pier 53-55 cap

(Hart Crowser, 1994 and EB/DRP 1995a) have shown significant differences between the results of samples taken from the 0- to 2-cm depth and the 0- to 10-cm depth, however. The different results were possibly caused by cleaner cap sand in the deeper 10-cm sample diluting higher concentration of recently deposited contaminants in the top 2 cm.

To document the differences between the different sample depths and because the standard sampling depth for comparisons with the SMS is 10 cm, 2- to 10-cm-deep samples were also collected at stations VG3, VG4, and VG5. During data interpretation, the results of these samples were proportionally combined with the results from the top 2 cm at these stations to reflect the chemical concentrations in the top 10-cm biologically active zone.

Benthic taxonomy

Two years of benthic taxonomy samples have been collected from the cap. The results of these samples have shown that the benthic community has recolonized the cap and has increased since the 1992 baseline study. For 1996, the decision was made to collect a benthic taxonomy reference sample to enable comparisons of the cap to a reference community that represents normal and stable conditions. This comparison would help determine how long it takes for a stable benthic community to re-establish itself after capping.

REMOTS sediment-profile survey

After capping, the REMOTS sediment-profile survey was used to determine how far capping sand drifted offsite during construction. The REMOTS study was also used for an initial assessment of the benthic community during the first stages of recolonization. Further information is not needed on capping sand location, however, and benthic recolonization is being evaluated using benthic taxonomy studies. Therefore, no further REMOTS surveys will be conducted during this monitoring program.

Video camera survey

Video camera surveys were not required by the monitoring plan but were determined to provide useful information about the cap. Two years of video camera surveys have been conducted on the cap. The video surveys were able to show the actual surface of the cap. Video surveys have also shown a surface organic layer that increased since capping, marine plants and organisms, and a buildup of litter and other debris. The information is not easily quantifiable, however, and other methods of determining the organic content of the sediments and of evaluating the benthic community are being used. Therefore, no further video camera surveys will be conducted.

SECTION 2 CAP THICKNESS AND SETTLEMENT

Once the Pier 53 cap was installed, the monitoring plan required periodic measurement of cap thickness and seafloor settlement. These measurements document changes that could compromise the integrity of the cap and its ability to isolate contaminated sediments. This section describes the cap measuring stakes and settling plate assemblies, documents cap thickness and settlement in 1996, and compares these results to the 1992 baseline and 1993 measurements.

METHODS

Before the cap was placed in 1992, Metro directed contract divers to install 13 bottom stakes and settling plate assemblies in the capping target area (Figure 2-1). The stakes and assemblies measure cap thickness and seafloor settlement after cap placement. The stakes were 13- to 18-foot long (3.9 to 5.4 m), 1-inch-diameter (2.5 cm) steel pipes, pounded 8 to 13 feet (2.4 to 3.9 m) into the bottom, with 4.81 to 4.9 feet (1.46 to 1.48 m) left exposed. Settling plate assemblies were then fitted over each steel stake.

Settling plate assemblies were made of a 16-inch-diameter (40 cm) plate sitting horizontally on the pre-cap seafloor, attached to a vertical 4-inch-diameter (10 cm) PVC cylinder long enough to remain exposed after the cap was placed (Figure 2-2). The settling plate assembly was designed to slide down the stake as the contaminated sediments were compressed under the weight of the overlying cap. A metal clamp fastened to the steel stake marked the position of the PVC cylinder before capping. The distance between the bottom edge of the metal clamp and the top of the PVC cylinder was a direct measurement of seafloor settlement after capping.

Cap thickness was determined by measuring the length of PVC cylinder exposed above the cap surface, and then subtracting the total length of the cylinder measured before capping. (The net change in water depth can be obtained by subtracting the settlement from the cap thickness.)

Using a surveyor's rod, divers measured both cap thickness and seafloor settlement at each of the 13 stakes soon after capping in 1992, in 1993, and in 1996.

RESULTS

Cap thickness and settlement measurements taken in 1996 showed that the cap and ENR are stable and not eroding or sinking into the native bottom mud.

Figure 2-1. Barge Tracks and Measuring Stakes Locations

Cap Thickness

Most of the changes in cap thickness that occurred between 1993 and 1996 were in the range of a few hundredths of a foot (Table 2-1). Four measured changes were equal to or slightly greater than 0.1 foot (3 cm). Cap thickness measurements were not available on the 3-foot cap at Stakes 5 and 8 and on the ENR at Stake 13 because the stakes were missing or broken.

Figure 2-2. Measuring Stake Assembly

Comparing 1996 measurements to 1992 baseline measurements showed only three stakes with measured changes equal to or greater than 0.1 of a foot. All three of these stakes were located on the southern portion of the cap and all accumulated sediment, ranging from 0.7 foot (21 cm at Stake 1) to 0.1 foot (at Stake 2).

In the ENR (Stakes 6, 9, 11, and 12), three stakes showed that the cap was thicker compared to 1993, ranging from 0.06 foot (1.8 cm) to 0.17 foot (5.2 cm) and one stake showed that the cap was thinner by 0.06 foot (1.8 cm). Comparing the 1996 measurements to the 1992 baseline measurements showed that all changes on the ENR were less than 0.1 foot ranging from 0.08 foot (2.4 cm) increase at Stakes 6 and 9 to no change at Stake 12.

Seafloor Settlement

The overlying burden of 22,000 cubic yards (16,700 m³) of sand caused some seafloor settlement as anticipated. In the 3-foot cap area, settlement ranged from 0.17 foot (5.2 cm) at Stake 7 to 0.35 foot (10.7 cm) at Stake 1 (Table 2-2). Settlement in the ENR ranged from 0.26 foot (7.9 cm) at Stake 9 to 0.03 foot (0.9 cm) at Stake 12. The ENR settled less than the 3-foot cap probably because of the smaller amount of overburden. The minimal amount of settlement shows that the cap is stable and not sinking into the native bottom muds.

	TABLE :	2-1. Cap Thickno	esses at Measurii	ng Stakes (in Fee	et)
Stake	1992 Cap Thickness	1993 Cap Thickness	1996 Cap Thickness	Change From 1993	Change From 1992
1	2.9	3.44	3.6	+ 0.16	+ 0.7
2	2.6	2.72	2.7	- 0.02	+ 0.1
3	2.8	2.82	2.92	+ 0.10	+ 0.12
4	3.5	3.56	3.58	+ 0.02	+ 0.08
		Missing Stake and	Missing Stake and	Missing Stake and	Missing Stake and
5	3	Assembly	Assembly	Assembly	Assembly
6	2.1	2.2	2.18	- 0.02	+ 0.08
7	2.5	2.5	2.44	- 0.06	- 0.06
			Broken Stake and	Broken Stake and	Broken Stake and
8	2.5	2.54	Assembly	Assembly	Assembly
9	1.5	1.52	1.58	+ 0.06	+ 0.08
10*	1.9	1.86	1.8	- 0.06	- 0.1
11	0.9	0.78	0.95	+ 0.17	+ 0.05
12	1	0.88	1	+ 0.12	0
			Missing Stake and	Missing Stake and	Missing Stake and
13	0.8	0.83	Assembly	Assembly	Assembly

* Stake 10 is located on the edge of the cap.

Settlement measurements were not available at four sites along the southern and western boundaries of the 3-foot cap and one site on the ENR because the measuring stakes were damaged or missing (Table 2-2).

DISCUSSION

With the exception of Stake 1, all of the changes in cap thickness were less than a few tenths of a foot and most were approximately a few hundredths of a foot. All stakes in the ENR showed very little, if any, change. All changes were minor and show that the 3-foot cap and ENR are stable and isolating the underlying sediments.

All of the stakes along the southern boundary of the cap showed at least minor increases in cap thickness. The substantial increase at Stake 1 since capping was likely caused by construction activities at the ferry terminal between 1992 baseline monitoring and monitoring in 1993. Increases in cap thickness since 1993 are likely from sediment that is stirred up by prop-wash from large car-ferries and then settles on to the cap. During docking of the ferries, a reverse propeller thrust is used to brake the momentum of the ferry prior to contacting the dock. This reverse thrust is directed onshore into a shallow nearshore area. A similar thrust is also used during ferry departure. It is possible that these onshore thrusts suspend bottom sediment that travels a short distance and then re-settles on the bottom. The southwest corner of the cap is in an area where some of the suspended sediment would likely settle.

TABLE 2-2. Seafloor Settlement								
Stake	1992 Settlement	1993 Settlement	1996 Settlement					
1	No Settlement	0.3	0.35					
3	No Settlement	Missing Steel Tube	Missing Steel Stake					
3	No Settlement	Missing Clamp	Missing Clamp					
4	No Settlement	0.3	0.28					
i l		Missing Stake and	Missing Stake and					
5	No Settlement	Assembly	Assembly					
6	0.12	0.2	0.23					
7	No Settlement	0.16	0.17					
		Broken Stake and	Broken Stake and					
8	0.12	Assembly	Assembly					
9	No Settlement	0.2	0.26					
10	0.18	0.04	0.25					
11	0.2	0.04	0.05					
12	0.15	0.04	0.03					
		İ	Missing Stake and					
13	0.1	0.02	Assembly					

During 1996 monitoring, divers reported that Stake 8 had been broken off at the cap surface. Also, divers were unable to find Stake 13 despite a lengthy attempt and excellent visibility. The divers reported that a significant amount of large wood debris covered the bottom in the area of Stake 13, however, leaving the possibility that either the stake was destroyed or that the diver could not locate it among the debris.

These two stakes are in addition to three stakes that were partially damaged or completely missing during monitoring in 1993. Two of these stakes, however, were only partially damaged and were still accurate for cap thickness measurements but did not allow for cap settlement measurements.

The Stake damage possibly reflects construction and commercial activities in the Pier 53-55 area. At the Denny Way cap, one of the six measuring stakes was bent during capping but no other damage has occurred in the 6 years since capping (Metro 1994, Wilson and Romberg 1996). The Denny Way cap is located just offshore of Myrtle Edwards park where almost no commercial activity occurs, although public boaters anchor on the cap during several public events per year.

SECTION 3 CORE CHEMISTRY

In August 1996, the monitoring team collected core samples from the 3-foot cap and ENR. The samples were collected and analyzed to determine whether contaminants are migrating from under-cap sediments upward into the cap. Core samples were analyzed for trace metal, organic, and conventional parameters. This section describes the core sampling methods and compares the results of the chemical analysis to the SMS and to the 1992 baseline and 1993 results.

METHODS

The monitoring plan defined five core sampling stations (C1 through C5), as shown in Figure 3-1. Two stations are in the ENR (C4 and C5), and three stations are in the 3-foot cap (C1, C2, and C3) to allow comparisons between the two areas. The stations are located in water depths of 55 to 60 feet (16.6 to 18 m) and in areas where the bottom slope is less steep than farther inshore. C1 is located in the southeast corner of the site where some of the highest chemical levels were previously observed and where sampling is more likely to detect the possible upward migration of contaminants into the cap. All five stations are situated at least 30 feet (9 m) away from the surface sampling stations so that any potential release of contaminated sediment from core sampling activities would not affect surface samples.

Because core samples taken during 1992 baseline and 1993 monitoring at Pier 53 showed no migration of contamination from the underlying sediments up into the cap, the decision was made to reduce the number of core stations sampled from five to three. The three cores stations that were sampled were C1, C4, and C5. C1 was sampled because it was located in the area of the greatest pre-cap contamination. C4 and C5 were sampled because they were located in the thinner ENR area. Cores were planned on the 3-foot cap at C2 and C3 but would have been sampled only if there were substantial erosion in those areas. Stake measurements during monitoring showed that there was no erosion and so C2 and C3 were not sampled.

Sample Collection

During 1996 monitoring, two cores were collected from each of the three stations that were sampled. The longest core was analyzed first, while the second served as a backup in case there was a problem with the first core.

Figure 3-1. Core Sampling Stations

The monitoring team consisted of a diver, a diving support crew and boat, and King County's RV Liberty and crew. Station location was determined using a differential global positioning system (DGPS) onboard the RV Liberty. In addition, a shore-based surveyor ensured consistency between previously surveyed station locations, which used a range azimuth laser positioning system, and DGPS positions. The RV Liberty crew began by setting marker buoys at each coring station. After the buoys were set, the RV Liberty crew anchored at a coring station and tied the diver support boat alongside. The diver carried a 6-foot-long (1.8 m), 4-

inch-diameter (10 cm), thin-walled aluminum coring tube down to the core station and inserted it into the bottom, keeping it vertical. While in the water, the diver was in constant contact with the support boat via closed-circuit radio. A 0.5-inch (1.25 cm) nylon rope was attached from a boat winch to the coring tube for later retrieval of the core. The crew, using another winch, lowered a pneumatic jackhammer to the diver. The diver then jackhammered the core tube through the cap and into the sediments below. The diver required about 10 minutes to drive the core tube 5 feet (1.5 m) into the bottom, leaving about 1 foot (30 cm) of the core tube above the bottom. Each core extended completely through the cap and into the underlying contaminated sediments by at least 1 foot. Once the core tube was deep enough, the diver removed the jackhammer and inserted a rubber screw plug into the top of the tube. The winch operator, using the nylon rope attached to the coring tube, slowly pulled the core out of the bottom sediments. Once the core was free of the bottom, the diver inserted a second rubber screw plug into the bottom of the tube to completely encapsulate the sample.

The core samples were then brought onboard where the top plug was removed, excess water was siphoned off, and the length of the core was measured. Each core tube was labeled with a permanent marker to show station number and the length of the core sample. The cores were transported to King County's laboratory and stored in a walk-in freezer.

Sample Analysis

Shortly before the cores were processed, they were removed from the freezer and thawed. When the cores were thawed, the aluminum tubes were cut down the sides lengthwise. Half of the tube was removed and the other half was left to hold the core.

The cores were then divided into 6-inch-long (15 cm) sections for analysis, as shown in Figure 3-2. In the cores taken from the 3-foot cap area, one 6-inch section was taken below the interface of the cap with the contaminated sediment and four 6-inch sections were taken from above the interface (within the cap). In cores taken from the ENR area, one 6-inch section was taken from below the interface and two 6-inch sections were taken from within the cap. Before the sections were cut, a 1-inch-thick (2.5 cm) band of cap sediment above the interface was discarded to remove any contaminated sediment that may have been mixed into the cap during placement. The outsides of the 6-inch sections were scraped away, and the interior of the core was scooped out and placed into a stainless steel bowl. The material in each bowl was stirred before a sample was taken for analysis.

Analyses of the core sections in 1992 and 1993 showed no migration or mixing of contaminants into the cap. Concentrations in the 6-inch section below the cap/under-cap interface differed greatly between years and were possibly a sampling

Figure 3-2. Cross Section of Core Sample

artifact. Therefore, in 1996 only the first 6-inch section of each core directly above the cap/under-cap interface ("first 6-inch section") was analyzed. If migration were to occur, the chemicals would be found in this section first. Samples from the undercap and other within-cap sections were collected but were archived.

King County's Environmental Laboratory analyzed the samples for trace metals, base neutral acid extractable (BNA) organics, pesticides, polychlorinated biphenyls (PCBs), total organic carbon (TOC), and total solids. BNAs include low and high molecular weight polycyclic aromatic hydrocarbons (LPAHs and HPAHs). The lab used the EPA and Puget Sound Environmental Program approved procedures for sediment analysis. (Quality assurance procedures are discussed in Appendix B.) AmTest, Inc., analyzed the samples for particle size distribution. Certain BNA organics and PCBs were normalized with respect to total organic carbon for comparison to the SQS and CSL. These values were reported as milligrams per kilogram (mg/kg) organic carbon.

RESULTS

Data tables and figures appear at the end of this section. Data tables show detected chemicals on a dry-weight basis (Table 3-1), comparisons to the SMS (Table 3-2), and particle size distribution (Table 3-3). A complete list and explanation of qualifiers also appears in Appendix B.

Analysis of the three 1996 core samples indicated that chemicals from the underlying sediments have not migrated up into the 3-foot cap or ENR. The samples showed a stark contrast between the chemical concentrations of the surface sediments and low or undetectable concentrations within the cap. Of the 98 organic compounds analyzed for, only bis(2-ethylhexyl)phthalate was detected at one station. All other organic chemicals were undetected. For metals, mercury, cadmium, and silver were undetected. Lead and arsenic were detected slightly above detection limits.

Particle size distribution data showed that the sediment within the cap remained mostly sand (Table 3-3). Samples ranged from 92.6 to 96.9 percent sands and gravels. These data further support the chemical results that show little or no mixing of the clean capping sand with the under-cap sediments is occurring.

Comparing 1996 results to results from the first 6-inch sections taken from cores during the 1992 baseline study showed some similarities and in some cases the 1996 data showed lower results. In the first 6-inch section at C1, 9 organic chemicals were detected at or near the detection limit in the 1992 baseline study. At C1 in 1996, one organic chemical was detected. At C5, no organic chemicals were detected in either the 1992 baseline or the 1996 studies. At C4, no organic chemicals were detected in 1996, however, several were detected at elevated levels in the 1992 baseline study. These chemicals found in 1992 were attributed to clay lumps from the Duwamish river that were dredged along with the capping sands (EB/DRP 1993a).

TABLE 3-1. Core St	ations:	Det	ected (hem	icals		
Station Locator	P530	1	P530	4	P53	C5	
Date Sampled	Aug 14	1, 96	Aug 14	1, 96	Aug 1		
Sample Number	L9316-1		L9316	5-2	L9316-3		
% Solids	77.7		93.2	7	80.5		
% TOC dry	0.35		0.16		0.29	77	
BNA Organics (µg/kg dry weight)	Qual	Value	Qual	Value	Qual	Value	
LPAHs							
Naphthalene	<mdl,g< td=""><td>55</td><td><mdl,g< td=""><td>46</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl,g<></td></mdl,g<>	55	<mdl,g< td=""><td>46</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl,g<>	46	<mdl,g< td=""><td>53</td></mdl,g<>	53	
Acenaphthene	<mdl< td=""><td>14</td><td><mdl< td=""><td>12</td><td><mdl,g< td=""><td>14</td></mdl,g<></td></mdl<></td></mdl<>	14	<mdl< td=""><td>12</td><td><mdl,g< td=""><td>14</td></mdl,g<></td></mdl<>	12	<mdl,g< td=""><td>14</td></mdl,g<>	14	
Acenaphthylene	<mdl< td=""><td>21</td><td>≺MDL</td><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl<>	21	≺MDL	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Anthracene	<mdl,g< td=""><td>21_</td><td><mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<></td></mdl,g<>	21_	<mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Fluorene	<mdl,g< td=""><td>21</td><td><mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<></td></mdl,g<>	21	<mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Phenanthrene	<mdl,g< td=""><td>21</td><td><mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<></td></mdl,g<>	21	<mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
2-Methylnaphthalene	<mdl< td=""><td>55</td><td><mdl< td=""><td>46</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl<></td></mdl<>	55	<mdl< td=""><td>46</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl<>	46	<mdl,g< td=""><td>53</td></mdl,g<>	53	
Total LPAHs	ļ	208		172		200	
HPAHs	751 6		1151.6		121		
Fluoranthene	<rdl,g< td=""><td>22</td><td><mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<></td></rdl,g<>	22	<mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Pyrene	<rdl,g< td=""><td>31</td><td><mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<></td></rdl,g<>	31	<mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Benzo(a)anthracene	<mdl,g< td=""><td>21</td><td><mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<></td></mdl,g<>	21	<mdl,g< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl,g<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Chrysene	<mdl< td=""><td>21</td><td><mdl< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl<></td></mdl<>	21	<mdl< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Benzo(b)fluoranthene	<mdl< td=""><td>55</td><td><mdl< td=""><td>46</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl<></td></mdl<>	55	<mdl< td=""><td>46</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl<>	46	<mdl,g< td=""><td>53</td></mdl,g<>	53	
Benzo(k)fluoranthene	<mdl,g< td=""><td>55</td><td><mdl,c< td=""><td>46 29</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl,c<></td></mdl,g<>	55	<mdl,c< td=""><td>46 29</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl,c<>	46 29	<mdl,g< td=""><td>53</td></mdl,g<>	53	
Benzo(a)pyrene	<mdl,g< td=""><td>35 35</td><td><mdl,c< td=""><td><u> 29</u> 29</td><td><mdl,c< td=""><td>34</td></mdl,c<></td></mdl,c<></td></mdl,g<>	35 35	<mdl,c< td=""><td><u> 29</u> 29</td><td><mdl,c< td=""><td>34</td></mdl,c<></td></mdl,c<>	<u> 29</u> 29	<mdl,c< td=""><td>34</td></mdl,c<>	34	
Indeno(1,2,3-Cd)Pyrene Dibenzo(a,h)anthracene	<mdl,c< td=""><td>55</td><td><mdl,c< td=""><td>46</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl,c<></td></mdl,c<>	55	<mdl,c< td=""><td>46</td><td><mdl,g< td=""><td>53</td></mdl,g<></td></mdl,c<>	46	<mdl,g< td=""><td>53</td></mdl,g<>	53	
Benzo(g,h,i)perylene	<mdl,g< td=""><td>35</td><td><mdl.g< td=""><td>29</td><td><mdl,g< td=""><td>34</td></mdl,g<></td></mdl.g<></td></mdl,g<>	35	<mdl.g< td=""><td>29</td><td><mdl,g< td=""><td>34</td></mdl,g<></td></mdl.g<>	29	<mdl,g< td=""><td>34</td></mdl,g<>	34	
Total HPAHs	KIVIDE, G	365	KIVIDE,G	293	KIVIDE,G	341	
Other BNA		303		273		341	
1,4-Dichlorobenzene	<mdl,g< td=""><td>0.89</td><td><mdl,g< td=""><td>0.74</td><td><mdl,c< td=""><td>0.86</td></mdl,c<></td></mdl,g<></td></mdl,g<>	0.89	<mdl,g< td=""><td>0.74</td><td><mdl,c< td=""><td>0.86</td></mdl,c<></td></mdl,g<>	0.74	<mdl,c< td=""><td>0.86</td></mdl,c<>	0.86	
Di-N-Octyl Phthalate	<mdl< td=""><td>21</td><td><mdl< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl<></td></mdl<>	21	<mdl< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Benzyl Butyl Phthalate	<mdl< td=""><td>21</td><td><mdl< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl<></td></mdl<>	21	<mdl< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Bis(2-Ethylhexyl)Phthalate	311,12	35.1	<mdl< td=""><td>17</td><td><mdl,g< td=""><td>20</td></mdl,g<></td></mdl<>	17	<mdl,g< td=""><td>20</td></mdl,g<>	20	
Dibenzofuran	<mdl< td=""><td>35</td><td><mdl< td=""><td>29</td><td><mdl,g< td=""><td>34</td></mdl,g<></td></mdl<></td></mdl<>	35	<mdl< td=""><td>29</td><td><mdl,g< td=""><td>34</td></mdl,g<></td></mdl<>	29	<mdl,g< td=""><td>34</td></mdl,g<>	34	
4-Methylphenol	<mdl< td=""><td>35</td><td><mdl< td=""><td>29</td><td><mdl,g< td=""><td>34</td></mdl,g<></td></mdl<></td></mdl<>	35	<mdl< td=""><td>29</td><td><mdl,g< td=""><td>34</td></mdl,g<></td></mdl<>	29	<mdl,g< td=""><td>34</td></mdl,g<>	34	
Phenol	<mdl< td=""><td>140</td><td><mdl< td=""><td>120</td><td><mdl,g< td=""><td>140</td></mdl,g<></td></mdl<></td></mdl<>	140	<mdl< td=""><td>120</td><td><mdl,g< td=""><td>140</td></mdl,g<></td></mdl<>	120	<mdl,g< td=""><td>140</td></mdl,g<>	140	
Benzoic Acid	<mdl< td=""><td>140</td><td><mdl< td=""><td>120</td><td><mdl,g< td=""><td>140</td></mdl,g<></td></mdl<></td></mdl<>	140	<mdl< td=""><td>120</td><td><mdl,g< td=""><td>140</td></mdl,g<></td></mdl<>	120	<mdl,g< td=""><td>140</td></mdl,g<>	140	
Carbazole	<mdl< td=""><td>35</td><td><mdl< td=""><td>29</td><td><mdl,g< td=""><td>34</td></mdl,g<></td></mdl<></td></mdl<>	35	<mdl< td=""><td>29</td><td><mdl,g< td=""><td>34</td></mdl,g<></td></mdl<>	29	<mdl,g< td=""><td>34</td></mdl,g<>	34	
Coprostanol	<mdl,e< td=""><td>140</td><td><mdl,e< td=""><td>206</td><td>MDL,C,E</td><td>140</td></mdl,e<></td></mdl,e<>	140	<mdl,e< td=""><td>206</td><td>MDL,C,E</td><td>140</td></mdl,e<>	206	MDL,C,E	140	
Pesticides and PCBs (µg/kg dry weight)							
4,4'-DDD	<mdl< td=""><td>1.7</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>1.6</td></mdl<></td></mdl<></td></mdl<>	1.7	<mdl< td=""><td>1.4</td><td><mdl< td=""><td>1.6</td></mdl<></td></mdl<>	1.4	<mdl< td=""><td>1.6</td></mdl<>	1.6	
Endosulfan I	<mdl< td=""><td>1.7</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>1.6</td></mdl<></td></mdl<></td></mdl<>	1.7	<mdl< td=""><td>1.4</td><td><mdl< td=""><td>1.6</td></mdl<></td></mdl<>	1.4	<mdl< td=""><td>1.6</td></mdl<>	1.6	
Aroclor 1254	<mdl< td=""><td>17</td><td><mdl< td=""><td>14</td><td><mdl< td=""><td>16</td></mdl<></td></mdl<></td></mdl<>	17	<mdl< td=""><td>14</td><td><mdl< td=""><td>16</td></mdl<></td></mdl<>	14	<mdl< td=""><td>16</td></mdl<>	16	
Aroclor 1260	<mdl< td=""><td>17</td><td><mdl< td=""><td>14</td><td><mdl< td=""><td>16</td></mdl<></td></mdl<></td></mdl<>	17	<mdl< td=""><td>14</td><td><mdl< td=""><td>16</td></mdl<></td></mdl<>	14	<mdl< td=""><td>16</td></mdl<>	16	
Total PCBs	<mdl< td=""><td>17</td><td><mdl< td=""><td>14</td><td><mdl< td=""><td>16</td></mdl<></td></mdl<></td></mdl<>	17	<mdl< td=""><td>14</td><td><mdl< td=""><td>16</td></mdl<></td></mdl<>	14	<mdl< td=""><td>16</td></mdl<>	16	
Metals (mg/kg dry welght)							
Mercury	<mdl< td=""><td>0.024</td><td><mdl< td=""><td>0.02</td><td><mdl< td=""><td>0.025</td></mdl<></td></mdl<></td></mdl<>	0.024	<mdl< td=""><td>0.02</td><td><mdl< td=""><td>0.025</td></mdl<></td></mdl<>	0.02	<mdl< td=""><td>0.025</td></mdl<>	0.025	
Aluminum	<u> </u>	10800	L	9380	LL	9020	
Arsenic	<rdl< td=""><td>3.3</td><td><rdl< td=""><td>2.9</td><td><rdl< td=""><td>5.5</td></rdl<></td></rdl<></td></rdl<>	3.3	<rdl< td=""><td>2.9</td><td><rdl< td=""><td>5.5</td></rdl<></td></rdl<>	2.9	<rdl< td=""><td>5.5</td></rdl<>	5.5	
Beryllium	<rdl< td=""><td>0.24</td><td><rdl< td=""><td>0.22</td><td><rdl< td=""><td>0.22</td></rdl<></td></rdl<></td></rdl<>	0.24	<rdl< td=""><td>0.22</td><td><rdl< td=""><td>0.22</td></rdl<></td></rdl<>	0.22	<rdl< td=""><td>0.22</td></rdl<>	0.22	
Cadmium	<mdl< td=""><td>0.19</td><td><mdl< td=""><td>0.16</td><td><mdl< td=""><td>0.19</td></mdl<></td></mdl<></td></mdl<>	0.19	<mdl< td=""><td>0.16</td><td><mdl< td=""><td>0.19</td></mdl<></td></mdl<>	0.16	<mdl< td=""><td>0.19</td></mdl<>	0.19	
Chromium	ļ	11.9		11.8		12.9	
Copper	 	11.5		10.6		10.5	
Iron		17400		16500		18000	
Lead	∠RDL	2800	<rdl< td=""><td>4.4 3700</td><td><rdl< td=""><td>4.3 3900</td></rdl<></td></rdl<>	4.4 3700	<rdl< td=""><td>4.3 3900</td></rdl<>	4.3 3900	
Magnesium	+	3800 12	 	11.6	 	11.2	
Nickel	<mdl< td=""><td>0.27</td><td><mdl< td=""><td></td><td><mdl< td=""><td>0.25</td></mdl<></td></mdl<></td></mdl<>	0.27	<mdl< td=""><td></td><td><mdl< td=""><td>0.25</td></mdl<></td></mdl<>		<mdl< td=""><td>0.25</td></mdl<>	0.25	
Silver	KMDL	45.2	SIVIUL	47.4	- KINIDL	45.5	
Zinc AIDI - Linderected at the method detection limit	E - Estimate	43.2	L	. 47.4	1	43.3	

MDL - Undetected at the method detection limit
<RDL - Detected below reporting detection limits</p>

B - Blank contamination

For further information on data qualifiers see Appendix B.

G - Low standard reference material recovery

L - High standard reference material recovery

Station Locator	P53C1	P53C4	P53C5	
Date Sampled	Aug 14, 96	Aug 14, 96	Aug 15, 96	Sediment
Sample Number	L9316-1	L9316-2	L9316-3	Management
% Solids	77.7	93.7	80.5	Standards
T.O.C. dry in %	0.353	0.16	0.297	
Organics	Qual Value	Qual Value	Qual Value	SQS CSL
LPAHs (mg/kg TOC)				
Naphthalene	<mdl,g 7.31<="" td=""><td><mdl,g 2.09<="" td=""><td><mdl,g 5.38<="" td=""><td>99 170</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 2.09<="" td=""><td><mdl,g 5.38<="" td=""><td>99 170</td></mdl,g></td></mdl,g>	<mdl,g 5.38<="" td=""><td>99 170</td></mdl,g>	99 170
Anthracene	<mdl,g 2.79<="" td=""><td><mdl,g 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>220 1200</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>220 1200</td></mdl,g></td></mdl,g>	<mdl,g 2.03<="" td=""><td>220 1200</td></mdl,g>	220 1200
Acenaphthene	<mdl 1.86<="" td=""><td><mdl 0.55<="" td=""><td><mdl,c 1.42="" \<="" td=""><td>16 57</td></mdl,c></td></mdl></td></mdl>	<mdl 0.55<="" td=""><td><mdl,c 1.42="" \<="" td=""><td>16 57</td></mdl,c></td></mdl>	<mdl,c 1.42="" \<="" td=""><td>16 57</td></mdl,c>	16 57
Phenanthrene Fluorene	<mdl,g 2.79<br=""><mdl,g 2.79<="" td=""><td><mdl,g 0.77<br=""><mdl,g 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>100 480</td></mdl,g></td></mdl,g></mdl,g></td></mdl,g></mdl,g>	<mdl,g 0.77<br=""><mdl,g 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>100 480</td></mdl,g></td></mdl,g></mdl,g>	<mdl,g 2.03<="" td=""><td>100 480</td></mdl,g>	100 480
	<mdl,g 2.79<br=""><mdl 2.79<="" td=""><td><mdl,g 0.77="" <br=""><mdl 0.77="" td="" <=""><td><mdl,g 2.03<br=""><mdl,g 2.03<="" td=""><td>23 79 66 66</td></mdl,g></mdl,g></td></mdl></mdl,g></td></mdl></mdl,g>	<mdl,g 0.77="" <br=""><mdl 0.77="" td="" <=""><td><mdl,g 2.03<br=""><mdl,g 2.03<="" td=""><td>23 79 66 66</td></mdl,g></mdl,g></td></mdl></mdl,g>	<mdl,g 2.03<br=""><mdl,g 2.03<="" td=""><td>23 79 66 66</td></mdl,g></mdl,g>	23 79 66 66
Acenaphthylene 2-Methylnaphthalene	<mdl 2.79<="" td=""><td><mdl 0.77<="" td=""><td></td><td></td></mdl></td></mdl>	<mdl 0.77<="" td=""><td></td><td></td></mdl>		
Total LPAHs	27.7	7.82	<mdl,g 20.3<="" 5.38="" td=""><td>38 64 370 780</td></mdl,g>	38 64 370 780
HPAHs (mg/kg TOC)		7.04		370 1 780
Fluoranthene	<rdl,c 2.93<="" td=""><td><mdl.g 0.77<="" td=""><td><mdl.g 2.03<="" td=""><td>160 1200</td></mdl.g></td></mdl.g></td></rdl,c>	<mdl.g 0.77<="" td=""><td><mdl.g 2.03<="" td=""><td>160 1200</td></mdl.g></td></mdl.g>	<mdl.g 2.03<="" td=""><td>160 1200</td></mdl.g>	160 1200
Pyrene	<rdl,g 4.12<="" td=""><td><mdl,g 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>1000 1400</td></mdl,g></td></mdl,g></td></rdl,g>	<mdl,g 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>1000 1400</td></mdl,g></td></mdl,g>	<mdl,g 2.03<="" td=""><td>1000 1400</td></mdl,g>	1000 1400
Benzo(a)anthracene	<mdl,g 2.79<="" td=""><td><mdl,g 0.77<="" td=""><td><mdl,c 2.03<="" td=""><td>110 270</td></mdl,c></td></mdl,g></td></mdl,g>	<mdl,g 0.77<="" td=""><td><mdl,c 2.03<="" td=""><td>110 270</td></mdl,c></td></mdl,g>	<mdl,c 2.03<="" td=""><td>110 270</td></mdl,c>	110 270
Chrysene	<mdl 2.79<="" td=""><td>. <mdl 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>110 460</td></mdl,g></td></mdl></td></mdl>	. <mdl 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>110 460</td></mdl,g></td></mdl>	<mdl,g 2.03<="" td=""><td>110 460</td></mdl,g>	110 460
Total benzo fluoranthenes	<mdl,g 7.31<="" td=""><td><mdl,g 2.09<="" td=""><td><mdl,g 5.38<="" td=""><td>230 450</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 2.09<="" td=""><td><mdl,g 5.38<="" td=""><td>230 450</td></mdl,g></td></mdl,g>	<mdl,g 5.38<="" td=""><td>230 450</td></mdl,g>	230 450
Benzo(a)pyrene	<mdl,g 4.65<="" td=""><td><mdl,g 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>99 210</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>99 210</td></mdl,g></td></mdl,g>	<mdl,g 3.45<="" td=""><td>99 210</td></mdl,g>	99 210
Indeno(1,2,3-Cd)Pyrene	<mdl,g 4.65<="" td=""><td><mdl,c 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>34 88</td></mdl,g></td></mdl,c></td></mdl,g>	<mdl,c 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>34 88</td></mdl,g></td></mdl,c>	<mdl,g 3.45<="" td=""><td>34 88</td></mdl,g>	34 88
Dibenzo(a,h)anthracene	<mdl 7.31<="" td=""><td><mdl 2.09<="" td=""><td><mdl,g 5.38<="" td=""><td>12 33</td></mdl,g></td></mdl></td></mdl>	<mdl 2.09<="" td=""><td><mdl,g 5.38<="" td=""><td>12 33</td></mdl,g></td></mdl>	<mdl,g 5.38<="" td=""><td>12 33</td></mdl,g>	12 33
Benzo(g,h,i)perylene	<mdl,g 4.65<="" td=""><td><mdl,g 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>31 78</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>31 78</td></mdl,g></td></mdl,g>	<mdl,g 3.45<="" td=""><td>31 78</td></mdl,g>	31 78
Total HPAHs	41.2	11.2	29.2	960 5300
Other (mg/kg TOC)				
1,2,4-Trichlorobenzene	<mdl,g 0.12<="" td=""><td><mdl,g 0.03<="" td=""><td><mdl,g 0.09<="" td=""><td>0.81 1.8</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.03<="" td=""><td><mdl,g 0.09<="" td=""><td>0.81 1.8</td></mdl,g></td></mdl,g>	<mdl,g 0.09<="" td=""><td>0.81 1.8</td></mdl,g>	0.81 1.8
1,2-Dichlorobenzene	<mdl,g_0.12< td=""><td><mdl,g 0.03<="" td=""><td><mdl,g 0.09<="" td=""><td>2.3 2.3</td></mdl,g></td></mdl,g></td></mdl,g_0.12<>	<mdl,g 0.03<="" td=""><td><mdl,g 0.09<="" td=""><td>2.3 2.3</td></mdl,g></td></mdl,g>	<mdl,g 0.09<="" td=""><td>2.3 2.3</td></mdl,g>	2.3 2.3
1,4-Dichlorobenzene	<mdl,g 0.12<="" td=""><td><mdl,g 0.03<="" td=""><td><mdl,g 0.09<="" td=""><td>3.1 9</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.03<="" td=""><td><mdl,g 0.09<="" td=""><td>3.1 9</td></mdl,g></td></mdl,g>	<mdl,g 0.09<="" td=""><td>3.1 9</td></mdl,g>	3.1 9
Hexachlorobenzene	<mdl,c 0.12<="" td=""><td><mdl,g 0.03<="" td=""><td><mdl,g 0.09<="" td=""><td>0.38 2.3</td></mdl,g></td></mdl,g></td></mdl,c>	<mdl,g 0.03<="" td=""><td><mdl,g 0.09<="" td=""><td>0.38 2.3</td></mdl,g></td></mdl,g>	<mdl,g 0.09<="" td=""><td>0.38 2.3</td></mdl,g>	0.38 2.3
Diethyl Phthalate	<mdl 4.65<="" td=""><td><mdl 1.32<="" td=""><td><mdl,g 3.45<br=""><mdl,g 1.42<="" td=""><td>61 110 53 53</td></mdl,g></mdl,g></td></mdl></td></mdl>	<mdl 1.32<="" td=""><td><mdl,g 3.45<br=""><mdl,g 1.42<="" td=""><td>61 110 53 53</td></mdl,g></mdl,g></td></mdl>	<mdl,g 3.45<br=""><mdl,g 1.42<="" td=""><td>61 110 53 53</td></mdl,g></mdl,g>	61 110 53 53
Dimethyl Phthalate	<mdl 1.86<br=""><mdl 4.65<="" td=""><td><mdl 0.55<br=""><mdl 1.32<="" td=""><td><mdl,g 1.42<br=""><mdl,g 3.45<="" td=""><td>53 53 220 1700</td></mdl,g></mdl,g></td></mdl></mdl></td></mdl></mdl>	<mdl 0.55<br=""><mdl 1.32<="" td=""><td><mdl,g 1.42<br=""><mdl,g 3.45<="" td=""><td>53 53 220 1700</td></mdl,g></mdl,g></td></mdl></mdl>	<mdl,g 1.42<br=""><mdl,g 3.45<="" td=""><td>53 53 220 1700</td></mdl,g></mdl,g>	53 53 220 1700
Di-N-Butyl Phthalate	<mdl 4.83<="" td=""><td><mdl 0.77<="" td=""><td><mdl,g 3.43<="" td=""><td>4.9 64</td></mdl,g></td></mdl></td></mdl>	<mdl 0.77<="" td=""><td><mdl,g 3.43<="" td=""><td>4.9 64</td></mdl,g></td></mdl>	<mdl,g 3.43<="" td=""><td>4.9 64</td></mdl,g>	4.9 64
Benzyl Butyl Phthalate Bis(2-Ethylhexyl)Phthalate	4.67	<mdl 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>47 78</td></mdl,g></td></mdl>	<mdl,g 2.03<="" td=""><td>47 78</td></mdl,g>	47 78
Di-N-Octyl Phthalate	<mdl 2.79<="" td=""><td><mdl 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>58 450</td></mdl,g></td></mdl></td></mdl>	<mdl 0.77<="" td=""><td><mdl,g 2.03<="" td=""><td>58 450</td></mdl,g></td></mdl>	<mdl,g 2.03<="" td=""><td>58 450</td></mdl,g>	58 450
Dibenzofuran	<mdl 4.65<="" td=""><td><mdl 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>15 58</td></mdl,g></td></mdl></td></mdl>	<mdl 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>15 58</td></mdl,g></td></mdl>	<mdl,g 3.45<="" td=""><td>15 58</td></mdl,g>	15 58
Hexachlorobutadiene	* <mdl,g 4.65<="" td=""><td><mdl,g 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>3.9 6.2</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>3.9 6.2</td></mdl,g></td></mdl,g>	<mdl,g 3.45<="" td=""><td>3.9 6.2</td></mdl,g>	3.9 6.2
N-Nitrosodiphenylamine	<mdl 4.65<="" td=""><td><mdl 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>11 11</td></mdl,g></td></mdl></td></mdl>	<mdl 1.32<="" td=""><td><mdl,g 3.45<="" td=""><td>11 11</td></mdl,g></td></mdl>	<mdl,g 3.45<="" td=""><td>11 11</td></mdl,g>	11 11
Total PCBs	<mdl 2.26<="" td=""><td><mdl 0.64<="" td=""><td><mdl 1.62<="" td=""><td>12 65</td></mdl></td></mdl></td></mdl>	<mdl 0.64<="" td=""><td><mdl 1.62<="" td=""><td>12 65</td></mdl></td></mdl>	<mdl 1.62<="" td=""><td>12 65</td></mdl>	12 65
Other (µg/kg dry weight)				
Phenol	<mdl 140<="" td=""><td><mdl 120<="" td=""><td><mdl,g 140<="" td=""><td>420 120</td></mdl,g></td></mdl></td></mdl>	<mdl 120<="" td=""><td><mdl,g 140<="" td=""><td>420 120</td></mdl,g></td></mdl>	<mdl,g 140<="" td=""><td>420 120</td></mdl,g>	420 120
2-Methylphenol	<mdl 35<="" td=""><td><mdl 29<="" td=""><td><mdl<sub>2G 34</mdl<sub></td><td>63 63</td></mdl></td></mdl>	<mdl 29<="" td=""><td><mdl<sub>2G 34</mdl<sub></td><td>63 63</td></mdl>	<mdl<sub>2G 34</mdl<sub>	63 63
4-Methylphenol	<mdl 35<="" td=""><td><mdl 29<="" td=""><td><mdl,g 34<="" td=""><td>670 670</td></mdl,g></td></mdl></td></mdl>	<mdl 29<="" td=""><td><mdl,g 34<="" td=""><td>670 670</td></mdl,g></td></mdl>	<mdl,g 34<="" td=""><td>670 670</td></mdl,g>	670 670
2,4-Dimethylphenol	* * <mdl 35<="" td=""><td><mdl 29<="" td=""><td>* * <mdl,g 34<="" td=""><td>29 29</td></mdl,g></td></mdl></td></mdl>	<mdl 29<="" td=""><td>* * <mdl,g 34<="" td=""><td>29 29</td></mdl,g></td></mdl>	* * <mdl,g 34<="" td=""><td>29 29</td></mdl,g>	29 29
Pentachlorophenol	<mdl,g 35<="" td=""><td><mdl,g 29<="" td=""><td><mdl,g 34<="" td=""><td>360 690</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 29<="" td=""><td><mdl,g 34<="" td=""><td>360 690</td></mdl,g></td></mdl,g>	<mdl,g 34<="" td=""><td>360 690</td></mdl,g>	360 690
Benzyl Alcohol	<mdl 35<="" td=""><td><mdl 29<="" td=""><td><mdl,g 34<="" td=""><td>57 73</td></mdl,g></td></mdl></td></mdl>	<mdl 29<="" td=""><td><mdl,g 34<="" td=""><td>57 73</td></mdl,g></td></mdl>	<mdl,g 34<="" td=""><td>57 73</td></mdl,g>	57 73
Benzoic Acid	<mdl 140<="" td=""><td><mdl 120<="" td=""><td><mdl,g 140<="" td=""><td>650 650</td></mdl,g></td></mdl></td></mdl>	<mdl 120<="" td=""><td><mdl,g 140<="" td=""><td>650 650</td></mdl,g></td></mdl>	<mdl,g 140<="" td=""><td>650 650</td></mdl,g>	650 650
Metals (mg/kg dry weigh	<mdl 0.02<="" td=""><td><mdl 0.02<="" td=""><td><mdl 0.03<="" td=""><td>0.41 0.59</td></mdl></td></mdl></td></mdl>	<mdl 0.02<="" td=""><td><mdl 0.03<="" td=""><td>0.41 0.59</td></mdl></td></mdl>	<mdl 0.03<="" td=""><td>0.41 0.59</td></mdl>	0.41 0.59
Mercury Arrenic	.001 3 3	-DD1 2.0	(DD) 5.5	57 93
Arsenic Cadmium	<mdl 0.19<="" td=""><td></td><td><mdl 0.19<="" td=""><td>5.1 6.7</td></mdl></td></mdl>		<mdl 0.19<="" td=""><td>5.1 6.7</td></mdl>	5.1 6.7
Cadmium Chromium	11.9	11.8	12.9	260 270
Copper	11.5	10.6	10.5	390 390
Lead	<rdl 4.6<="" td=""><td><rdl 4.4<="" td=""><td><rdl 4.3<="" td=""><td>450 530</td></rdl></td></rdl></td></rdl>	<rdl 4.4<="" td=""><td><rdl 4.3<="" td=""><td>450 530</td></rdl></td></rdl>	<rdl 4.3<="" td=""><td>450 530</td></rdl>	450 530
Silver	<mdl 0.27<="" td=""><td><mdl 0.21<="" td=""><td><mdl 0.25<="" td=""><td>6.1 6.1</td></mdl></td></mdl></td></mdl>	<mdl 0.21<="" td=""><td><mdl 0.25<="" td=""><td>6.1 6.1</td></mdl></td></mdl>	<mdl 0.25<="" td=""><td>6.1 6.1</td></mdl>	6.1 6.1
Zinc	45.2	47.4	45.5	410 960
* - Exceeds SQS		<rdl -="" below<="" detected="" td=""><td></td><td></td></rdl>		

TABLE 3-3.			ui licite Ji		ibudion	
Station Locator		P53C1 P53C4		P53C5		
Date Sampled	Aug 1	4, 96		Aug 14, 96		15, 96
Sample Number	L931		L931		L93	16-3
% Solids	77.		93	.7	8	0.5
Phi Size (%)	Quai	Value	Qual	Value	Qual	Value
Sands and Gravels						
p-2.00(less than) *		0.4		0.4		1.1
p-2.00 *		0.1		0.1		0.1
p-1.00 *		0.6		1.3		1.1
p+0.00 *		3.3		5.2		5.5
p+1.00 *		35		36.8		38
p+2.00 *		46.5		48.3		46.6
p+3.00 *		5.9		4.5		3.5
p+4.00 *		0.8		0.3		0.4
Total % Sands and Gravels		92.6		96.9		96.3
Silts and Clays						
p+5.00 *		1.8		0.3	<mdl< td=""><td>0.1</td></mdl<>	0.1
p+6.00 *	<mdl< td=""><td>0.1</td><td><mdl< td=""><td>0.1</td><td><mdl< td=""><td>0.1</td></mdl<></td></mdl<></td></mdl<>	0.1	<mdl< td=""><td>0.1</td><td><mdl< td=""><td>0.1</td></mdl<></td></mdl<>	0.1	<mdl< td=""><td>0.1</td></mdl<>	0.1
p+7.00 *		1.4		0.3	<mdl< td=""><td>0.1</td></mdl<>	0.1
p+8.00 *		2.1		2		0.5
p+9.00 *		0.7		0.3		0.1
p+10.0 *		0.3	<mdl< td=""><td>0.1</td><td><mdl< td=""><td>0.1</td></mdl<></td></mdl<>	0.1	<mdl< td=""><td>0.1</td></mdl<>	0.1
p+10.0(more than) *		1.1	<mdl< td=""><td>0.1</td><td></td><td>3.1</td></mdl<>	0.1		3.1
Total % Silts and Clays		7.5		3.2		4.1

<RDL - Detected below quantification limits</p>
* indicates wet weight used for this parameter
For further information on data qualifiers

see Appendix B.

<MDL - Undetected at the method detection limit

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

SECTION 4 SURFACE SEDIMENT CHEMISTRY

In August 1996, the monitoring team collected surface sediment samples from the 3-foot cap and the ENR. The samples were analyzed for trace metal, organic, and conventional parameters. This section describes the surface sampling methods, reports the results of the surface sample analysis, and compares the results to the state sediment standards.

METHODS

Within the remediation area, the monitoring plan defines seven surface sampling stations (VG1 through VG7). These stations provide spatial coverage across the cap and ENR (Figure 4-1). VG3, VG4, and VG6 were placed along the centerline of the long axis of the rectangular-shaped ENR. VG5 was placed in the southeast corner of the remediation area on the shallower inshore end of the 3-foot cap. VG1, VG2, and VG7 provide sampling coverage of the 3-foot cap in deeper water.

Sediment chemistry samples were also collected from the seven stations in the remediation area during 1992 baseline and 1993 monitoring.

Sample Collection

In 1996, samples were collected at all on-cap surface stations from the 0- to 2-cm depth as in all previous years of study. A replicate sample was taken at VG5. Also, samples were collected at certain stations to characterize the top 10 cm of sediment. This is because previous studies at the Pier 53-55 cap (Hart Crowser, 1994 and EB/DRP 1995a) have shown significant differences between the results of samples taken from the 0- to 2-cm depth and the 0- to 10-cm depth. The different results were likely caused by cleaner cap sand in the deeper 10-cm sample diluting higher concentration of recently deposited contaminants in the top 2 cm.

To document the differences between the sample depths, 2- to 10-cm deep samples were collected at stations VG3, VG4, and VG5. During data interpretation, the results of these samples were proportionally combined with the results from the top 2 cm at these stations to reflect the chemical concentrations in the top 10-cm biologically-active zone.

Subtidal samples were collected with a 0.1-m^2 van Veen grab sampler operated from King County's R V Liberty. Three individual grab samples were taken at each station. A stainless steel "cookie cutter" sampler and stainless steel

Figure 4-1. Surface Sampling Stations

spatula were used to remove a 2-cm-deep subsample from the top of each grab sample. The three subsamples were composited in a stainless-steel bowl. After the 2 cm subsample had been removed from the grab sample, an additional subsample representing the 2- to 10-cm depth at the above mentioned stations were removed using a stainless steel spoon. The 2- to 10-cm subsamples were composited in separate stainless-steel bowls.

The van Veen grab sampler was rinsed between each deployment and was decontaminated before use at the next sampling station. To decontaminate the sampler it was scrubbed with a brush and a phosphate-free detergent/water solution followed by several rinses on board the vessel. Dedicated stainless steel bowls, spoons, cookie cutters, and spatulas were used for each sample station. All stainless steel equipment was cleaned prior to sampling using a phosphate-free detergent/water solution followed by several rinses with deionized water and a final rinse with acetone. The equipment was wrapped in aluminum foil for storage prior to use.

Sample Analysis

The King County Environmental Laboratory analyzed the samples for trace metals, BNAs, pesticides, PCBs, volatile compounds, total solids, and TOC. AmTest, Inc., analyzed the samples for particle size distribution. For complete results see Appendix C; for QA procedures see Appendix B.

RESULTS

Chemical Analysis

In all, 32 organic compounds were detected on the sediment cap and ENR. As in 1993, the highest number of compounds and the highest concentrations were found at VG5 in the southwest corner of the remediation area. Moving alongshore to the north and offshore to the west, the number of compounds detected and their concentrations consistently decreased with distance from VG5. The lowest number of detected compounds and the lowest concentrations were found at the station farthest offshore (VG7); the second lowest number of compounds and concentrations were found at the station farthest north (VG4) (Figures 4-2 through 4-5).

Chemical concentrations from the 3-foot cap and ENR exceeded the SQS eight times and the CSL three times. All three CSL exceedances occurred at VG5 where phenol and 4-methylphenol exceeded the CSL in the primary sample and 4-methylphenol exceeded the CSL in the replicate sample (Tables 4-1 and 4-2).

Both 2-cm-deep samples and 10-cm-deep samples were collected from stations VG3, VG4, and VG5 and their results were compared. Six parameters were chosen for the comparison: total LPAHs, total HPAHs, mercury, BEHP, 4-methylphenol, and phenol.

At VG3 and VG4 most parameter concentrations were approximately 50 percent lower in the 10-cm sample than in the 2-cm sample. The six parameters at VG3 averaged 44 percent lower in the 10-cm sample and at VG4 the parameters averaged 58 percent lower in the 10-cm sample.

The differences were smaller between the 2- and 10-cm samples at VG5 in both the primary and replicate samples. In the primary sample, all six parameters were lower in the 10-cm sample by an average of 30 percent. In the replicate sample, most parameters were higher in the 10-cm sample. However, all six parameters in both the 2-cm and 10-cm samples were within 20 percent of each other.

Lower concentrations were expected in the 10-cm samples because clean cap sand would be incorporated into the deeper sample. At VG5, the differences may have been less because this area has received more new sediment than at other stations. Measuring stakes showed that between 1992 and 1993 over 0.5 foot (15.5 cm) of new sediment accumulated in the area around VG5 and that another 0.2 foot (6.5 cm) accumulated between 1993 and 1996. All of the 2-cm and 10-cm samples at VG5 were composed of this newly deposited sediment, which may explain the homogeneity of the 2-cm and 10-cm samples.

Conventionals Analysis

Grain size analysis showed a shift in particle size on the 3-foot cap and ENR between 1993 to 1996. In 1996, most stations showed a higher percentage of fines ranging from 13.8 to 41.9 percent fines compared to a range of 8.4 to 18.9 percent fines found in 1993.

This overall increase in fines on the cap was expected because the cap is mostly in a depositional area where fine particles are able to settle out. Eventually sedimentation will make the surface of the cap more like the fine-grain native bottom muds.

VG7 is the only station that decreased in the percentage of fines. Results showed that fines decreased from 9.1 percent in 1993 to 6.1 percent in 1996. VG7 is in the south western corner of the cap adjacent to the ferry terminal, which suggests that the grain size makeup of this station is being affected by ferry traffic. In particular, ferries sitting at idle in the terminal berths probably cause this area to be scoured regularly. However, measuring stakes in this area do not show that the cap is eroding. Currents generated by the ferries in this area are probably just enough to keep fine-grain particles from settling.

In the southeast corner of the remediation area, VG5 showed the highest percentage of fines with 41.9 percent. VG5 is apparently located where fine material stirred up by ferry traffic settles. This area is far enough away from ferry turbulence that could wash away the fine sediment layer. Bottom contours also show that VG5 is at the end of an elongated valley-like depression. This would cause suspended sediments in the ferry dock area to funnel down toward VG5. A measuring stake in this area showed an increase in cap thickness each time the stakes were measured since capping. Additionally, observations during monitoring revealed a layer of fine-

grain mud a few-inches thick on top of the capping sand during sampling at VG5. It is likely that this area of the 3-foot cap will continually receive more sediment than any other in the remediation area.

DISCUSSION

In general, chemical levels were lower in 1996 than the extremely high levels of the contaminants found on the Pier 53 remediation area in 1993. The contaminants found in high concentrations in 1993 included LPAHs, HPAHs, and mercury. However, several new contaminants appeared on the Pier 53 remediation area for the first time in 1996. These contaminants included PCBs, pesticides, a chlorinated benzene, phthalates, and phenols.

Concentrations of PAHs and mercury decreased in 1996 from 1993. All stations showed a dramatic decrease in total LPAH concentrations and all but two stations decreased in total HPAH concentrations. In 1993, total LPAHs and several individual LPAHs, total HPAHs and several individual HPAHs, and mercury all exceeded the CSL at VG5. In addition, several individual LPAHs and HPAHs exceeded the SQS. In 1996, chrysene was the only PAH parameter to exceed the SQS at VG5, and mercury only exceeded the SQS. At VG1, VG2, and VG6 total LPAHs decreased by several times. Total HPAHs decreased by over three times at VG5 and they decreased by half at VG2 and VG6. Mercury decreased by a third at VG5.

The cause of the decreases are unclear but the possibilities include sedimentation, mixing, and/or dispersion that would reduce concentrations. Approximately 3 inches of new sediment was deposited in the VG5 area. Even if this new sediment was moderately contaminated, the extremely high concentrations that were seen in 1993 would have been reduced by dilution. Also, because the concentrations were quite high compared to the surrounding areas, it is possible that the high concentrations would disperse to reach an equilibrium with the surrounding areas. Another possibility is that benthic invertebrates living beneath the surface of the cap brought clean capping sand to the surface. This process, known as bioturbation, can also dilute chemical concentrations. In addition, PAHs can biodegrade, however, they do so slowly and it is not likely that biodegradation contributed greatly to the reduction in PAH level. Mercury also decreased and because mercury is not biodegradable it is unlikely that biodegradation played a large role in the apparent decrease in concentrations. While PAHs persist in a marine environment, they can be redistributed or diluted by many mechanisms in a dynamic marine environment.

PCBs, Pesticides, Chlorinated Benzenes, and Phthalates

In 1996, PCBs were found on the remediation area for the first time but the levels were quite low. At the four stations where PCBs were found, the

concentrations were near the detection limits and well below the SQS. Because PCBs were not detected in the remediation area prior to 1996 future trends of PCBs should continue to be monitored.

In 1996, 1,4 dichlorobenzene was found in the 2-cm primary sample at VG5 just above the detection limit. This chemical is well below the SQS and is not a chemical of concern in this study. In 1996 the KC Environmental Laboratory analyzed BNA extracts by selected ion monitoring to attain lower detection limits for all chlorinated benzenes. It is possible that 1,4 dichlorobenzene was detected in 1996 because of the lower detection limits achieved by selected ion monitoring.

Pesticides were found on the remediation area for the first time in 1996. Endosulfan and 4,4 DDD—a DDT derivative—were found at levels near the detection limits at a few stations and at slightly higher levels (12 to 6 µg/kg dry weight) at VG5 and VG6. State sediment standards do not exist for pesticides.

Three phthalates were found on the remediation area for the first time in 1996. Di-n-octyl phthalate was found in concentrations near the detection limit and was therefore not a concern during this study. Benzyl butyl phthalate was also found in concentrations near the detection limit, but still exceeded the SQS at one station. Bis(2-ethylhexyl)phthalate (BEHP) appeared on the remediation area in concentrations several times higher than the detection limits at most stations. BEHP also exceeded the SQS at VG4.

Recently BEHP has become a concern along the Seattle waterfront (Wilson and Romberg 1996, EB/DRP unpublished data 1996). In 1996, in addition to the Pier 53 sampling, sediment samples were taken along the waterfront in the area between the ferry terminal and the aquarium (see Figure 1-1 in Section 1) as part of the Seattle Waterfront Cleanup Study (EB/DRP unpublished data 1996). This study is being sponsored by the Panel and managed by the City of Seattle. Samples were collected just inshore of the Pier 53 remediation area in shallower water. These samples showed high concentrations of BEHP. In most cases the levels were many times higher than on the Pier 53 remediation area. This suggests that redistribution of contaminants from inshore may have caused the sudden appearance of BEHP on the remediation area. Cores from the Waterfront Cleanup Study showed high levels of BEHP in the 0- to 2-foot sections but none in the deeper sections, suggesting that the contamination is of a recent origin.

Phenois

4-Methylphenol and phenol were detected on the remediation area for the first time in 1996 and were found at every station. 4-Methylphenol exceeded the CSL at VG5 in the 2-cm-deep-primary and replicate samples and in the 10-cm-deep sample. Phenol exceeded the CSL at VG5 in the 2-cm sample. It exceeded the SQS at VG3, VG6, the 2-cm replicate at VG5, and the 10-cm sample at VG5.

In 1993, 4-methylphenol and phenol were not detected in the Pier 53 remediation area or to the south of the remediation area. Chemists in the KC environmental organics lab reviewed the quality assurance procedures of both the 1993 and 1996 Pier 53 analyses and confirmed that both data sets passed QA1 review. In 1993, four out of eleven of the surface samples were diluted by a factor of ten. It is common practice that when, as in the case of these four samples, the sediment matrix includes high concentrations of oil or tar, the sample is diluted by a factor specified by the chemist (e.g. two or ten). The chemists reviewed the possibility that this process could have diluted out 4-methylphenol and phenol concentrations to below detection limits. It was thought that while this may have been possible for these four samples, other samples were diluted only by a factor of two and some weren't diluted at all and yet 4-methylphenol and phenol were never detected in any sample. Because neither chemical was detected in any of the 1993 samples, dilution that would cause matrix interference and mask the presence of these phenols was ruled out as a possibility. Detection limits were similar for both data sets and extractions met QA criteria. Another possibility to explain the differences between the 1993 and 1996 samples was that 4-methylphenol and phenol contamination were introduced into the 1996 samples after sampling had taken place. However, samples from the Denny Way sediment cap were run at the same time and no phenols were detected in the Denny Way analyses. As a result of this follow-up review, the chemists concluded that in 1993 4-methylphenol and phenol were not environmental contaminants at the Pier 53 remediation area but were present in 1996.

Three other data sets were evaluated to provide more information about the appearance of 4-methylphenol and phenol. Samples were taken under Piers 54 and 55 in 1992 as part of the investigation of baseline environmental conditions that existed just after placing the Pier 53 cap (EB/DRP 1993a). Analysis of these samples did not detect either 4-methylphenol or phenol. Additionally, no other phenols or phthalates were detected at that time.

In July 1994, samples were collected on the Pier 53 cap as part of a Washington State Department of Transportation (WSDOT) investigation of contamination at the north end of the downtown Seattle ferry terminal and the recontamination of the Pier 53 remediation area (Appendix D). The recontamination of the remediation area in 1993 appeared to be caused by construction activities at the ferry terminal. The samples were collected by Hart-Crowser, Inc. and sample splits were analyzed at the King County Environmental Laboratory. Samples taken on the cap at VG1, VG3, VG5, and VG6 had no detectable levels of 4-methylphenol and phenol. These data from 1994 confirm the results of the 1993 sampling and suggest further recontamination of the remediation area has taken place since July 1994.

Between October 1993 and October 1994 The Elliott Bay Waterfront Recontamination Study (EB/DRP 1995b) was conducted along the central Seattle

waterfront. As part of the study, sediment traps were deployed for the year of study in the Pier 53-55 area. The sampling year was divided into four quarters for reporting purposes. The first quarter was from October to December 1993, the second quarter was from January to April 1994, the third quarter was from May to July 1994, and the fourth quarter was from August to October 1994. Of the six sediment trap stations that were located in the Pier 53-55 area, four of them showed exceedances of the CSL for 4-methylphenol in the fourth quarter from August to October 1994. At these four stations in the other three quarters, 4-methylphenol was only detected twice at levels near the detection limit. At the remaining two station, one exceeded the CSL for 4-methylphenol in the first quarter (October to December 1993) and the other station exceeded the CSL for 4-methylphenol in the third quarter (May to July 1994). Phenol was also detected in the sediment traps but not as often as 4-methylphenol, although it did exceed the CSL in a few instances during the study. The waterfront recontamination study reported that a possible reason for the variability in the sediment trap samples was seasonal fluctuations of boat and ferry traffic along the waterfront that would stir up existing contamination which would then be captured in the sediment traps. But because previous studies failed to show 4-methylphenol contamination, these results could be showing a new contamination source along the waterfront.

Sediment samples collected as part of the waterfront cleanup study in the summer of 1996, mentioned above, showed high concentrations of 4-methylphenol under the piers inshore of the Pier 53 remediation area. However, 4-methylphenol was undetected in the slips between the piers. This could possibly indicate that propeller wash from boating activities washed the chemical contamination from the boat slips to underneath the piers where it then settled. An analysis of particle size for the waterfront cleanup study samples does not support this scenario, however. Fine material was randomly distributed under the piers as well as in the slips. This suggests that the slips were not necessarily erosional and under the piers were not necessarily depositional. Because 4-methylphenol concentrations did not correlate to grain size it is not likely that propeller wash scoured away the 4-methylphenol concentrations in the slips and deposit them under the piers.

In addition to the seasonal trends of 4-methylphenol in the waterfront recontamination study, the waterfront cleanup study showed strong seasonal variations in 4-methylphenol concentrations. Because of logistical difficulties and other considerations, approximately half of the waterfront cleanup samples analyzed for chemistry were collected in July and half were collected in September 1996. All of the samples collected in July showed that neither 4-methylphenol nor phenol were detected, while all of the samples collected in September showed moderate to high levels of both phenols. Coincidentally, samples collected from within the slips were collected in July and samples collected from under the piers were collected in September. This suggests the following: the phenols are not likely existing contamination being redistributed; phenols detected along the waterfront are short-lived in the environment; a source of phenols is ongoing and possibly

seasonal; and once the source is found and controlled, the environmental chemical concentrations should quickly return to pre-contamination conditions.

Studies of the degradation rates of phenols suggest that they degrade rapidly (days) but may persist in anaerobic sediment conditions. Total degradation of 4-methylphenol in a freshwater lake was shown to occur in only 6 days. The half-life of 4-methylphenol in marine waters was shown to be less than 4 days. In a study of anaerobic lake sediment, degradation did not begin during the 29 weeks of the study (Howard 1991).

Studies also found that 4-methylphenol does not adsorb to soil/sediment. One study modeled adsorption and found that less than 1% would be sorbed to sediments (Howard 1991). This lack of adsorption to sediment may explain why no correlation exists between particle size and 4-methylphenol along the waterfront. The study also found a correlation between higher adsorption rates and lower total organic carbon. An analysis of the total organic carbon in the waterfront cleanup study samples, however, showed no correlation between organic carbon and concentrations of 4-methylphenol.

Howard (1991) also mentioned that the highest levels and the most frequent detections of 4-methylphenol were in the effluent discharges from the timber products industry. It is possible that the 4-methylphenol is associated with wood products that have been cast off from the piers throughout Seattle's history, from wood that drifts to and accumulates along the waterfront, or from wood or wood products used in the construction and repair of the piers along the waterfront. Samples taken at VG5, VG6, and VG1 contained small wood chips and wood debris. These stations showed some of the highest levels of 4-methylphenol in the Pier 53 study.

Unfortunately during the waterfront cleanup study, no single station or group of stations were sampled both in July and September 1996 to confirm that phenols first appeared in the sediment at this time and that they degrade quickly along the waterfront or that a seasonal source of phenols is the culprit. Sampling variability and sediment transport along the waterfront remain possible reasons for the resulting pattern of the detection of phenols during the waterfront cleanup study. Further study and an investigation of phenol and possibly phthalate sources along the waterfront are needed to understand the new contamination detected on the Pier 53 remediation area.

Figure 4-2. Spatial Concentrations of Total LPAHs

Figure 4-3. Spatial Concentrations of Total HPAHs

Figure 4-4. Spatial Concentrations of 4-Methylphenol

Figure 4-5. Spatial Concentrations of Mercury

TABLE 4-1. Su	rface St	ation	ns: Det	tecte	d Cher	nicals	5	
Station Locator	P53V	G1	P53V	G2	P53V	′G3	P531	/G4
Date_Sampled	Aug 12		Aug 12		Aug 1	2, 96	Aug 1	2, 96
Sample Number	L9209		L9209	9-2	L920		L920	9-4
% Solids	65.7		60.4		58.		72	
% TOC dry	0.75		2.2		0.98		0.7	
BNA Organics (µg/kg dry weight)	Qual	Value	Qual	Value	Qual	Value	Qual	Value
LPAHs Naphthalene	<mdl,g< td=""><td></td><td>44DL C</td><td>71</td><td>AADLC</td><td>74</td><td>1401.6</td><td></td></mdl,g<>		44DL C	71	AADLC	74	1401.6	
Acenaphthene	ZIVIDE,G	65 37.3	<mdl,g< td=""><td>71 36.8</td><td><mdl,g< td=""><td>74 41.6</td><td><mdl,g< td=""><td>59 34.5</td></mdl,g<></td></mdl,g<></td></mdl,g<>	71 36.8	<mdl,g< td=""><td>74 41.6</td><td><mdl,g< td=""><td>59 34.5</td></mdl,g<></td></mdl,g<>	74 41.6	<mdl,g< td=""><td>59 34.5</td></mdl,g<>	59 34.5
Acenaphthylene	<mdl< td=""><td>24</td><td><rdl< td=""><td>28</td><td><mdl< td=""><td>27</td><td><mdl< td=""><td>22</td></mdl<></td></mdl<></td></rdl<></td></mdl<>	24	<rdl< td=""><td>28</td><td><mdl< td=""><td>27</td><td><mdl< td=""><td>22</td></mdl<></td></mdl<></td></rdl<>	28	<mdl< td=""><td>27</td><td><mdl< td=""><td>22</td></mdl<></td></mdl<>	27	<mdl< td=""><td>22</td></mdl<>	22
Anthracene	G	163	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	224	G	247	G	209
Fluorene	Ğ	63.6	Ğ		Ğ	67	G	66.7
Phenanthrene	Ğ	332	Ğ	359	Ğ	375	Ğ	267
2-Methylnaphthalene	<mdl,g< td=""><td>65</td><td><mdl,g< td=""><td>71</td><td><mdl,g< td=""><td>74</td><td><mdl,g< td=""><td>59</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	65	<mdl,g< td=""><td>71</td><td><mdl,g< td=""><td>74</td><td><mdl,g< td=""><td>59</td></mdl,g<></td></mdl,g<></td></mdl,g<>	71	<mdl,g< td=""><td>74</td><td><mdl,g< td=""><td>59</td></mdl,g<></td></mdl,g<>	74	<mdl,g< td=""><td>59</td></mdl,g<>	59
Total LPAHs		749.9		858.3		905.6		717.2
HPAHs								
Fluoranthene	G	559	G	632	G	616	G	446
Pyrene	G	553	G	642	G	726	G	442
Benzo(a)anthracene	G	346	G	510	G	481	G	309
Chrysene		522		863		801		490
Benzo(b)fluoranthene		473		853		800		508
Benzo(k)fluoranthene	G	221 370	G G	306 594	C	329	Ğ	195
Benzo(a)pyrene Indeno(1,2,3-Cd)Pyrene	G	199	G	285	G G	587 296	G	359 1 <i>7</i> 1
Dibenzo(a,h)anthracene	<mdl< td=""><td>65</td><td><rdl< td=""><td>79</td><td><rdl< td=""><td>77</td><td><mdl< td=""><td>59</td></mdl<></td></rdl<></td></rdl<></td></mdl<>	65	<rdl< td=""><td>79</td><td><rdl< td=""><td>77</td><td><mdl< td=""><td>59</td></mdl<></td></rdl<></td></rdl<>	79	<rdl< td=""><td>77</td><td><mdl< td=""><td>59</td></mdl<></td></rdl<>	77	<mdl< td=""><td>59</td></mdl<>	59
Benzo(g,h,i)perviene	G	196	G	263	G	289	G	159
Total HPAHs		3504		5027		5002	-	3138
Other BNA		3301		<u> </u>		3002		3.30
1,4-Dichlorobenzene	<mdl,g< td=""><td>1.1</td><td><mdl,g< td=""><td>1.1</td><td><mdl,g< td=""><td>1.2</td><td><mdl,g< td=""><td>0.95</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	1.1	<mdl,g< td=""><td>1.1</td><td><mdl,g< td=""><td>1.2</td><td><mdl,g< td=""><td>0.95</td></mdl,g<></td></mdl,g<></td></mdl,g<>	1.1	<mdl,g< td=""><td>1.2</td><td><mdl,g< td=""><td>0.95</td></mdl,g<></td></mdl,g<>	1.2	<mdl,g< td=""><td>0.95</td></mdl,g<>	0.95
Di-N-Octyl Phthalate	<mdl< td=""><td>24</td><td><mdl< td=""><td>26</td><td><mdl< td=""><td>27</td><td><mdl< td=""><td>22</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	24	<mdl< td=""><td>26</td><td><mdl< td=""><td>27</td><td><mdl< td=""><td>22</td></mdl<></td></mdl<></td></mdl<>	26	<mdl< td=""><td>27</td><td><mdl< td=""><td>22</td></mdl<></td></mdl<>	27	<mdl< td=""><td>22</td></mdl<>	22
Benzyl Butyl Phthalate		41.4	<rdl< td=""><td>35</td><td><rdl< td=""><td>41</td><td><rdl< td=""><td>26</td></rdl<></td></rdl<></td></rdl<>	35	<rdl< td=""><td>41</td><td><rdl< td=""><td>26</td></rdl<></td></rdl<>	41	<rdl< td=""><td>26</td></rdl<>	26
Bis(2-Ethylhexyl)Phthalate		143		263		289		372
Dibenzofuran	<mdl< td=""><td>41</td><td><mdl< td=""><td>45</td><td><mdl< td=""><td>46</td><td><mdl< td=""><td>37</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	41	<mdl< td=""><td>45</td><td><mdl< td=""><td>46</td><td><mdl< td=""><td>37</td></mdl<></td></mdl<></td></mdl<>	45	<mdl< td=""><td>46</td><td><mdl< td=""><td>37</td></mdl<></td></mdl<>	46	<mdl< td=""><td>37</td></mdl<>	37
4-Methylphenol	C_	440	G	556	G	574	G	291
Phenol	<u>C</u>	306	G	402	G	481	G	405
Benzoic Acid	<mdl,l< td=""><td>170</td><td><mdl,l< td=""><td>180</td><td><mdl,l< td=""><td>190</td><td><mdl,l< td=""><td>150</td></mdl,l<></td></mdl,l<></td></mdl,l<></td></mdl,l<>	170	<mdl,l< td=""><td>180</td><td><mdl,l< td=""><td>190</td><td><mdl,l< td=""><td>150</td></mdl,l<></td></mdl,l<></td></mdl,l<>	180	<mdl,l< td=""><td>190</td><td><mdl,l< td=""><td>150</td></mdl,l<></td></mdl,l<>	190	<mdl,l< td=""><td>150</td></mdl,l<>	150
Carbazole	<mdl< td=""><td>41</td><td><rdl< td=""><td>51</td><td><rdl< td=""><td>57</td><td><rdl< td=""><td>57</td></rdl<></td></rdl<></td></rdl<></td></mdl<>	41	<rdl< td=""><td>51</td><td><rdl< td=""><td>57</td><td><rdl< td=""><td>57</td></rdl<></td></rdl<></td></rdl<>	51	<rdl< td=""><td>57</td><td><rdl< td=""><td>57</td></rdl<></td></rdl<>	57	<rdl< td=""><td>57</td></rdl<>	57
Coprostanol		400		384	<rdl< td=""><td>190</td><td><mdl< td=""><td>150</td></mdl<></td></rdl<>	190	<mdl< td=""><td>150</td></mdl<>	150
Pesticides and PCBs (µg/kg dry weight)	<mdl< td=""><td>2</td><td><mdl< td=""><td>2.2</td><td><mdl< td=""><td>2.2</td><td><mdl< td=""><td>1.8</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2	<mdl< td=""><td>2.2</td><td><mdl< td=""><td>2.2</td><td><mdl< td=""><td>1.8</td></mdl<></td></mdl<></td></mdl<>	2.2	<mdl< td=""><td>2.2</td><td><mdl< td=""><td>1.8</td></mdl<></td></mdl<>	2.2	<mdl< td=""><td>1.8</td></mdl<>	1.8
4,4'-DDD Endosulfan I	<mdl< td=""><td>2</td><td><rdl< td=""><td>3.8</td><td><rdl< td=""><td>4.3</td><td><mdl< td=""><td>1.8</td></mdl<></td></rdl<></td></rdl<></td></mdl<>	2	<rdl< td=""><td>3.8</td><td><rdl< td=""><td>4.3</td><td><mdl< td=""><td>1.8</td></mdl<></td></rdl<></td></rdl<>	3.8	<rdl< td=""><td>4.3</td><td><mdl< td=""><td>1.8</td></mdl<></td></rdl<>	4.3	<mdl< td=""><td>1.8</td></mdl<>	1.8
Aroclor 1254	<mdl< td=""><td>20</td><td><mdl< td=""><td>22</td><td><mdl< td=""><td>22</td><td><mdl< td=""><td>18</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	20	<mdl< td=""><td>22</td><td><mdl< td=""><td>22</td><td><mdl< td=""><td>18</td></mdl<></td></mdl<></td></mdl<>	22	<mdl< td=""><td>22</td><td><mdl< td=""><td>18</td></mdl<></td></mdl<>	22	<mdl< td=""><td>18</td></mdl<>	18
Aroclor 1260	<mdl< td=""><td>20</td><td><rdl< td=""><td>36</td><td><rdl< td=""><td>26</td><td><mdl< td=""><td>18</td></mdl<></td></rdl<></td></rdl<></td></mdl<>	20	<rdl< td=""><td>36</td><td><rdl< td=""><td>26</td><td><mdl< td=""><td>18</td></mdl<></td></rdl<></td></rdl<>	36	<rdl< td=""><td>26</td><td><mdl< td=""><td>18</td></mdl<></td></rdl<>	26	<mdl< td=""><td>18</td></mdl<>	18
Total PCBs	<mdl< td=""><td>20</td><td><rdl< td=""><td>36</td><td><rdl< td=""><td>26</td><td><mdl< td=""><td>18</td></mdl<></td></rdl<></td></rdl<></td></mdl<>	20	<rdl< td=""><td>36</td><td><rdl< td=""><td>26</td><td><mdl< td=""><td>18</td></mdl<></td></rdl<></td></rdl<>	36	<rdl< td=""><td>26</td><td><mdl< td=""><td>18</td></mdl<></td></rdl<>	26	<mdl< td=""><td>18</td></mdl<>	18
Volatiles (µq/kq dry weight)	1				1112			
Acetone	<rdl,b< td=""><td>72</td><td>в,н</td><td>99.7</td><td>В,Н</td><td>98.5</td><td><rdl,b,h< td=""><td>69</td></rdl,b,h<></td></rdl,b<>	72	в,н	99.7	В,Н	98.5	<rdl,b,h< td=""><td>69</td></rdl,b,h<>	69
Metals (mg/kg dry weight)								
Mercury	<rdl< td=""><td>0.14</td><td><rdl< td=""><td>0.16</td><td><rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.087</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	0.14	<rdl< td=""><td>0.16</td><td><rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.087</td></rdl<></td></rdl<></td></rdl<>	0.16	<rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.087</td></rdl<></td></rdl<>	0.21	<rdl< td=""><td>0.087</td></rdl<>	0.087
Aluminum	1 1	13400		15100		16100		12600
Arsenic	<rdl< td=""><td>5.8</td><td><rdl< td=""><td>7.6</td><td><rdl< td=""><td>5.5</td><td><rdl< td=""><td>5.5</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	5.8	<rdl< td=""><td>7.6</td><td><rdl< td=""><td>5.5</td><td><rdl< td=""><td>5.5</td></rdl<></td></rdl<></td></rdl<>	7.6	<rdl< td=""><td>5.5</td><td><rdl< td=""><td>5.5</td></rdl<></td></rdl<>	5.5	<rdl< td=""><td>5.5</td></rdl<>	5.5
Beryllium	<rdl< td=""><td>0.18</td><td><rdl< td=""><td>0.22</td><td><rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.15</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	0.18	<rdl< td=""><td>0.22</td><td><rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.15</td></rdl<></td></rdl<></td></rdl<>	0.22	<rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.15</td></rdl<></td></rdl<>	0.21	<rdl< td=""><td>0.15</td></rdl<>	0.15
Cadmium	<mdl< td=""><td>0.23</td><td><rdl< td=""><td>0.33</td><td><mdl< td=""><td>0.26</td><td><mdl< td=""><td>0.21</td></mdl<></td></mdl<></td></rdl<></td></mdl<>	0.23	<rdl< td=""><td>0.33</td><td><mdl< td=""><td>0.26</td><td><mdl< td=""><td>0.21</td></mdl<></td></mdl<></td></rdl<>	0.33	<mdl< td=""><td>0.26</td><td><mdl< td=""><td>0.21</td></mdl<></td></mdl<>	0.26	<mdl< td=""><td>0.21</td></mdl<>	0.21
Chromium	 	17.8		21.2	 	22.3	ļ	17.7 24.9
Copper	+	24.7		33.4 23700	+	36.3 23600	G	22100
Iron	G	21600 17.4	G	24.3	G	26.4	<u> </u>	16
Magnesium	+	5510	-	5810		6180		4930
Nickel	 	17.2	-	17.1		18.5		15.5
Silver	<mdl< td=""><td>0.3</td><td><mdl< td=""><td>0.33</td><td><mdl< td=""><td>0.34</td><td><mdl< td=""><td>0.28</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.3	<mdl< td=""><td>0.33</td><td><mdl< td=""><td>0.34</td><td><mdl< td=""><td>0.28</td></mdl<></td></mdl<></td></mdl<>	0.33	<mdl< td=""><td>0.34</td><td><mdl< td=""><td>0.28</td></mdl<></td></mdl<>	0.34	<mdl< td=""><td>0.28</td></mdl<>	0.28
Zinc	E - Estimate	63.9		73.3		78.4		63.8

∠MDL - Undetected at the method detection limit <RDL - Detected below reporting detection limits

E - Estimate

B - Blank contamination

G - Low standard reference material recovery

For further information on data qualifiers see Appendix B.

P53V Aug 12 19209 52.7 2.6 Qual	2, 96)-5	P53VG5 (Aug 12 L9209 61.7 1.38 Qual	, 96 -11 7	P53V Aug 12 L920 57.	2, 96 9-6	P53\ Aug 1 L920	2, 96
19209 52.7 2.6 Qual	Value 393	L9209 61.3 1.38	-11 7 3	L920	9-6		
52.7 2.6 Qual G	Value	61.7 1.38	7				
2.6 Qual G	Value 393	1.38	3		,	75.	
G	393	Qual		2.6		0.4	
G	393		Value	Qual	Value	Qual	Value
G	272	G	214	<mdl,g< td=""><td>75</td><td><mdl.g< td=""><td>57</td></mdl.g<></td></mdl,g<>	75	<mdl.g< td=""><td>57</td></mdl.g<>	57
G	2/3		134		60	<mdl< td=""><td>15</td></mdl<>	15
G	111		61.4	<rdl< td=""><td>35</td><td>∠MD1</td><td>21</td></rdl<>	35	∠MD1	21
	930	G	525	C	351	<rdl,g< td=""><td>24</td></rdl,g<>	24
G	385	G	193	C	113	<mdl,g< td=""><td>21</td></mdl,g<>	21
G	1390	G	715	G	605	G	84.5
<rdl,c< td=""><td>110</td><td><mdl,g< td=""><td>70</td><td><mdl.g< td=""><td>75</td><td><mdl.g< td=""><td>57</td></mdl.g<></td></mdl.g<></td></mdl,g<></td></rdl,c<>	110	<mdl,g< td=""><td>70</td><td><mdl.g< td=""><td>75</td><td><mdl.g< td=""><td>57</td></mdl.g<></td></mdl.g<></td></mdl,g<>	70	<mdl.g< td=""><td>75</td><td><mdl.g< td=""><td>57</td></mdl.g<></td></mdl.g<>	75	<mdl.g< td=""><td>57</td></mdl.g<>	57
	3592		1912		1314		279.
							J24
G	2790	G	1750	G	965	G	153
		G	2790	G	1070	Ğ	139
Č	2200			Ğ	741	C	73.3
	3230		1520		1100	· · · · · · · · · · · · · · · · · · ·	122
	3430		1730		1120		110
G		G	718	G	484	<mdl.g< td=""><td>57</td></mdl.g<>	57
C	2350	G		G		<rdl.g< td=""><td>69</td></rdl.g<>	69
G	829	G	452	G	360	<rdl,g< td=""><td>44</td></rdl,g<>	44
	230	<rdl< td=""><td>120</td><td><rdl< td=""><td>100</td><td><mdl< td=""><td>57</td></mdl<></td></rdl<></td></rdl<>	120	<rdl< td=""><td>100</td><td><mdl< td=""><td>57</td></mdl<></td></rdl<>	100	<mdl< td=""><td>57</td></mdl<>	57
C	691	G	303	G	323	<rdl.g< td=""><td>36</td></rdl.g<>	36
							860.
							
C	6.68	<mdl,c< td=""><td>1.1</td><td><mdl,g< td=""><td>1.2</td><td><mdl,g< td=""><td>0.92</td></mdl,g<></td></mdl,g<></td></mdl,c<>	1.1	<mdl,g< td=""><td>1.2</td><td><mdl,g< td=""><td>0.92</td></mdl,g<></td></mdl,g<>	1.2	<mdl,g< td=""><td>0.92</td></mdl,g<>	0.92
<rdl< td=""><td>32</td><td><mdl< td=""><td>26</td><td><mdl< td=""><td>28</td><td><mdl< td=""><td>21</td></mdl<></td></mdl<></td></mdl<></td></rdl<>	32	<mdl< td=""><td>26</td><td><mdl< td=""><td>28</td><td><mdl< td=""><td>21</td></mdl<></td></mdl<></td></mdl<>	26	<mdl< td=""><td>28</td><td><mdl< td=""><td>21</td></mdl<></td></mdl<>	28	<mdl< td=""><td>21</td></mdl<>	21
<rdl< td=""><td>38</td><td><mdl< td=""><td>26</td><td></td><td>51.7</td><td><rdl< td=""><td>25</td></rdl<></td></mdl<></td></rdl<>	38	<mdl< td=""><td>26</td><td></td><td>51.7</td><td><rdl< td=""><td>25</td></rdl<></td></mdl<>	26		51.7	<rdl< td=""><td>25</td></rdl<>	25
	349		259		281		56.9
	262		129	<rdl< td=""><td>54</td><td><mdl< td=""><td>36</td></mdl<></td></rdl<>	54	<mdl< td=""><td>36</td></mdl<>	36
G	2160	G	985	G	423	G	106
G	1630	G	692	C	453	<rdl,g< td=""><td>160</td></rdl,g<>	160
<rdl,l< td=""><td>270</td><td><mdl.l< td=""><td>180</td><td><mdl.l< td=""><td>190</td><td><mdl,l< td=""><td>150</td></mdl,l<></td></mdl.l<></td></mdl.l<></td></rdl,l<>	270	<mdl.l< td=""><td>180</td><td><mdl.l< td=""><td>190</td><td><mdl,l< td=""><td>150</td></mdl,l<></td></mdl.l<></td></mdl.l<>	180	<mdl.l< td=""><td>190</td><td><mdl,l< td=""><td>150</td></mdl,l<></td></mdl.l<>	190	<mdl,l< td=""><td>150</td></mdl,l<>	150
	207		125	<rdl< td=""><td>89</td><td><mdl< td=""><td>36</td></mdl<></td></rdl<>	89	<mdl< td=""><td>36</td></mdl<>	36
	822		517	<rdl< td=""><td>190</td><td><mdl< td=""><td>150</td></mdl<></td></rdl<>	190	<mdl< td=""><td>150</td></mdl<>	150
<mdl< td=""><td>2.5</td><td></td><td>4.72</td><td><mdl< td=""><td>2.3</td><td><mdl< td=""><td>1.7</td></mdl<></td></mdl<></td></mdl<>	2.5		4.72	<mdl< td=""><td>2.3</td><td><mdl< td=""><td>1.7</td></mdl<></td></mdl<>	2.3	<mdl< td=""><td>1.7</td></mdl<>	1.7
	12		7.07		5.94	<mdl< td=""><td>1.7</td></mdl<>	1.7
	71.9	<rdl< td=""><td>36</td><td><mdl< td=""><td>23</td><td><mdl< td=""><td>17</td></mdl<></td></mdl<></td></rdl<>	36	<mdl< td=""><td>23</td><td><mdl< td=""><td>17</td></mdl<></td></mdl<>	23	<mdl< td=""><td>17</td></mdl<>	17
	79.5	<rdl< td=""><td>36</td><td><rdl< td=""><td>35</td><td><mdl< td=""><td>17</td></mdl<></td></rdl<></td></rdl<>	36	<rdl< td=""><td>35</td><td><mdl< td=""><td>17</td></mdl<></td></rdl<>	35	<mdl< td=""><td>17</td></mdl<>	17
	79.5	<rdl< td=""><td>36</td><td><rdl< td=""><td>35</td><td><mdl< td=""><td>17</td></mdl<></td></rdl<></td></rdl<>	36	<rdl< td=""><td>35</td><td><mdl< td=""><td>17</td></mdl<></td></rdl<>	35	<mdl< td=""><td>17</td></mdl<>	17
B,H	168	B,H	119	В,Н	118	RDL,B,H	46
	0.467	<rdl< td=""><td>0.28</td><td><rdl< td=""><td>0.19</td><td><rdl< td=""><td>0.04</td></rdl<></td></rdl<></td></rdl<>	0.28	<rdl< td=""><td>0.19</td><td><rdl< td=""><td>0.04</td></rdl<></td></rdl<>	0.19	<rdl< td=""><td>0.04</td></rdl<>	0.04
L	15600	L	14200	L	14800		9430
<rdl< td=""><td>12</td><td><rdl< td=""><td>11</td><td><rdl< td=""><td>8.9</td><td><rdl< td=""><td>5.3</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	12	<rdl< td=""><td>11</td><td><rdl< td=""><td>8.9</td><td><rdl< td=""><td>5.3</td></rdl<></td></rdl<></td></rdl<>	11	<rdl< td=""><td>8.9</td><td><rdl< td=""><td>5.3</td></rdl<></td></rdl<>	8.9	<rdl< td=""><td>5.3</td></rdl<>	5.3
<rdl< td=""><td>0.23</td><td><rdl< td=""><td>0.23</td><td><rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.13</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	0.23	<rdl< td=""><td>0.23</td><td><rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.13</td></rdl<></td></rdl<></td></rdl<>	0.23	<rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.13</td></rdl<></td></rdl<>	0.21	<rdl< td=""><td>0.13</td></rdl<>	0.13
<rdl< td=""><td>0.59</td><td><rdl< td=""><td>0.44</td><td><rdl< td=""><td>0.28</td><td><mdl< td=""><td>0.2</td></mdl<></td></rdl<></td></rdl<></td></rdl<>	0.59	<rdl< td=""><td>0.44</td><td><rdl< td=""><td>0.28</td><td><mdl< td=""><td>0.2</td></mdl<></td></rdl<></td></rdl<>	0.44	<rdl< td=""><td>0.28</td><td><mdl< td=""><td>0.2</td></mdl<></td></rdl<>	0.28	<mdl< td=""><td>0.2</td></mdl<>	0.2
	30		22.9		21.3		11.8
	62.8		45.7		40.7		15.8
C		G	25000	G	24300		2120
	98.9		45.5		30.9	<rdl< td=""><td>8.9</td></rdl<>	8.9
	6600		5980		5930		407
	25	Ī	20.4		17.2		12.8
<rdl< td=""><td>1.2</td><td><rdl< td=""><td>0.57</td><td><mdl< td=""><td>0.33</td><td><mdl< td=""><td>0.27</td></mdl<></td></mdl<></td></rdl<></td></rdl<>	1.2	<rdl< td=""><td>0.57</td><td><mdl< td=""><td>0.33</td><td><mdl< td=""><td>0.27</td></mdl<></td></mdl<></td></rdl<>	0.57	<mdl< td=""><td>0.33</td><td><mdl< td=""><td>0.27</td></mdl<></td></mdl<>	0.33	<mdl< td=""><td>0.27</td></mdl<>	0.27
	G G G G G G G G G G G G G G G G G G G	3592 G 2790 G 4420 G 2200 3230 3430 G 1220 G 2350 G 829 230 G 691 21390 G 668 <rdl 0.23="" 0.467="" 0.59="" 1.2="" 119<="" 12="" 15600="" 1630="" 168="" 2.5="" 207="" 2160="" 25="" 262="" 26400="" 270="" 30="" 32="" 349="" 38="" 62.8="" 6600="" 71.9="" 79.5="" 822="" 98.9="" <mdl="" <rdl="" b,h="" c="" g="" l="" td=""><td>3592 G 2790 G G 4420 G G 2200 G 3230 3430 G 1220 G G 2350 G G 829 G 230 <rdl 0.23="" 0.25="" 0.2<="" 12="" 15600="" 1630="" 2.5="" 207="" 21390="" 2160="" 262="" 270="" 32="" 349="" 38="" 668="" 691="" 71.9="" 79.5="" 822="" <mdl="" <mdl,g="" <mdl,l="" <rdl="" c="" crdl="" crdl,l="" g="" l="" td=""><td>3592 1912 G 2790 G 1750 G 4420 G 2790 C 2200 G 1160 3230 1520 3430 1730 G 1220 G 718 G 2350 G 1220 G 829 G 452 230 <rdl 0.23="" 0.24="" 0.25="" 0.27="" 0.28="" 0.44="" 0.467="" 0.59="" 1.1="" 1.2="" 11="" 11763="" 119="" 12="" 120="" 125="" 129="" 14200="" 15600="" 1630="" 168="" 180="" 2.5="" 207="" 21390="" 2160="" 22.9="" 250="" 25000="" 259="" 26="" 262="" 26400="" 270="" 30="" 303="" 32="" 349="" 36="" 38="" 4.72="" 45.5="" 45.5<="" 45.7="" 517="" 5980="" 6.68="" 6600="" 662.8="" 668="" 691="" 692="" 7.07="" 71.9="" 79.5="" 98.9="" 985="" <mdl="" <mdl,g="" <mdl,l="" <rdl="" b,h="" c="" g="" l="" r22="" rb,h="" td="" ∠rdl=""><td> S592 1912 </td><td>3592 1912 1314 G 2790 G 1750 G 965 G 4420 G 2790 G 1070 C 2200 G 1160 G 741 3230 1520 1100 3430 1730 1120 G 1220 G 718 G 484 G 2350 G 1220 G 767 G 829 G 452 G 360 230 <rdl< td=""> 120 <rdl< td=""> 100 G 691 G 303 G 323 21390 11763 7030 G 691 G 303 G 323 21390 11763 7030 G 668 <mdl, g<="" td=""> 1.1 <mdl, g<="" td=""> 1.2 <rdl< td=""> 32 <mdl< td=""> 26 <mdl< td=""> 28 <rdl< td=""> 32 <mdl< td=""> 26 <mdl< td=""> 28 <rdl< td=""> 32 <mdl< td=""> 26</mdl<></rdl<></mdl<></mdl<></rdl<></mdl<></mdl<></rdl<></mdl,></mdl,></rdl<></rdl<></td><td> S592</td></rdl></td></rdl></td></rdl>	3592 G 2790 G G 4420 G G 2200 G 3230 3430 G 1220 G G 2350 G G 829 G 230 <rdl 0.23="" 0.25="" 0.2<="" 12="" 15600="" 1630="" 2.5="" 207="" 21390="" 2160="" 262="" 270="" 32="" 349="" 38="" 668="" 691="" 71.9="" 79.5="" 822="" <mdl="" <mdl,g="" <mdl,l="" <rdl="" c="" crdl="" crdl,l="" g="" l="" td=""><td>3592 1912 G 2790 G 1750 G 4420 G 2790 C 2200 G 1160 3230 1520 3430 1730 G 1220 G 718 G 2350 G 1220 G 829 G 452 230 <rdl 0.23="" 0.24="" 0.25="" 0.27="" 0.28="" 0.44="" 0.467="" 0.59="" 1.1="" 1.2="" 11="" 11763="" 119="" 12="" 120="" 125="" 129="" 14200="" 15600="" 1630="" 168="" 180="" 2.5="" 207="" 21390="" 2160="" 22.9="" 250="" 25000="" 259="" 26="" 262="" 26400="" 270="" 30="" 303="" 32="" 349="" 36="" 38="" 4.72="" 45.5="" 45.5<="" 45.7="" 517="" 5980="" 6.68="" 6600="" 662.8="" 668="" 691="" 692="" 7.07="" 71.9="" 79.5="" 98.9="" 985="" <mdl="" <mdl,g="" <mdl,l="" <rdl="" b,h="" c="" g="" l="" r22="" rb,h="" td="" ∠rdl=""><td> S592 1912 </td><td>3592 1912 1314 G 2790 G 1750 G 965 G 4420 G 2790 G 1070 C 2200 G 1160 G 741 3230 1520 1100 3430 1730 1120 G 1220 G 718 G 484 G 2350 G 1220 G 767 G 829 G 452 G 360 230 <rdl< td=""> 120 <rdl< td=""> 100 G 691 G 303 G 323 21390 11763 7030 G 691 G 303 G 323 21390 11763 7030 G 668 <mdl, g<="" td=""> 1.1 <mdl, g<="" td=""> 1.2 <rdl< td=""> 32 <mdl< td=""> 26 <mdl< td=""> 28 <rdl< td=""> 32 <mdl< td=""> 26 <mdl< td=""> 28 <rdl< td=""> 32 <mdl< td=""> 26</mdl<></rdl<></mdl<></mdl<></rdl<></mdl<></mdl<></rdl<></mdl,></mdl,></rdl<></rdl<></td><td> S592</td></rdl></td></rdl>	3592 1912 G 2790 G 1750 G 4420 G 2790 C 2200 G 1160 3230 1520 3430 1730 G 1220 G 718 G 2350 G 1220 G 829 G 452 230 <rdl 0.23="" 0.24="" 0.25="" 0.27="" 0.28="" 0.44="" 0.467="" 0.59="" 1.1="" 1.2="" 11="" 11763="" 119="" 12="" 120="" 125="" 129="" 14200="" 15600="" 1630="" 168="" 180="" 2.5="" 207="" 21390="" 2160="" 22.9="" 250="" 25000="" 259="" 26="" 262="" 26400="" 270="" 30="" 303="" 32="" 349="" 36="" 38="" 4.72="" 45.5="" 45.5<="" 45.7="" 517="" 5980="" 6.68="" 6600="" 662.8="" 668="" 691="" 692="" 7.07="" 71.9="" 79.5="" 98.9="" 985="" <mdl="" <mdl,g="" <mdl,l="" <rdl="" b,h="" c="" g="" l="" r22="" rb,h="" td="" ∠rdl=""><td> S592 1912 </td><td>3592 1912 1314 G 2790 G 1750 G 965 G 4420 G 2790 G 1070 C 2200 G 1160 G 741 3230 1520 1100 3430 1730 1120 G 1220 G 718 G 484 G 2350 G 1220 G 767 G 829 G 452 G 360 230 <rdl< td=""> 120 <rdl< td=""> 100 G 691 G 303 G 323 21390 11763 7030 G 691 G 303 G 323 21390 11763 7030 G 668 <mdl, g<="" td=""> 1.1 <mdl, g<="" td=""> 1.2 <rdl< td=""> 32 <mdl< td=""> 26 <mdl< td=""> 28 <rdl< td=""> 32 <mdl< td=""> 26 <mdl< td=""> 28 <rdl< td=""> 32 <mdl< td=""> 26</mdl<></rdl<></mdl<></mdl<></rdl<></mdl<></mdl<></rdl<></mdl,></mdl,></rdl<></rdl<></td><td> S592</td></rdl>	S592 1912	3592 1912 1314 G 2790 G 1750 G 965 G 4420 G 2790 G 1070 C 2200 G 1160 G 741 3230 1520 1100 3430 1730 1120 G 1220 G 718 G 484 G 2350 G 1220 G 767 G 829 G 452 G 360 230 <rdl< td=""> 120 <rdl< td=""> 100 G 691 G 303 G 323 21390 11763 7030 G 691 G 303 G 323 21390 11763 7030 G 668 <mdl, g<="" td=""> 1.1 <mdl, g<="" td=""> 1.2 <rdl< td=""> 32 <mdl< td=""> 26 <mdl< td=""> 28 <rdl< td=""> 32 <mdl< td=""> 26 <mdl< td=""> 28 <rdl< td=""> 32 <mdl< td=""> 26</mdl<></rdl<></mdl<></mdl<></rdl<></mdl<></mdl<></rdl<></mdl,></mdl,></rdl<></rdl<>	S592

AMDL - Undetected at the method detection limit ARDL - Detected below reporting detection limits B - Blank contamination

E - Estimate

C - Low standard reference material recovery
L - High standard reference material recovery

For further information on data qualifiers see Appendix B.

Station Locator	VG3 1	0cm	VG4	10cm	VG5 1	0cm	VG5 (Rep) 10cm
Date Sampled	Aug 1		Aug 1		Aug 12		Aug 12	2, 96
% Solids	69.	1	75	.2	59.		61.	
% TOC dry	0.46	56	0.3	66	2.5	6	2.3	2
BNA Organics (µg/kg dry weight)	Qual	Value	Qual	Value	Qual	Value	Qual	Value
LPAHs	1.00							
Naphthalene	<mdl,g< td=""><td>63</td><td><mdl,g< td=""><td>57</td><td>G</td><td>279</td><td> C</td><td>243</td></mdl,g<></td></mdl,g<>	63	<mdl,g< td=""><td>57</td><td>G</td><td>279</td><td> C</td><td>243</td></mdl,g<>	57	G	279	C	243
Acenaphthene	4451	20.3	110	18.1		182		154
Acenaphthylene Anthracene	<mdl G</mdl 	23 108	<mdl< td=""><td>21</td><td></td><td>73.6</td><td></td><td>63.7</td></mdl<>	21		73.6		63.7
Fluorene	G	31	G	85.2 30.1	G	636	G	555
Phenanthrene	G	183	G	135	G	244 909	G	206 774
2-Methylnaphthalene	<mdl,g< td=""><td>63</td><td><mdl,g< td=""><td>57</td><td><rdl,g< td=""><td>78</td><td><mdl,g< td=""><td>70</td></mdl,g<></td></rdl,g<></td></mdl,g<></td></mdl,g<>	63	<mdl,g< td=""><td>57</td><td><rdl,g< td=""><td>78</td><td><mdl,g< td=""><td>70</td></mdl,g<></td></rdl,g<></td></mdl,g<>	57	<rdl,g< td=""><td>78</td><td><mdl,g< td=""><td>70</td></mdl,g<></td></rdl,g<>	78	<mdl,g< td=""><td>70</td></mdl,g<>	70
Total LPAHs	NVIDE, C	491	CIVIDE,G	404	VKDL,G	2400	KINIDL,G	2070
HPAHs		171		10-1		2400		20/0
Fluoranthene	G	315	G	239	G	1960	G	1750
Pyrene	G	356	Ğ	232	G	4050	G	3730
Benzo(a)anthracene	G	243	Ğ	172	Ğ	1500	G	1290
Chrysene		394		273		2170		1830
Benzo(b)fluoranthene		393		274		2370		2030
Benzo(k)fluoranthene	G	167	G	119	G		U	933
Benzo(a)pyrene	G	285	G	201	G	1700	G	1480
Indeno(1,2,3-Cd)Pyrene	G	149	G	102	G	600	G	525
Dibenzo(a,h)anthracene	<rdl< td=""><td>63</td><td></td><td>57.4</td><td></td><td>166</td><td></td><td>144</td></rdl<>	63		57.4		166		144
Benzo(g,h,i)perylene	G	131	G	97.3	G	413	G	336
Total HPAHs		2500		1770		16000		14000
Other BNA								
1,4-Dichlorobenzene	<mdl,g< td=""><td>1</td><td><mdl,g< td=""><td>0.92</td><td>C</td><td>2.22</td><td><mdl,g< td=""><td><u>1.1</u></td></mdl,g<></td></mdl,g<></td></mdl,g<>	1	<mdl,g< td=""><td>0.92</td><td>C</td><td>2.22</td><td><mdl,g< td=""><td><u>1.1</u></td></mdl,g<></td></mdl,g<>	0.92	C	2.22	<mdl,g< td=""><td><u>1.1</u></td></mdl,g<>	<u>1.1</u>
Di-N-Octyl Phthalate	<mdl< td=""><td>23</td><td><mdl< td=""><td>21</td><td><rdl< td=""><td>27</td><td><mdl< td=""><td>26</td></mdl<></td></rdl<></td></mdl<></td></mdl<>	23	<mdl< td=""><td>21</td><td><rdl< td=""><td>27</td><td><mdl< td=""><td>26</td></mdl<></td></rdl<></td></mdl<>	21	<rdl< td=""><td>27</td><td><mdl< td=""><td>26</td></mdl<></td></rdl<>	27	<mdl< td=""><td>26</td></mdl<>	26
Benzyl Butyl Phthalate	<mdl< td=""><td>26</td><td><rdl< td=""><td>22</td><td><rdl< td=""><td>28</td><td><mdl< td=""><td>26</td></mdl<></td></rdl<></td></rdl<></td></mdl<>	26	<rdl< td=""><td>22</td><td><rdl< td=""><td>28</td><td><mdl< td=""><td>26</td></mdl<></td></rdl<></td></rdl<>	22	<rdl< td=""><td>28</td><td><mdl< td=""><td>26</td></mdl<></td></rdl<>	28	<mdl< td=""><td>26</td></mdl<>	26
Bis(2-Ethylhexyl)Phthalate	1451	133	1451	133		324		306
Dibenzofuran	<mdl< td=""><td>484</td><td><mdl< td=""><td>36 132</td><td></td><td>166</td><td></td><td>139</td></mdl<></td></mdl<>	484	<mdl< td=""><td>36 132</td><td></td><td>166</td><td></td><td>139</td></mdl<>	36 132		166		139
4-Methylphenol Phenol	G	277	<u> </u>	193	G	1250 838	G	1010 650
Benzoic Acid	<mdl,l< td=""><td>160</td><td><mdl< td=""><td>140</td><td><rdl,l< td=""><td>200</td><td><mdl,l< td=""><td>180</td></mdl,l<></td></rdl,l<></td></mdl<></td></mdl,l<>	160	<mdl< td=""><td>140</td><td><rdl,l< td=""><td>200</td><td><mdl,l< td=""><td>180</td></mdl,l<></td></rdl,l<></td></mdl<>	140	<rdl,l< td=""><td>200</td><td><mdl,l< td=""><td>180</td></mdl,l<></td></rdl,l<>	200	<mdl,l< td=""><td>180</td></mdl,l<>	180
Carbazole	<rdl< td=""><td>42</td><td><rdl< td=""><td>40</td><td>CRDL,L</td><td>137</td><td><ivide,e< td=""><td>121</td></ivide,e<></td></rdl<></td></rdl<>	42	<rdl< td=""><td>40</td><td>CRDL,L</td><td>137</td><td><ivide,e< td=""><td>121</td></ivide,e<></td></rdl<>	40	CRDL,L	137	<ivide,e< td=""><td>121</td></ivide,e<>	121
Coprostanol	<rdl< td=""><td>170</td><td><rdl< td=""><td>140</td><td></td><td>532</td><td>*** * ***</td><td>471</td></rdl<></td></rdl<>	170	<rdl< td=""><td>140</td><td></td><td>532</td><td>*** * ***</td><td>471</td></rdl<>	140		532	*** * ***	471
Pesticides and PCBs (µg/kg dry weight)			1					
4,4'-DDD	<mdl< td=""><td>1.9</td><td><mdl< td=""><td>1.7</td><td></td><td>4.84</td><td></td><td>5.29</td></mdl<></td></mdl<>	1.9	<mdl< td=""><td>1.7</td><td></td><td>4.84</td><td></td><td>5.29</td></mdl<>	1.7		4.84		5.29
Endosulfan I	<rdl< td=""><td>2.3</td><td><mdl< td=""><td>1.7</td><td></td><td>7.83</td><td></td><td>6.85</td></mdl<></td></rdl<>	2.3	<mdl< td=""><td>1.7</td><td></td><td>7.83</td><td></td><td>6.85</td></mdl<>	1.7		7.83		6.85
Aroclor 1254	<mdl< td=""><td>19</td><td><mdl< td=""><td>17</td><td></td><td>53.7</td><td></td><td>46.5</td></mdl<></td></mdl<>	19	<mdl< td=""><td>17</td><td></td><td>53.7</td><td></td><td>46.5</td></mdl<>	17		53.7		46.5
Aroclor 1260	<rdl< td=""><td>20</td><td><mdl< td=""><td>17</td><td></td><td>65.7</td><td></td><td>57</td></mdl<></td></rdl<>	20	<mdl< td=""><td>17</td><td></td><td>65.7</td><td></td><td>57</td></mdl<>	17		65.7		57
Total PCBs	<rdl< td=""><td>20</td><td><mdl< td=""><td>17</td><td></td><td>65.7</td><td></td><td>104</td></mdl<></td></rdl<>	20	<mdl< td=""><td>17</td><td></td><td>65.7</td><td></td><td>104</td></mdl<>	17		65.7		104
Volatiles (μg/kg dry weight)								
Acetone	B,H	73.3	<rdl,b,h< td=""><td>63</td><td>В</td><td>88.8</td><td>В</td><td>79</td></rdl,b,h<>	63	В	88.8	В	79
Metals (mg/kg dry weight)								
Mercury	<rdl< td=""><td>0.092</td><td><rdl< td=""><td>0.057</td><td></td><td>0.361</td><td></td><td>0.323</td></rdl<></td></rdl<>	0.092	<rdl< td=""><td>0.057</td><td></td><td>0.361</td><td></td><td>0.323</td></rdl<>	0.057		0.361		0.323
Aluminum	LL	12600	<u>_</u> _	10700	L	14100	L	13800
Arsenic	<rdl< td=""><td>4.3 0.16</td><td><rdl< td=""><td>4.3 0.16</td><td><rdl <rdl< td=""><td>8.3 0.21</td><td><rdl <rdl< td=""><td>8.1 0.21</td></rdl<></rdl </td></rdl<></rdl </td></rdl<></td></rdl<>	4.3 0.16	<rdl< td=""><td>4.3 0.16</td><td><rdl <rdl< td=""><td>8.3 0.21</td><td><rdl <rdl< td=""><td>8.1 0.21</td></rdl<></rdl </td></rdl<></rdl </td></rdl<>	4.3 0.16	<rdl <rdl< td=""><td>8.3 0.21</td><td><rdl <rdl< td=""><td>8.1 0.21</td></rdl<></rdl </td></rdl<></rdl 	8.3 0.21	<rdl <rdl< td=""><td>8.1 0.21</td></rdl<></rdl 	8.1 0.21
Beryllium	<rdl ∠MDI</rdl 	0.16	<rdl< td=""><td>0.16</td><td><rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.21</td></rdl<></td></rdl<></td></rdl<>	0.16	<rdl< td=""><td>0.21</td><td><rdl< td=""><td>0.21</td></rdl<></td></rdl<>	0.21	<rdl< td=""><td>0.21</td></rdl<>	0.21
Cadmium	<mdl< td=""><td>20</td><td><mdl< td=""><td>15.1</td><td>\KDL</td><td>24.6</td><td>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>23.1</td></mdl<></td></mdl<>	20	<mdl< td=""><td>15.1</td><td>\KDL</td><td>24.6</td><td>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</td><td>23.1</td></mdl<>	15.1	\KDL	24.6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	23.1
Connec		21.4		16.9		49		45.5
Copper Iron		20600		19300	С	23400	С	23200
Lead	 	21.9	 	10.9		62.1		51.4
Magnesium		4840	1	4430		5700		5580
Nickel	 	14.3		13.7		21.1		20.2
Silver	<mdl< td=""><td>0.29</td><td><mdl< td=""><td>0.28</td><td><rdl< td=""><td>0.8</td><td><rdl< td=""><td>0.67</td></rdl<></td></rdl<></td></mdl<></td></mdl<>	0.29	<mdl< td=""><td>0.28</td><td><rdl< td=""><td>0.8</td><td><rdl< td=""><td>0.67</td></rdl<></td></rdl<></td></mdl<>	0.28	<rdl< td=""><td>0.8</td><td><rdl< td=""><td>0.67</td></rdl<></td></rdl<>	0.8	<rdl< td=""><td>0.67</td></rdl<>	0.67
Zinc	 	60.2	1	51.7		97.2	1	92.3

<MDL - Undetected at the method detection limit

E - Estimate G - Low standard reference material recovery

B - Blank contamination

L - High standard reference material recovery

Note: 0 to 2 and 2 to 10cm results were proportionally combined to give10cm results. For further information on data qualifiers see Appendix B.

Station Locator	P53VG1	P53VG2	P53VG3	P53VG4		
Date Sampled	Aug 12, 96	Aug 12, 96	Aug 12, 96	Aug 12, 96	Sad	iment
Sample Number	L9209-1	L9209-2	L9209-3	L9209-4		gement
% Solids	65.7	60.4	58.4	72.4		dards
T.O.C. dry in %	0.752	2.2	0.985	0.775		
Organics	Qual Value	Qual Value	Qual Value	Qual Value	SQS	CSL
LPAHs (mg/kg TOC)						
Naphthalene	<mdl,g 8.64<="" td=""><td><mdl,g 3.2<="" td=""><td><mdl,g 7.5<="" td=""><td><mdl,g 7.61<="" td=""><td>99</td><td>170</td></mdl,g></td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 3.2<="" td=""><td><mdl,g 7.5<="" td=""><td><mdl,g 7.61<="" td=""><td>99</td><td>170</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 7.5<="" td=""><td><mdl,g 7.61<="" td=""><td>99</td><td>170</td></mdl,g></td></mdl,g>	<mdl,g 7.61<="" td=""><td>99</td><td>170</td></mdl,g>	99	170
Anthracene	G 21.7	G 10	G 25	G 27	220	1200
Acenaphthene	4.96	1.7	4.2	4.45	16	57
Phenanthrene	G 44.1	G 16	G 38	G 34.5	100	480
Fluorene	G 8.46	G 3.1	G 6.8	G 8.61	23	79
Acenaphthylene	<mdl 3.19<="" td=""><td><rdl 1.3<="" td=""><td><mdl 2.7<="" td=""><td> <mdl 2.84<="" td=""><td>66</td><td>66</td></mdl></td></mdl></td></rdl></td></mdl>	<rdl 1.3<="" td=""><td><mdl 2.7<="" td=""><td> <mdl 2.84<="" td=""><td>66</td><td>66</td></mdl></td></mdl></td></rdl>	<mdl 2.7<="" td=""><td> <mdl 2.84<="" td=""><td>66</td><td>66</td></mdl></td></mdl>	<mdl 2.84<="" td=""><td>66</td><td>66</td></mdl>	66	66
2-Methylnaphthalene	<mdl,g 8.64<="" td=""><td><mdl,c 3.2<="" td=""><td><mdl,g 7.5<="" td=""><td><mdl.g 7.61<="" td=""><td>38</td><td>64</td></mdl.g></td></mdl,g></td></mdl,c></td></mdl,g>	<mdl,c 3.2<="" td=""><td><mdl,g 7.5<="" td=""><td><mdl.g 7.61<="" td=""><td>38</td><td>64</td></mdl.g></td></mdl,g></td></mdl,c>	<mdl,g 7.5<="" td=""><td><mdl.g 7.61<="" td=""><td>38</td><td>64</td></mdl.g></td></mdl,g>	<mdl.g 7.61<="" td=""><td>38</td><td>64</td></mdl.g>	38	64
Total LPAHs	99.7	39	92	92.5	370	780
HPAHs (mg/kg TOC)	G 74.3	C 30 1	<u> </u>	C 5351	160	1200
Fluoranthene	G 73.5	G 29 G 29	G 63 G 74	G 57.5	160	1200
Pyrene Panzo(a)anthrasana	G 73.3	G 23		G 57	1000	1400
Benzo(a)anthracene Chrysene	69.4	39	G 49 81	G 39.9 63.2	110	270 460
Total benzo fluoranthenes	G 92.3	G 53	G 115	G 90.7	230	450
Benzo(a)pyrene	G 49.2	G 27	G 60	G 46.3	99	210
Indeno(1,2,3-Cd)Pyrene	G 26.5	C 13	C 30	G 46.3	34	88
Dibenzo(a,h)anthracene	<mdl 8.64<="" td=""><td><rdl 3.6<="" td=""><td><rdl 7.8<="" td=""><td><mdl 7.61<="" td=""><td>12</td><td>33</td></mdl></td></rdl></td></rdl></td></mdl>	<rdl 3.6<="" td=""><td><rdl 7.8<="" td=""><td><mdl 7.61<="" td=""><td>12</td><td>33</td></mdl></td></rdl></td></rdl>	<rdl 7.8<="" td=""><td><mdl 7.61<="" td=""><td>12</td><td>33</td></mdl></td></rdl>	<mdl 7.61<="" td=""><td>12</td><td>33</td></mdl>	12	33
Benzo(g,h,i)perylene	G 26.1	G 12	G 29	G 20.5	31	78
Total HPAHs	466	229	508	405	960	5300
Other (mg/kg TOC)				1,70	7 7 7	
1,2,4-Trichlorobenzene	<mdl,g 0.15<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>0.81</td><td>1.8</td></mdl,g></td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.1<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>0.81</td><td>1.8</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>0.81</td><td>1.8</td></mdl,g></td></mdl,g>	<mdl,g 0.12<="" td=""><td>0.81</td><td>1.8</td></mdl,g>	0.81	1.8
1,2-Dichlorobenzene	<mdl,g 0.15<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl.g 0.12<="" td=""><td>2.3</td><td>2.3</td></mdl.g></td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.1<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl.g 0.12<="" td=""><td>2.3</td><td>2.3</td></mdl.g></td></mdl,g></td></mdl,g>	<mdl,g 0.1<="" td=""><td><mdl.g 0.12<="" td=""><td>2.3</td><td>2.3</td></mdl.g></td></mdl,g>	<mdl.g 0.12<="" td=""><td>2.3</td><td>2.3</td></mdl.g>	2.3	2.3
1,4-Dichlorobenzene	<mdl,g 0.15<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>3.1</td><td>9</td></mdl,g></td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.1<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>3.1</td><td>9</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>3.1</td><td>9</td></mdl,g></td></mdl,g>	<mdl,g 0.12<="" td=""><td>3.1</td><td>9</td></mdl,g>	3.1	9
Hexachlorobenzene	<mdl,g 0.15<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>0.38</td><td>2.3</td></mdl,g></td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.1<="" td=""><td><mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>0.38</td><td>2.3</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 0.1<="" td=""><td><mdl,g 0.12<="" td=""><td>0.38</td><td>2.3</td></mdl,g></td></mdl,g>	<mdl,g 0.12<="" td=""><td>0.38</td><td>2.3</td></mdl,g>	0.38	2.3
Diethyl Phthalate	<mdl 5.45<="" td=""><td><mdl 2<="" td=""><td><mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>61</td><td>110</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 2<="" td=""><td><mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>61</td><td>110</td></mdl></td></mdl></td></mdl>	<mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>61</td><td>110</td></mdl></td></mdl>	<mdl 4.77<="" td=""><td>61</td><td>110</td></mdl>	61	110
Dimethyl Phthalate	<mdl 2.26<="" td=""><td><mdl 0.8<="" td=""><td><mdl 1.9<="" td=""><td><mdl 1.94<="" td=""><td>53</td><td>53</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.8<="" td=""><td><mdl 1.9<="" td=""><td><mdl 1.94<="" td=""><td>53</td><td>53</td></mdl></td></mdl></td></mdl>	<mdl 1.9<="" td=""><td><mdl 1.94<="" td=""><td>53</td><td>53</td></mdl></td></mdl>	<mdl 1.94<="" td=""><td>53</td><td>53</td></mdl>	53	53
Di-N-Butyl Phthalate	<mdl 5.45<="" td=""><td><mdl 2<="" td=""><td><mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>220</td><td>1700</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 2<="" td=""><td><mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>220</td><td>1700</td></mdl></td></mdl></td></mdl>	<mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>220</td><td>1700</td></mdl></td></mdl>	<mdl 4.77<="" td=""><td>220</td><td>1700</td></mdl>	220	1700
Benzyl Butyl Phthalate	* 5.51	<rdl 1.6<="" td=""><td><rdl 4.2<="" td=""><td><rdl 3.35<="" td=""><td>4.9</td><td>64</td></rdl></td></rdl></td></rdl>	<rdl 4.2<="" td=""><td><rdl 3.35<="" td=""><td>4.9</td><td>64</td></rdl></td></rdl>	<rdl 3.35<="" td=""><td>4.9</td><td>64</td></rdl>	4.9	64
Bis(2-Ethylhexyl)Phthalate	19	12	29	* 48	47	78
Di-N-Octyl Phthalate	<mdl 3.19<="" td=""><td><mdl 1.2<="" td=""><td><mdl 2.7<="" td=""><td><mdl 2.84<="" td=""><td>58</td><td>4500</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 1.2<="" td=""><td><mdl 2.7<="" td=""><td><mdl 2.84<="" td=""><td>58</td><td>4500</td></mdl></td></mdl></td></mdl>	<mdl 2.7<="" td=""><td><mdl 2.84<="" td=""><td>58</td><td>4500</td></mdl></td></mdl>	<mdl 2.84<="" td=""><td>58</td><td>4500</td></mdl>	58	4500
Dibenzofuran	<mdl 5.45<="" td=""><td><mdl 2<="" td=""><td><mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>15</td><td>58</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 2<="" td=""><td><mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>15</td><td>58</td></mdl></td></mdl></td></mdl>	<mdl 4.7<="" td=""><td><mdl 4.77<="" td=""><td>15</td><td>58</td></mdl></td></mdl>	<mdl 4.77<="" td=""><td>15</td><td>58</td></mdl>	15	58
Hexachlorobutadiene	711100,0 0.10	<mdl,g 2<="" td=""><td>* <mdl,g 4.7<="" td=""><td>* <mdl,g 4.77<="" td=""><td>3.9</td><td>6.2</td></mdl,g></td></mdl,g></td></mdl,g>	* <mdl,g 4.7<="" td=""><td>* <mdl,g 4.77<="" td=""><td>3.9</td><td>6.2</td></mdl,g></td></mdl,g>	* <mdl,g 4.77<="" td=""><td>3.9</td><td>6.2</td></mdl,g>	3.9	6.2
N-Nitrosodiphenylamine	<mdl 5.45<br=""><mdl 2.66<="" td=""><td><mdl 2<br=""><rdl 1.6<="" td=""><td><mdl 4.7<br=""><rdl 2.6<="" td=""><td><mdl 4.77<br=""><mdl 2.32<="" td=""><td>11</td><td><u>11</u> 65</td></mdl></mdl></td></rdl></mdl></td></rdl></mdl></td></mdl></mdl>	<mdl 2<br=""><rdl 1.6<="" td=""><td><mdl 4.7<br=""><rdl 2.6<="" td=""><td><mdl 4.77<br=""><mdl 2.32<="" td=""><td>11</td><td><u>11</u> 65</td></mdl></mdl></td></rdl></mdl></td></rdl></mdl>	<mdl 4.7<br=""><rdl 2.6<="" td=""><td><mdl 4.77<br=""><mdl 2.32<="" td=""><td>11</td><td><u>11</u> 65</td></mdl></mdl></td></rdl></mdl>	<mdl 4.77<br=""><mdl 2.32<="" td=""><td>11</td><td><u>11</u> 65</td></mdl></mdl>	11	<u>11</u> 65
Total PCBs Other (µg/kg dry weight)	<1VIDL 2.00	CRUL 1.0	KDL 2.0	<nidl 2.32<="" td=""><td>12</td><td>- 63</td></nidl>	12	- 63
Phenol	G 306	G 402	* G 481	G 405	420	1200
2-Methylphenol	<mdl,g 41<="" td=""><td><mdl,g 45<="" td=""><td><mdl.c 46<="" td=""><td><mdl 37<="" g="" td=""><td>63</td><td>63</td></mdl></td></mdl.c></td></mdl,g></td></mdl,g>	<mdl,g 45<="" td=""><td><mdl.c 46<="" td=""><td><mdl 37<="" g="" td=""><td>63</td><td>63</td></mdl></td></mdl.c></td></mdl,g>	<mdl.c 46<="" td=""><td><mdl 37<="" g="" td=""><td>63</td><td>63</td></mdl></td></mdl.c>	<mdl 37<="" g="" td=""><td>63</td><td>63</td></mdl>	63	63
4-Methylphenol	G 440	C 556	G 574	G 291	670	670
2,4-Dimethylphenol	* * <mdl,g 41<="" td=""><td>* * <mdl,g 45<="" td=""><td>* * <mdl,g 46<="" td=""><td>* * <mdl,g 37<="" td=""><td>29</td><td>29</td></mdl,g></td></mdl,g></td></mdl,g></td></mdl,g>	* * <mdl,g 45<="" td=""><td>* * <mdl,g 46<="" td=""><td>* * <mdl,g 37<="" td=""><td>29</td><td>29</td></mdl,g></td></mdl,g></td></mdl,g>	* * <mdl,g 46<="" td=""><td>* * <mdl,g 37<="" td=""><td>29</td><td>29</td></mdl,g></td></mdl,g>	* * <mdl,g 37<="" td=""><td>29</td><td>29</td></mdl,g>	29	29
Pentachlorophenol	<mdl,e,g 41<="" td=""><td><mdl,e,g 45<="" td=""><td><mdl,e,g 46<="" td=""><td>:MDL,E,G 37</td><td>360</td><td>690</td></mdl,e,g></td></mdl,e,g></td></mdl,e,g>	<mdl,e,g 45<="" td=""><td><mdl,e,g 46<="" td=""><td>:MDL,E,G 37</td><td>360</td><td>690</td></mdl,e,g></td></mdl,e,g>	<mdl,e,g 46<="" td=""><td>:MDL,E,G 37</td><td>360</td><td>690</td></mdl,e,g>	:MDL,E,G 37	360	690
Benzyl Alcohol	<mdl,g 41<="" td=""><td><mdl,g 45<="" td=""><td><mdl,g 46<="" td=""><td><mdl,g 37<="" td=""><td>57</td><td>73</td></mdl,g></td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 45<="" td=""><td><mdl,g 46<="" td=""><td><mdl,g 37<="" td=""><td>57</td><td>73</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 46<="" td=""><td><mdl,g 37<="" td=""><td>57</td><td>73</td></mdl,g></td></mdl,g>	<mdl,g 37<="" td=""><td>57</td><td>73</td></mdl,g>	57	73
Benzoic Acid	<mdl,l 170<="" td=""><td><mdl,l 180<="" td=""><td><mdl,l 190<="" td=""><td><mdl,l 150<="" td=""><td>650</td><td>650</td></mdl,l></td></mdl,l></td></mdl,l></td></mdl,l>	<mdl,l 180<="" td=""><td><mdl,l 190<="" td=""><td><mdl,l 150<="" td=""><td>650</td><td>650</td></mdl,l></td></mdl,l></td></mdl,l>	<mdl,l 190<="" td=""><td><mdl,l 150<="" td=""><td>650</td><td>650</td></mdl,l></td></mdl,l>	<mdl,l 150<="" td=""><td>650</td><td>650</td></mdl,l>	650	650
Metals (mg/kg dry weigh		L				
Mercury	<rdl 0.14<="" td=""><td><rdl 0.2<="" td=""><td><rdl 0.2<="" td=""><td><rdl 0.09<="" td=""><td>0.41</td><td>0.59</td></rdl></td></rdl></td></rdl></td></rdl>	<rdl 0.2<="" td=""><td><rdl 0.2<="" td=""><td><rdl 0.09<="" td=""><td>0.41</td><td>0.59</td></rdl></td></rdl></td></rdl>	<rdl 0.2<="" td=""><td><rdl 0.09<="" td=""><td>0.41</td><td>0.59</td></rdl></td></rdl>	<rdl 0.09<="" td=""><td>0.41</td><td>0.59</td></rdl>	0.41	0.59
Arsenic	<rdl 5.8<="" td=""><td><rdl 7.6<="" td=""><td><rdl 5.5<="" td=""><td><rdl 5.5<="" td=""><td>57</td><td>93</td></rdl></td></rdl></td></rdl></td></rdl>	<rdl 7.6<="" td=""><td><rdl 5.5<="" td=""><td><rdl 5.5<="" td=""><td>57</td><td>93</td></rdl></td></rdl></td></rdl>	<rdl 5.5<="" td=""><td><rdl 5.5<="" td=""><td>57</td><td>93</td></rdl></td></rdl>	<rdl 5.5<="" td=""><td>57</td><td>93</td></rdl>	57	93
Cadmium	<mdl 0.23<="" td=""><td><rdl 0.3<="" td=""><td><mdl 0.3<="" td=""><td><mdl 0.21<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl></td></rdl></td></mdl>	<rdl 0.3<="" td=""><td><mdl 0.3<="" td=""><td><mdl 0.21<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl></td></rdl>	<mdl 0.3<="" td=""><td><mdl 0.21<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl>	<mdl 0.21<="" td=""><td>5.1</td><td>6.7</td></mdl>	5.1	6.7
Chromium	17.8		22	17.7	260	270
Copper	24.7	33	36	24.9	390	390
Lead	17.4	24	26	16	450	530
Silver	<mdl 0.3<="" td=""><td><mdl 0.3<="" td=""><td><mdl 0.3<="" td=""><td><mdl 0.28<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.3<="" td=""><td><mdl 0.3<="" td=""><td><mdl 0.28<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl></td></mdl>	<mdl 0.3<="" td=""><td><mdl 0.28<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl>	<mdl 0.28<="" td=""><td>6.1</td><td>6.1</td></mdl>	6.1	6.1
Zinc	63.9	73	l 78	63.8	410	960

<RDL - Detected below quantification limits
<MDL - Undetected at the method detection limit

TABLE	4-2. Comp	arison to Sedii		ls (continued)		
Station Locator	P53VG5	P53VG5 (Rep)	P53VG6	P53VG7		
Date Sampled	Aug 12, 96	Aug 12, 96	Aug 12, 96	Aug 12, 96	Sedi	ment
Sample Number	L9209-5	L9209-11	L9209-6	L9209-7	Manag	ement
% Solids	52.7	61.7	57.2	75.4	Stan	dards
T.O.C. dry in %	2.6	1.38	2.69	0.463		
Organics	Qual Valu	e Qual Valu	e Qual Value	Qual Value	SQS	CSL
LPAHs (mg/kg TOC)						
Naphthalene	G 15.		<mdl,g 2.8<="" td=""><td><mdl,g 12.3<="" td=""><td>99</td><td>1<i>7</i>0</td></mdl,g></td></mdl,g>	<mdl,g 12.3<="" td=""><td>99</td><td>1<i>7</i>0</td></mdl,g>	99	1 <i>7</i> 0
Anthracene	G 35.8		G 13	<rdl,g 5.18<="" td=""><td>220</td><td>1200</td></rdl,g>	220	1200
Acenaphthene	10.		2.2	<mdl 3.24<="" td=""><td>16</td><td>57</td></mdl>	16	57
Phenanthrene	G 53.5		G 22	G 18.3	100	480
Fluorene	G 14.8		G 4.2	<mdl,g 4.54<="" td=""><td>23</td><td>79</td></mdl,g>	2 3	79
Acenaphthylene	4.27		<rdl 1.3<="" td=""><td><mdl 4.54<="" td=""><td>66</td><td>66</td></mdl></td></rdl>	<mdl 4.54<="" td=""><td>66</td><td>66</td></mdl>	66	66
2-Methylnaphthalene	<rdl,g 4.2<="" td=""><td></td><td><mdl,g 2.8<="" td=""><td><mdl,g 12.3<="" td=""><td>38</td><td>64</td></mdl,g></td></mdl,g></td></rdl,g>		<mdl,g 2.8<="" td=""><td><mdl,g 12.3<="" td=""><td>38</td><td>64</td></mdl,g></td></mdl,g>	<mdl,g 12.3<="" td=""><td>38</td><td>64</td></mdl,g>	38	64
Total LPAHs	138	139	49	60.4	370	780
HPAHs (mg/kg TOC)						
Fluoranthene	G 107		G 36	G 33	160	1200
Pyrene	G 170			G 30	1000	1400
Benzo(a)anthracene	G 84.0		G 28	G 15.8	110	270
Chrysene	* 124			26.3	110	460
Total benzo fluoranthenes	G 179		G 60	G 36.1	230	450
Benzo(a)pyrene	G 90.4		G 29	<rdl,g 14.9<="" td=""><td>99</td><td>210</td></rdl,g>	99	210
Indeno(1,2,3-Cd)Pyrene	G 31.9		G 13	<rdl,g 9.5<="" td=""><td>34</td><td>88</td></rdl,g>	34	88
Dibenzo(a,h)anthracene	8.8		<rdl 3.7<="" td=""><td>* <mdl 12.3<="" td=""><td>12</td><td>33</td></mdl></td></rdl>	* <mdl 12.3<="" td=""><td>12</td><td>33</td></mdl>	12	33
Benzo(g,h,i)perylene	G 26.0		G 12	<rdl,g 7.78<="" td=""><td>31</td><td>78</td></rdl,g>	31	78
Total HPAHs	823	852	261	186	960	5300
Other (mg/kg TOC)	***************************************					
1,2,4-Trichlorobenzene	<mdl,g 0.0:<="" td=""><td></td><td><mdl,g 0<="" td=""><td><mdl,g 0.2<="" td=""><td>0.81</td><td>1.8</td></mdl,g></td></mdl,g></td></mdl,g>		<mdl,g 0<="" td=""><td><mdl,g 0.2<="" td=""><td>0.81</td><td>1.8</td></mdl,g></td></mdl,g>	<mdl,g 0.2<="" td=""><td>0.81</td><td>1.8</td></mdl,g>	0.81	1.8
1,2-Dichlorobenzene	<mdl,g 0.0:<="" td=""><td></td><td><mdl,g 0<="" td=""><td><mdl,g 0.2<="" td=""><td>2.3</td><td>2.3</td></mdl,g></td></mdl,g></td></mdl,g>		<mdl,g 0<="" td=""><td><mdl,g 0.2<="" td=""><td>2.3</td><td>2.3</td></mdl,g></td></mdl,g>	<mdl,g 0.2<="" td=""><td>2.3</td><td>2.3</td></mdl,g>	2.3	2.3
1,4-Dichlorobenzene	G 0.20		<mdl,g 0<="" td=""><td><mdl,g 0.2<="" td=""><td>3.1</td><td>9</td></mdl,g></td></mdl,g>	<mdl,g 0.2<="" td=""><td>3.1</td><td>9</td></mdl,g>	3.1	9
Hexachlorobenzene	<mdl,g 0.0<="" td=""><td></td><td><mdl,g 0<="" td=""><td><mdl,g 0.2<="" td=""><td>0.38</td><td>2.3</td></mdl,g></td></mdl,g></td></mdl,g>		<mdl,g 0<="" td=""><td><mdl,g 0.2<="" td=""><td>0.38</td><td>2.3</td></mdl,g></td></mdl,g>	<mdl,g 0.2<="" td=""><td>0.38</td><td>2.3</td></mdl,g>	0.38	2.3
Diethyl Phthalate	<mdl 1.9<="" td=""><td></td><td></td><td><mdl 7.78<="" td=""><td>61</td><td>110</td></mdl></td></mdl>			<mdl 7.78<="" td=""><td>61</td><td>110</td></mdl>	61	110
Dimethyl Phthalate	<mdl 0.8<="" td=""><td></td><td><mdl 0.7<="" td=""><td><mdl 3.24<="" td=""><td>53</td><td>53</td></mdl></td></mdl></td></mdl>		<mdl 0.7<="" td=""><td><mdl 3.24<="" td=""><td>53</td><td>53</td></mdl></td></mdl>	<mdl 3.24<="" td=""><td>53</td><td>53</td></mdl>	53	53
Di-N-Butyl Phthalate	<mdl 1.90<="" td=""><td></td><td><mdl 1.7<="" td=""><td><mdl 7.78<="" td=""><td>220</td><td>1700</td></mdl></td></mdl></td></mdl>		<mdl 1.7<="" td=""><td><mdl 7.78<="" td=""><td>220</td><td>1700</td></mdl></td></mdl>	<mdl 7.78<="" td=""><td>220</td><td>1700</td></mdl>	220	1700
Benzyl Butyl Phthalate	<rdl 1.40<="" td=""><td></td><td>1.9</td><td>* <rdl 5.4<="" td=""><td>4.9</td><td>64</td></rdl></td></rdl>		1.9	* <rdl 5.4<="" td=""><td>4.9</td><td>64</td></rdl>	4.9	64
Bis(2-Ethylhexyl)Phthalate	13.4		10	12.3	47	78
Di-N-Octyl Phthalate	<rdl 1.2<="" td=""><td></td><td><mdl 1<="" td=""><td><mdl 4.54<="" td=""><td>58</td><td>4500</td></mdl></td></mdl></td></rdl>		<mdl 1<="" td=""><td><mdl 4.54<="" td=""><td>58</td><td>4500</td></mdl></td></mdl>	<mdl 4.54<="" td=""><td>58</td><td>4500</td></mdl>	58	4500
Dibenzofuran	10.		<rdl 2<="" td=""><td><mdl 7.78<="" td=""><td>15</td><td>58</td></mdl></td></rdl>	<mdl 7.78<="" td=""><td>15</td><td>58</td></mdl>	15	58
Hexachlorobutadiene	<mdl,g 1.90<="" td=""><td></td><td><mdl,g 1.7<="" td=""><td>* * <mdl,g 7.78<="" td=""><td>3.9</td><td>6.2</td></mdl,g></td></mdl,g></td></mdl,g>		<mdl,g 1.7<="" td=""><td>* * <mdl,g 7.78<="" td=""><td>3.9</td><td>6.2</td></mdl,g></td></mdl,g>	* * <mdl,g 7.78<="" td=""><td>3.9</td><td>6.2</td></mdl,g>	3.9	6.2
N-Nitrosodiphenylamine	<mdl 1.90<="" td=""><td></td><td><mdl 1.7<="" td=""><td><mdl 7.78<="" td=""><td>11</td><td>11</td></mdl></td></mdl></td></mdl>		<mdl 1.7<="" td=""><td><mdl 7.78<="" td=""><td>11</td><td>11</td></mdl></td></mdl>	<mdl 7.78<="" td=""><td>11</td><td>11</td></mdl>	11	11
Total PCBs	5.83	2 <rdl 3.3<="" td=""><td><rdl 1.3<="" td=""><td><mdl 3.67<="" td=""><td>12</td><td>65</td></mdl></td></rdl></td></rdl>	<rdl 1.3<="" td=""><td><mdl 3.67<="" td=""><td>12</td><td>65</td></mdl></td></rdl>	<mdl 3.67<="" td=""><td>12</td><td>65</td></mdl>	12	65
Other (µg/kg dry weight)	* * 6 163	n	* C 453		420	1200
Phenol	0 103	0 072		<rdl,g 160<="" td=""><td>420</td><td>1200</td></rdl,g>	420	1200
2-Methylphenol	<mdl,g 51<="" td=""><td><mdl,g 44<="" td=""><td><mdl,g 47<="" td=""><td><mdl,g 36<="" td=""><td>63</td><td>63</td></mdl,g></td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 44<="" td=""><td><mdl,g 47<="" td=""><td><mdl,g 36<="" td=""><td>63</td><td>63</td></mdl,g></td></mdl,g></td></mdl,g>	<mdl,g 47<="" td=""><td><mdl,g 36<="" td=""><td>63</td><td>63</td></mdl,g></td></mdl,g>	<mdl,g 36<="" td=""><td>63</td><td>63</td></mdl,g>	63	63
4-Methylphenol	0 210	0 703		G 106	670	670 29
2,4-Dimethylphenol	TITIOL, G DI	CIVIDE, C. TT	(NOC, 0 47	111102,0 00	29 360	690
Pentachlorophenol	<mdl,e,g 51<br=""><mdl,g 51<="" td=""><td></td><td></td><td>:MDL,E,G 36 <mdl,g 36<="" td=""><td>57</td><td>73</td></mdl,g></td></mdl,g></mdl,e,g>			:MDL,E,G 36 <mdl,g 36<="" td=""><td>57</td><td>73</td></mdl,g>	57	73
Benzyi Alcohol					650	650
Benzoic Acid	<rdl,l 270<="" td=""><td>MDL,L 180</td><td><mdl,l 190<="" td=""><td><mdl,l 150<="" td=""><td>630</td><td>630</td></mdl,l></td></mdl,l></td></rdl,l>	MDL,L 180	<mdl,l 190<="" td=""><td><mdl,l 150<="" td=""><td>630</td><td>630</td></mdl,l></td></mdl,l>	<mdl,l 150<="" td=""><td>630</td><td>630</td></mdl,l>	630	630
Metals (mg/kg dry weigh	t) * 0.4	7 <rdl 0.3<="" td=""><td><rdl 0.2<="" td=""><td><rdl 0.04<="" td=""><td>0.41</td><td>0.59</td></rdl></td></rdl></td></rdl>	<rdl 0.2<="" td=""><td><rdl 0.04<="" td=""><td>0.41</td><td>0.59</td></rdl></td></rdl>	<rdl 0.04<="" td=""><td>0.41</td><td>0.59</td></rdl>	0.41	0.59
Mercury			<rdl 0.2<="" td=""><td><rdl 0.04<="" td=""><td>57</td><td>93</td></rdl></td></rdl>	<rdl 0.04<="" td=""><td>57</td><td>93</td></rdl>	57	93
Arsenic	<rdl 12<="" td=""><td></td><td></td><td></td><td>5.1</td><td>6.7</td></rdl>				5.1	6.7
Cadmium	<rdl 0.5<="" td=""><td></td><td>21</td><td>11.8</td><td>260</td><td>270</td></rdl>		21	11.8	260	270
Chromium	30			15.8	390	390
Copper	62. 98.			<rdl 8.9<="" td=""><td>450</td><td>530</td></rdl>	450	530
Lead					6.1	6.1
Silver	<rdl 1.2<="" td=""><td></td><td>78</td><td>49.3</td><td>410</td><td>960</td></rdl>		78	49.3	410	960
Zinc * - Exceeds SOS	<u> </u>		ow quantification limits		710	700

Station Locator	VG3 10cr		VG4 10c			VCE 10-		VCE (Day)	10 -		
Date Sampled	Aug 12, 9		Aug 12, 9			VG5 10ci Aug 12, 9		VG5 (Rep) Aug 12,		Mana	gement
% Solids	69.1		75.2			59.4	-	61.2			dards
T.O.C. dry in %	0.466		0.366			2.56		2.32		Stal	iuaius
Organics		Value	Qual	Value		Qual	Value	Qual	Value	sqs	CSL
LPAHs (mg/kg TOC)			- Quui	7 4.40		Quu.	Value	Quai	Value	303	CJL
Naphthalene	<mdl.g< td=""><td>13.5</td><td><mdl,g< td=""><td>16</td><td></td><td>G</td><td>11</td><td>G</td><td>10.5</td><td>99</td><td>170</td></mdl,g<></td></mdl.g<>	13.5	<mdl,g< td=""><td>16</td><td></td><td>G</td><td>11</td><td>G</td><td>10.5</td><td>99</td><td>170</td></mdl,g<>	16		G	11	G	10.5	99	170
Acenaphthene		4.36		4.9			7.1		6.64	220	1200
Acenaphthylene	<mdl< td=""><td>4.94</td><td><mdl< td=""><td>5.7</td><td></td><td></td><td>2.9</td><td></td><td>2.75</td><td>16</td><td>57</td></mdl<></td></mdl<>	4.94	<mdl< td=""><td>5.7</td><td></td><td></td><td>2.9</td><td></td><td>2.75</td><td>16</td><td>57</td></mdl<>	5.7			2.9		2.75	16	57
Anthracene	G	23.2	G	23		G	25	C	23.9	100	480
Fluorene	, C	6.65	G	8.2		G	9.5	G	8.88	23	79
Phenanthrene	G	39.3	G	3 <i>7</i>		G	36	G	33.4	66	66
2-Methylnaphthalene	<mdl,g< td=""><td>13.5</td><td><mdl,g< td=""><td>16</td><td></td><td><rdl,g< td=""><td>3</td><td><mdl,g< td=""><td>3.02</td><td>38</td><td>64</td></mdl,g<></td></rdl,g<></td></mdl,g<></td></mdl,g<>	13.5	<mdl,g< td=""><td>16</td><td></td><td><rdl,g< td=""><td>3</td><td><mdl,g< td=""><td>3.02</td><td>38</td><td>64</td></mdl,g<></td></rdl,g<></td></mdl,g<>	16		<rdl,g< td=""><td>3</td><td><mdl,g< td=""><td>3.02</td><td>38</td><td>64</td></mdl,g<></td></rdl,g<>	3	<mdl,g< td=""><td>3.02</td><td>38</td><td>64</td></mdl,g<>	3.02	38	64
Total LPAHs		105		110			94		89	370	780
HPAHs (mg/kg TOC)											
Fluoranthene	G	67.6	G	65		G	77	G	75.4	160	1200
Pyrene	G	76.4	G	63		G	158	G	161	1000	1400
Benzo(a)anthracene	G	52.1	G			G	59	G	55.6	110	270
Chrysene		84.5		75			85		78.9	110	460
Total benzo fluoranthenes	G	120	G	107		G	133	G	128	230	450
Benzo(a)pyrene	<u>C</u>	61.2	G	55		G	66	G	63.8	99	210
Indeno(1,2,3-Cd)Pyrene	C	32	G	28		G	23	<u>G</u>	22.6	34	88
Dibenzo(a,h)anthracene	* <rdl< td=""><td>13.5</td><td>*</td><td>16</td><td></td><td></td><td>6.5</td><td></td><td>6.21</td><td>12</td><td>33</td></rdl<>	13.5	*	16			6.5		6.21	12	33
Benzo(g,h,i)perylene	<u>G</u> _	28.1	G			G	16	G	14.5	31	78
Total HPAHs		536	·	483			623		606	960	5300
Other (mg/kg TOC)											
1,2,4-Trichlorobenzene	<mdl,c< td=""><td>0.22</td><td><mdl,g< td=""><td>0.3</td><td></td><td><mdl,g< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>0.81</td><td>1.8</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,c<>	0.22	<mdl,g< td=""><td>0.3</td><td></td><td><mdl,g< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>0.81</td><td>1.8</td></mdl,g<></td></mdl,g<></td></mdl,g<>	0.3		<mdl,g< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>0.81</td><td>1.8</td></mdl,g<></td></mdl,g<>	0	<mdl,g< td=""><td>0.05</td><td>0.81</td><td>1.8</td></mdl,g<>	0.05	0.81	1.8
1,2-Dichlorobenzene	<mdl,g< td=""><td>0.22</td><td><mdl,g< td=""><td>0.3</td><td></td><td><mdl,g< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>2.3</td><td>2.3</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	0.22	<mdl,g< td=""><td>0.3</td><td></td><td><mdl,g< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>2.3</td><td>2.3</td></mdl,g<></td></mdl,g<></td></mdl,g<>	0.3		<mdl,g< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>2.3</td><td>2.3</td></mdl,g<></td></mdl,g<>	0	<mdl,g< td=""><td>0.05</td><td>2.3</td><td>2.3</td></mdl,g<>	0.05	2.3	2.3
1,4-Dichlorobenzene	<mdl,g< td=""><td>0.22</td><td><mdl,g< td=""><td></td><td></td><td><u>C</u></td><td>0.1</td><td><mdl,g< td=""><td>0.05</td><td>3.1</td><td>9</td></mdl,g<></td></mdl,g<></td></mdl,g<>	0.22	<mdl,g< td=""><td></td><td></td><td><u>C</u></td><td>0.1</td><td><mdl,g< td=""><td>0.05</td><td>3.1</td><td>9</td></mdl,g<></td></mdl,g<>			<u>C</u>	0.1	<mdl,g< td=""><td>0.05</td><td>3.1</td><td>9</td></mdl,g<>	0.05	3.1	9
Hexachlorobenzene	<mdl,g< td=""><td>0.22</td><td><mdl,g< td=""><td>0.3</td><td></td><td><mdl,c< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>0.38</td><td>2.3</td></mdl,g<></td></mdl,c<></td></mdl,g<></td></mdl,g<>	0.22	<mdl,g< td=""><td>0.3</td><td></td><td><mdl,c< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>0.38</td><td>2.3</td></mdl,g<></td></mdl,c<></td></mdl,g<>	0.3		<mdl,c< td=""><td>0</td><td><mdl,g< td=""><td>0.05</td><td>0.38</td><td>2.3</td></mdl,g<></td></mdl,c<>	0	<mdl,g< td=""><td>0.05</td><td>0.38</td><td>2.3</td></mdl,g<>	0.05	0.38	2.3
Diethyl Phthalate	∠MDL <mdl< td=""><td>8.5 3.39</td><td><md1 <mdl< td=""><td>9<u>.9</u> 3.9</td><td></td><td><<u>MDL</u> <mdl< td=""><td>0.7</td><td><u> </u></td><td>1.9 0.78</td><td>61 53</td><td>110 53</td></mdl<></td></mdl<></md1 </td></mdl<>	8.5 3.39	<md1 <mdl< td=""><td>9<u>.9</u> 3.9</td><td></td><td><<u>MDL</u> <mdl< td=""><td>0.7</td><td><u> </u></td><td>1.9 0.78</td><td>61 53</td><td>110 53</td></mdl<></td></mdl<></md1 	9 <u>.9</u> 3.9		< <u>MDL</u> <mdl< td=""><td>0.7</td><td><u> </u></td><td>1.9 0.78</td><td>61 53</td><td>110 53</td></mdl<>	0.7	<u> </u>	1.9 0.78	61 53	110 53
Dimethyl Phthalate	<mdl <mdl< td=""><td>8.5</td><td><mdl< td=""><td>9.9</td><td></td><td><mdl< td=""><td>1.8</td><td><mdl< td=""><td>1.9</td><td>220</td><td>1700</td></mdl<></td></mdl<></td></mdl<></td></mdl<></mdl 	8.5	<mdl< td=""><td>9.9</td><td></td><td><mdl< td=""><td>1.8</td><td><mdl< td=""><td>1.9</td><td>220</td><td>1700</td></mdl<></td></mdl<></td></mdl<>	9.9		<mdl< td=""><td>1.8</td><td><mdl< td=""><td>1.9</td><td>220</td><td>1700</td></mdl<></td></mdl<>	1.8	<mdl< td=""><td>1.9</td><td>220</td><td>1700</td></mdl<>	1.9	220	1700
Di-N-Butyl Phthalate Benzyl Butyl Phthalate	* <rdl< td=""><td>5.54</td><td>* <rdl< td=""><td>6</td><td></td><td><rdl< td=""><td>1.1</td><td><mdl< td=""><td>1.12</td><td>4.9</td><td>64</td></mdl<></td></rdl<></td></rdl<></td></rdl<>	5.54	* <rdl< td=""><td>6</td><td></td><td><rdl< td=""><td>1.1</td><td><mdl< td=""><td>1.12</td><td>4.9</td><td>64</td></mdl<></td></rdl<></td></rdl<>	6		<rdl< td=""><td>1.1</td><td><mdl< td=""><td>1.12</td><td>4.9</td><td>64</td></mdl<></td></rdl<>	1.1	<mdl< td=""><td>1.12</td><td>4.9</td><td>64</td></mdl<>	1.12	4.9	64
Bis(2-Ethylhexyl)Phthalate	CNUL	28.6		36		ZKDL	13	< IVIDE	13.2	47	78
Di-N-Octyl Phthalate	<mdl< td=""><td>4.94</td><td><mdl< td=""><td>5.8</td><td></td><td><rdl< td=""><td>1.1</td><td><mdl< td=""><td>1.12</td><td>58</td><td>4500</td></mdl<></td></rdl<></td></mdl<></td></mdl<>	4.94	<mdl< td=""><td>5.8</td><td></td><td><rdl< td=""><td>1.1</td><td><mdl< td=""><td>1.12</td><td>58</td><td>4500</td></mdl<></td></rdl<></td></mdl<>	5.8		<rdl< td=""><td>1.1</td><td><mdl< td=""><td>1.12</td><td>58</td><td>4500</td></mdl<></td></rdl<>	1.1	<mdl< td=""><td>1.12</td><td>58</td><td>4500</td></mdl<>	1.12	58	4500
Dibenzofuran	<mdl< td=""><td>8.5</td><td><mdl< td=""><td>9.9</td><td></td><td></td><td>6.5</td><td><u> </u></td><td>6.01</td><td>15</td><td>58</td></mdl<></td></mdl<>	8.5	<mdl< td=""><td>9.9</td><td></td><td></td><td>6.5</td><td><u> </u></td><td>6.01</td><td>15</td><td>58</td></mdl<>	9.9			6.5	<u> </u>	6.01	15	58
Hexachlorobutadiene	* * <mdl,g< td=""><td>8.5</td><td>* * <mdl,g< td=""><td></td><td></td><td><mdl,g< td=""><td>1.8</td><td><mdl,g< td=""><td>1.9</td><td>3.9</td><td>6.2</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	8.5	* * <mdl,g< td=""><td></td><td></td><td><mdl,g< td=""><td>1.8</td><td><mdl,g< td=""><td>1.9</td><td>3.9</td><td>6.2</td></mdl,g<></td></mdl,g<></td></mdl,g<>			<mdl,g< td=""><td>1.8</td><td><mdl,g< td=""><td>1.9</td><td>3.9</td><td>6.2</td></mdl,g<></td></mdl,g<>	1.8	<mdl,g< td=""><td>1.9</td><td>3.9</td><td>6.2</td></mdl,g<>	1.9	3.9	6.2
N-Nitrosodiphenylamine	<mdl< td=""><td>8.5</td><td><mdl< td=""><td>9.9</td><td></td><td><mdl< td=""><td>1.8</td><td><mdl< td=""><td>1.9</td><td>11</td><td>11</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	8.5	<mdl< td=""><td>9.9</td><td></td><td><mdl< td=""><td>1.8</td><td><mdl< td=""><td>1.9</td><td>11</td><td>11</td></mdl<></td></mdl<></td></mdl<>	9.9		<mdl< td=""><td>1.8</td><td><mdl< td=""><td>1.9</td><td>11</td><td>11</td></mdl<></td></mdl<>	1.8	<mdl< td=""><td>1.9</td><td>11</td><td>11</td></mdl<>	1.9	11	11
Total PCBs	<rdl< td=""><td>4.21</td><td><mdl< td=""><td></td><td></td><td></td><td>4.7</td><td><rdl< td=""><td>4.46</td><td>12</td><td>65</td></rdl<></td></mdl<></td></rdl<>	4.21	<mdl< td=""><td></td><td></td><td></td><td>4.7</td><td><rdl< td=""><td>4.46</td><td>12</td><td>65</td></rdl<></td></mdl<>				4.7	<rdl< td=""><td>4.46</td><td>12</td><td>65</td></rdl<>	4.46	12	65
Other (µg/kg dry weight)											
	G	277	G	193	*	G	838	* G	650	420	1200
Phenol	<mdl,g< td=""><td>39.6</td><td><mdl.g< td=""><td></td><td></td><td><mdl,g< td=""><td>45</td><td><mdl.g< td=""><td>44</td><td>63</td><td>63</td></mdl.g<></td></mdl,g<></td></mdl.g<></td></mdl,g<>	39.6	<mdl.g< td=""><td></td><td></td><td><mdl,g< td=""><td>45</td><td><mdl.g< td=""><td>44</td><td>63</td><td>63</td></mdl.g<></td></mdl,g<></td></mdl.g<>			<mdl,g< td=""><td>45</td><td><mdl.g< td=""><td>44</td><td>63</td><td>63</td></mdl.g<></td></mdl,g<>	45	<mdl.g< td=""><td>44</td><td>63</td><td>63</td></mdl.g<>	44	63	63
2-Methylphenol 4-Methylphenol	<mdl,g< td=""><td>484</td><td>KMDL,G</td><td></td><td>* *</td><td>C C</td><td>1248</td><td></td><td>1013</td><td>670</td><td>670</td></mdl,g<>	484	KMDL,G		* *	C C	1248		1013	670	670
2,4-Dimethylphenol	* * <mdl.g< td=""><td>39.6</td><td>* * <mdl,g< td=""><td></td><td>* *</td><td><mdl,g< td=""><td>45</td><td>* * <mdl,g< td=""><td>44</td><td>29</td><td>29</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl.g<>	39.6	* * <mdl,g< td=""><td></td><td>* *</td><td><mdl,g< td=""><td>45</td><td>* * <mdl,g< td=""><td>44</td><td>29</td><td>29</td></mdl,g<></td></mdl,g<></td></mdl,g<>		* *	<mdl,g< td=""><td>45</td><td>* * <mdl,g< td=""><td>44</td><td>29</td><td>29</td></mdl,g<></td></mdl,g<>	45	* * <mdl,g< td=""><td>44</td><td>29</td><td>29</td></mdl,g<>	44	29	29
Pentachlorophenol	<mdl,e,g< td=""><td>39.6</td><td><mdl,e,g< td=""><td></td><td>-</td><td><mdl,e,g< td=""><td>45</td><td>:MDL,E,G</td><td>44</td><td>360</td><td>690</td></mdl,e,g<></td></mdl,e,g<></td></mdl,e,g<>	39.6	<mdl,e,g< td=""><td></td><td>-</td><td><mdl,e,g< td=""><td>45</td><td>:MDL,E,G</td><td>44</td><td>360</td><td>690</td></mdl,e,g<></td></mdl,e,g<>		-	<mdl,e,g< td=""><td>45</td><td>:MDL,E,G</td><td>44</td><td>360</td><td>690</td></mdl,e,g<>	45	:MDL,E,G	44	360	690
Benzyl Alcohol	<mdl,g< td=""><td>39.6</td><td><mdl,g< td=""><td></td><td></td><td><mdl,g< td=""><td>45</td><td><mdl.g< td=""><td>44</td><td>57</td><td>73</td></mdl.g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	39.6	<mdl,g< td=""><td></td><td></td><td><mdl,g< td=""><td>45</td><td><mdl.g< td=""><td>44</td><td>57</td><td>73</td></mdl.g<></td></mdl,g<></td></mdl,g<>			<mdl,g< td=""><td>45</td><td><mdl.g< td=""><td>44</td><td>57</td><td>73</td></mdl.g<></td></mdl,g<>	45	<mdl.g< td=""><td>44</td><td>57</td><td>73</td></mdl.g<>	44	57	73
Benzoic Acid	<mdl,l< td=""><td>158</td><td><mdl,l< td=""><td></td><td></td><td><rdl,l< td=""><td>198</td><td><mdl,l< td=""><td>180</td><td>650</td><td>650</td></mdl,l<></td></rdl,l<></td></mdl,l<></td></mdl,l<>	158	<mdl,l< td=""><td></td><td></td><td><rdl,l< td=""><td>198</td><td><mdl,l< td=""><td>180</td><td>650</td><td>650</td></mdl,l<></td></rdl,l<></td></mdl,l<>			<rdl,l< td=""><td>198</td><td><mdl,l< td=""><td>180</td><td>650</td><td>650</td></mdl,l<></td></rdl,l<>	198	<mdl,l< td=""><td>180</td><td>650</td><td>650</td></mdl,l<>	180	650	650
Metals (mg/kg dry weigh											
Mercury	<rdl< td=""><td>0.09</td><td><rdl< td=""><td>0.1</td><td></td><td></td><td>0.4</td><td></td><td>0.32</td><td>0.41</td><td>0.59</td></rdl<></td></rdl<>	0.09	<rdl< td=""><td>0.1</td><td></td><td></td><td>0.4</td><td></td><td>0.32</td><td>0.41</td><td>0.59</td></rdl<>	0.1			0.4		0.32	0.41	0.59
Arsenic	<rdl< td=""><td>4.3</td><td><rdl< td=""><td></td><td></td><td><rdl< td=""><td>8.3</td><td><rdl< td=""><td>8.1</td><td>57</td><td>93</td></rdl<></td></rdl<></td></rdl<></td></rdl<>	4.3	<rdl< td=""><td></td><td></td><td><rdl< td=""><td>8.3</td><td><rdl< td=""><td>8.1</td><td>57</td><td>93</td></rdl<></td></rdl<></td></rdl<>			<rdl< td=""><td>8.3</td><td><rdl< td=""><td>8.1</td><td>57</td><td>93</td></rdl<></td></rdl<>	8.3	<rdl< td=""><td>8.1</td><td>57</td><td>93</td></rdl<>	8.1	57	93
Cadmium	<mdl< td=""><td>0.22</td><td><mdl< td=""><td>0.2</td><td></td><td><rdl< td=""><td>0.5</td><td><rdl< td=""><td></td><td>5.1</td><td>6.7</td></rdl<></td></rdl<></td></mdl<></td></mdl<>	0.22	<mdl< td=""><td>0.2</td><td></td><td><rdl< td=""><td>0.5</td><td><rdl< td=""><td></td><td>5.1</td><td>6.7</td></rdl<></td></rdl<></td></mdl<>	0.2		<rdl< td=""><td>0.5</td><td><rdl< td=""><td></td><td>5.1</td><td>6.7</td></rdl<></td></rdl<>	0.5	<rdl< td=""><td></td><td>5.1</td><td>6.7</td></rdl<>		5.1	6.7
Chromium		20		15			25		23.1	260	270
Copper		21.4		17			49		45.5	390	390
Lead		21.9		11_			62		51.4	450	530
Silver	<mdl< td=""><td>0.29</td><td><mdi< td=""><td></td><td></td><td><rdl< td=""><td></td><td><rdl< td=""><td></td><td>6.1</td><td>6.1</td></rdl<></td></rdl<></td></mdi<></td></mdl<>	0.29	<mdi< td=""><td></td><td></td><td><rdl< td=""><td></td><td><rdl< td=""><td></td><td>6.1</td><td>6.1</td></rdl<></td></rdl<></td></mdi<>			<rdl< td=""><td></td><td><rdl< td=""><td></td><td>6.1</td><td>6.1</td></rdl<></td></rdl<>		<rdl< td=""><td></td><td>6.1</td><td>6.1</td></rdl<>		6.1	6.1
Zinc	1	60.2	1	52	i		97		92.3	410	960

TABLE	TABLE 4-3. Surface Samples: Particle Size Distribution										
Station Locator	P531	VG1	P53VG2		P53	VG3	P53	VG4			
Date Sampled	Aug 1	2, 96	Aug 1	2, 96	Aug	12, 96		2, 96			
Sample Number	L920	09-1	L920)9-2	L92	L9209-3		09-4			
% Solids	65	.7	60	.4	58	3.4	72	.4			
Phi Size (%)	Qual	Value	Qual	Value	Qual	Value	Qual Valu				
Sands and Gravels											
p-2.00(less than) *		0.6		0.6		1.1		0.7			
p-2.00 *		0.1	<mdl< td=""><td>0.1</td><td></td><td>0.2</td><td></td><td>0.1</td></mdl<>	0.1		0.2		0.1			
p-1.00 *		1		0.9		0.5		1.5			
p+0.00 *		2.3		3.9		0.9		4.2			
p+1.00 *		18.7		20.1		10.8		28.7			
p+2.00 *		49.9		33.9		45.1		42.6			
p+3.00 *		11.9		14.6		12.1		5.8			
p+4.00 *		2		3.3		3.1		1.6			
Total % Sands		86.5		77.4		73.8		85.2			
Silts and Clays											
p+5.00 *	<mdl< td=""><td>0.1</td><td></td><td>3.9</td><td></td><td>7.6</td><td></td><td>3.2</td></mdl<>	0.1		3.9		7.6		3.2			
p+6.00 *		2		2.8		2.8		1.9			
p+7.00 *		3.9		5.2		3.6		1.7			
p+8.00 *		2.4		4.7		5.3		3.3			
p+9.00 *		1.4		1.8		1.9		1.5			
p+10.0 *		0.7		0.8		0.8		0.7			
p+10.0(more than) *		3.3		3.6		4.3		2.4			
Total % Silts and Clays		13.8		22.8		26.3		14.7			

< RDL - Detected below quantification limits

For further information on data qualifiers see Appendix B.

^{*} indicates wet weight used for this parameter E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

Station Locator	P53\	/G5	P53VG	5 (Rep)	P53VG6		P53VG7	
Date Sampled	Aug 12, 96		Aug 1	2, 96	Aug 12, 96		Aug 1	2, 96
Sample Number	L9209-5 52.7			9-11	L920			09-7
% Solids			6	1.7	57.2		75	.4
Phi Size (%)	Qual	Value	Qual	Value	Qual	Value	Qual	Value
Sands and Gravels								
p-2.00(less than) *		0.2		0.5		0.8		0.3
p-2.00 *		0.4		0.5	<mdl< td=""><td>0.1</td><td></td><td>0.1</td></mdl<>	0.1		0.1
p-1.00 *		0.4		0.8		0.5		1.9
* 00.0+q		1.1		2.9	• .	1.2		6.9
p+1.00 *		9.3		22.5		11.5		36.7
p+2.00 *		31.1		41.4		35.8		41.6
p+3.00 *		11		7.7		16.1		5.6
p+4.00 *		4.6		2.5		4.6		0.9
Total % Sands		58.1		78.8		70.6		94
Silts and Clays								
p+5.00 *		4.8		1.9		6.4		1.4
p+6.00 *		5.2		2.8		3.1	<mdl< td=""><td>0.1</td></mdl<>	0.1
p+7.00 *		7.7		2		4.3		0.4
p+8.00 *		8.2		4.5		6.1		1.9
p+9.00 *		4.5		3		3.5		0.3
p+10.0 *		2.3		1.6		1.7	<mdl< td=""><td>0.1</td></mdl<>	0.1
p+10.0(more than) *		9.2		5.6		4.4		1.9
Total % Silts and Clays		41.9		21.4	l	29.5		6.1

<RDL - Detected below quantification limits

<MDL - Undetected at the method detection limit

^{*} indicates wet weight used for this parameter E - Estimate based on high relative percent difference in duplicate, For further information on data qualifiers

see Appendix B.

<MDL - Undetected at the method detection limit

high relative standard deviation in triplicate, or high or low surrogate recoveries

TABLE 4-3. Surfa	ace Samples	Partic	le Size Di	istributio	on (conti	nued)	
Station Locator	P53VG3 (2	to 10cm)	P53VG4 (2	to 10cm)	P53VG5 (2	to 10cm)	
Date Sampled	Aug 1	2, 96	Aug 1	2, 96	Aug 1	2. 96	
Sample Number	L920	9-8	L9209-9		L920		
% Solids	71.	8	75.	9	61	.1	
Phi Size (%)	Qual	Value	Qual	Value	Qual	Value	
Sands and Gravels							
p-2.00(less than) *		0.4		0.2		0.3	
p-2.00 *	<mdl< td=""><td>0.1</td><td><mdl< td=""><td>0.1</td><td><mdl< td=""><td>0.1</td></mdl<></td></mdl<></td></mdl<>	0.1	<mdl< td=""><td>0.1</td><td><mdl< td=""><td>0.1</td></mdl<></td></mdl<>	0.1	<mdl< td=""><td>0.1</td></mdl<>	0.1	
p-1.00 *		1		1.4		0.6	
p+0.00 *		2	····	5.7		1.7	
p+1.00 *		21.1		36.5		20.2	
p+2.00 *		53		44.3		36.1	
p+3.00 *		10.3		4		9.6	
p+4.00 *		1.3		0.7		3	
Total % Sands		89.2		92.9		71.6	
Silts and Clays							
p+5.00 *	- 1401	5.6		2.1 0.5		3.9	
p+6.00 *	<mdl< td=""><td>0.1 0.1</td><td></td><td></td><td></td><td>6.2 3.7</td></mdl<>	0.1 0.1				6.2 3.7	
p+7.00 *	<mdl< td=""><td>2.2</td><td></td><td>0.9 2.1</td><td></td><td></td></mdl<>	2.2		0.9 2.1			
p+8.00 *		0.9		0.3		2.5	
p+9.00 *			1401				
p+10.0 *		0.3	<mdl< td=""><td>0.1</td><td></td><td>1.2</td></mdl<>	0.1		1.2	
p+10.0(more than) *		1.8		1.2		5.8	
Total % Silts and Clays		11		7.2		28.3	

<RDL - Detected below quantification limits * indicates wet weight used for this parameter

For further information on data qualifiers see Appendix B.

E - Estimate based on high relative percent difference in duplicate, high relative standard deviation in triplicate, or high or low surrogate recoveries

<MDL - Undetected at the method detection limit

SECTION 5 BENTHIC RECOLONIZATION

In August 1996, the monitoring team collected benthic taxonomy samples from the Pier 53 remediation area and from a reference station near Richmond Beach. This section describes the methods used and reports the results of the sampling. It also compares the results of the benthic taxonomy study with results from previous taxonomic sampling of the Pier 53 remediation area.

METHODS

The monitoring plan defined four benthic taxonomy sampling stations situated to provide spatial coverage across the remediation area (Figure 5-1). Two stations are in the ENR (VG3 and VG4), and two stations are in the 3-foot cap area (VG1 and VG2). All four stations are at water depths of 51 to 59 feet, in areas where the bottom slope is less steep than it is inshore, and situated near the center of the cap to minimize interference from offsite benthic organisms that could skew the test results.

In 1996, a benthic taxonomic reference station was sampled for the first time for comparisons with the Pier 53 benthic stations. The reference station was located just offshore of Richmond Beach. Reference stations are used to represent background or undisturbed conditions for comparison to the stations in the areas being studied. Also, reference stations allow a comparison to the SMS.

The reference station was chosen from several potential reference stations that were studied as part of the Puget Sound Ambient Monitoring Programs Marine Sediment Monitoring (Tetra Tech 1990). These potential reference stations were analyzed for chemical and physical parameters, sediment toxicity, benthic community, and anthropogenic alteration. If a station was deemed acceptable in all of these categories it was listed as a potential reference station.

A reference station for Pier 53 was chosen from this list with the further criteria that sediment grain size, water depth, total organic carbon content of the sediment, and the general geographic area were similar to the Pier 53 remediation area. Based on this, the Richmond Beach station was determined to be the most suitable as a reference.

During sampling at Richmond Beach, a field test of the sediment at the station was conducted to estimate percent fines to further aid in determining the suitability of the station as a reference for the Pier 53 remediation area. The percent fines were estimated by a wet sieving process using a 63µm standard sieve. A known amount of sediment was washed through the sieve using water from a hose. All of the sediment that did not wash through the screen was measured and an estimate of the percentage of the fines that did wash through the screen was made.

Figure 5-1. Benthic Taxonomy Stations

Benthic taxonomy samples were collected using a 0.1-m² van Veen grab sampler operated from the *RV Liberty*. Five replicate samples were taken at each station. Samples were screened onboard by Fukuyama and Hironaka Inc. When a sample was collected and brought onboard, the sampler was set into a screening tray. The sediment sample thickness was measured to ensure a minimum depth penetration of 10 cm. If a sample was acceptable, it was emptied into the screening tray where fine material was carefully washed through the 1-mm mesh screen with

water from a hose. Each sample was screened to remove as much sediment and debris as possible. Material retained in the screen was put into a jar and labeled with the station name and replicate number, preserved with buffered formalin, and transferred at least a week later from formalin to alcohol. Taxonomic analysis was conducted by Marine Taxonomic Services.

Some taxonomic names have changed since the last time the remediation area was sampled in 1993. Recent studies have shown that some individual species, which were originally identified in other parts of the world (e.g. the Atlantic Ocean) and thought to be occur worldwide, have now been determined to be two or more different species (Howard Jones 1997 personal communication). When comparing 1996 data to previous studies, the new name is used and the old one is noted.

Locating a suitable reference station for the Pier 53 area has proven difficult. Studies have determined that the makeup of a benthic community is mostly dependent on grain size (Tetra Tech 1990) but geographic location also plays a role. The native bottom in the Pier 53 area is composed of mostly fine-grain muds. The cap, however, is composed of mostly medium-grain sands. Larval recruitment onto the cap is most likely to come first from nearby fine-grain areas surrounding the cap. Over time, the sandy conditions on the cap would favor organisms that are suited to sandy areas. At the same time, deposition is continually making the cap grain size finer. An environment where sand is the predominant grain size means that currents are eroding the finer particles that would otherwise settle on the bottom. These currents, in addition to coarser grain size, have an effect on the type of benthic community that would develop in the area. The Pier 53 area is unique in that it contains coarse sediments in a depositional area where there are no strong currents or other attributes associated with a coarse-grain area. The continual dynamics of the shifting of grain size on the cap made it difficult to duplicate exact conditions for a reference station.

RESULTS

Benthic community analysis showed that the recolonization process of the cap is continuing and that the benthic community is changing over time. The abundance of mollusks and crustaceans increased while the abundance of polychaetes declined. Certain species that were dominant in previous studies are no longer dominant and have been replaced by other species. The changes in the benthic community appear to be linked to a shift toward finer particles in the grain-size makeup of the cap. It also appears that chemical concentrations on the cap may be having an effect on the benthic community.

Abundance and Diversity

A total of 13,922 individual organisms were collected from the four stations within the Pier 53 remediation area in 1996. And a total of 217 species were

counted. Mollusks were highest in abundance with 6,383 individuals, while polychaetes were the most diverse with 123 species (Tables 5-1 and 5-2).

Spatially, VG4, the taxonomic station in the far northern end of the remediation area and on the ENR, showed the greatest abundance with 4,291

	TABL	.E 5-1. Nui	mber of Inc	dividuals	per Station							
	Total of 5 Replicates x 0.1 m ²											
Group Polychaete	VG1 1169	VG2 617	VG3 1076	VG4 898	Remediation Area Totals 3760	Reference 327						
Mollusk	1113	1361	1746	2163	6383	224						
Crustacean Other	1168 57	442 36	802 44	1193 37	3605 174	1473 42						
Total	3507	2456	3668	4291	13922	2066						

	TABLE 5-2. Number of Species per Station											
Total of 5 Replicates x 0.1 m ²												
Group	VG1	VG2	VG3	VG4	Remediation Area Totals	Reference						
Polychaete Mollusk	80 29	69 24	70 25	69 27	123 38	63 36						
Crustacean	29	20	23	29	41	46						
Other Total	10 148	8 121	8 126	8 133	15 217	11 156						

individuals. VG1, which is farthest south and on the 3-foot cap, showed the greatest diversity with 148 species. Both VG1 and VG4 showed increases in the number of individuals, while VG2 and VG3, in the middle of the remediation area, showed decreases. Productivity differences between the ENR and the 3-foot cap were not apparent.

The total number of species counted at all four stations remained constant since 1993 with fluctuations occurring at individual stations. The total number of species increased at VG1, decreased at VG2 and VG3, and remained about the same at VG4. Polychaetes again showed the highest number of species counted at all four stations followed by mollusks and then crustaceans. The total number of polychaete species remained unchanged from 1993 while crustacean species increased slightly and mollusk species decreased. The total number of species from each of the three taxonomic groups increased at VG1 and decreased at VG2, VG3, and VG4.

The 1996 data showed that the number of polychaete individuals was lower while the numbers of mollusks and crustaceans were higher than in 1993.

Polychaete individuals decreased at all stations, ranging from 47 to 86 percent. Both mollusks and crustaceans increased at all stations, ranging from 82 to 224 percent for mollusks and from 26 to 200 percent for crustaceans. Axinopsida serricata, a small clam, was the most abundant species at three of the four stations and the second most abundant at the fourth station. Euphilomedes carcharodonta an ostracod, was the most abundant species at one station and the second most abundant at the other three stations (Tables 5-3 through 5-6). The most abundant species from the remediation area are, in order: A. serricata, E. carcharodonta, Prionospio jubata (formerly Prionospio steenstirupi) and Parvilucina tenuisculpta.

TABLE 5-3. Dominant Species at VG1									
Species	5 Rep Total	% of Population	Total %						
Euphilomedes carcharodonta	1004	28.6	28.6						
Axinopsida serricata	801	22.8	51.4						
*Prionospio jubata	312	8.9	60.3						
Lumbrineridae sp. Indet.	199	5.7	66						
Parvilucina tenuisculpta	145	4.1	70.1						
Spiochaetopterus costarum	130	3.7	73.8						
Lumbrineris californiensis	54	1.5	75.3						

TABLE 5-4. Dominant Species at VG2				
Species	5 Rep Total	% of Population	Total %	
Axinopsida serricata	1030	41.9	41.9	
Euphilomedes carcharodonta	337	13.7	55.6	
*Prionospio jubata	165	6.7	62.3	
Parvilucina tenuisculpta	132	5.4	67.7	
Lumbrineridae sp. Indet.	84	3.4	71.1	
Macoma sp. Juv.	56	2.3	73.4	
Macoma carlottensis	45	1.8	75.2	

TABLE 5-5. Dominant Species at VG3				
Species	5 Rep Total	% of Population	Total %	
Axinopsida serricata	1372	37.4	37.4	
Euphilomedes carcharodonta	631	17.2	54.6	
*Prionospio jubata	281	7.7	62.3	
Parvilucina tenuisculpta	218	5.9	68.2	
Lumbrineridae sp. Indet.	142	3.9	72.1	
Scoletoma luti	82	2.2	74.3	
Lumbrineris californiensis	68	1.9	76.2	

TABLE 5-6. Dominant Species at VG4				
Species	5 Rep Total	% of Population	Total %	
Axinopsida semicata	1691	39.4	39.4	
Euphilomedes carcharodonta	1021	23.8	63.2	
*Prionospio jubata	277	6.5	69.7	
Parvilucina tenuisculpta	276	6.4	76.1	

^{*}Formerly Prionospio steenstirupi

At the reference station, 2,066 individuals were counted. Crustaceans were most abundant followed by polychaetes and mollusks. A total of 156 species was counted, composed of 63 polychaete, 36 mollusk, and 46 crustacean species. In general, the reference station showed a greater number of species and fewer individuals than stations within the remediation area. The reference station was numerically dominated by crustaceans, while stations in the remediation area were generally dominated by mollusks (Table 5-7).

TABLE 5-7. Dominant Species at Reference Station				
Species	5 Rep Total	% of Population	Total %	
Euphilomedes carcharodonta	1149	57.1	57.1	
Parvilucina tenuisculpta	61	3.0	60.1	
Rhepoxynius abronius	52	2.6	62.7	
Psephidia lordi	43	2.1	64.8	
Pholoides aspera	24	1.2	66.0	
*Prionospio jubata	24	1.2	67.2	
Lumbrineris californiensis	21	1.0	68.3	
Crangon alaskensis	21	1.0	69.3	
Nemertinea sp. Indet.	21	1.0	70.3	
Eumida longicomuta	19	0.9	71.3	
Macoma yoldiformis	19	0.9	72.2	
Terebellidae sp. Juv.	16	0.8	73.0	
Westwoodilla caecula	16	0.8	73.8	
Chaetozone sp. Indet.	15	0.7	74.6	
Pinnixia schmitti	14	0.7	75.3	

^{*}Formerly Prionospio steenstirupi

During the sampling of the Richmond Beach reference station, field screening for particle size distribution showed that the sediments were approximately 6 percent fine material. This was within 10 percent of the estimated percent fines of the four benthic taxonomic stations from the remediation area and was deemed acceptable for use as a reference sample. Later, laboratory analysis showed that the Richmond Beach reference station was 5.4 percent fine material. This was within 10 percent of the top 10 cm samples from VG3 and VG4. Particle size distribution was analyzed for only the top 2-cm sample at VG1 and VG2. The reference station was within 10 percent of VG1 and was within 20 percent of VG2. The top 10 cm at VG3 and VG4 showed less fines than in the top 2 cm and it is expected that the top 10 cm of VG1 and VG2 also contained less fines.

The Richmond Beach reference station was in 60 feet of water. This is similar to the remediation area stations that range in depth from 51 to 59 feet.

Comparing major taxa from the remediation area to the reference station shows that all four stations in the remediation area had higher abundances of total individuals, polychaetes, and mollusks than the reference station. The reference station showed a higher abundance of crustaceans than any station in the remediation area and that the reference station was higher in crustacean abundance than one station (VG2) by more than 50 percent. This difference is considered to be significant, causing VG2 to fail a comparison with the SQS for benthic infauna.

A total of 156 species was counted at the reference station, compared to a range of 121 to 148 for the remediation area. The 63 polychaete species at the reference station compared to a range of 69 to 80 for the remediation area. The 36 mollusk species at the reference station compared to range of 24 to 29 for the remediation area. The 46 crustacean species at the reference station compared to a range of 20 to 29 for the remediation area. The 20 crustacean species counted at VG2 were different than the reference station by greater than 50 percent, indicating possible adverse benthic effects.

Biomass

The biomass, or weight of the organisms collected, has increased steadily in the remediation area since capping. All stations showed increases ranging from 16 percent at VG2 to 137 percent at VG1. Mollusks showed the greatest increase in biomass since 1993 and have the highest total biomass of any taxonomic group (Table 5-8). For all four stations, biomass was concentrated in the mollusk and polychaete populations. Biomass increased for all stations and taxonomic groups except for polychaete biomass at VG2, suggesting that mollusks are replacing polychaetes in the benthic community at this station.

	TABLE 5-	8. Biomas:	s Average po	er Station	
	Ave	erage of 5 Re	plicates x 0.1	m²	
Group	VG1	VG2	VG3	VG4	Refererence
Polychaetes	2.31	1.26	2.56	2.44	0.654
Mollusks	2.06	2.10	1.79	2.73	2.38
Crustaceans	0.648	0.246	0.524	0.664	0.742
Misc	0.0644	0.148	0.330	0.553	7.30
Totals	5.09	3.76	5.20	6.38	*11.1

*5.99 Reference average without high misc replicate

Biomass was generally lower at the reference station than at stations in the remediation area. Polychaete and mollusk biomass was lower at the reference station, while crustacean biomass was slightly higher at the reference station. Interpretation of biomass results at the reference station were complicated by large animals in a few of the replicates.

PSD and TOC

Particle size distribution data shows that the grain-size makeup of the surface of the cap has become finer in the 4 1/2 years since the cap was placed. Table 5-9 shows the range of fines at the taxonomy stations sampled during the precap study and at the four on-cap taxonomy stations sampled since the cap was placed. The median percentage of fine material on the cap increased by over 150 percent between the 1992 baseline study and the 1993 study. The median percentage of fine material increased again by almost 100 percent between the 1993

study and the 1996 study. For comparison, the median percentage of fine material at taxonomy stations on the Denny Way sediment cap four years after capping had increased just over 100 percent since the baseline sampling. Also, the range of fines at the Denny Way taxonomy stations four years after capping was 7.5 to 8.0 percent compared to 13.8 to 26.3 percent at Pier 53 four years after capping. The higher rate of deposition and greater change in the grain-size makeup on the Pier 53 cap was probably caused by construction activities and docking and departing ferries at the nearby ferry terminal.

TOC has decreased between the 1992 baseline study and 1996. Table 5-10 shows the range of TOC in samples collected from before the cap was placed through 1996. Median percentage of TOC at taxonomy stations was 2.86 in 1992 and decreased to 2.35 in 1993 and decreased again to 1.47 in 1996. It is not clear why TOC would decrease over time.

TABLE 5-9. Percent Fines Range From Pre-Cap to 1996 at Benthic Taxonomy Stations				
Year of Study	Range			
Pre-cap 1992	47.4 to 57.7			
Baseline 1992	3.84 to 5.28			
1993	8.40 to 15.3			
1996	13.8 to 26.3			

TABLE 5-10. Percent TOC Range From Pre-Cap to 1996 at Benthic Taxonomy Stations				
Year of Study	Range			
Pre-cap 1992 4.0 to 5.3				
Baseline 1992	0.92 to 4.8			
1 9 9 3 1.2 to 3.5				
1996	0.75 to 2.2			

Indices

The succession of benthic species recolonizing a sediment cap or other bottom areas of marine environments that have been denuded of benthic infauna is similar to the successional changes of a benthic community in response to pollution (Pearson and Rosenberg, 1978).

Early in the recolonization process a community develops that is composed of a few opportunistic species and very high numbers of individuals. These opportunistic species are short-lived and small so biomass is low. As recolonization progresses, the overall number of individuals declines as the few opportunistic species are replaced by a greater diversity of species. Biomass increases since many of the new species are larger and longer lived than the initial opportunistic species. Stable and undisturbed benthic communities are characterized by greater diversity of species, higher biomass, and lower number of individuals than during the initial phases of recolonization (Pearson and Rosenberg, 1978).

Indices are a useful tool to chart the progress of benthic recolonization, reducing a lot of complex data for comparison and interpretation (Valiela 1984). Indices were calculated for the Infaunal Trophic Index (Thom et al. 1980), Swartz dominance index, and the Shannon-Wiener diversity index (from Valiela 1984). Results are shown in Table 5-11.

TABLE 5-11. Benthic Indices					
Index	VG1	VG2	VG3	VG4	Reference
ITI	64	64	64	64	68
Swartz Dominance	7	7	7	4	15
SW Diversity	3.87	3.57	3.62	3.3	3.36

The Infaunal Trophic Index (ITI) is based on the feeding or trophic types of a benthic community. Studies have shown that in undisturbed areas, the benthic community is predominantly filter feeding organisms. Close to a source of organic contamination, the benthic community changes to one that is predominately subsurface deposit feeding organisms. The ITI is calculated by grouping benthic infauna by feeding type at a given station and assigning a higher score to filter-feeding species and a lower score to surface and subsurface deposit-feeding species. A higher ITI number indicates that station is more like background or undisturbed conditions and a lower number may indicate possible adverse effects from organic inputs (Thom et al. 1979).

Each station in the remediation area had an ITI value of 64. The reference station had a similar value of 68. The reference station showed slightly higher numbers of filter-feeding organisms from the Onuphidae, and Terebellidae families plus gammarid amphipods *Rhepoxynius abronius* and *Ampelisca*. Additionally, remediation area stations showed higher numbers of surface-detritus-feeding organisms from the Chaetopteridae family and the bivalve *Parvilucina*. Despite

these differences, the ITI did not show great differences between the reference station and the remediation area stations.

Swartz's Dominance Index (SDI) is a measure of the diversity of the benthic community at a station. The SDI is the number of species at a station that make up 75 percent of the population (Swartz et al. 1985 from Striplin 1996). The higher the number of species that are dominant at a station means higher diversity. Typically a site affected by pollution will be dominated by a few species.

VG1, VG2, VG3 showed SDI values of 7, while VG4 showed a value of 4. An SDI value of less than 5 is considered to be stressed. The reference station showed an SDI value of 15. Comparing the SDI values from the reference area to VG1, VG2, and VG3 shows that these stations may be moderately stressed. At the reference station, *E. carcharodonta* made up 55.6 percent of the population with the next closest species comprising 3 percent. In the remediation area, *E. carcharodonta* and *A. serricata*. together made up between 51.4 and 63.2 percent of the population.

The Shannon-Wiener diversity index is a measure of species diversity which takes into account both the number of species and the proportion of the number of individuals. This index will give a higher number for benthic communities where the numbers of species is greater and the number of individuals is lower.

The results show that the reference station diversity value fell within the range of the remediation area values. The reference station was 3.36 and the remediation area stations ranged from 3.30 to 3.87. This index showed that the reference station was similar to the remediation area stations.

DISCUSSION

Overall, the increase in the numbers of mollusks and crustaceans show that the recolonization process of the cap is continuing and that the benthic community is changing over time. The changes in the benthic community appear to be linked to the shift toward a finer grain-size makeup. The particle-size shift was expected because the sand cap was placed on top of the native, mostly fine-grain muds. Eventually natural sedimentation along the Seattle waterfront will completely cover the cap with fine-grain muds.

The 1996 data showed that both VG2 and VG3 decreased in both the number of individuals and the number of species when compared to 1993. Of the remediation area stations, these two stations showed much higher percentage of fines in the top 2 cm ranging from 26.3 to 22.8 percent, which was approximately 2 times higher than VG1 and VG4. The lower abundance and numbers of species at VG2 and VG3 are probably due to the higher percent fines. Fine grain habitats don't necessarily mean that there will be less abundance and diversity. In this case, however, the rate of change to finer particles possibly caused environmental stress to species whose feeding strategies require unchanging substrate characteristics and favored established species that are silt tolerant and whose feeding strategies are

unaffected or enhanced by a changing substrate. The favored species are also able to take advantage of the vacancies left by the species that were not silt tolerant.

Aphelochaeta sp. N1 (known previously as Aphelochaeta multifilis), and Asabellides lineata were dominant in 1993, but in 1996 few were counted. At the same time, the numbers of A. serricata, E. carcharodonta, P. jubata, and P. tenuisculpta increased and all four species have become dominant. This shift in dominant species is probably linked to the grain-size change. Cirratulids, such as Aphelochaeta, have been associated with coarse sediments in Puget Sound (Comisky et al. 1984). They are sedentary worms living in the substrate and are surface deposit feeders (Kozloff 1990). This feeding strategy probably makes Aphelochaeta unable to adapt to the ongoing changes in the substrate. This species was not dominant in the pre-cap samples and will not likely dominate in the future. At the same time Axinopsida serricata, a burrowing surface deposit feeder (Comisky et al. 1984), was not dominant in the 1992 post-cap baseline study but has been increasing ever since capping. It was dominant in the pre-cap samples and is expected to continue to dominate the benthic community as the remediation area becomes more silty.

Another factor in the change in community structure was the increase in chemical contamination. Chemical results in 1993 showed that the cap had been recontaminated with high levels of PAHs and mercury. At that time, however, the benthic community did not appear to show any adverse affects. It is possible that sampling was conducted too soon after the recontamination occurred in 1993 for the benthic community to show chronic effects. During the time between 1993 and 1996, the high PAH concentrations have decreased but new contamination is now present. In 1993 the ampharetid Asabellides lineata was dominant in the benthic community and in 1996 it was completely absent. Ampharetids have been used as an indicator species that are "sensitive or intolerant to toxic stress" (Metro 1987). Also, the Infaunal Trophic Index identifies ampharetids as species that are common in control regions (Thom et al. 1979). Between the grain size shift and continued recontamination of the remediation area, ampharetids have decreased from 1,314 total individuals in 1993 to 57 in 1996.

A comparison of samples taken in 1996 to samples taken before the remediation area was capped showed that the post-cap benthic community is becoming more like the pre-cap community. In March 1992, six benthic stations were sampled within the projected remediation area boundary immediately prior to capping. These pre-cap stations are shown in Fig 5-2. Methods, number of replicates per station, and taxonomic analysis were the same for the pre-cap analysis as for all post-cap monitoring. Exact comparisons between pre-cap and 1996 results are difficult because sampling times during the year and station locations were not the same. However, the pre-cap samples do give a good picture of what the benthic community was like in the remediation area before capping.

Figure 5-2. Pre-Cap Benthic Taxonomy Stations

Axinopsida serricata was the most dominant species at all six pre-cap stations and was the most dominant species at three of the four stations in 1996. Other infauna that were dominant in both studies include E carcharodonta, Prionospio jubata (formerly P. steenstirupi), Lumbrineridae, Macoma, and Parvilucina tenuisculpta. A serricata, P. jubata and E. carcharodonta have been dominant in all post-cap samples except the 1992 baseline samples, which were taken only a few months after capping. Tables 5-12 through 5-17 shows dominant species in the pre-cap study.

TABLE 5-12. Dominant Species at Precap Station S1				
Species	5 Rep Total	% of Population	Total %	
Axinopsida serricata	517	23.91	23.91	
*Prionospio jubata	374	17.30	41.21	
Heteromastus filobranchus	170	7.86	49.07	
Lumbrineris sp. Indet.	133	6.15	55.23	
Parvilucina tenuisculpta	125	5.78	61.01	
Euphilomedes carcharondonta	102	4.72	65.73	
Macoma sp. Juv.	68	3.15	68.87	
Nephtys comuta	51	2.36	71.23	
Notomastus tenuis	49	2.27	73.50	
Exogone lourei	41	1.90	75.39	

TABLE 5-13. Dominant Species at Precap Station S2				
Species	5 Rep Total	% of Population	Total %	
Axinopsida serricata	1090	32.47	32.47	
Euphilomedes carcharondonta	365	10.87	43.34	
Heteromastus filobranchus	285	8.49	51.83	
*Prionospio jubata	252	7.51	59.34	
Parvilucina tenuisculpta	169	5.03	64.37	
Lumbrineris sp. Indet.	166	4.94	69.32	
Notomastus tenuis	113	3.37	72.68	
Macoma sp. Juv.	67	2.00	74.68	
Nephtys cornuta	66	1.97	76.65	

TABLE 5-14. Dominant Species at Precap Station S9				
Species	5 Rep Total	% of Population	Total %	
Axinopsida serricata	1008	30.51	30.51	
*Prionospio jubata	539	16.31	46.82	
Euphilomedes carcharondonta	237	7.17	54.00	
Heteromastus filobranchus	177	5.36	59.35	
Lumbrineris sp. Indet.	153	4.63	63.98	
Parvilucina tenuisculpta	97	2.94	66.92	
Notomastus tenuis	78	2.36	69.28	
Euphilomedes producta	69	2.09	71.37	
Macoma sp. Juv.	56	1.69	73.06	
Polydora brachycephala	47	1.42	74.49	
Nephtys cornuta	45	1.36	75.85	

^{*}Formerly Prionospio steenstirupi

TABLE 5-15. Dominant Species at Precap Station S11				
Species	5 Rep Total	% of Population	Total %	
Axinopsida serricata	1231	30.71	30.71	
*Prionospio jubata	630	15.71	46.42	
Euphilomedes carcharondonta	505	12.60	59.02	
Lumbrineris sp. Indet.	326	8.13	67.15	
Euphilomedes producta	86	2.15	69.29	
Notomastus tenuis	72	1.80	71.09	
Heteromastus filobranchus	69	1.72	72.81	
Exogone lourei	63	1.57	74.38	
Parvilucina tenuisculpta	58	1.45	75.83	

TABLE 5-16. Dominant Species at Precap Station T1				
Species	5 Rep Total	% of Population	Total %	
Axinopsida serricata	1710	34.56	34.56	
*Prionospio jubata	729	14.73	49.29	
Euphilomedes carcharondonta	526	10.63	59.92	
Lumbrineris sp. Indet.	266	5.38	65.30	
Nucula tenuis	146	2.95	68.25	
Heteromastus filobranchus	134	2.71	70.96	
Euphilomedes producta	95	1.92	72.88	
Nephtys cornuta	90	1.82	74.70	
Notomastus tenuis	79	1.60	76.29	

TABLE 5-17. Dominant Species at Precap Station T2				
Species	5 Rep Total	% of Population	Total %	
Axinopsida serricata	2263	40.01	40.01	
*Prionospio jubata	776	13.72	53.73	
Euphilomedes carcharondonta	611	10.80	64.53	
Heteromastus filobranchus	207	3.66	68.19	
Lumbrineris sp. Indet.	155	2.74	70.93	
Euphilomedes producta	123	2.17	73.11	
Notomastus tenuis	106	1.87	74.98	
Nephtys comuta	84	1.49	76.47	

*Formerly Prionospio steenstirupi

Recruitment of benthic invertebrates from the surrounding area will tend to make the benthic community on the cap similar to the pre-cap community. However, the transformation of the present community to become more like the pre-cap community is most likely because the grain-size makeup of the cap is becoming more like the pre-cap native bottom muds.

SECTION 6 CONCLUSIONS

Results of monitoring at Pier 53 in 1996, almost 4 1/2 years after placing the cap and ENR, show that the 3-foot cap and ENR have been successful in achieving their primary purpose of isolating contaminated bottom sediments from the marine environment. However, the surface of the area has been re-contaminated by 4-methylphenol and phenol. The source of the new contamination was not readily apparent and further study will be needed.

CONCLUSIONS

Specific conclusions from the 1996 monitoring of the Pier 53 remediation area are as follows:

- The 3-foot cap and ENR are stable. They are not eroding or settling into the native bottom muds.
- Contaminants are not migrating from the underlying sediments up into the 3-foot cap and ENR. Results of core samples show few chemicals were detected within the 3-foot cap and ENR. When chemicals were detected, the concentrations were low, near the detection limits.
- The surface of the 3-foot cap and ENR have been re-contaminated by 4-methylphenol and phenol, as indicated by chemical analyses of 2-cm-deep and 10-cm-deep surface samples. These samples showed that the southeast corner of the remediation area exceeded state sediment standards. The source of the new contamination was not readily apparent and further study will be needed.
- PCBs, the pesticide 4,4 DDD, chlorinated benzenes, and phthalates all were found on the cap for the first time. At this time these chemicals are in low concentrations, but they should be monitored for future trends. If levels continue to increase, sources should be investigated.
- The 1996 data indicated that the number of polychaete individuals were lower while the numbers of mollusks and crustaceans were higher than in 1993. This shift in species dominance shows that the recolonization process of the cap is continuing and that the benthic community is changing over time. These changes in the benthic community appear to be linked to a greater percentage of fine-grain sediments in the remediation area. This particle-size shift was

expected because the sand cap was placed on top of the native, mostly fine-grain muds. Another possible factor in the change in community structure has been the increase in chemical contamination. In 1993, the Ampharetid Asabellides lineata was dominant in the benthic community, however, in 1996 it was completely absent. Ampharetids have been used as an indicator species that are "sensitive or intolerant to toxic stress" (Metro 1987). Additionally, a comparison of samples taken in 1996 to samples taken in March 1992 before the remediation area was capped showed that the post-cap benthic community is becoming more like the pre-cap community.

REFERENCES

City of Seattle (Drainage and Wastewater Utility) and Metro (Municipality of Metropolitan Seattle). September 1992. Monitoring Plan for Pier 53; Sediment Capping Site and Enhanced Natural Recovery Area. Seattle Washington.

Comiskey, E., T. Farmer, C. Brandt, and P. Romberg. 1984. Toxicant Pretreatment Planning Study, Technical Report 2: Puget Sound Benthic Studies and Ecological Implications. Seattle, Washington: Metro.

Ecology (Washington State Department of Ecology). 1991. Sediment Management Standards—WAC 173-204. Olympia, Washington.

Elliott Bay/Duwamish Restoration Program (EB/DRP). 1993a. Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area Remediation Project. Prepared by the Municipality of Metropolitan Seattle. Seattle, Washington.

EB/DRP. 1993b. Elliott Bay Waterfront Recontamination Study Sampling Plan. Prepared by Ecology. Olympia, Washington.

EB/DRP. 1995a. Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area Remediation Project 1993 Data. Prepared by the King County Department of Metropolitan Services. Seattle, Washington.

EB/DRP. 1995b. Elliott Bay Waterfront Recontamination Study. Volume I Field Investigation Report. Prepared by Ecology. Bellevue, Washington.

EB/DRP 1996. Unpublished Data from the Waterfront Cleanup Study for the King County Department of Natural Resources Water and Land Resources Division.. Seattle, Washington.

Hart-Crowser, Inc. 1994. Technical Memorandum: Sediment Quality Assessment Seattle Ferry Terminal Coleman Dock—South Area. Prepared for Washington State Ferries, Washington State Department of Transportation. Seattle, Washington.

Howard, P. H. 1991. Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Lewis Publishers. Chelsea, Michigan.

Kozloff, E. 1990. *Invertebrates*. Saunders College Publishing. Orlando, Florida

Parametrix Inc. 1992. Metro Toxic Sediment Remediation Project (Draft Final Report). Seattle, Washington.

Pearson, T. H. and R. Rosenberg. 1978. Macrobenthic Succession in Relation to Organic Enrichment and Pollution of the Marine Environment. Oceanogr. Mar. Biol. Ann. Rev., 16, 229-311.

Malins, C., B. McCain, D. Brown, A. Sparks, H. Hodgins. 1980. Chemical Contaminants and Abnormalities in Central and Southern Puget Sound. NOAA Technical Memorandum OMPA-2. Boulder, Colorado.

The Merck Publishing Company. 1976. The Merck Index. Rahway, New Jersey.

Metro (King County Department of Metropolitan Services). 1994. The Denny Way Sediment Cap. Technical Publications no. 780. Seattle, Washington.

Municipality of Metropolitan Seattle. 1987. Duwamish Head Baseline Study. Seattle, Washington.

Striplin Environmental Associates, Inc. 1996. Development of Reference Value Ranges for Benthic Infauna Assessment Endpoints in Puget Sound. Prepared for Washington Department of Ecology. Olympia Washington.

Tetra Tech, Inc. 1988. Analysis of Toxic Problem Areas. Environmental Protection Agency, Puget Sound Estuary Program. Bellevue, Washington.

Tetra Tech, Inc. 1990. Puget Sound Ambient Monitoring Program 1989: Marine Sediment Monitoring. Prepared for the Washington Department of Ecology. Bellevue Washington

Thom, R, K Chew, and J Word. 1979. Abundance, Biomass, and Trophic Structure of the Subtidal Infaunal Communities of the Eastern Side of Central Puget Sound. Prepared for Metro. Seattle, Washington.

Valiela, I. 1984. Marine Ecological Processes. Springer-Verlag New York Inc. New York, New York.

Wilson, D. and P. Romberg. 1996. *The Denny Way Sediment Cap 1994 Data*. King County Department of Natural Resources, Water and Land Resources Division. Seattle, Washington.

APPENDIX A MONITORING PLAN FOR PIER 53

MONITORING PLAN FOR PIER 53; SEDIMENT CAPPING SITE AND ENHANCED NATURAL RECOVERY AREA SEPTEMBER 1992

CITY OF SEATTLE
DRAINAGE AND WASTEWATER UTILITY
710 SECOND AVENUE
SEATTLE 98104-1598

MUNICIPALITY OF METROPOLITAN SEATTLE 821 SECOND AVENUE SEATTLE WASHINGTON 98104-1709

MONITORING PLAN FOR PIER 53; SEDIMENT CAPPING SITE AND ENHANCED NATURAL RECOVERY AREA SEPTEMBER 1992

Project Description-Site Selection and Remediation Methods

This project site was selected as the City of Seattle's first sediment remediation site in Elliott Bay. Site selection was based on several factors including degree of contamination, completion of source control efforts, and simplification of property ownership issues (refer to unpublished draft report "Metro Toxic Sediment Remediation Project", Parametrix, August 1991). An interagency advisory panel, including EPA and Ecology was consulted to determine the criteria for site selection. One suggestion of the panel was that initial remediation efforts be confined to parcels of public ownership, in order to minimize legal disputes regarding access and responsibility. The Pier 53 site is on property owned by the Washington State Department of Natural Resources and is at the location of a former deep water sewer outfall. The deep water outfall has been abandoned. There is presently a combined sewer overflow adjacent to the site which has been controlled to a maximum of one event per year. There is also a stormwater outfall at the same location, which is at the end of Madison Street.

Potentially contaminated areas exist adjacent to the site under piers 53, 54, and 55. These areas are not accessible for capping by the proposed placement method and were not included in the project scope. During the course of project monitoring, sediment samples will be taken from adjacent properties and provided to Ecology for consideration of future remediation action. If any recontamination of the site occurs, these adjacent properties will be evaluated as potential material sources. At this time the migration effects of contaminated sediments from adjacent sites onto the clean cap material are unknown; the data collected from this site will be valuable for planning and coordinating future remediation projects along the central waterfront.

The project involves two different approaches to sediment remediation. The primary approach is to place a three foot cap of clean dredged material to isolate the contaminated sediments. This cap will be placed on the deeper portions of the project site, covering approximately 2.9 acres. The second approach involves the experimental placement of a one foot layer of clean dredged material on the near shore portion of the site, covering an area of 1.6 acres. This is referred to as enhanced natural recovery. This experimental remediation action was required by Washington State DNR as a condition of project approval in order to minimize the potential future navigational impacts of capping and also to provide some experimental data on the feasibility of using a thinner layer of material to accomplish remediation in shallower areas.

The intent of the three foot cap is to isolate the underlying contaminated sediments and to provide a clean substrate for bottom dwelling and bottom feeding organisms. A three foot

cap depth is generally considered to be sufficient to prevent burrowing organisms from breaching the lower cap boundary and entering the underlying contaminated sediments. This method has been used before as a remediation technique in both Commencement Bay and Elliott Bay. The Elliott Bay project is at the Denny Way site, which was capped by METRO in 1990. The proposed project would use clean dredged materials from the turning basin in the Duwamish River, which was also the material source for the Denny Way site. Sediment will be provided and placed by the US Army Corps of Engineers using split hull scows similar to those used at the Denny Way site.

The intent of the one foot thick enhanced natural recovery area is to attempt a recovery method that would be applicable to shallow urban areas where a thicker cap may affect navigational uses or would be logistically difficult to place, such as under piers or adjacent to bulkheads. There are three potential benefits to this approach. A one foot sediment placement would minimize the loss of navigational depth. It may also allow the larger organisms existing on the site to migrate through the sediment and to recolonize the new material. Lastly, the placement of small amounts of clean material may help accelerate the natural degradation of organic chemicals by the biological community.

Objectives

OBJECTIVE 4

Environmental monitoring for the project involves both short term activities needed to facilitate material placement and to establish baseline information, plus longer term activities needed to document the functional success of the remediation efforts. The strategy for long term monitoring is to do a baseline monitoring within three months of placement, and to repeat monitoring both one, two, and ten years after placement. One other year of monitoring will be added, the timing of which will be decided based on the results of the first two years of monitoring.

There are seven main objectives associated with the monitoring program as listed below. A summary of the sampling activities and schedule are provided in Table 1 and sampling stations are shown in Figure 1.

OBJECTIVE 1 Provide baseline taxonomic data.

OBJECTIVE 2 Guide and document the sediment placement, thickness, and long term stability.

OBJECTIVE 3 Document how well the three foot cap and the enhanced natural recovery area function to isolate contaminated sediments from migrating upwards into the cap, and to document the extent of that contamination if it occurs.

Identify whether chemicals accumulate on the remediation site such that they indicate migration of materials from off-site.

OBJECTIVE 5

Determine the amount and type of benthic recolonization that occurs on the project site and determine whether there are differences in the character and rate of recolonization between the three foot cap and the one foot thick enhanced natural recovery area.

OBJECTIVE 6

Review and evaluate the monitoring data with the regulatory agencies to determine (1) if the three foot cap is functioning as expected to isolate contaminated sediments; (2) if a one foot layer of sediment will function as expected such that biological mixing occurs to enhance natural recovery; (3) whether further actions are warranted for either the capping site or the enhanced natural recovery area.

OBJECTIVE 7

To provide data that may inform and assist the NOAA panel and other agency teams in developing future clean up plans for Elliott Bay.

Cap Placement and Thickness

Bottom stakes will be used to document the placement and thickness of capping" sediments. These will be set by divers inside the area of intended remediation in order to verify the thickness of the placed materials. Stake locations are shown on Figure 1. Initial readings to verify the depth of the new material will be made during the initial monitoring period. An independent check on the thickness of the "capping" materials will also be obtained when sediment cores are collected and processed during the post-placement monitoring discussed in the next section.

A sediment-profile camera survey of the project area and the adjacent seafloor will be conducted in conjunction with the benthic infaunal sampling. One objective of this survey will be to map the areal distribution of capping material at the site. Surface (0-20 cm) sediment grain-size and microstratigraphic layering will be determined from the images and mapped. The sediment-profile surveys, consisting of approximately 100 sampling locations, will be conducted several times throughout the monitoring program, including years 1 and 2. These surveys will allow the distribution of capping material to be mapped over time. These data will supplement the stake observations and core data, and provide a measure of cap dispersal and erosion.

Two follow-up diver surveys of "cap" thickness will be conducted within the four years as summarized in Table 1. These will be conducted at approximately 27 and 51 months after the material is placed to see if there are any obvious differences in the thickness of that material. An analysis of each years data will be included in a report and discussed during a report review meeting and during the four year review. Decisions about when to conduct further bathymetricor diver surveys beyond 51 months will be made in conjunction with Ecology, DNR, EPA, and the Corps of Engineers during the four year review process.

Isolation of Contaminants

Sediment cores will be used to determined if there is any vertical migration of chemicals up into the clean "cap" material. A total of five coring stations will be established as shown in Figure 1. Three coring stations are located in the area of the three foot cap, and two coring stations are located in the area of the one foot experimental enhanced recovery area. These coring stations provide spatial coverage across the project site and are intentionally located a minimum of 50 feet away from other sampling stations so that any potential release of contaminated sediment from the cores will not affect other surface sediment sampling stations.

One core will be collected from each of the five stations. Each core will extend completely through the clean remediation material and into the underlying contaminated sediments about one foot, as shown in Figure 3. Six-inch long sections of the cores will be retained as samples for chemical analysis. Where the three-foot cap is placed, one (1) 6-inch section will be taken below the interface and four (4) of the 6-inch core sections will be taken from above the interface, for a total of five sections. Where the one foot thick material is placed, one (1) 6-inch section will be taken below the interface but only one (1) or two (2) 6-inch sections will be taken from above the interface, depending on the actual material depth achieved by placement. Because mixing can occur around the interface due to the physical process of sediment placement, it is important to leave a space of at least one inch above the interface before taking the first sample. The exact distance will be determined after inspecting the interface of each baseline core, but will remain the same for future cores.

Sediment cores required to establish baseline data will be collected as soon as practical within three months after cap placement. All sections of each baseline core will be analyzed for metal and organic priority pollutants including as a minimum, those required by Washington State Sediment Standards (ref: WAC-173-204). Future core samples will be collected adjacent to the baseline stations to allow comparison of data. All sample sections will be collected for each core taken after the baseline cores, but initially only the first section above the interface will be analyzed for those chemicals found in the underlying contaminated sediments, to determine whether any chemical migration is evident. If chemical migration appears evident, sections further up the core will then be analyzed to determine how far chemical migration extends into the clean "cap" material. Decisions about whether to analyze additional sections will be made within the storage times established under the Puget Sound Protocols.

Additionally, if chemical contamination appears in the enhanced natural recovery area (one foot thick sediments) two avenues of contamination will be considered. If the contamination occurs at the top of the cap material, biological mixing from underlying sediment or deposition of new contamination will be suspected. If the contamination occurs in the bottom only, contamination from migration will be suspected.

Evaluation of vertical migration in the botton of the "capping" materials will be limited to only chemicals that were present in the underlying sediments. Data will be normalized to dry weight to allow comparisons. Vertical migration from the "cap" downward will be evaluated if there is evidence of significant chemical accumulation on the project site based

on surface sediment samples. Also, a direct measure of cap thickness will be made and compared to the thickness indicated by the bottom depth surveys.

Initial core sampling will be done within three months of "cap" placement. Subsequent sampling will be done one year, four years, and ten years after the initial sampling. An analysis of each years data will be included in a monitoring report and the results discussed during a report review meeting and during the four year review. Decisions regarding the possibility of an additional core sampling between the four year and ten year sampling events will be made in conjunction with Ecology, DNR, EPA, and the Corps during the four year review process scheduled for 1996.

Surface Contamination of Project Site and Adjacent Property

To provide information requested by Ecology and EPA, surface contamination of adjacent property will be determined by collecting and analyzing samples from six stations in 1992 as shown on Figure 1 and 2. Four of these sample sites are located east of the project under the piers; samples from these sites will be collected either by diver or by small grab. Two of the stations are located south of the project site and will be collected with a Van Veen grab sampler. A stainless steel "cookie cutter" will be used to collect the top two centimeters of sediment from three replicate samples per station. These sub-samples will be composited, and then analyzed for priority pollutants, metal and organic including all the routine Ecology sediment chemical parameters. Data for all stations will be normalized to dry weight for comparison between stations and years. Data from these six stations will be provided to Ecology for comparison to other areas along the Seattle waterfront.

Accumulation of surface sediment contamination on the project site will be evaluated by collecting and analyzing samples from seven stations as shown in Figure 1. Samples will be collected with a Van Veen grab sampler. A stainless steel "cookie cutter" will be used to collect the top two centimeters of sediment from three replicate samples per station. These sub-samples will be composited, and then analyzed for priority pollutants, metal and organic, including all the routine Ecology sediment quality chemicals. Data for all stations will also be carbon normalized for comparison to the state sediment standards.

Chemistry data will be compared to the previously collected data (baseline and 15 month) to determine whether a change has occurred. If significant accumulation has occurred, there will be an assessment of the chemistry data from adjacent sites (as noted above) to evaluate whether they are a contributing source.

Initial surface sediment samples will be taken three months after placement. Subsequent samples will be taken one year, four years, and ten years after initial sampling. An analysis of each years data will be included in the monitoring report and discussed during a report review meeting and during the four year review. Decisions about the need, the frequency, and the extent of surface sediment sampling for the period between the four year and ten year samples will be made in conjunction with Ecology, DNR, EPA, and Corps of Engineers during the four year review process in 1996.

Benthic Recolonization

Benthic conditions immediately prior to capping will be documented by collecting and analyzing sediment samples from two stations in the enhanced natrual recovery area. A Van Veen sampler will be used to collect five replicates per station and samples will be processed according to Puget Sound protocols. Benthic taxonomy samples will be screened through a standard 1.0 mm mesh and all organisms identified to the lowest practical taxonomic level (preferably to species).

To evaluate recolonization of the project site, taxonomic data will be collected from two stations on the three foot cap and two stations on the enhanced natural recovery area as shown on Figure 1. This should provide a reasonable representation of the type of recolonization that occurs over the entire projet site. Also, this allows a comparison between recolonization on the three foot cap and the one foot thick enhanced natural recovery area. The first post-placement sampling will occur in summer of 1992. A Van Veen sampler will be used to collect five replicates per station and samples will be processed according to Puget Sound protocols. Benthic taxonomy samples will be screened through a standard 1.0 mm mesh and all organisms identified to the lowest practical taxonomic level (preferably to species). Table 1 shows the schedule for benthic taxonomy sampling which will yield initial samples at about 5 months, after cap placement. Subsequent samples will be taken one year, four years and ten years after initial sampling. Decisions about taxonomy sampling between the four year and ten year sampling event will be determined in conjunction with Ecology, DNR, EPA, and the Corps of Engineers. Data will be included in a monitoring report and then discussed during a report review meeting and during the four year review. This recolonization analysis will involve comparing each years data to the previous data and at the end of four years to an appropriate reference station.

As described above, a sediment-profile survey of the site will be conducted to map the near-surface distribution of capping material at and adjacent to the site. During the first year survey, approximately 100 images will be collected and given a "quick look" analysis to determine the grain size, Redox Potential Discontinuity depth, depth of penetration, and infaunal successional stage. During subsequent years surveys, up to 24 images will be selected for a more detailed analysis of geochemical and biological parameters with a technique known as REMOTS analysis (Rhoads and Germano, 1986; 1982). These 24 images will be selected to include the three foot capping area, the natural recovery area, and the areas adjacent to the project site. The REMOTS image analysis will include the mapping of "apparent" Redox Potential Discontinuity (RPD) depths and infaunal successional stages. These data will be used, in conjunction with the benthic infaunal data, to document the pattern(s) of benthic recolonization and biogenic sediment reworking across the study area. Sediment-profile surveys will be conducted at the same intervals as the benthic taxonomy sampling.

Review and Evaluation Process

A review process will be conducted on a regular basis to evaluate the monitoring data and determine if the cap is functioning as expected. To help facilitate this review, a monitoring

report will be prepared that presents and analyzes the data. The monitoring report will be produced once each year that new monitoring data is obtained. Table 2 provides an outline of the topics to be addressed in the monitoring report.

Each monitoring report will be distributed to DNR, Ecology, EPA, the Corps of Engineers, and other interested groups, including the NOAA panel that will direct the City of Seattle/Metro settlement action. A meeting will be held to discuss and evaluate the report and conclusions for each year that a report is issued. A major monitoring review will be conducted after four years and will include discussions about monitoring needs beyond four years. These discussions will consider whether the cap is functioning as expected and what contingency actions might be warranted if the cap is not functioning as expected, including whether resulting conditions at the cap surface warrant further action.

Table I. Summary Schedule of Monitoring Activities for Pier 53 Capping

ESCRIPTION OF ACTIVITY	Construction Phase			Ten Yea Post Cap I		. <u>.</u>						···
	1992	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Set Botton Stakes	X	×										
Bottom stake measurements by diver	×	May	August			August						August
Sediment cores for chemistry, 5 stations total:											:	
3 stations on 3' cap (5 depth segments)		May	August	1		August						August
2 stations on enhanced natural recovery area (2 or 3 depth segments)		May	August			August	<u> </u>					August
Surface grabs for chemistry— adjacent to ste, 6 stations (3 stations top 2 CM+top 6 CM) (3 stations top 2 CM only)		May		·								
Surface grabs for chemistry, 7 stations on project site (top 2 cm)		May	August			August			ļ	<u> </u>		August
Surface grabs to document taxonomy prior to project work, 2 stations	x								<u> </u>			
Surface grabs for taxonomy:			ļ		1					1	·	
2 stations on enchanced natural recovery area		August	August]	August						August
2 stations on 3' cap		August	August			August						August
REMOTS camera survey		August	August	.	<u> </u>	August	ļ			 		August
Monitoring report for given year (due January of following year)		x	x		ļ	×	<u> </u>		ļ <u>.</u>			×
Monitoring revew meetings		x	x		ļ	x	<u> </u>		<u> </u>	ļ		<u> x</u>
Four year project review					<u> </u>				<u></u>	<u> </u>		<u> x</u>

NOTES:

- Baseline sampling will be conducted as soon as practical within the first three months after cap placement.
- b) Monitoring review meetings may be held within the first two months of subsequent year.

- c) *Decision to sample in 2002 will be based on meeting in 1996.
- d) Sampling targeted for August may also be completed in September, if necessary.

Page 9

Figure 3. Cross section of sediment core showing the sections that will be taken for chemical analysis.

- (a) Determine based on degree of mixing apparent at the interface.
- (b) Section taken on 3' sediment cap.
- (c) Section taken on enhanced natural recovery area.

Table 2

MONITORING REPORT OUTLINE

Section 1: Background

Provide information on when and how the sediments were placed, including amount of sediment used.

List permits and licenses obtained and existing permit conditions.

Section 2: Placement and Thickness of Sediment Cap and Enhanced Natural Recovery Area

Provide map showing position and thickness of sediment cap and enhanced natural recovery area as determined by barge dumping records.

Provide a corrected map of thickness of sediment cap and of enhanced natural recovery area based on data bottom stakes and sediment cores.

Compare each subsequent survey with the previous survey and discuss whether the sediment cap and enhanced natural recovery area appear to be remaining stable.

Section 3: Isolation of Contaminants

Chemical data from baseline cores will be presented in tables and discussed regarding the following:

- Identify exact sampling locations on project site.
- Identify presence of chemicals in both the underlying sediments and "capping" material.
- Compare observed chemistry to the turning basin pre-dredged data.
- Check uniformity of chemistry between core sections.
- Display profile plots of representative chemicals.

Subsequent core data will be added to the tables to allow comparisons and then discussed regarding the following:

- Identify apparent chemical increases in both the sediment cap and the enhanced natural recovery area.
- Compare to chemicals in underlying sediments.
- Display profile plots of representative chemicals.

- If chemical levels in the sediment cap and/or the enhanced natural recovery area become significantly elevated, these values will be compared to Washington State Sediment Standards.

Section 4: Surface Contamination of Project Site and Adjacent Property

Chemistry data from baseline surface grab samples will be presented in tables and discussed regarding the following:

- Identify exact sampling location on project site and adjacent property.
- Identify chemicals present on project site and adjacent property.
- Compare surface chemistry on project site to turning basin pre-dredge data and to new core data from project site.
- Identify spatial differences in concentrations on project site.
- Provide data from adjacent property to Ecology for comparison to other locations on the Seattle waterfront (1992 report only).

Subsequent surface chemistry data will be added to the tables to allow comparisons and discussed regarding the following:

- Identify chemicals that appear to increase.
- Display plots of representative chemicals showing change over time.
- Identify spatial differences and implication to possible sources.
- If chemicals show a trend of significantly increasing concentrations, conditions on adjacent property will be evaluated as a potential source of contaminants.
- If chemical levels in the sediment cap or in the area of enhanced natural recovery become significantly elevated, the values will be compared to available Puget Sound Sediment Standards.

Section 5: Benthic Recolonization

Detailed taxonomy data will be presented in tables and discussed regarding the following:

- Identify exact sampling location on cap.
- Develop summary data regarding number of taxa and biomass.
- Display plots showing changes over time in number of taxa biomass.
- Compare the population resulting in the sediment cap and the enhanced natural recovery area after five years to populations found in similar type habitats as determined from previously collected data or a recent sample from an appropriate reference area.
- Compare the recolonization on the sediment cap and on the enhanced natural recovery area.

Section 6: Conclusions

- Regarding stability of the three foot sediment cap and of the enhanced natural recovery area.
- Regarding isolation of contaminants on the three foot sediment cap and on the enhanced natural recovery area.
- Regarding contamination of surface of the three foot sediment cap and of the enhanced natural recovery area.
- Regarding status of benthic recolonization of the three foot sediment cap and the enhanced natural recovery area.
- Regarding recommendations for future actions.

APPENDIX B

METRO ENVIRONMENTAL LABORATORY QUALITY ASSURANCE REVIEW

KING COUNTY ENVIRONMENTAL LABORATORY QUALITY ASSURANCE REVIEW

for

PIER 53 SEDIMENT CAP MONITORING PROJECT

Prepared by:

Benjamin G. Budka
Environmental Specialist II

Scott J. Mickelson Environmental Specialist III

November 18, 1996

Reviewed by:

King County Environmental Laboratory 322 West Ewing Street Seattle, Washington 98119-1507

KING COUNTY ENVIRONMENTAL LABORATORY QUALITY ASSURANCE REVIEW

for

PIER 53 SEDIMENT CAP MONITORING PROJECT

November 18, 1996

King County Environmental Laboratory 322 West Ewing Street Washington

Seattle,

98119-1507

INTRODUCTION

This Quality Assurance (QA) review accompanies data submitted in connection with marine sediment sampling at the Pier 53 Cap. The QA review is organized into the four sections listed below.

- General Comments
- Conventionals Chemistry
- Metals Chemistry
- Organics Chemistry

An overview of the approach used for this QA review is detailed in the General Comments section. Additional information specific to each analysis is included in the appropriate analytical section.

This QA review has been primarily conducted in accordance with guidelines established through the Puget Sound Dredged Disposal Analysis (PSDDA) program, outlined in *Puget Sound Dredged Disposal Analysis Guidance Manual, Data Quality Evaluation for Proposed Dredged Material Disposal Projects.* Other approaches incorporated in this QA review have been established through collaboration between the King County Environmental Laboratory (KC Laboratory) and the Washington State Department of Ecology (Ecology) Sediment Management Unit

GENERAL COMMENTS

Scope of Samples Submitted

This QA review is associated with marine sediment samples collected in August, 1996 at the Pier 53-55 Sediment Cap. The samples collected and the proposed analytical scheme are summarized in Table 1. Except where noted in the subcontracting sections of this QA review, all analyses have been conducted by the KC Laboratory. The data are reported with associated data qualifiers and have undergone QA1 review, as summarized in this narrative report.

Completeness

Completeness has been evaluated for this data submission and QA review by considering the following criteria:

- Comparing available data with the planned project analytical scheme summarized in Table 1.
- Compliance with storage conditions and holding times.
- Compliance with the complete set of quality control (QC) samples outlined in Table 2.

Methods

Analytical methods are noted in the applicable analytical sections of this QA review.

Target Lists

The reported target lists have been compared to the target analytes listed in *Table 1- Marine Sediment Quality Standards Chemical Criteria* contained in Chapter 173-204 WAC and the PSDDA *Chemicals of Concern* list.

Detection Limits

The KC Laboratory distinguishes between the Reporting Detection Limit (RDL) and the Method Detection Limit (MDL).

- The RDL is defined as the minimum concentration of a chemical constituent that can be reliably quantified.
- The MDL is defined as the minimum concentration of a chemical constituent that can be detected.

Some subcontractor laboratory data is available with an MDL only, in accordance with the subcontracting laboratory policies. All analytical data are reported with either a result and/or detection limit(s).

Storage Conditions and Holding Times

Storage conditions and holding times have been evaluated using guidelines established during the Third Annual PSDDA Review Meeting. The approach used to evaluate Total Organic Carbon for holding time has been established between the KC Laboratory and Ecology during previous QA1 review efforts.

Method Blanks

Method blanks have been evaluated for the presence of positive analyte results at or greater than the MDL.

Standard Reference Material

Data have been qualified based on available standard reference material (SRM) results. Instances of data reported without associated SRM analysis are noted in the narrative.

Matrix Spikes

Matrix spike results have been used to qualify data for both organics and metals analyses. Matrix spikes are not required for Conventionals parameters.

Replicate Samples

Data have been qualified based on replicate results. However, not all replicate data have been used as an indicator for data qualification. Only sets of replicate results which contain at least one result significantly greater than the MDL have been considered for data qualification. Where an RDL is present, only replicate data that contains at least one result greater than the RDL have been considered for data qualification. These guidelines have been used to account for the fact that precision obtained near the MDL is not representative of precision obtained throughout the entire analytical range.

Data Oualifiers

The data qualification system used for this data submission is presented in Table 3. These data qualifiers address situations which require qualification, according to QA1 guidance. The exact qualifiers used generally conform to QA1 guidance. The KC Laboratory qualifiers indicating <MDL and <RDL have been used as replacements for the T and U specified under QA1 guidance. Changes made to SRM data qualification criteria have been discussed with and approved by the Sediment Management Unit of Ecology.

Units and Significant Figures

Data have been reported in accordance with laboratory policy at the time of data generation. When an RDL and MDL are reported, data have been reported to three significant figures above the RDL, and two significant figures equal to or below the RDL. Data with only an MDL have been reported to two significant figures.

Data are stored in a wet weight basis on the KC Laboratory's data base and converted to dry weight during the reporting process. Should only one reported digit be available, rounding error can be significant. This rounding error can occur during the conversion from wet to dry weight.

Subcontracted Analyses

Analyses which have been subcontracted, and the issues associated with these subcontracted analyses are noted in this narrative.

CONVENTIONALS CHEMISTRY

Completeness

Conventionals data are reported for samples 9209-1 through 9209-11, and 9316-1 through 9316-3. These samples were analyzed for total solids, total organic carbon (TOC) and particle size distribution (PSD) in association with the complete set of QC samples outlined in Table 2.

Subcontracted Analyses

PSD analysis was subcontracted to AmTest, Inc. in Redmond, Washington.

Methods

Total solids analysis was performed in accordance with Standard Method (SM) 2540-B. TOC analysis was performed in accordance with SM5310-B. PSD analysis was performed in accordance with ASTM and Puget Sound Protocols methodologies (Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound - page 9 - PSEP, 1986).

Detection Limits, Units, and Significant Figures

Data are reported in accordance with laboratory policy at the time the data were generated. A positive result and/or MDL and RDL have been reported for all conventionals parameters analyzed by the KC Laboratory. A positive result and/or MDL has been reported for subcontracted analyses. Sample results are reported in units of mg/Kg on a dry weight basis for TOC. Sample results are reported in percent for total solids and PSD. Data are reported to three significant figures for results greater than the RDL and two significant figures for results equal to or less than the RDL. For results reported with less than two or three significant figures, significant zeroes are implied.

Storage Conditions and Holding Times

Sample storage conditions and holding times have been evaluated using guidelines established during the Third Annual PSDDA Review Meeting. The criteria used to evaluate storage conditions and holding times for conventionals analyses are listed in the table below.

Parameter	Frozen Holding Time	Refrigerated Holding Time
PSD	Not Recommended	6 Months
Solids	6 Months	14 Days
TOC	6 Months	14 Days

Sample storage conditions and holding times were met for all samples in this data submission.

Method_Blanks

Method blanks were analyzed in connection with TOC and total solids analyses. All method blank results were less than the MDL.

Standard Reference Material

The SRM analyzed in association with TOC analysis is Buffalo River Sediment. All SRM recoveries were within the 80 to 120% QC limits.

Laboratory Replicate Samples

Laboratory triplicate samples were analyzed in association with all conventionals parameters. Percent relative standard deviation (%RSD) for laboratory triplicate results was less than the 20% QC limit for all triplicate analyses for TOC and total solids.

The average %RSD over all grain size fractions for each of two triplicate analyses performed in association with PSD analysis ranged from 24 to 26%. Laboratory triplicate results were reviewed to determine if a consistent difference occurred over all grain size fractions. Variations in triplicate results appear to be random and a function of inherent variations in samples rather than QC problems. As a result, PSD data have not been qualified based on laboratory triplicate analysis.

METALS CHEMISTRY

Completeness

Metals data are reported for samples 9209-1 through 9209-11 and 9316-1 through 9316-3. These samples were analyzed for mercury and other metals in association with the complete set of QC samples outlined in Table 2.

Methods

Mercury analysis was performed in accordance with EPA Method 7471. All other metals analyses were performed in accordance with EPA Method 3050/6010.

Target List

The reported target list includes all metals specified in *Table 1 - Marine Sediment Quality Standards Chemical Criteria* contained in Chapter 173-204 WAC and the PSDDA *Chemicals of Concern* list. Additional metals have been reported as available.

Detection Limits, Units, and Significant Figures

Data are reported in accordance with laboratory policy at the time the data were generated. A positive result and/or MDL and RDL have been reported for all metals. Sample results are reported in units of mg/Kg on a dry weight basis. Data are reported to three significant figures for results greater than the RDL and two significant figures for results equal to or less than the RDL. For results reported with less than two or three significant figures, significant zeroes are implied.

Storage Conditions and Holding Times

Sample storage conditions and holding times have been evaluated using guidelines established during the Third Annual PSDDA Review Meeting. The criteria used to evaluate storage conditions and holding times for metals analyses are listed in the table below.

Parameter	Frozen Time	Holding	Refrigerated Holding Time
Mercury	28 Days		Not Recommended
Metals	2 Years		6 Months

Sample storage conditions and holding times were met for all samples in this data submission.

Method Blank

All metals and mercury method blank results were less than the MDL.

Standard Reference Material

The SRM analyzed in association with samples included in this data submission is PACS 1 certified by the National Research Council of Canada. This SRM does not contain silver. An SRM recovery less than 80% has not been used alone to qualify data because the digestion technique used for sample analysis is different from the technique used during analysis to determine the SRM certified values. Only those metals for which the SRM recovery was less than 80% and the matrix spike recovery was less than 75% have been qualified.

An SRM recovery less than 80% and a matrix spike recovery less than 75% were reported for antimony for each QC batch in this data submission. Associated antimony results for all samples have been qualified with the G flag.

Matrix Spike

For samples 9209-1 through 9209-11, a matrix spike recovery less than 75% was reported for iron and antimony. Associated sample results for iron and antimony have been qualified with the G flag. A matrix spike recovery greater than 125% was reported for aluminum. Associated sample results for aluminum have been qualified with the L flag.

Samples 9316-1 through 9316-3 had matrix spike recoveries less than 75% reported for antimony. Associated sample results for antimony has been qualified with the G flag. A matrix spike recovery greater than 125% was reported for aluminum. Associated sample results for aluminum have been qualified with the L flag.

Laboratory Duplicate Samples

All metals RPD results were less than the QC limit of 20%.

ORGANICS CHEMISTRY

Completeness

Organics data are reported for samples 9209-1 through 9209-11 and 9316-1 through 9316-3. These samples were analyzed for chlorinated pesticides, polychlorinated biphenyls (PCBs), and base/neutral/acid extractable semivolatile compounds (BNAs) in association with the complete set of QC samples outlined in Table 2. Additionally, samples 9209-1 through 9209-11 were analyzed for volatile organic compounds (VOAs).

Methods

Analysis of chlorinated pesticides and PCBs was performed in accordance with EPA method 8080 (SW-846). Analysis of VOAs was performed in accordance with EPA method 8260 (SW-846). Analysis of BNAs was performed in accordance with EPA method 8270 (SW-846). BNA extracts were also analyzed by selected ion monitoring (SIM) to attain lower detection limits for chlorinated benzene compounds.

Target List

The reported BNA target list includes all compounds specified in *Table 1 - Marine Sediment Quality Standards Chemical Criteria* contained in Chapter 173-204 WAC, with the exception of benzo(j)fluoranthene. The KC Laboratory has verified that analytical conditions are sufficient to calculate a total benzofluoranthenes result using the reported *b* and *k* isomers. Reported PCB data include Aroclors 1016, 1221, 1232, 1242, 1248, 1254, and 1260. The reported chlorinated pesticides target list includes all compounds found on the PSDDA *Chemicals of Concern* list. DDT, DDE and DDD have been reported as 4,4' isomers.

Detection Limits. Units, and Significant Figures

Data are reported in accordance with laboratory policy at the time the data were generated. A positive result and/or MDL and RDL have been reported for all organic compounds. Sample results are reported in units of ug/Kg on a dry weight basis. Data are reported to three significant figures for results greater than the RDL and two significant figures for results equal to or less than the RDL. For results reported with less than two or three significant figures, significant zeroes are implied.

Storage Conditions and Holding Times

Sample storage conditions and holding times have been evaluated using guidelines established during the Third Annual PSDDA Review Meeting. The criteria used to evaluate storage conditions and holding times for organics analyses are listed in the table below.

Parameter	Frozen Holding Time	Refrigerated Holding Time
Pest/PCBs	1 Year to Extract 40 Days to Analyze	14 Days to Extract 40 Days to Analyze
BNAs	1 Year to Extract 40 Days to Analyze	14 Days to Extract 40 Days to Analyze
VOAs	Not Recommended	14 Days to Analyze

Sample storage conditions and holding times were met for all Pesticide/PCB, BNA, and Chlorobenzene samples in this data submission. VOA samples 9209-2 through 9209-9 and 9209-11 were analyzed one day out of holding time. Associated sample results have been qualified with the H flag.

Method Blanks

All chlorinated pesticide/PCB, chlorobenzene, and BNA method blank results were less than the MDL. Acetone was detected in the VOA method blank associated with samples 9209-I through 9209-II. Associated acetone sample data have been qualified with the B flag.

Surrogate Recoveries

All surrogate recoveries for chlorinated pesticide/PCBs and VOAs were within acceptable QC limits.

BNA sample data are qualified when the <u>average</u> surrogate recovery for either or both the acid and base/neutral fractions are outside QC limits. Sample 9316-3 had an average surrogate less than 50% for both the base/neutral and acid fractions. Associated sample data have been qualified with the G flag.

Chlorobenzene sample data are qualified when the <u>single</u> surrogate recovery is outside QC limits. Samples 9209-9 and 9316-1 through 9316-3 have been qualified with the G flag based on surrogate recoveries less than 50%.

Standard Reference Material

The marine sediment SRM analyzed in association with the chlorinated pesticide/PCB analysis normally is 1941a, certified by the National Institute of Standards and Technology. There was no SRM associated with chlorinated pesticide/PCB analysis in this data submission. An SRM is not included during SIM analysis of chlorobenzene compounds. An SRM is not included during VOA analysis.

The marine sediment SRM analyzed in association with the reported BNA analytical results is HS4, certified by the National Research Council of Canada. HS4 contains a partial list of compounds for BNA analysis. BNA data for all samples in this data submission have been qualified based on the SRM recoveries summarized in the following table.

Samples 9209-1 through 9209-11, 9316-1 through 9316-3

Compound	% Recovery	Flag
Napthalene	12	G
Fluorene	42	G
Phenanthrene	40	G
Anthracene	31	G
Fluoranthene	45	G
Pyrene	50	G
Benzo(a)anthracene	56	G
Benzo(k)fluoranthene	66	G
Benzo(a)pyrene	47	G
Indeno(1,2,3-cd)pyrene	47	G
Benzo(g.h.i)perylene	45	G

Matrix Spike

Chlorinated pesticide/PCB data did not require any qualification based upon associated matrix spike results.

BNA data for samples 9209-1 through 9209-8 and 9209-10 through 9209-11 have been qualified based on

the matrix spike recoveries summarized in the following table.

Compound	% Recovery	Flag
Phenol	43	G
bis(2-Chlorocthyl) Ether	41	G
2-Chlorophenol	40	G
2-Methylphenol	43	G
bis(2-Chloroisopropyl) Ether	39	G
4-Methylphenol	45	G
N-Nitroso-di-n-propylamine	37	G
Hexachloroethane	37	G
Nitrobenzene	41	G
Isophorone	39	G
2-Nitrophenol	40	G
2,4-Dimethylphenol	29	G
2,4-Dichlorophenol	49	G
Napthalone	41	G
4-Chloroaniline	17	G
bis(2-Chloroethoxy) methane	40	G
Hexachlorobutadiene	39	G
2-Methylnapthalene	44	G
Hexachlorocyclopentadiene	17	G
2-Chloronapthalene	49	G
3-Nitroaniline	33	G
2,4-Dinitrophenol	36	G
Pentachlorophenal	27	G
Benzidine	0	X
3,3'-Dichlorobenzidine	24	G
N-Nitrosodimethylamine	40	G
Aniline	12	G
Benzyl alcohol	40	G
Benzoic acid	165	L

BNA data for sample 9209-9 have been qualified based on the matrix spike recoveries summarized in the following table.

Compound	% Recovery	Flag
bis(2-Chloroethyl) Ether	34	G
Hexachloroethane	48	G
4-Chloroaniline	20	G
Hexachlorocyclopentadiene	35	G
3-Nitroaniline	49	G
Pentachlorophenal	42	G
Benzidine	0	X
3,3'-Dichlorobenzidine	37	G
N-Nitrosodimethylamine	42	G
Aniline	46	G

BNA data for samples 9316-1 through 9316-3 have been qualified based on the matrix spike recoveries summarized in the following table.

Compound	% Recovery	Flag
N-Nitrosodimethylamine	35	G
Hexachloroethane	44	G
Hexachlorobutadiene	49	G
Hexachlorocyclopentadiene	43	G
Benzidine	0	X
Pentachlorophenal	20	G
Aniline	22	G
3,3'-Dichlorobenzidine	32	G
4-Chloroaniline	30	G

Chlorobenzene data for samples 9209-1 through 9209-8 and 9209-10 through 9209-11 have been qualified based on the matrix spike recoveries summarized in the following table.

Compound	% Recovery	Flag
1,3-Dichlorobenzene	42	G
1,4-Dichlorobenzene	38	G
1,2-Dichlorobenzene	33	G
1,2,4-Trichlorobenzene	42	G

Chlorobenzene data for samples 9209-9 have been qualified based on the matrix spike recoveries summarized in the following table.

Compound	% Recovery	Flag
1,3-Dichlorobenzene	48	G
1,4-Dichlorobenzene	41	G
1,2-Dichlorobenzene	47	G

Chlorobenzene data for samples 9316-1 through 9316-3 have been qualified based on the matrix spike recoveries summarized in the following table.

Compound	% Recovery	Flag
1.3-Dichlorobenzene	45	G
1,4-Dichlorobenzene	39	G
1,2-Dichlorobenzene	44	G

VOA data for samples 9209-1 through 9209-11 have been qualified based on the matrix spike recoveries summarized in the following table.

Compound	% Recovery	Flag
Acrolein	0	X
Vinyl Acetate	0	X

Laboratory Replicate Samples

The RPD results for all chlorinated pesticide/PCB, chlorobenzene, and VOA laboratory duplicate samples were less than the QC limit of 100%.

Pentachlorophenol data for samples 9209-1 through 9209-8, and 9209-10, and 9209-11 have been qualified with the E flag based on laboratory duplicate sample results with an RPD greater than 100%.

Coprostanol data for samples 9316-1 through 9316-3 have been qualified with the E flag based on a laboratory duplicate result with an RPD greater than 100%.

TABLE 1
PIER 53 SEDIMENT CAP STUDY
SAMPLE INVENTORY

Sample	BNAs	Pesticides and PCBs		VOAs	Metals	Mercury	тос	Total Solids	PSD	Comments
9209-1	Х	X	Х	X	X	X	Х	Х	Х	
9209-2	Х	X	Х	Χ	X	Х	X	Х	Х	
9209-3	Х	X	Х	Χ	X	X	X	Х	Х	
9209-4	Х	X	Х	X	X	X	X	Х	Х	
9209-5	X	X	X	X	Х	X	X	Х	Х	
9209-6	X	X	X	X	X	X	X	Х	Х	
9209-7	X	X	Х	Χ	X	X	X	Х	Х	
9209-8	X	X	X	Χ	X	X	X	Х	Х	
9209-9	X	X	X	Χ	Х	X	X	Х	Х	
9209-10	Х	Х	X	Χ	Х	Х	X	Х	Х	
9209-11	Х	X	X	X	X	X	X	X	Х	Field Replicate
9316-1	X	X	Х		Х	X	X	Х	Х	
9316-2	X	X	X		Х	X	Х	Х	Х	
9316-3	X	X	X		X	X	X	Х	Х	

TABLE 2
OC SAMPLE FREQUENCY FOR SEDIMENT CHEMISTRY PARAMETERS

QC_SAM	PLE FREQU	ENCY FOR	SEDIMIENT (CHEMISTRY	PAKAMETE	NO CO
Parameter	Blank	Duplicate	Triplicate	Matrix Spike	SRM	Surrogate
Particle Size Distribution	NA	10% of Samples	10% of Samples	NA	NA	NA
Total Solids	NA	5% Minimum, 1 Per Batch	5% Minimum, 1 Per Batch	NA	NA	NA
Total Organic Carbon	1 Per Batch	5% Minimum, 1 Per Batch	5% Minimum, 1 Per Batch	NA	1 Per Batch	NA
Mercury	1 Per Batch	5% Minimum, 1 Per Batch	NA	5% Minimum, 1 Per Batch	1 Per Batch	NA
Metals	1 Per Batch	5% Minimum, 1 Per Batch	NA	5% Minimum, 1 Per Batch	1 Per Batch	NA
BNAs	1 Per Batch	5% Min., 1 Per Extr. Batch	1 Per Batch of > 20 Samples	5% Min., 1 Per Extr. Batch	1 Per Extraction Batch	Yes
Chlorinated Pesticides and PCBs	1 Per Batch	5% Min., 1 Per Extr. Batch	1 Per Batch of > 20 Samples	5% Min., I Per Extr. Batch	1 Per Extraction Batch	Yes
VOAs	1 Per Batch	5% Min., 1 Per Extr. Batch	1 Per Batch of > 20 Samples	5% Min., 1 Per Extr. Batch	NA	Yes
Chlorobenzenes	1 Per Batch	5% Min., 1 Per Extr. Batch	l Per Batch of > 20 Samples	5% Min., 1 Per Extr. Batch	NA	Yes

TABLE 3 SUMMARY OF DATA QUALIFIERS

Condition to Qualify	METRO Data Qualifier	Organics QC Limits	Metals QC Limits	Conventionals QC Limits	Comment
very low matrix spike recovery	Х	< 10 %	< 10 %	NA	
low matrix spike recovery	G	< 50%	< 75%	NA	
high matrix spike recovery	L	> 150%	>125%	NA	
low SRM recovery	G	< 80%*	NA	< 80%*	
high SRM recovery	L	>120%*	>120%	>120%*	
high duplicate RPD	Е	>100 %	>20%	> 20 %	use duplicate as routine QC for organics
high triplicate RSD	E	> 100%	NA	> 20 %	use triplicate as routine QC for conventionals
less than the reporting detection limit	< RDL	NA	NA	NA	
less than the method detection limit	< MDL	NA	NA	NA	
contamination reported in blank	В	> MDL	> MDL	>MDL	
very biased data, based on surrogate recoveries	X	all fraction surrogates are <10%	NA	NA	use average surrogate recovery for BNA
biased data, based on low surrogate recoveries	G	all fraction surrogates are < 50%	NA	NA	use average surrogate recovery for BNA
biased data, based on high surrogate recoveries	L	all fraction surrogates are >150%	NA	NA	use average surrogate recovery for BNA
estimate based on presumptive evidence	J# used to indicate the presence of TIC's	NA	NA	NA	
rejected, unusable for all purposes	R	NA	NA	NA	
a sample handling criteria has been exceeded	Н	NA	NA	NA	includes container, preservation, hold time, sampling technique

^{*}Note that PSDDA guidance uses a 95% confidence window for this parameter/qualification

APPENDIX C CHEMISTRY DATA

PROJECT: 423056	Locator: Sampled: Lab D: Matrix: % Solids:	P53VG1 Aug 12, 96 L9209-1 SALTWTRSE 65.7	:D			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG2 Aug 12, 96 L9209-2 SALTWTRSE 60.4	:D			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG3 Aug 12, 96 L9209-3 SALTWTRSE 58.4	ED		
Parameters	Value	Qual - D	MDL ny Weight Bas	RDL	Units	Value	Qual - t	MDL Dry Welght Basi	RDL	Units	Value	Qual -	MDL Dry Weight Bas	RDL s	Units
ORGANICS															
M.Code=SW-846 8080															
4,4'-DDD		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg	1	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg		<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
4,4'-DDE		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg	1	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg	1	<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
4,4'-DDT		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg	 	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg		<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Aldrin		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg	1	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg	1	<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Alpha-BHC		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg		<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg		<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Aroclor 1016		<mdl< td=""><td>20</td><td>40.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	40.6	ug/Kg		<mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	22	44.2	ug/Kg		<mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<>	22	45.7	ug/Kg
Aroclor 1221		<mdl< td=""><td>20</td><td>40.6</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	40.6	ug/Kg	1	<mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	22	44.2	ug/Kg		<mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<>	22	45.7	ug/Kg
Aroclor 1232		<mdl< td=""><td>20</td><td>40.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	40.6	ug/Kg		<mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	22	44.2	ug/Kg		<mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<>	22	45.7	ug/Kg
Aroclor 1242		<mdl< td=""><td>20</td><td>40.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	40.6	ug/Kg		<mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	22	44.2	ug/Kg		<mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<>	22	45.7	ug/Kg
Aroclor 1248		<mdl< td=""><td>20</td><td>40.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	40.6	ug/Kg		<mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	22	44.2	ug/Kg		<mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<>	22	45.7	ug/Kg
Aroclor 1254		<mdl< td=""><td>20</td><td>40.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	40.6	ug/Kg		<mdl< td=""><td>22</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	22	44.2	ug/Kg		<mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<>	22	45.7	ug/Kg
Aroclor 1260		<mdl< td=""><td>20</td><td>40.6</td><td>ug/Kg</td><td>36</td><td></td><td>22</td><td>44.2</td><td>ug/Kg</td><td>20</td><td></td><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<>	20	40.6	ug/Kg	36		22	44.2	ug/Kg	20		22	45.7	ug/Kg
Beta-BHC		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td>H</td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg	H	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg	1	<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Chlordane		<mdl< td=""><td>10</td><td>20.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>11</td><td>22</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>11</td><td>22.8</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	10	20.2	ug/Kg		<mdl< td=""><td>11</td><td>22</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>11</td><td>22.8</td><td>ug/Kg</td></mdl<></td></mdl<>	11	22	ug/Kg	 	<mdl< td=""><td>11</td><td>22.8</td><td>ug/Kg</td></mdl<>	11	22.8	ug/Kg
Delta-BHC		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg	<u> </u>	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg	<u> </u>	<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Dieldrin		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57 4.57</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg		<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57 4.57</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg		<mdl< td=""><td>2.2</td><td>4.57 4.57</td><td>ug/Kg ug/Kg</td></mdl<>	2.2	4.57 4.57	ug/Kg ug/Kg
Endosulfan I		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td>3.8</td><td></td><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>4.:</td><td></td><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2	4.06	ug/Kg	3.8		2.2	4.42	ug/Kg	4.:		2.2	4.57	ug/Kg
Endosulfan II		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg	<u> </u>	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg		<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg ug/Kg</td></mdl<>	2.2	4.57	ug/Kg ug/Kg
Endosulfan Sulfate		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg	<u> </u>	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg		<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Endrin		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl <mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></mdl </td></mdl<></td></mdl<>	2	4.06	ug/Kg	1	<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl <mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></mdl </td></mdl<>	2.2	4.42	ug/Kg		<mdl <mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></mdl 	2.2	4.57	ug/Kg
Endrin Aldehyde		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg		<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg		<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Gamma-BHC (Lindane)		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg		<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg	II	<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Heptachlor		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2	4.06	ug/Kg		<mdl< td=""><td>2.2</td><td>4.42</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<></td></mdl<>	2.2	4.42	ug/Kg	 	<mdl< td=""><td>2.2</td><td>4.57</td><td>ug/Kg</td></mdl<>	2.2	4.57	ug/Kg
Heptachlor Epoxide		<mdl< td=""><td>2</td><td>4.06</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>2.2</td><td>4.42 22</td><td>ug/Kg</td><td>!</td><td><mdl< td=""><td>11</td><td>22.8</td><td>ug/Kg</td></mdl<></td></mdl<></mdl </td></mdl<>	2	4.06	ug/Kg	 	<mdl <mdl< td=""><td>2.2</td><td>4.42 22</td><td>ug/Kg</td><td>!</td><td><mdl< td=""><td>11</td><td>22.8</td><td>ug/Kg</td></mdl<></td></mdl<></mdl 	2.2	4.42 22	ug/Kg	!	<mdl< td=""><td>11</td><td>22.8</td><td>ug/Kg</td></mdl<>	11	22.8	ug/Kg
Methoxychlor		<mdl< td=""><td>10</td><td>20.2</td><td>ug/Kg</td><td>_</td><td><mdl< td=""><td>11 22</td><td>44.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	10	20.2	ug/Kg	_	<mdl< td=""><td>11 22</td><td>44.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	11 22	44.2	ug/Kg	 	<mdl< td=""><td>22</td><td>45.7</td><td>ug/Kg</td></mdl<>	22	45.7	ug/Kg
Toxaphene	·	<mdl< td=""><td>20</td><td>40.6</td><td>ug/Kg</td><td></td><td>- MDL</td><td>22</td><td>44.2</td><td>ug/Kg</td><td><u> </u></td><td>- NIDL</td><td></td><td>45.1</td><td>49.19</td></mdl<>	20	40.6	ug/Kg		- MDL	22	44.2	ug/Kg	<u> </u>	- NIDL		45.1	49.19
M.Code=SW-846 8260		-1451	7.0	450		 	<mdl.h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td> </td><td><mdl.h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl.h<></td></mdl.h<>	8.3	16.6	ug/Kg	 	<mdl.h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl.h<>	8.6	17.1	ug/Kg
1,1,1-Trichloroethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td><u> </u></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td></td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	<u> </u>	<mdl,h< td=""><td>8.3</td><td>16.6</td><td></td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6			<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
1,1,2,2-Tetrachloroethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td> </td><td></td><td></td><td></td><td>ug/Kg</td><td>II</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	 				ug/Kg	II	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
1,1,2-Trichloroethane 1,1,2-Trichloroethylene		<mdl< td=""><td>7.6</td><td>15.2 15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3 8.3</td><td>16.6 16.6</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2 15.2	ug/Kg		<mdl,h< td=""><td>8.3 8.3</td><td>16.6 16.6</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3 8.3	16.6 16.6	ug/Kg	 	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
1,1,2-1 richloroethylene		<mdl< td=""><td>7.6 7.6</td><td>15.2</td><td>ug/Kg</td><td>[</td><td><mdl,h <mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></mdl,h </td></mdl<>	7.6 7.6	15.2	ug/Kg	[<mdl,h <mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></mdl,h 	8.3	16.6	ug/Kg ug/Kg	 	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
1,1-Dichloroethylene		<mdl< td=""><td></td><td>15.2</td><td>ug/Kg</td><td>II</td><td><mdl,n< td=""><td>8.3</td><td>16.6</td><td></td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,n<></td></mdl<>		15.2	ug/Kg	II	<mdl,n< td=""><td>8.3</td><td>16.6</td><td></td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,n<>	8.3	16.6		 	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
		<mdl< td=""><td>7.6</td><td></td><td>ug/Kg</td><td> </td><td></td><td>8.3</td><td>16.6</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl<>	7.6		ug/Kg	 		8.3	16.6	ug/Kg	 	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
1,2-Dichloroethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td>I</td><td><mdl,h< td=""><td></td><td>16.6</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	I	<mdl,h< td=""><td></td><td>16.6</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>		16.6	ug/Kg	 	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
1,2-Dichloropropane 2-Butanone (MEK)		<mdl< td=""><td>7.6 38</td><td>15.2 76.1</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.3 41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,n< td=""><td>43</td><td>85.6</td><td></td></mdl,n<></td></mdl,h<></td></mdl<>	7.6 38	15.2 76.1	ug/Kg	 	<mdl,h< td=""><td>8.3 41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,n< td=""><td>43</td><td>85.6</td><td></td></mdl,n<></td></mdl,h<>	8.3 41	82.8	ug/Kg		<mdl,n< td=""><td>43</td><td>85.6</td><td></td></mdl,n<>	43	85.6	
		<mdl< td=""><td></td><td></td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td></td><td></td><td>ug/Kg</td><td>₽</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>			ug/Kg	 	<mdl,h< td=""><td></td><td></td><td>ug/Kg</td><td>₽</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>			ug/Kg	₽	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
2-Chloroethylvinyl ether		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td><u>]</u></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td><u>H</u></td><td>\MDL,U</td><td>0.0</td><td>17.1</td><td>ugrig</td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	<u>]</u>	<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td><u>H</u></td><td>\MDL,U</td><td>0.0</td><td>17.1</td><td>ugrig</td></mdl,h<>	8.3	16.6	ug/Kg	<u>H</u>	\MDL,U	0.0	17.1	ugrig

PROJECT: 423056

Locator:

P53VG1

Sampled: Aug 12, 96 Lab ID:

L9209-1

Locator: P53VG2

Sampled: Aug 12, 96 L9209-2 Lab ID:

P53VG3 Locator: Aug 12, 96 Sampled:

Lab ID: L9209-3 SALTAMESED

	Matrix:	SALTWTRSE	D			Matrix:	SALTWTRSE	D				SALTWIRSED)		I
	% Solids:	65.7				% Solids:	60.4				% Solids:	58.4			
Parameters	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL.	Units
a difficient	value		IVIDL ry Weight Bas		Dilito	Value		ry Weight Basi		Utills	Value		ry Weight Basi	s	
		- 0	iy vveigitt bas	313			- 6	Ty Weight Das	15		 				ı
2-Hexanone		<mdl< td=""><td>38</td><td>76.1</td><td>ug/Kg</td><td>1</td><td><mdl.h< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl.h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl.h<></td></mdl.h<></td></mdl<>	38	76.1	ug/Kg	1	<mdl.h< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl.h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl.h<></td></mdl.h<>	41	82.8	ug/Kg		<mdl.h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl.h<>	43	85.6	ug/Kg
4-Methyl-2-Pentanone (MIBK)		<mdl <mdl< td=""><td>38</td><td>76.1</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td> </td><td><mdl.h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl.h<></td></mdl,h<></td></mdl<></mdl 	38	76.1	ug/Kg		<mdl,h< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td> </td><td><mdl.h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl.h<></td></mdl,h<>	41	82.8	ug/Kg	 	<mdl.h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl.h<>	43	85.6	ug/Kg
Acetone	72		20	76.1	ug/Kg	99.7		22	82.8	ug/Kg	98.5	B,H	22	85.6	ug/Kg
Acrolein	<u>'`</u>	<mdl,x< td=""><td>38</td><td>76.1</td><td>ug/Kg</td><td>J 35.7</td><td><mdl,x,h< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,x,h<></td></mdl,x,h<></td></mdl,x<>	38	76.1	ug/Kg	J 35.7	<mdl,x,h< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,x,h<></td></mdl,x,h<>	41	82.8	ug/Kg		<mdl,x,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,x,h<>	43	85.6	ug/Kg
Acrylonitrile	****	<mdl< td=""><td>38</td><td>76.1</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	38	76.1	ug/Kg	 	<mdl,h< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	41	82.8	ug/Kg		<mdl,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,h<>	43	85.6	ug/Kg
Benzene		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	1	<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Bromodichloromethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	1	<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Bromoform		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>l</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	1	<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>l</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg	l	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Bromomethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td>I</td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	I	<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg	1	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Carbon Disulfide		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg	1	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Carbon Tetrachloride		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Chlorobenzene		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td>II</td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	II	<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Chlorodibromomethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	1	<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Chloroethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td><u> </u></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td><u> </u></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg	<u> </u>	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Chloroform		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Chloromethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>J</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>J</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg	J	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Chloromethane		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td>H</td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>I</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	H	<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>I</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg	I	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg ug/Kg
Cis-1,3-Dichloropropene		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>!</td><td><mdl,h <mdl.h< td=""><td>8.6 8.6</td><td>17.1 17.1</td><td>ug/Kg</td></mdl.h<></mdl,h </td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>!</td><td><mdl,h <mdl.h< td=""><td>8.6 8.6</td><td>17.1 17.1</td><td>ug/Kg</td></mdl.h<></mdl,h </td></mdl,h<>	8.3	16.6	ug/Kg	!	<mdl,h <mdl.h< td=""><td>8.6 8.6</td><td>17.1 17.1</td><td>ug/Kg</td></mdl.h<></mdl,h 	8.6 8.6	17.1 17.1	ug/Kg
Ethylbenzene		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td></td><td>8.6</td><td>85.6</td><td>ug/Kg</td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td></td><td>8.6</td><td>85.6</td><td>ug/Kg</td></mdl,h<>	8.3	16.6	ug/Kg			8.6	85.6	ug/Kg
Methylene Chloride		<mdl< td=""><td>7.6</td><td>76.1</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,h <mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></mdl,h </td></mdl,h<></td></mdl<>	7.6	76.1	ug/Kg		<mdl,h< td=""><td>8.3</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,h <mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></mdl,h </td></mdl,h<>	8.3	82.8	ug/Kg		<mdl,h <mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></mdl,h 	8.6	17.1	ug/Kg
Styrene		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,n< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,n<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,n< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,n<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,n< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,n<>	8.6	17.1	ug/Kg
Tetrachioroethylene		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Toluene		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Total Xylenes Trans-1,2-Dichloroethylene		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.3 8.3</td><td>16.6 16.6</td><td>ug/Kg</td><td>]</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg		<mdl,h< td=""><td>8.3 8.3</td><td>16.6 16.6</td><td>ug/Kg</td><td>]</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3 8.3	16.6 16.6	ug/Kg]	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
		<mdl< td=""><td>7.6</td><td>15.2</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.3 8.3</td><td>16.6</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl<>	7.6	15.2	ug/Kg	 	<mdl,h< td=""><td>8.3 8.3</td><td>16.6</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.3 8.3	16.6	ug/Kg ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Trans-1,3-Dichloropropene Trichlorofluoromethane		<mdl <mdl< td=""><td>7.6 7.6</td><td>15.2 15.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,h <mdl.h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>h</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl.h<></mdl,h </td></mdl<></mdl 	7.6 7.6	15.2 15.2	ug/Kg ug/Kg	 	<mdl,h <mdl.h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td>h</td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl.h<></mdl,h 	8.3	16.6	ug/Kg	h	<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
Vinyl Acetate		<mdl,x< td=""><td>38</td><td>76.1</td><td></td><td></td><td><mdl,t< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,x,h<></td></mdl,t<></td></mdl,x<>	38	76.1			<mdl,t< td=""><td>41</td><td>82.8</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,x,h<></td></mdl,t<>	41	82.8	ug/Kg		<mdl,x,h< td=""><td>43</td><td>85.6</td><td>ug/Kg</td></mdl,x,h<>	43	85.6	ug/Kg
Vinyl Chloride		<mdl,x< td=""><td>7.6</td><td>15.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,a,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,a,h<></td></mdl,x<>	7.6	15.2	ug/Kg ug/Kg	 	<mdl,a,h< td=""><td>8.3</td><td>16.6</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<></td></mdl,a,h<>	8.3	16.6	ug/Kg		<mdl,h< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl,h<>	8.6	17.1	ug/Kg
M.Code=SW-846 8270		MIDL	7.0	15.2	ug/ry	II		0.3	10.0	ug/i\g	<u> </u>	-1110111			
1,2-Diphenylhydrazine		<mdl< td=""><td>81</td><td>163</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>88</td><td>177</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	81	163	ug/Kg	 	<mdl< td=""><td>88</td><td>177</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<></td></mdl<>	88	177	ug/Kg		<mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<>	91	183	ug/Kg
2,4,5-Trichlorophenol		<mdl< td=""><td>170</td><td>324</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>180</td><td>353</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>190</td><td>365</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	170	324	ug/Kg	ļ	<mdl< td=""><td>180</td><td>353</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>190</td><td>365</td><td>ug/Kg</td></mdl<></td></mdl<>	180	353	ug/Kg		<mdl< td=""><td>190</td><td>365</td><td>ug/Kg</td></mdl<>	190	365	ug/Kg
2,4,6-Trichlorophenol		<mdl< td=""><td>170</td><td>324</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>353</td><td>ug/Kg ug/Kg</td><td></td><td><mdl< td=""><td>190</td><td>365</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	170	324	ug/Kg		<mdl< td=""><td>180</td><td>353</td><td>ug/Kg ug/Kg</td><td></td><td><mdl< td=""><td>190</td><td>365</td><td>ug/Kg</td></mdl<></td></mdl<>	180	353	ug/Kg ug/Kg		<mdl< td=""><td>190</td><td>365</td><td>ug/Kg</td></mdl<>	190	365	ug/Kg
2,4-Dichlorophenol		<mdl.g< td=""><td>41</td><td>81.1</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl.g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<></td></mdl.g<></td></mdl.g<>	41	81.1	ug/Kg ug/Kg	 	<mdl.g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<></td></mdl.g<>	45	88.2	ug/Kg		<mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<>	46	91.3	ug/Kg
2,4-Dimethylphenol		<mdl,g< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	41	81.1	ug/Kg	1	<mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	45	88.2	ug/Kg ug/Kg	 	<mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<>	46	91.3	ug/Kg
2,4-Dinitrophenol		<mdl,g< td=""><td>81</td><td>163</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	81	163	ug/Kg ug/Kg	 	<mdl,g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	88	177	ug/Kg	 	<mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<>	91	183	ug/Kg
2,4-Dinitrophenol		<mdl,g< td=""><td>17</td><td>32.4</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>18</td><td>35.3</td><td>ug/Kg ug/Kg</td><td></td><td><mdl< td=""><td>19</td><td>36.5</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl,g<>	17	32.4	ug/Kg	 	<mdl,g< td=""><td>18</td><td>35.3</td><td>ug/Kg ug/Kg</td><td></td><td><mdl< td=""><td>19</td><td>36.5</td><td>ug/Kg</td></mdl<></td></mdl,g<>	18	35.3	ug/Kg ug/Kg		<mdl< td=""><td>19</td><td>36.5</td><td>ug/Kg</td></mdl<>	19	36.5	ug/Kg
2,6-Dinitrotoluene		<mdl< td=""><td><u>17</u> 17</td><td>32.4</td><td></td><td> </td><td><mdl< td=""><td>18</td><td>35.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>19</td><td>36.5</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	<u>17</u> 17	32.4		 	<mdl< td=""><td>18</td><td>35.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>19</td><td>36.5</td><td>ug/Kg</td></mdl<></td></mdl<>	18	35.3	ug/Kg	 	<mdl< td=""><td>19</td><td>36.5</td><td>ug/Kg</td></mdl<>	19	36.5	ug/Kg
2-Chloronaphthalene		<mdl.g< td=""><td>24</td><td>40.6</td><td>ug/Kg ug/Kg</td><td></td><td><mdl.g< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl.g<></td></mdl.g<></td></mdl.g<>	24	40.6	ug/Kg ug/Kg		<mdl.g< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl.g<></td></mdl.g<>	26	44.2	ug/Kg	 	<mdl.g< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl.g<>	27	45.7	ug/Kg
2-Chlorophenol		<mdl,g< td=""><td>81</td><td>163</td><td>ug/Kg ug/Kg</td><td>!</td><td><mdl,g< td=""><td>26 88</td><td>177</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,g< td=""><td>91</td><td>183</td><td></td></mdl,g<></td></mdl,g<></td></mdl,g<>	81	163	ug/Kg ug/Kg	!	<mdl,g< td=""><td>26 88</td><td>177</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,g< td=""><td>91</td><td>183</td><td></td></mdl,g<></td></mdl,g<>	26 88	177	ug/Kg ug/Kg		<mdl,g< td=""><td>91</td><td>183</td><td></td></mdl,g<>	91	183	
Z-CIHOLOPHEHOI		SMDL,G	01	103	ug/r\g	II	YMDL,G	00	177	ugring	· II		·		

PROJECT: 423056	Localor: Sampled; Lab ID: Matrik: % Solids;	P53VG1 Aug 12, 96 L9209-1 SALTWTRS 65.7	SED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG2 Aug 12, 96 L9209-2 SALTWTRSE 60.4	D			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG3 Aug 12, 96 L9209-3 SALTWTRSEI 58.4)		
Parameters	Value	Qual -	MDL Dry Weight Bas	RDL is	Units	Value	Quai - Di	MDL ny Weight Basis	RDL	Units	Value	Qual - (MDL Ory Weight Basis	RDL	Units
2-Methylnaphthalene		<mdl.g< td=""><td>65</td><td>122</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>71</td><td>132</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>74</td><td>137</td><td>ug/Kg</td></mdl.g<></td></mdl,g<></td></mdl.g<>	65	122	ug/Kg		<mdl,g< td=""><td>71</td><td>132</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>74</td><td>137</td><td>ug/Kg</td></mdl.g<></td></mdl,g<>	71	132	ug/Kg		<mdl.g< td=""><td>74</td><td>137</td><td>ug/Kg</td></mdl.g<>	74	137	ug/Kg
2-Methyliphenol		<mdl,g< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	41	81.1	ug/Kg		<mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	45	88.2	ug/Kg		<mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<>	46	91.3	ug/Kg
2-Nitroaniline		<mdl,g< td=""><td>170</td><td>244</td><td>ug/Kg</td><td>#</td><td><mdl,g< td=""><td>180</td><td>265</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl,g<>	170	244	ug/Kg	#	<mdl,g< td=""><td>180</td><td>265</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl<></td></mdl,g<>	180	265	ug/Kg	II	<mdl< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl<>	190	274	ug/Kg
2-Nitrophenol		<mdl,g< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<></td></mdl,g<></td></mdl,g<>	41	81.1	ug/Kg		<mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<></td></mdl,g<>	45	88.2	ug/Kg		<mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<>	46	91.3	ug/Kg
3,3'-Dichlorobenzidine		<mdl,g< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<></td></mdl,g<></td></mdl,g<>	41	81.1	ug/Kg		<mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<></td></mdl,g<>	45	88.2	ug/Kg		<mdl.g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl.g<>	46	91.3	ug/Kg
3-Nitroaniline		<mdl,g< td=""><td>170</td><td>244</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>265</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	170	244	ug/Kg		<mdl,g< td=""><td>180</td><td>265</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	180	265	ug/Kg	 	<mdl,g< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl,g<>	190	274	ug/Kg
4.6-Dinitro-O-Cresol		<mdl,g< td=""><td>81</td><td>163</td><td>ug/Kg</td><td>]</td><td><mdl,g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td>J</td><td><mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl,g<>	81	163	ug/Kg]	<mdl,g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td>J</td><td><mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<></td></mdl,g<>	88	177	ug/Kg	J	<mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<>	91	183	ug/Kg
4-Bromophenyl Phenyl Ether		<mdl< td=""><td>17</td><td>24.4</td><td>ug/Kg</td><td>-</td><td><mdl< td=""><td>18</td><td>26.5</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>19</td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	17	24.4	ug/Kg	-	<mdl< td=""><td>18</td><td>26.5</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>19</td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<>	18	26.5	ug/Kg	ļ	<mdl< td=""><td>19</td><td>27.4</td><td>ug/Kg</td></mdl<>	19	27.4	ug/Kg
4-Chloro-3-Methylphenol		<mdl< td=""><td>81</td><td>163</td><td>ug/Kg</td><td>·II</td><td><mdl< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	81	163	ug/Kg	·II	<mdl< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<></td></mdl<>	88	177	ug/Kg	 	<mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<>	91	183	ug/Kg
4-Chloroaniline		<mdl.g< td=""><td>81</td><td>163</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl.g<></td></mdl.g<></td></mdl.g<>	81	163	ug/Kg	 	<mdl.g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl.g<></td></mdl.g<>	88	177	ug/Kg	 	<mdl.g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl.g<>	91	183	ug/Kg
4-Chlorophenyl Phenyl Ether		<mdl,g< td=""><td>24</td><td>40.6</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl,g<>	24	40.6	ug/Kg	 	<mdl,g< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl,g<>	26	44.2	ug/Kg	<u> </u>	<mdl< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl<>	27	45.7	ug/Kg
4-Methylphenol	440		41	81.1	ug/Kg	556		45	88.2	ug/Kg	574	***************************************	46	91.3	ug/Kg
4-Nitroaniline		<mdl< td=""><td>170</td><td>244</td><td>ug/Kg</td><td>1</td><td>, ∠MDL</td><td>180</td><td>265</td><td>ug/Kg</td><td> i</td><td><mdl< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl<></td></mdl<>	170	244	ug/Kg	1	, ∠MDL	180	265	ug/Kg	i	<mdl< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl<>	190	274	ug/Kg
4-Nitrophenol		<mdl< td=""><td>81</td><td>163</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> -</td><td><mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	81	163	ug/Kg	 	<mdl< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> -</td><td><mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<></td></mdl<>	88	177	ug/Kg	 -	<mdl< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl<>	91	183	ug/Kg
Acenaphthene	37.3		17	32.4	ug/Kg	36,8		18	35.3	ug/Kg	41.6		19	36.5	ug/Kg
Acenaphthylene	37.3	<mdl< td=""><td>24</td><td>40.6</td><td>ug/Kg</td><td>28</td><td></td><td>26</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	24	40.6	ug/Kg	28		26	44.2	ug/Kg		<mdl< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl<>	27	45.7	ug/Kg
Aniline		<mdl.g< td=""><td>81</td><td>163</td><td>ug/Kg</td><td>∦<u>-</u>-`</td><td><mdl.g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<></td></mdl.g<></td></mdl.g<>	81	163	ug/Kg	∦ <u>-</u> -`	<mdl.g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<></td></mdl.g<>	88	177	ug/Kg	 	<mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<>	91	183	ug/Kg
Anthracene	163		24	40.6	ug/Kg	224		26	44.2	ug/Kg	247	G	27	45.7	ug/Kg
Benzidine		<mdl.x< td=""><td>970</td><td>1950</td><td>ug/Kg</td><td> </td><td><mdl.x< td=""><td>1100</td><td>2120</td><td>ug/Kg</td><td>l</td><td><mdl,x< td=""><td>1100</td><td>2190</td><td>ug/Kg</td></mdl,x<></td></mdl.x<></td></mdl.x<>	970	1950	ug/Kg	 	<mdl.x< td=""><td>1100</td><td>2120</td><td>ug/Kg</td><td>l</td><td><mdl,x< td=""><td>1100</td><td>2190</td><td>ug/Kg</td></mdl,x<></td></mdl.x<>	1100	2120	ug/Kg	l	<mdl,x< td=""><td>1100</td><td>2190</td><td>ug/Kg</td></mdl,x<>	1100	2190	ug/Kg
Benzo(a)anthracene	346		24	40.6	ug/Kg	510		26	44.2	ug/Kg	481	G	27	45.7	ug/Kg
Benzo(a)pyrene	370		41	81.1	ug/Kg	594		45	88.2	ug/Kg	587	G	46	91.3	ug/Kg
Benzo(b)fluoranthene	473		65	122	ug/Kg	853		71	132	ug/Kg	800		74	137	ug/Kg
Benzo(g,h,i)perylene	196		41	81.1	ug/Kg	263		45	88.2	ug/Kg	289		46	91.3	ug/Kg
Benzo(k)fluoranthene	221	G	65	122	ug/Kg	300	3 G	71	132	ug/Kg	329	G	74	137	ug/Kg
Benzoic Acid		<mdl.l< td=""><td>170</td><td>244</td><td>ug/Kg</td><td>1</td><td><mdl,l< td=""><td>180</td><td>265</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl,l<></td></mdl,l<></td></mdl.l<>	170	244	ug/Kg	1	<mdl,l< td=""><td>180</td><td>265</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl,l<></td></mdl,l<>	180	265	ug/Kg		<mdl,l< td=""><td>190</td><td>274</td><td>ug/Kg</td></mdl,l<>	190	274	ug/Kg
Benzyl Alcohol		<mdl.g< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl.g<>	41	81.1	ug/Kg	1	<mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	45	88.2	ug/Kg		<mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<>	46	91.3	ug/Kg
Benzyl Butyl Phthalate	41.4		24	40.6	ug/Kg	3:	5 <rdl< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td>41</td><td></td><td>27</td><td>45.7</td><td>ug/Kg</td></rdl<>	26	44.2	ug/Kg	41		27	45.7	ug/Kg
Bis(2-Chloroethoxy) Methane		<mdl,g< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td>l</td><td><mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	41	81.1	ug/Kg	l	<mdl,g< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	45	88.2	ug/Kg		<mdl,g< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl,g<>	46	91.3	ug/Kg
Bis(2-Chloroethyl)Ether		<mdl,g< td=""><td>24</td><td>40.6</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	24	40.6	ug/Kg	1	<mdl,g< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	26	44.2	ug/Kg		<mdl,g< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl,g<>	27	45.7	ug/Kg
Bis(2-Chloroisopropyl)Ether		<mdl,g< td=""><td>81</td><td>163</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	81	163	ug/Kg	1	<mdl,g< td=""><td>88</td><td>177</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	88	177	ug/Kg		<mdl,g< td=""><td>91</td><td>183</td><td>ug/Kg</td></mdl,g<>	91	183	ug/Kg
Bis(2-Ethylhexyl)Phthalate	143	·	24	40.6	ug/Kg	263	3	26	44.2	ug/Kg	289		27	45.7	ug/Kg
Carbazole		<mdl< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td>5</td><td>I <rdl< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td>57</td><td><rdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></rdl<></td></rdl<></td></mdl<>	41	81.1	ug/Kg	5	I <rdl< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td>57</td><td><rdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></rdl<></td></rdl<>	45	88.2	ug/Kg	57	<rdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></rdl<>	46	91.3	ug/Kg
Chrysene	522		24	40.6	ug/Kg	863	3	26	44.2	ug/Kg	801		27	45.7	ug/Kg
Coprostanol	400		170	244	ug/Kg	384	4	180	265	ug/Kg	190		190	274	ug/Kg
Di-N-Butyl Phthalate		<mdl< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	41	81.1	ug/Kg	1	<mdl< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<></td></mdl<>	45	88.2	ug/Kg		<mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<>	46	91.3	ug/Kg
Di-N-Octyl Phthalate		<mdl< td=""><td>24</td><td>40.6</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	24	40.6	ug/Kg	1	<mdl< td=""><td>26</td><td>44.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl<></td></mdl<>	26	44.2	ug/Kg		<mdl< td=""><td>27</td><td>45.7</td><td>ug/Kg</td></mdl<>	27	45.7	ug/Kg
Dibenzo(a,h)anthracene		<mdl< td=""><td>65</td><td>122</td><td>ug/Kg</td><td>79</td><td>RDL</td><td>71</td><td>132</td><td>ug/Kg</td><td>77</td><td></td><td>74</td><td>137</td><td>ug/Kg</td></mdl<>	65	122	ug/Kg	79	RDL	71	132	ug/Kg	77		74	137	ug/Kg
Dibenzofuran		<mdl< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td>-11</td><td><mdl< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	41	81.1	ug/Kg	-11	<mdl< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<></td></mdl<>	45	88.2	ug/Kg	1	<mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<>	46	91.3	ug/Kg
Diethyl Phthalate		<mdl< td=""><td>41</td><td>81.1</td><td>ug/Kg</td><td>· </td><td><mdl< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	41	81.1	ug/Kg	·	<mdl< td=""><td>45</td><td>88.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<></td></mdl<>	45	88.2	ug/Kg		<mdl< td=""><td>46</td><td>91.3</td><td>ug/Kg</td></mdl<>	46	91.3	ug/Kg
Dimethyl Phthalate		<mdl< td=""><td>17</td><td>24.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>18</td><td>26.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>19</td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	17	24.4	ug/Kg	1	<mdl< td=""><td>18</td><td>26.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>19</td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<>	18	26.5	ug/Kg		<mdl< td=""><td>19</td><td>27.4</td><td>ug/Kg</td></mdl<>	19	27.4	ug/Kg

P53VG3 PROJECT: 423056 Locator: P53VG1 ILocator: P53VG2 Locator: Aug 12, 96 Sampled: Sampled: Aug 12, 96 Sampled: Au₃ 12, 96 L9209-3 Lab ID: Lab ID: L9209-1 Lab ID: L9209-2 SALTWTRSED Matrix: SALTWTRSED Matrix: SALTWTRSED Matrix: % Solids: 58.4 % Solids: 65.7 % Solids: 604 RDL Units MDL Qual Parameters Value MDL RDL Units Value Qual MDL RDL Units Value Qual - Dry Weight Basis - Dry Weight Basis - Dry Weight Basis 54.8 ug/Kg 27 G Fluoranthene 559 G 26 53 ug/Kg 616 G 24 48.7 ug/Kg 632 ug/Kg 27 45.7 G G ug/Kg G 26 44.2 Fluorene 63.6 24 40.6 68.5 ug/Kg 46 91.3 ug/Kg <MDL.G Hexachlorobutadiene <MDL.G <MDL,G 45 88.2 ug/Kg 41 81.1 ug/Kg ug/Kg 91.3 <MDL.G 46 Hexachlorocyclopentadiene <MDL.G 41 81.1 ug/Kg <MDL.G 45 88.2 ug/Kg 91.3 ug/Kg 46 45 <MDL.G Hexachloroethane <MDL.G 88.2 41 81.1 ug/Kg <MDL.G ua/Ka G 46 91.3 ug/Kg Indeno(1,2,3-Cd)Pyrene 199 285 45 88.2 ug/Kg G G 41 81.1 ug/Kg 91.3 ug/Kg <MDL.G 46 Isophorone <MDL.G 41 81.1 ug/Kg <MDL,G 45 88.2 ug/Kg 46 91.3 ug/Kg <MDL.G N-Nitrosodi-N-Propylamine <MDL,G 41 81.1 ug/Kg <MDL.G 45 88.2 ug/Kg <MDL.G 190 274 ug/Kg N-Nitrosodimethylamine 180 265 <MDL.G 170 244 ug/Kg <MDL.G ug/Kg 91.3 ug/Kg <MDL 46 45 N-Nitrosodiphenylamine <MDL 41 81.1 ug/Kg <MDL 88.2 ug/Kg 137 ug/Kg 74 <MDL.G Naphthalene <MDL.G 71 132 ug/Kg <MDL.G 65 122 ug/Kg ug/Kg 91.3 <MDL.G 46 <MDL.G 45 88.2 Nitrobenzene <MDL.G 41 81.1 ug/Kg ug/Kg 46 91.3 ug/Kg <MDL.E.G 45 Pentachlorophenol <MDL.E.G 41 <MDL,E,G 88.2 ug/Kg 81.1 ug/Kg 27 45.7 ug/Kg 375 Phenanthrene 332 G 24 40.6 ug/Kg 359 G 26 44.2 ug/Kg 274 ug/Kg G 190 481 Phenol 306 G 402 G 180 265 ug/Kg 170 244 ug/Kg 45.7 ug/Kg G 27 726 44.2 Pyrene 553 G 24 40.6 ug/Kg 642 $\overline{\mathsf{G}}$ 26 ug/Kg M.Code=SW-846 8270 (SIN) 2.28 ug/Kg 1.2 <MDL.G <MDL.G 1.1 ug/Kg 1.2.4-Trichlorobenzene <MDL.G 2.02 ua/Ka 11 2.28 ug/Kg <MDL.G 1.2 1.2-Dichlorobenzene <MDL.G 1.1 2.2 ug/Kg <MDL.G 2.02 ua/Ka 1.1 2 28 ug/Kg <MDL.G 1.2 ug/Ka <MDL.G 1.1 2.2 ug/Kg 1.3-Dichlorobenzene <MDL.G 1.1 2.02 2.28 ug/Kg <MDL,G 1.2 1.4-Dichlorobenzene 2.02 <MDL.G 1.1 2.2 ug/Kg <MDL.G 1.1 ug/Kg 1.2 2.28 ug/Kg 2.2 <MDL.G <MDL.G 1.1 Hexachlorobenzene <MDL.G 1.1 2.02 ug/Kg ug/Kg * indicates wet weight used for this parameter **METALS** M.Code=METRO 16-01-001 0.293 mg/Kg <RDL 0.029 0.21 Mercury, Total, CVAA <RDL 0.256 0.16 <RDL 0.026 0.268 mg/Kg 0.14 0.026 mg/Kg M.Code=METRO 16-02-004 8.4 42 mg/Kg 16100 41.7 7.5 37.1 15100 8.3 mg/Kg Aluminum, Total, ICP 13400 mg/Kg mg/Kg 2.6 12.6 <MDL,G Antimony, Total, ICP <MDL,G 2.3 <MDL.G 2.5 12.5 mg/Kg 11.2 mg/Kg 20.9 mg/Kg 4.1 5.8 4.1 20.9 mg/Kg 5.5 <RDL <RDL Arsenic, Total, ICP <RDL 37 18.6 mg/Kg 7.6 Barium, Total, ICP 0.084 0.42 mg/Kg <RDL 0.21 Bervillium, Total, ICP 0.18 <RDL 0.075 0.371 mg/Kg 0.22 <RDL 0.083 0.417 mg/Kg 1 26 ma/Kg 0.26 <MDL Cadmium, Total, ICP 0.23 mg/Kg 0.33 <RDL 0.25 1.25 mg/Kg <MDL 1.12 4 1 20.9 mg/Kg 5330 Calcium, Total, ICP 3.7 18.6 4820 4.1 20.9 mg/Kg 4440 mg/Kg mg/Kg 2.09 0.41 22.3 Chromium, Total, ICP 17.8 0.37 21.2 0.41 2.09 mg/Kg 1.86 mg/Kg mg/Kg 0.34 1.68 36.3 Copper, Total, ICP 24.7 0.3 1.49 mg/Kg 33 4 0.33 1.67 ma/Ka 4.1 20.9 mg/Kg 23600 Iron, Total, ICP 20.9 21600 G 3.7 18.6 mg/Kg 23700 4.1 mg/Kg 2.6 12.6 mg/Kg 26.4 Lead, Total, ICP 2.5 12.5 mg/Kg 174 2.3 11.2 mg/Kg 24.3

5810

Data Management and Analysis Section Comprehensive Report #6631

mg/Kg

5510

2.3

Magnesium, Total, ICP

10/08/97 - Appendix C2

2.6

6180

2.5

12.5

mg/Kg

12.6

mg/Kg

Page 4 of 25

PROJECT: 423056	Locator: Sampled: Lab D: Matrx: % Solids:	P53VG1 Aug 12, 96 L9209-1 SALTWTRSE 65.7	ΞD	•		Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG2 Aug 12, 96 L9209-2 SALTWTRS 604	SED	-		Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG3 Aug 12, 96 L9209-3 SALTWTRS 58.4	SED		
Parameters	Value	Qual - c	MDL Dry Weight Basi	RDL is	Units	Value	Qual	MDL - Dry Weight Basis	RDL s	Units	Value	Qual	MDL - Dry Weight Basis	RDL	Units
Molybdenum, Total, ICP	1.8	RDL	1.5	7.43	mʒ/Kg		<mdl< td=""><td>1.7</td><td>8.34</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>8.39</td><td>mg/Kg</td></mdl<></td></mdl<>	1.7	8.34	mg/Kg		<mdl< td=""><td>1.7</td><td>8.39</td><td>mg/Kg</td></mdl<>	1.7	8.39	mg/Kg
Nickel, Total, ICP	17.2		1.5	7.43	mg/Kg	17.1		1.7	8.34	mg/Kg	18.5		1.7	8.39	mg/Kg
Potassium, Total, ICP	1630)	150	743	mg/Kg	1940		170	834	mg/Kg	2000		170	839	mg/Kg
Selenium, Total, ICP		<mdl< td=""><td>3.7</td><td>18.6</td><td>mg/Kg</td><td>1</td><td><mdl< td=""><td>4.1</td><td>20.9</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>4.1</td><td>20.9</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	3.7	18.6	mg/Kg	1	<mdl< td=""><td>4.1</td><td>20.9</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>4.1</td><td>20.9</td><td>mg/Kg</td></mdl<></td></mdl<>	4.1	20.9	mg/Kg		<mdl< td=""><td>4.1</td><td>20.9</td><td>mg/Kg</td></mdl<>	4.1	20.9	mg/Kg
Silver, Total, ICP		<mdl< td=""><td>0.3</td><td>1.49</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>0.33</td><td>1.67</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>0.34</td><td>1.68</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	0.3	1.49	mg/Kg		<mdl< td=""><td>0.33</td><td>1.67</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>0.34</td><td>1.68</td><td>mg/Kg</td></mdl<></td></mdl<>	0.33	1.67	mg/Kg		<mdl< td=""><td>0.34</td><td>1.68</td><td>mg/Kg</td></mdl<>	0.34	1.68	mg/Kg
Sodium, Total, ICP															
Thallium, Total, ICP		<mdl< td=""><td>15</td><td>74.3</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>17</td><td>83.4</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>17</td><td>83.9</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	15	74.3	mg/Kg		<mdl< td=""><td>17</td><td>83.4</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>17</td><td>83.9</td><td>mg/Kg</td></mdl<></td></mdl<>	17	83.4	mg/Kg		<mdl< td=""><td>17</td><td>83.9</td><td>mg/Kg</td></mdl<>	17	83.9	mg/Kg
Zinc, Total, ICP	63.9		0.37	1.86	mg/Kg	73.3		0.41	2.09	mg/Kg	78.4		0.41	2.09	mg/Kg
CONVENTIONALS M.Code=PSEP p9										!					0.6
p+0.00 *	2.3		0.1		%	3.9		0.1		<u>%</u>	0.9		0.1		<u>%</u>
p+1.00 *	18.7		0.1		%	20.1		0.1		%	10.8		0.1		% -
p+10.0 *	0.7		0.1		%	0.8		0.1		%	0.8		0.1		% %
p+10.0(more than) *	3.3		0.1		%	3.6		0.1		%	4.3		0.1		%
p+2.00 *	49.9		0.1		%	33,9		0.1		%	45.1		0.1		%
p+3.00 *	11.9		0.1		%	14.6		0.1		%	12.1		0.1		%
p+4.00 *	2		0.1		%	3.3		0.1		%	3.1		0.1 0.1		%
p+5.00 *		<mdl< td=""><td>0.1</td><td></td><td>%</td><td>3.9</td><td></td><td>0.1</td><td></td><td>%</td><td>7.6</td><td></td><td>0.1</td><td></td><td>-%</td></mdl<>	0.1		%	3.9		0.1		%	7.6		0.1		- %
p+6.00 *	2		0.1		%	2.8		0.1		%	2.8		0.1		%
p+7.00 *	3.9		0.1		%	5.2		0.1		%	3.6		0.1		%
p+8.00 *	2.4		0.1		%	4.7		0.1		%	5.3 1.9		0.1		%
p+9.00 *	1.4		0.1		%	1.8		0.1		%	0.5		0.1		%
p-1.00 *			0.1		%	0.9		0.1		%			0.1		
p-2.00 *	0.1		0.1		%	 	<mdl< td=""><td>0.1</td><td></td><td>%</td><td>0.2</td><td></td><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%	0.2		0.1		%
p-2.00(less than) *	0.6		0.1		%	0.6		0.1			1. !		U.1		
M.Code=SM5310-B					- 02				46.6		9850	····	8.6	17 1	mg/Kg
Total Organic Carbon * Indicates wet weight used for	7520	!	7.6	15.2	mg/Kg	22000		8.3	16.6	mg/Kg	9850				ingrive
this parameter	Я					1					1				

		3	, – – .	, -		0	inai La	<i></i>	.,		P				
PROJECT: 423056	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG4 Aug 12, 96 L9209-4 SALTWTRSEE 72.4)			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG5 Aug 12, 96 L9209-5 SALTWTRSI 52.7	ED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG5 Aug 12,96 L9209-11 SALTWTRS 61.7	ED		
Parameters	Value	Qual - D	MDL ry Weight Bas	RDL s	Units	Value	Qual	MDL - Dry Weight Basi	RDL is	Units	Value	Qual - D	MDL ry Weight Basis	RDL	Units
ORGANICS															
M.Code=SW-846 8080															1
4,4'-DDD		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>4.72</td><td></td><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	1.8	3.69	ug/Kg		<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>4.72</td><td></td><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.5	5.07	ug/Kg	4.72		2.1	4.33	ug/Kg
4,4'-DDE		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg	1	<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg		<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
4,4'-DDT		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg	- 	<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg	I	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Aldrin		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg	1	<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Alpha-BHC		<mdl .<="" td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl>	1.8	3.69	ug/Kg	1	<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg		<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Aroclor 1016		<mdl< td=""><td>18</td><td>36.9</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	18	36.9	ug/Kg	1	<mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<>	25	50.7	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<>	21	43.3	ug/Kg
Aroclor 1221		<mdl< td=""><td>18</td><td>36.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	18	36.9	ug/Kg		<mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<>	25	50.7	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<>	21	43.3	ug/Kg
Aroclor 1232		<mdl< td=""><td>18</td><td>36.9</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	18	36.9	ug/Kg	1	<mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<>	25	50.7	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<>	21	43.3	ug/Kg
Aroclor 1242		<mdl< td=""><td>18</td><td>36.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	18	36.9	ug/Kg		<mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<>	25	50.7	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<>	21	43.3	ug/Kg
Aroclor 1248		<mdl< td=""><td>18</td><td>36.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	18	36.9	ug/Kg		<mdl< td=""><td>25</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<>	25	50.7	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<>	21	43.3	ug/Kg
Aroclor 1254		<mdl< td=""><td>18</td><td>36.9</td><td>ug/Kg</td><td>71.9</td><td></td><td>25</td><td>50.7</td><td>ug/Kg</td><td>36</td><td></td><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<>	18	36.9	ug/Kg	71.9		25	50.7	ug/Kg	36		21	43.3	ug/Kg
Aroclor 1260		<mdl< td=""><td>18</td><td>36.9</td><td>ug/Kg</td><td>79.</td><td></td><td>25</td><td>50.7</td><td>ug/Kg</td><td>36</td><td></td><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<>	18	36.9	ug/Kg	79.		25	50.7	ug/Kg	36		21	43.3	ug/Kg
Beta-BHC		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg		<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg		<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Chlordane		<mdl< td=""><td>9.3</td><td>18.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>13</td><td>25.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>11</td><td>21.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	9.3	18.4	ug/Kg		<mdl< td=""><td>13</td><td>25.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>11</td><td>21.6</td><td>ug/Kg</td></mdl<></td></mdl<>	13	25.2	ug/Kg		<mdl< td=""><td>11</td><td>21.6</td><td>ug/Kg</td></mdl<>	11	21.6	ug/Kg
Delta-BHC		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>L</td><td><mdl< td=""><td>2.1</td><td>4.33 4.33</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg		<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>L</td><td><mdl< td=""><td>2.1</td><td>4.33 4.33</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg	L	<mdl< td=""><td>2.1</td><td>4.33 4.33</td><td>ug/Kg ug/Kg</td></mdl<>	2.1	4.33 4.33	ug/Kg ug/Kg
Dieldrin		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg		<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg	l	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Endosulfan I		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td>12</td><td></td><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>7.07</td><td></td><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td></mdl<>	1.8	3.69	ug/Kg	12		2.5	5.07	ug/Kg	7.07		2.1	4.33	ug/Kg ug/Kg
Endosulfan II		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg	<u> </u>	<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg		<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td></mdl<>	2.1	4.33	ug/Kg ug/Kg
Endosulfan Sulfate		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td>. </td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td></mdl<></mdl </td></mdl<></td></mdl<>	1.8	3.69	ug/Kg	.	<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td></mdl<></mdl </td></mdl<>	2.5	5.07	ug/Kg	 	<mdl <mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td></mdl<></mdl 	2.1	4.33	ug/Kg ug/Kg
Endrin		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg	 	<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg		<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Endrin Aldehyde Gamma-BHC (Lindane)		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg		<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg	ļ	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Heptachlor		<mdl< td=""><td>1.8</td><td>3.69</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.8	3.69	ug/Kg		<mdl< td=""><td>2.5</td><td>5.07</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<>	2.5	5.07	ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Heptachior Epoxide		<mdl <mdl< td=""><td>1.8 1.8</td><td>3.69 3.69</td><td>ug/Kg</td><td></td><td><mdl <mdl< td=""><td>2.5 2.5</td><td>5.07 5.07</td><td>ug/Kg ug/Kg</td><td>·j</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></mdl </td></mdl<></mdl 	1.8 1.8	3.69 3.69	ug/Kg		<mdl <mdl< td=""><td>2.5 2.5</td><td>5.07 5.07</td><td>ug/Kg ug/Kg</td><td>·j</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<></td></mdl<></mdl 	2.5 2.5	5.07 5.07	ug/Kg ug/Kg	· j	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg
Methoxychlor	· · · · · · · · · · · · · · · · · · ·	<mdl< td=""><td>9.3</td><td>18.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>13</td><td>25.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl< td=""><td>11</td><td>21.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	9.3	18.4	ug/Kg		<mdl< td=""><td>13</td><td>25.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl< td=""><td>11</td><td>21.6</td><td>ug/Kg</td></mdl<></td></mdl<>	13	25.2	ug/Kg ug/Kg	 	<mdl< td=""><td>11</td><td>21.6</td><td>ug/Kg</td></mdl<>	11	21.6	ug/Kg
Toxaphene		<mdl< td=""><td>18</td><td>36.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>13 25</td><td>50.7</td><td>ug/Kg ug/Kg</td><td> -</td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	18	36.9	ug/Kg		<mdl< td=""><td>13 25</td><td>50.7</td><td>ug/Kg ug/Kg</td><td> -</td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<>	13 25	50.7	ug/Kg ug/Kg	 -	<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td></mdl<>	21	43.3	ug/Kg
M.Code=SW-846 8260	·	INIDE	10	30.9	ug/Kg	ļ		23	30.7	ug/i\g	 				
1.1.1-Trichloroethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl.h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl.h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl.h<></td></mdl.h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl.h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl.h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl.h<></td></mdl.h<>	9.5	19	ug/Kg		<mdl.h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl.h<>	8.1	16.2	ug/Kg
1,1,2,2-Tetrachloroethane		<mdl,h< td=""><td>6,9</td><td>13.8</td><td>ug/Kg</td><td>- </td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6,9	13.8	ug/Kg	- 	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	 	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
1,1,2-Trichloroethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td>l</td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>·}</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg	l	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>·}</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	·}	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
1,1,2-Trichloroethylene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg ug/Kg	 	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg ug/Kg	 	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
1,1-Dichloroethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg	 	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	 	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
1,1-Dichloroethylene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>·} ··· · · · ·</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg	 	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>·} ··· · · · ·</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	·} ··· · · · ·	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
1.2-Dichloroethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	 	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
1,2-Dichloropropane			6.9	13.8	ug/Kg		<mdl,ii< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td> </td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,ii<>	9.5	19	ug/Kg	 	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
2-Butanone (MEK)		<mdl,h< td=""><td>35</td><td>69.1</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	35	69.1	ug/Kg ug/Kg	 	<mdl,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	47	94.9	ug/Kg		<mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<>	41	81	ug/Kg
2-Chloroethylvinyl ether		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>· · · · · · · · · · · · · · · · · · ·</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg ug/Kg	 	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>· · · · · · · · · · · · · · · · · · ·</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	· · · · · · · · · · · · · · · · · · ·	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
		- NIDE, II	0.5	13.0	ug/r\g	11	- 'MDL,ロ			ug/i/g_	.u	-100011			

PROJECT: 423056

Locator P53VG4

Sampled: Aug 12, 96 Lab ID: L9209-4 Matrix: SALTWIRSED IlLocator: Sampled: Lab ID:

P53VG5 Aug 12, 96

L9209-5 SALTWTRSED

Matrix:

ILocator: P53VG5

Sampled: Aug 12, 96 Lab ID: L9209-11 SALTWTRSED

Matrix:

	% Solids:	72.4				% Solids:	52.7				% Solids:	61.7			
Parameters	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units	Value	Qual	MDL ry Weight Basis	RDL	Units
			- Dry Weight Basis	s			•	- Dry Weight Basis	5			- [ly weight basis		
2-Hexanone		<mdl,h< td=""><td>35</td><td>69.1</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	35	69.1	ug/Kg		<mdl,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	47	94.9	ug/Kg		<mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<>	41	81	ug/Kg
4-Methyl-2-Pentanone (MIBK)		<mdl,h< td=""><td>35</td><td>69.1</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	35	69.1	ug/Kg	1	<mdl,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	47	94.9	ug/Kg		<mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<>	41	81	ug/Kg
Acetone	69	<rdl,b,h< td=""><td>18</td><td>69.1</td><td>ıg/Kg</td><td>168</td><td>B,H</td><td>25</td><td>94.9</td><td>ug/Kg</td><td>119</td><td></td><td>21</td><td>81</td><td>ug/Kg</td></rdl,b,h<>	18	69.1	ıg/Kg	168	B,H	25	94.9	ug/Kg	119		21	81	ug/Kg
Acrolein		<mdl,x,h< td=""><td>35</td><td>69.1</td><td>ιg/Kg</td><td>i</td><td><mdl,x,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,x,h<></td></mdl,x,h<></td></mdl,x,h<>	35	69.1	ιg/Kg	i	<mdl,x,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,x,h<></td></mdl,x,h<>	47	94.9	ug/Kg		<mdl,x,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,x,h<>	41	81	ug/Kg
Acrylonitrile		<mdl,h< td=""><td>35</td><td>69.1</td><td>ιg/Kg</td><td></td><td><mdl,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	35	69.1	ιg/Kg		<mdl,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	47	94.9	ug/Kg		<mdl,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,h<>	41	81	ug/Kg
Benzene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ιg/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ιg/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Bromodichloromethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ιg/Kg</td><td> </td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ιg/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Bromoform		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Bromomethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Carbon Disulfide		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Carbon Tetrachloride		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td>]</td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg]	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Chlorobenzene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Chlorodibromomethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Chloroethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Chloroform		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Chloromethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>ł</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>ł</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	ł	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Chloromethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td>II</td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg	II	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Cis-1,3-Dichloropropene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Ethylbenzene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg	1	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Methylene Chloride		<mdl,h< td=""><td>6.9</td><td>69.1</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	69.1	ug/Kg		<mdl,h< td=""><td>9.5</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>81</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	94.9	ug/Kg		<mdl,h< td=""><td>8.1</td><td>81</td><td>ug/Kg</td></mdl,h<>	8.1	81	ug/Kg
Styrene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	1	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Tetrachloroethylene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Toluene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg	1	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Total Xylenes		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg	1	<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Trans-1,2-Dichloroethylene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg	1	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Trans-1,3-Dichloropropene		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Trichlorofluoromethane		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td>1</td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg	1	<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
Vinyl Acetate		<mdl,x,h< td=""><td>35</td><td>69.1</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,x,h<></td></mdl,x,h<></td></mdl,x,h<>	35	69.1	ug/Kg		<mdl,x,h< td=""><td>47</td><td>94.9</td><td>ug/Kg</td><td></td><td><mdl,x,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,x,h<></td></mdl,x,h<>	47	94.9	ug/Kg		<mdl,x,h< td=""><td>41</td><td>81</td><td>ug/Kg</td></mdl,x,h<>	41	81	ug/Kg
Vinyl Chloride		<mdl,h< td=""><td>6.9</td><td>13.8</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	6.9	13.8	ug/Kg		<mdl,h< td=""><td>9.5</td><td>19</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	9.5	19	ug/Kg		<mdl,h< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td></mdl,h<>	8.1	16.2	ug/Kg
M.Code=SW-846 8270											H				
1,2-Diphenylhydrazine		<mdl< td=""><td>73</td><td>148</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	73	148	ug/Kg	II	<mdl< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<></td></mdl<>	100	203	ug/Kg		<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<>	86	173	ug/Kg
2,4,5-Trichlorophenol		<mdl< td=""><td>150</td><td>294</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>210</td><td>404</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>345</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	150	294	ug/Kg	II	<mdl< td=""><td>210</td><td>404</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>345</td><td>ug/Kg</td></mdl<></td></mdl<>	210	404	ug/Kg		<mdl< td=""><td>180</td><td>345</td><td>ug/Kg</td></mdl<>	180	345	ug/Kg
2,4,6-Trichlorophenol		<mdl< td=""><td>150</td><td>294</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>210</td><td>404</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>345</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	150	294	ug/Kg		<mdl< td=""><td>210</td><td>404</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>345</td><td>ug/Kg</td></mdl<></td></mdl<>	210	404	ug/Kg		<mdl< td=""><td>180</td><td>345</td><td>ug/Kg</td></mdl<>	180	345	ug/Kg
2,4-Dichlorophenol		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg	1	<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg	1	<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
2,4-Dimethylphenol		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg		<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
2,4-Dinitrophenol		<mdl,g< td=""><td>73</td><td>148</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	73	148	ug/Kg	1	<mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	100	203	ug/Kg	1	<mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<>	86	173	ug/Kg
2,4-Dinitrotoluene		<mdl< td=""><td>15</td><td>29.4</td><td>ug/Kg</td><td>H</td><td><mdl< td=""><td>21</td><td>40.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>18</td><td>34.5</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	15	29.4	ug/Kg	H	<mdl< td=""><td>21</td><td>40.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>18</td><td>34.5</td><td>ug/Kg</td></mdl<></td></mdl<>	21	40.4	ug/Kg	1	<mdl< td=""><td>18</td><td>34.5</td><td>ug/Kg</td></mdl<>	18	34.5	ug/Kg
2,6-Dinitrotoluene		<mdl< td=""><td>15</td><td>29.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>21</td><td>40.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>34.5</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	15	29.4	ug/Kg	1	<mdl< td=""><td>21</td><td>40.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>34.5</td><td>ug/Kg</td></mdl<></td></mdl<>	21	40.4	ug/Kg		<mdl< td=""><td>18</td><td>34.5</td><td>ug/Kg</td></mdl<>	18	34.5	ug/Kg
2-Chloronaphthalene		<mdl,g< td=""><td>22</td><td>36.9</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl,g<></td></mdl.g<></td></mdl,g<>	22	36.9	ug/Kg		<mdl.g< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl,g<></td></mdl.g<>	30	50.7	ug/Kg		<mdl,g< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl,g<>	26	43.3	ug/Kg
2-Chlorophenol		<mdl,g< td=""><td>73</td><td>148</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td>L</td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	73	148	ug/Kg		<mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td>L</td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	100	203	ug/Kg	L	<mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<>	86	173	ug/Kg

PROJECT: 423056

Locator:

P53VG4

Sampled: Aug 12, 96 Lab ID: L9209-4

Matrix: SALTWTRSEC

% Solids: 72.4

||Locator: Sampled:

F53VG5 Aug 12, 96 L9209-5

Lab ID: Matrix: % Solids: SALTWTRSED

52.7

SALTWTRSED Matrix:

Lab ID:

Locator: P53VG5

Sampled: Aug 12, 96

L9209-11

6 Solids	s: 61.7	
----------	---------	--

	% Solids: 7	2.4				% Solids: 5	2.7				% Solids: (51./			
Parameters	Value	Qual .	MDL - Diy Weight Basis	RDL	Units	Value	Qual	MDL - Dry Weight Basis	RDL	Units	Value	Qual - (MDL Dry Weight Basis	RDL	Units
2-Methylnaphthalene		<mdl,g< td=""><td>59</td><td>110</td><td>ug/Kg</td><td>110</td><td><rdl.g< td=""><td>82</td><td>152</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>70</td><td>130</td><td>ug/Kg</td></mdl.g<></td></rdl.g<></td></mdl,g<>	59	110	ug/Kg	110	<rdl.g< td=""><td>82</td><td>152</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>70</td><td>130</td><td>ug/Kg</td></mdl.g<></td></rdl.g<>	82	152	ug/Kg		<mdl.g< td=""><td>70</td><td>130</td><td>ug/Kg</td></mdl.g<>	70	130	ug/Kg
2-Methylphenol		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg		<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
2-Nitroaniline		<mdl,g< td=""><td>150</td><td>221</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl,g<>	150	221	ug/Kg		<mdl< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl<></td></mdl<>	210	304	ug/Kg		<mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl<>	180	259	ug/Kg
2-Nitrophenol		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl.g<></td></mdl.g<></td></mdl,g<>	37	73.6	ug/Kg	 	<mdl.g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl.g<></td></mdl.g<>	51	101	ug/Kg		<mdl.g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl.g<>	44	86.4	ug/Kg
3,3'-Dichlorobenzidine		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg		<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
3-Nitroaniline		<mdl,g< td=""><td>150</td><td>221</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	150	221	ug/Kg		<mdl,g< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	210	304	ug/Kg		<mdl,g< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl,g<>	180	259	ug/Kg
4,6-Dinitro-O-Cresol		<mdl< td=""><td>73</td><td>148</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	73	148	ug/Kg		<mdl< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<></td></mdl<>	100	203	ug/Kg		<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<>	86	173	ug/Kg
4-Bromophenyl Phenyl Ether		<mdl< td=""><td>15</td><td>22.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>30.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	15	22.1	ug/Kg		<mdl< td=""><td>21</td><td>30.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td></mdl<></td></mdl<>	21	30.4	ug/Kg		<mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td></mdl<>	18	25.9	ug/Kg
4-Chloro-3-Methylphenol		<mdl< td=""><td>73</td><td>148</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	73	148	ug/Kg		<mdl< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<></td></mdl<>	100	203	ug/Kg		<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<>	86	173	ug/Kg
4-Chloroaniline		<mdl,g< td=""><td>73</td><td>148</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	73	148	ug/Kg		<mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	100	203	ug/Kg		<mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<>	86	173	ug/Kg
4-Chlorophenyl Phenyl Ether		<mdl <<="" td=""><td>22</td><td>36.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl>	22	36.9	ug/Kg		<mdl< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl<></td></mdl<>	30	50.7	ug/Kg		<mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl<>	26	43.3	ug/Kg
4-Methylphenol	291	G	37	73.6	ug/Kg	2160	G	51	101	ug/Kg	985	G	44	86.4	ug/Kg
4-Nitroaniline		<mdl< td=""><td>150</td><td>221</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	150	221	ug/Kg		<mdl< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl<></td></mdl<>	210	304	ug/Kg		<mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl<>	180	259	ug/Kg
4-Nitrophenol		<mdl< td=""><td>73</td><td>148</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	73	148	ug/Kg		<mdl< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<></td></mdl<>	100	203	ug/Kg		<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl<>	86	173	ug/Kg
Acenaphthene	34.5		15	29.4	ug/Kg	273		21	40.4	ug/Kg	134		18	34.5	ug/Kg
Acenaphthylene		<mdl< td=""><td>22</td><td>36.9</td><td>ug/Kg</td><td>111</td><td></td><td>30</td><td>50.7</td><td>ug/Kg</td><td>61.4</td><td></td><td>26</td><td>43.3</td><td>ug/Kg</td></mdl<>	22	36.9	ug/Kg	111		30	50.7	ug/Kg	61.4		26	43.3	ug/Kg
Aniline		<mdl,g< td=""><td>73</td><td>148</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	73	148	ug/Kg		<mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	100	203	ug/Kg		<mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td></mdl,g<>	86	173	ug/Kg
Anthracene	209	G	22	36.9	ug/Kg	930	G	30	50.7	ug/Kg	525	•	26	43.3	ug/Kg
Benzidine		<mdl,x< td=""><td>880</td><td>1770</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>1200</td><td>2430</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>1000</td><td>2070</td><td>ug/Kg</td></mdl,x<></td></mdl,x<></td></mdl,x<>	880	1770	ug/Kg		<mdl,x< td=""><td>1200</td><td>2430</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>1000</td><td>2070</td><td>ug/Kg</td></mdl,x<></td></mdl,x<>	1200	2430	ug/Kg		<mdl,x< td=""><td>1000</td><td>2070</td><td>ug/Kg</td></mdl,x<>	1000	2070	ug/Kg
Benzo(a)anthracene	309	G	22	36.9	ug/Kg	2200	G	30	50.7	ug/Kg	1160	G	26	43.3	ug/Kg
Benzo(a)pyrene	359	G	37	73.6	ug/Kg	2350	G	51	101	ug/Kg	1220	G	44	86.4	ug/Kg
Benzo(b)fluoranthene	508		59	110	ug/Kg	3430		82	152	ug/Kg	1730		70	130	ug/Kg
Benzo(g,h,i)perylene	159	G	37	73.6	ug/Kg	691	G	51	101	ug/Kg	303	G	44	86.4 130	ug/Kg
Benzo(k)fluoranthene	195	G	59	110	ug/Kg	1220	G	82	152	ug/Kg	718	G	70	259	ug/Kg ug/Kg
Benzoic Acid		<mdl,l< td=""><td>150</td><td>221</td><td>ug/Kg</td><td>270</td><td><rdl,l< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>180</td><td>86.4</td><td>ug/Kg ug/Kg</td></mdl,l<></td></rdl,l<></td></mdl,l<>	150	221	ug/Kg	270	<rdl,l< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>180</td><td>86.4</td><td>ug/Kg ug/Kg</td></mdl,l<></td></rdl,l<>	210	304	ug/Kg		<mdl,l< td=""><td>180</td><td>86.4</td><td>ug/Kg ug/Kg</td></mdl,l<>	180	86.4	ug/Kg ug/Kg
Benzyl Alcohol		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>43.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>43.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg		<mdl,g< td=""><td>44</td><td>43.3</td><td>ug/Kg</td></mdl,g<>	44	43.3	ug/Kg
Benzyl Butyl Phthalate	26	<rdl< td=""><td>22</td><td>36.9</td><td>ug/Kg</td><td>38</td><td><rdl< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td>.</td><td><mdl< td=""><td>26</td><td>86.4</td><td>ug/Kg</td></mdl<></td></rdl<></td></rdl<>	22	36.9	ug/Kg	38	<rdl< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td>.</td><td><mdl< td=""><td>26</td><td>86.4</td><td>ug/Kg</td></mdl<></td></rdl<>	30	50.7	ug/Kg	.	<mdl< td=""><td>26</td><td>86.4</td><td>ug/Kg</td></mdl<>	26	86.4	ug/Kg
Bis(2-Chloroethoxy) Methane		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>43.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>43.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg		<mdl,g< td=""><td>44</td><td>43.3</td><td>ug/Kg</td></mdl,g<>	44	43.3	ug/Kg
Bis(2-Chloroethyl) Ether		<mdl,g< td=""><td>22</td><td>36.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>26 86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	22	36.9	ug/Kg		<mdl,g< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>26 86</td><td>173</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	30	50.7	ug/Kg		<mdl,g< td=""><td>26 86</td><td>173</td><td>ug/Kg</td></mdl,g<>	26 86	173	ug/Kg
Bis(2-Chloroisopropyl)Ether		<mdl,g< td=""><td>73</td><td>148</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	73	148	ug/Kg		<mdl,g< td=""><td>100</td><td>203</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	100	203	ug/Kg		<mdl,g< td=""><td>26</td><td>43.3</td><td>ug/Kg</td></mdl,g<>	26	43.3	ug/Kg
Bis(2-Ethylhexyl)Phthalate	372		22	36.9	ug/Kg	349		30	50.7	ug/Kg	259		44	86.4	ug/Kg
Carbazole	57	<rdl< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td>207</td><td></td><td>51</td><td>101</td><td>ug/Kg</td><td>125</td><td></td><td>26</td><td>43.3</td><td>ug/Kg</td></rdl<>	37	73.6	ug/Kg	207		51	101	ug/Kg	125		26	43.3	ug/Kg
Chrysene	490		22	36.9	ug/Kg	3230		30	50.7	ug/Kg	1520		180	259	ug/Kg ug/Kg
Coprostanol		<mdl< td=""><td>150</td><td>221</td><td>ug/Kg</td><td>822</td><td></td><td>210</td><td>304</td><td>ug/Kg</td><td>517</td><td></td><td>44</td><td>86.4</td><td>ug/Kg</td></mdl<>	150	221	ug/Kg	822		210	304	ug/Kg	517		44	86.4	ug/Kg
Di-N-Butyl Phthalate		<mdl< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>51</td><td>101</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td><u>44</u></td><td>43.3</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	37	73.6	ug/Kg	<u> </u>	<mdl< td=""><td>51</td><td>101</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td><u>44</u></td><td>43.3</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	51	101	ug/Kg	<u> </u>	<mdl< td=""><td><u>44</u></td><td>43.3</td><td>ug/Kg ug/Kg</td></mdl<>	<u>44</u>	43.3	ug/Kg ug/Kg
Di-N-Octyl Phthalate		<mdl< td=""><td>22</td><td>36.9</td><td>ug/Kg</td><td>32</td><td><rdl< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>70 70</td><td>130</td><td>ug/Kg ug/Kg</td></mdl<></td></rdl<></td></mdl<>	22	36.9	ug/Kg	32	<rdl< td=""><td>30</td><td>50.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>70 70</td><td>130</td><td>ug/Kg ug/Kg</td></mdl<></td></rdl<>	30	50.7	ug/Kg		<mdl< td=""><td>70 70</td><td>130</td><td>ug/Kg ug/Kg</td></mdl<>	70 70	130	ug/Kg ug/Kg
Dibenzo(a,h)anthracene		<mdl< td=""><td>59</td><td>110</td><td>ug/Kg</td><td>230</td><td></td><td>82</td><td>152</td><td>ug/Kg</td><td>120</td><td><rdl< td=""><td></td><td>86.4</td><td>ug/Kg ug/Kg</td></rdl<></td></mdl<>	59	110	ug/Kg	230		82	152	ug/Kg	120	<rdl< td=""><td></td><td>86.4</td><td>ug/Kg ug/Kg</td></rdl<>		86.4	ug/Kg ug/Kg
Dibenzofuran		<mdl< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td>262</td><td></td><td>51</td><td>101</td><td>ug/Kg</td><td>129</td><td></td><td>44 44</td><td>86.4</td><td>ug/Kg</td></mdl<>	37	73.6	ug/Kg	262		51	101	ug/Kg	129		44 44	86.4	ug/Kg
Diethyl Phthalate		<mdl< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>51</td><td>101</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	37	73.6	ug/Kg		<mdl< td=""><td>51</td><td>101</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td></mdl<></td></mdl<>	51	101	ug/Kg	 	<mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td></mdl<>	18	25.9	ug/Kg
Dimethyl Phthalate		<mdl< td=""><td>15</td><td>22.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>21</td><td>30.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>10</td><td></td><td>ugrivy</td></mdl<></td></mdl<></td></mdl<>	15	22.1	ug/Kg	<u> </u>	<mdl< td=""><td>21</td><td>30.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>10</td><td></td><td>ugrivy</td></mdl<></td></mdl<>	21	30.4	ug/Kg	1	<mdl< td=""><td>10</td><td></td><td>ugrivy</td></mdl<>	10		ugrivy

		9	oou	, .			itai Lab	Alla	<i>y</i>		p0				
PROJECT: 423056	Locator: Sampled:	P53VG4 Aug 12, 96				Locator: Sampled:	P53∨G5 Aug 12, 96				Locator: Sampled:	P53VG5 Aug 12, 96			
	Lab ID:	L9209-4				Lab ID:	L9209-5				Lab ID:	L9209-11			
	Matric:	SALTWTRSED				Matrix:	SALTWTRSED				Matrix:	SALTWIRS	ED		
	% Solids:	72.4				% Solids:	52.7				% Solids:	61.7			
												01	MDL	RDL	Units
Parameters	Value	Qual	MDL	RDL	Units	Value	· Qual	MDL	RDL	Units	Value	Qual	y Weight Basis	KUL	Uilla
		- Dr	Weight Basi	s			- Dr	y Weight Basi	s		1	- DI	y weight basis		
Fluoranthene	446	G	22	44.2	ug/Kg	2790	G	30	60.7	ug/Kg	1750) G	26	51.9	ug/Kg
Fluorene	66.7	Ğ	22	36.9	ug/Kg	385		30	50.7	ug/Kg	193	G	26	43.3	ug/Kg
Hexachlorobutadiene		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>l</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>l</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg	l	<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
Hexachlorocyclopentadiene		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td>1</td><td><mdl.g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl.g<></td></mdl,g<>	37	73.6	ug/Kg	1	<mdl.g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl.g<>	51	101	ug/Kg	1	<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
Hexachloroethane		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg	1	<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
Indeno(1,2,3-Cd)Pyrene	171		37	73.6	ug/Kg	829	G	51	101	ug/Kg	452		44	86.4	ug/Kg
Isophorone		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg	1	<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg		<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
N-Nitrosodi-N-Propylamine	•	<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg		<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
N-Nitrosodimethylamine		<mdl,g< td=""><td>150</td><td>221</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	150	221	ug/Kg		<mdl,g< td=""><td>210</td><td>304</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	210	304	ug/Kg		<mdl,g< td=""><td>180</td><td>259</td><td>ug/Kg</td></mdl,g<>	180	259	ug/Kg
N-Nitrosodiphenylamine		<mdl< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	37	73.6	ug/Kg		<mdl< td=""><td>51</td><td>101</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl<></td></mdl<>	51	101	ug/Kg		<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl<>	44	86.4	ug/Kg
Naphthalene		<mdl,g< td=""><td>59</td><td>110</td><td>ug/Kg</td><td>393</td><td></td><td>82</td><td>152</td><td>ug/Kg</td><td>214</td><td></td><td>70</td><td>130</td><td>ug/Kg</td></mdl,g<>	59	110	ug/Kg	393		82	152	ug/Kg	214		70	130	ug/Kg
Nitrobenzene		<mdl,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>l</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37	73.6	ug/Kg		<mdl,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>l</td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	51	101	ug/Kg	l	<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td></mdl,g<>	44	86.4	ug/Kg
Pentachlorophenol		<mdl,e,g< td=""><td>37</td><td>73.6</td><td>ug/Kg</td><td></td><td><mdl,e,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>II</td><td><mdl,e,g< td=""><td>44</td><td>86.4 43.3</td><td>ug/Kg ug/Kg</td></mdl,e,g<></td></mdl,e,g<></td></mdl,e,g<>	37	73.6	ug/Kg		<mdl,e,g< td=""><td>51</td><td>101</td><td>ug/Kg</td><td>II</td><td><mdl,e,g< td=""><td>44</td><td>86.4 43.3</td><td>ug/Kg ug/Kg</td></mdl,e,g<></td></mdl,e,g<>	51	101	ug/Kg	II	<mdl,e,g< td=""><td>44</td><td>86.4 43.3</td><td>ug/Kg ug/Kg</td></mdl,e,g<>	44	86.4 43.3	ug/Kg ug/Kg
Phenanthrene	267	G	22	36.9	ug/Kg	1390		30	50.7	ug/Kg	715		26 180	259	ug/Kg ug/Kg
Phenol	405	G	150	221	ug/Kg	1630		210	304	ug/Kg	692		26	43.3	ug/Kg
Pyrene	442	G	22	36.9	u3/Kg	4420	G	30	50.7	ug/Kg	2790	, ,		43.3	ugity
M.Code=SW-846 8270 (SIM)			0.05	4.04		J	3451.6	40	2.52		 	<mdl.g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl.g<>	1.1	2.16	ug/Kg
1,2,4-Trichlorobenzene		<mdl,g< td=""><td>0.95</td><td>1.84</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>1.3 1.3</td><td>2.52 2.52</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	0.95	1.84	ug/Kg	 	<mdl,g< td=""><td>1.3 1.3</td><td>2.52 2.52</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	1.3 1.3	2.52 2.52	ug/Kg ug/Kg	 	<mdl,g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl,g<>	1.1	2.16	ug/Kg
1,2-Dichlorobenzene 1,3-Dichlorobenzene		<mdl,g <mdl.g< td=""><td>0.95 0.95</td><td>1.84</td><td>ug/Kg</td><td>·</td><td><mdl,g <mdl.g< td=""><td>1.3</td><td>2.52</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g< td=""><td></td><td>2.16</td><td>ug/Kg</td></mdl,g<></td></mdl.g<></mdl,g </td></mdl.g<></mdl,g 	0.95 0.95	1.84	ug/Kg	·	<mdl,g <mdl.g< td=""><td>1.3</td><td>2.52</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g< td=""><td></td><td>2.16</td><td>ug/Kg</td></mdl,g<></td></mdl.g<></mdl,g 	1.3	2.52	ug/Kg ug/Kg	 	<mdl,g< td=""><td></td><td>2.16</td><td>ug/Kg</td></mdl,g<>		2.16	ug/Kg
1,3-Dichlorobenzene		<mdl,g< td=""><td>0.95</td><td>1.84</td><td>ug/Kg ug/Kg</td><td>6.68</td><td></td><td>1.3</td><td>2.52</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	0.95	1.84	ug/Kg ug/Kg	6.68		1.3	2.52	ug/Kg ug/Kg	 	<mdl,g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl,g<>	1.1	2.16	ug/Kg
Hexachlorobenzene		<mdl,g< td=""><td>0.95</td><td>1.84</td><td>ug/Kg</td><td>0.00</td><td><mdl.g< td=""><td>1.3</td><td>2.52</td><td>ug/Kg</td><td>∦</td><td><mdl,g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl,g<></td></mdl.g<></td></mdl,g<>	0.95	1.84	ug/Kg	0.00	<mdl.g< td=""><td>1.3</td><td>2.52</td><td>ug/Kg</td><td>∦</td><td><mdl,g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl,g<></td></mdl.g<>	1.3	2.52	ug/Kg	∦	<mdl,g< td=""><td>1.1</td><td>2.16</td><td>ug/Kg</td></mdl,g<>	1.1	2.16	ug/Kg
* indicates wet weight used for	6 }	- NIDL,G	0.55	1.04	ug/ing	 	-WIDE,G	1.5		ugilig	 				
indicates wet weight used for						i					1				
METALS															
M.Code=METRO 16-01-001						il .					ll				
Mercury, Total, CVAA	0.087	<rdl< td=""><td>0.025</td><td>0.244</td><td>mg/Kg</td><td>0.467</td><td></td><td>0.032</td><td>0.328</td><td>mg/Kg</td><td>0.28</td><td>3 <rdl< td=""><td>0.031</td><td>0.306</td><td>mg/Kg</td></rdl<></td></rdl<>	0.025	0.244	mg/Kg	0.467		0.032	0.328	mg/Kg	0.28	3 <rdl< td=""><td>0.031</td><td>0.306</td><td>mg/Kg</td></rdl<>	0.031	0.306	mg/Kg
M.Code=METRO 16-02-004						<u> </u>									
Aluminum, Total, ICP	12600	L	6.9	34.3	mg/Kg	15600	L	9.9	49.3	mg/Kg	14200		7.8	39.2	mg/Kg
Antimony, Total, ICP		<mdl,g< td=""><td>2.1</td><td>10.3</td><td>mg/Kg</td><td> </td><td><mdl,g< td=""><td>3</td><td>14.8</td><td>mg/Kg</td><td>1</td><td><mdl,g< td=""><td>2.4</td><td>11.8</td><td>mg/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	2.1	10.3	mg/Kg		<mdl,g< td=""><td>3</td><td>14.8</td><td>mg/Kg</td><td>1</td><td><mdl,g< td=""><td>2.4</td><td>11.8</td><td>mg/Kg</td></mdl,g<></td></mdl,g<>	3	14.8	mg/Kg	1	<mdl,g< td=""><td>2.4</td><td>11.8</td><td>mg/Kg</td></mdl,g<>	2.4	11.8	mg/Kg
Arsenic, Total, ICP	5.5		3.5	17.1	mg/Kg	12	<rdl< td=""><td>4.9</td><td>24.7</td><td>mg/Kg</td><td>1</td><td>1 <rdl< td=""><td>3.9</td><td>19.6</td><td>mg/Kg</td></rdl<></td></rdl<>	4.9	24.7	mg/Kg	1	1 <rdl< td=""><td>3.9</td><td>19.6</td><td>mg/Kg</td></rdl<>	3.9	19.6	mg/Kg
Barium, Total, ICP															
Beryllium, Total, ICP	0.15		0.069	0.343	mg/Kg	0.23		0.099	0.493	mg/Kg	0.2		0.078	0.392	mg/Kg
Cadmium, Total, ICP		<mdl< td=""><td>0.21</td><td>1.03</td><td>mg/Kg</td><td>0.59</td><td></td><td>0.3</td><td>1.48</td><td>mg/Kg</td><td>0.4</td><td></td><td>0.24</td><td>1.18</td><td>mg/Kg</td></mdl<>	0.21	1.03	mg/Kg	0.59		0.3	1.48	mg/Kg	0.4		0.24	1.18	mg/Kg
Calcium, Total, ICP	4610		3.5	17.1	mg/Kg	5370		4.9	24.7	mg/Kg	460		3.9	19.6	mg/Kg
Chromium, Total, ICP	17.7		0.35	1.71	mg/Kg	30		0.49	2.47	mg/Kg	22.		0.39	1.96	mg/Kg
Copper, Total, ICP	24.9		0.28	1.37	mg/Kg	62.8		0.4	1.97	mg/Kg	45.		0.31	1.57	mg/Kg
Iron, Total, ICP	22100		3.5	17.1	mg/Kg	26400		4.9	24.7	mg/Kg	2500		3.9	19.6	mg/Kg
Lead, Total, ICP	16		2.1	10.3	mg/Kg	9 8.9		3	14.8	mg/Kg	45.		2.4	11.8	mg/Kg
Magnesium, Total, ICP	4930		2.1	10.3	mg/Kg	6600		3	14.8	mg/Kg	598	U	2.4	11.8	mg/Kg ige 9 of 25
10/08/97 - Appendix C2		,		Data	Managemo	ent and Analysis S	Sedion Comprehensi	ve Report #6	631					Pa	198 9 01 23

PROJECT: 423056	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG4 Aug 12, 96 L9209-4 SALTWTRSE 72.4	ĒD			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG5 Aug 12, 96 L9209-5 SALTWTRS 52.7	BED			Locator: Sampled: Lab ID: Matrix: % Solids:	L9209-11 SALTWT	l		
Parameters	Value	Qual .	MDL Dry Weight Basis	RDL s	Units	Value	Qual	MDL - Dry Welght Basi	RDL.	Units	Value	Qual	MDL - Dry Weight Basis	RDL	Units
Molybdenum, Total, ICP		<mdl< td=""><td>1.4</td><td>6.84</td><td>mg/Kg</td><td>1</td><td><mdl< td=""><td>1.9</td><td>9.87</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>1.6</td><td>7.84</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	1.4	6.84	mg/Kg	1	<mdl< td=""><td>1.9</td><td>9.87</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>1.6</td><td>7.84</td><td>mg/Kg</td></mdl<></td></mdl<>	1.9	9.87	mg/Kg		<mdl< td=""><td>1.6</td><td>7.84</td><td>mg/Kg</td></mdl<>	1.6	7.84	mg/Kg
Nickel, Total, ICP	15.5	5	1.4	6.84	mg/Kg	25	5	1.9	9.87	mg/Kg	20.4		1.6	7.84	mg/Kg
Polassium, Total, ICP	1480)	140	684	mg/Kg	2260	0	190	987	mg/Kg	1900		160	784	mg/Kg
Selenium, Total, ICP		<mdl< td=""><td>3.5</td><td>17.1</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>4.9</td><td>24.7</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>3.9</td><td>19.6</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	3.5	17.1	mg/Kg		<mdl< td=""><td>4.9</td><td>24.7</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>3.9</td><td>19.6</td><td>mg/Kg</td></mdl<></td></mdl<>	4.9	24.7	mg/Kg		<mdl< td=""><td>3.9</td><td>19.6</td><td>mg/Kg</td></mdl<>	3.9	19.6	mg/Kg
Silver, Total, ICP		<mdl< td=""><td>0.28</td><td>1.37</td><td>mg/Kg</td><td>1.3</td><td>2 <rdl< td=""><td>0.4</td><td>1.97</td><td>mg/Kg</td><td>0.57</td><td><rdl< td=""><td>0.31</td><td>1.57</td><td>mg/Kg</td></rdl<></td></rdl<></td></mdl<>	0.28	1.37	mg/Kg	1.3	2 <rdl< td=""><td>0.4</td><td>1.97</td><td>mg/Kg</td><td>0.57</td><td><rdl< td=""><td>0.31</td><td>1.57</td><td>mg/Kg</td></rdl<></td></rdl<>	0.4	1.97	mg/Kg	0.57	<rdl< td=""><td>0.31</td><td>1.57</td><td>mg/Kg</td></rdl<>	0.31	1.57	mg/Kg
Sodium, Total, ICP						 		*****							
Thallium, Total, ICP		<mdl< td=""><td>14</td><td>68.4</td><td>mg/Kg</td><td>II</td><td><mdl< td=""><td>19</td><td>98.7</td><td>mg/Kg</td><td>11</td><td><mdl< td=""><td>16</td><td>78.4</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	14	68.4	mg/Kg	II	<mdl< td=""><td>19</td><td>98.7</td><td>mg/Kg</td><td>11</td><td><mdl< td=""><td>16</td><td>78.4</td><td>mg/Kg</td></mdl<></td></mdl<>	19	98.7	mg/Kg	11	<mdl< td=""><td>16</td><td>78.4</td><td>mg/Kg</td></mdl<>	16	78.4	mg/Kg
Zinc, Total, ICP	63.8	3	0.35	1.71	mg/Kg	119	9	0.49	2.47	mg/Kg	, 94.7		0.39	1.96	mg/Kg
CONVENTIONALS M.Code=PSEP p9						-							2.4		%
p+0.00 *	4.2		0.1		- %	1.1		0.1		%	2.9		0.1		%
p+1.00 *	28.7		0.1		%	9.3		0.1		%	22.5		0.1		%
p+10.0 *	0.7		0.1		%	2.3		0.1		%	1.6		0.1 0.1		%
p+10.0(more than) *	2.4		0.1		%	9.2		0.1		%	5.6		0.1		%
p+2.00 *	42.6		0.1		%	31.1		0.1		%	41.4		0.1		
p+3.00 *	5.8		0.1		%	1		0.1		%	7.7		0.1		%
p+4.00 *	1.6		0.1		%	4.6		0.1		%	2.5		0.1		%
p+5.00 *	3.2		0.1		%	4.0		0.1		%	1.9		0.1		- %
p+6.00 *	1.9		0.1		%	5.2		0.1		%	2.8		0.1		- %
p+7.00 *	1.7		0.1		%	7.		0.1		%	4.5		0.1		%
p+8.00 *	3.3		0.1		%	8.3		0.1			4.5		0.1		%
p+9.00 *	1.5		0.1		%	4.		0.1		%	0.8		0.1		%
p-1.00 *	1.5		0.1		%	0.4		0.1		%	0.5		0.1		%
p-2.00 * p-2.00(less than) *	0.1 0.7		0.1	.,	%	0.4		0.1		% %	0.5		0.1		%
	0.7		0.1		%	U.,	<u> </u>	U. I		70	 	<u>, </u>			
															
M.Code=SM5310-B Tolal Organic Carbon	7750		6.9	13.8	mg/Kg	2600	~	9.5	19	mg/Kg	13800	· · · · · ·	8.1	16.2	mg/Kg

			9 -	<i>-</i>				Lub / t							
PROJECT: 423056	Localor: Sampled: Lab ID: Matrik: % Solids:	P53VG6 Aug 12, 90 L9209-6 SALTWTF 57.2				Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG7 Aug 12, 96 L9209-7 SALTWTF 75.4				Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG3 Aug 12, 96 L9209-8 SALTWTR 71.8			
Parameters	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units	Value	Qual	MDL y Weight Basi	RDL	Units
		- 0	ry Weight Basi	s			-1	ory Weight Basis				- 01	y Weight Dasi	•	
ORGANICS											Ĭ				
M.Code≈SW-846 8080						1					1				
4,4'-DDD		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg	I	<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg	I	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
4,4'-DDE		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg		<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
4,4'-DDT		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg		<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Aldrin		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg	<u> </u>	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/kg</td></mdl<>	1.8	3.72	ug/kg
Alpha-BHC		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg	l	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Arcclor 1016		<mdl< td=""><td>23</td><td>46.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>18</td><td>37.2 37.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	23	46.7	ug/Kg		<mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>18</td><td>37.2 37.2</td><td>ug/Kg</td></mdl<></td></mdl<>	17	35.4	ug/Kg	<u> </u>	<mdl< td=""><td>18</td><td>37.2 37.2</td><td>ug/Kg</td></mdl<>	18	37.2 37.2	ug/Kg
Aroclor 1221		<mdl< td=""><td>23</td><td>46.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	23	46.7	ug/Kg		<mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	17	35.4	ug/Kg		<mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<>	18	37.2	ug/Kg ug/Kg
Aroclor 1232		<mdl< td=""><td>23</td><td>46.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18 18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	23	46.7	ug/Kg		<mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18 18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	17	35.4	ug/Kg		<mdl< td=""><td>18 18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<>	18 18	37.2	ug/Kg ug/Kg
Aroclor 1242		<mdl< td=""><td>23</td><td>46.7</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td><u> </u> </td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	23	46.7	ug/Kg	1	<mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td><u> </u> </td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	17	35.4	ug/Kg	<u> </u>	<mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<>	18	37.2	ug/Kg ug/Kg
Aroclor 1248		<mdl< td=""><td>23</td><td>46.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td>#</td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	23	46.7	ug/Kg		<mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td>#</td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	17	35.4	ug/Kg	#	<mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg ug/Kg</td></mdl<>	18	37.2	ug/Kg ug/Kg
Aroclor 1254		<mdl< td=""><td>23</td><td>46.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	23	46.7	ug/Kg		<mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg</td></mdl<></td></mdl<>	17	35.4	ug/Kg		<mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg</td></mdl<>	18	37.2	ug/Kg
Aroclor 1260	35		23	46.7	ug/Kg	<u> </u>	<mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>1.8</td><td>3,72</td><td>ug/Kg</td></mdl<></mdl </td></mdl<>	17	35.4	ug/Kg	 	<mdl <mdl< td=""><td>1.8</td><td>3,72</td><td>ug/Kg</td></mdl<></mdl 	1.8	3,72	ug/Kg
Beta-BHC		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>.l]</td><td><mdl< td=""><td>9.3</td><td>18.5</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>.l]</td><td><mdl< td=""><td>9.3</td><td>18.5</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg	.l]	<mdl< td=""><td>9.3</td><td>18.5</td><td>ug/Kg</td></mdl<>	9.3	18.5	ug/Kg
Chlordane		<mdl< td=""><td>12</td><td>23.3</td><td>ug/kg</td><td>.[</td><td><mdl< td=""><td>8.9</td><td>17.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	12	23.3	ug/kg	.[<mdl< td=""><td>8.9</td><td>17.6</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	8.9	17.6	ug/Kg		<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Delta-BHC		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg	 	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Dieldrin		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/kg</td><td><u> </u> </td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/kg	<u> </u>	<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg	 	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Endosulfan I	5.94		2.3	4.67	ug/Kg	·II	<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg	1	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Endosulfan II		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg	<u> </u>	<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg		<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Endosulfan Sulfate		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67	ug/Kg	 	<mdl< td=""><td>1.7</td><td>3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.54	ug/Kg		<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Endrin		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td>ACM></td><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>.</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		ACM>	1.7	3.54	ug/Kg	.	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Endrin Aldehyde		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td>-MDL</td><td>1.7</td><td>3.54</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		-MDL	1.7	3.54	ug/Kg	1	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Gamma-BHC (Lindane)		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td>-MDL</td><td>1.7</td><td>3.54 3.54</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<>	2.3	4.67	ug/Kg		-MDL	1.7	3.54 3.54	ug/Kg		<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Heptachlor Heptachlor Epoxide		<mdl< td=""><td>2.3</td><td>4.67</td><td>ug/Kg</td><td></td><td><mdl <mdl< td=""><td>1.7 1.7</td><td>3.54</td><td>ug/Kg</td><td>-11</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></mdl </td></mdl<>	2.3	4.67	ug/Kg		<mdl <mdl< td=""><td>1.7 1.7</td><td>3.54</td><td>ug/Kg</td><td>-11</td><td><mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<></td></mdl<></mdl 	1.7 1.7	3.54	ug/Kg	-11	<mdl< td=""><td>1.8</td><td>3.72</td><td>ug/Kg</td></mdl<>	1.8	3.72	ug/Kg
Methoxychlor		<mdl< td=""><td>2.3</td><td>4.67 23.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.9</td><td>17.6</td><td>ug/Kg ug/Kg</td><td></td><td><mdl< td=""><td>9.3</td><td>18.5</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	2.3	4.67 23.3	ug/Kg		<mdl< td=""><td>8.9</td><td>17.6</td><td>ug/Kg ug/Kg</td><td></td><td><mdl< td=""><td>9.3</td><td>18.5</td><td>ug/Kg</td></mdl<></td></mdl<>	8.9	17.6	ug/Kg ug/Kg		<mdl< td=""><td>9.3</td><td>18.5</td><td>ug/Kg</td></mdl<>	9.3	18.5	ug/Kg
Toxaphene		<mdl <mdl< td=""><td>12 23</td><td>23.3 46.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<></mdl 	12 23	23.3 46.7	ug/Kg		<mdl< td=""><td>17</td><td>35.4</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg</td></mdl<></td></mdl<>	17	35.4	ug/Kg	- 	<mdl< td=""><td>18</td><td>37.2</td><td>ug/Kg</td></mdl<>	18	37.2	ug/Kg
		MDL	23	40.7	ug/Kg	1	-MDL		33.4	ugrivy		- NIDL			
M.Code=SW-846 8260		<mdl,h< td=""><td>8.7</td><td>17.5</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg</td><td></td><td><mdl.h< td=""><td>-7</td><td>13.9</td><td>ug/Kg</td></mdl.h<></td></mdl,h<></td></mdl,h<>	8.7	17.5	ug/Kg		<mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg</td><td></td><td><mdl.h< td=""><td>-7</td><td>13.9</td><td>ug/Kg</td></mdl.h<></td></mdl,h<>	6.6	13.3	ug/Kg		<mdl.h< td=""><td>-7</td><td>13.9</td><td>ug/Kg</td></mdl.h<>	- 7	13.9	ug/Kg
		<mdl,h< td=""><td>8.7</td><td>17.5</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,11< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,11<></td></mdl,h<></td></mdl,h<>	8.7	17.5	ug/Kg ug/Kg		<mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,11< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,11<></td></mdl,h<>	6.6	13.3	ug/Kg ug/Kg		<mdl,11< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,11<>	7	13.9	ug/Kg
1,1,2,2-Tetrachloroethane			8.7	17.5 17.5			<mdl,h< td=""><td>6.6</td><td>13.3</td><td></td><td>- </td><td><mdl,11< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,11<></td></mdl,h<>	6.6	13.3		-	<mdl,11< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,11<>		13.9	ug/Kg
1,1,2-Trichloroethane 1,1,2-Trichloroethylene		<mdl,h <mdl,h< td=""><td>8.7</td><td>17.5</td><td>ug/Kg ug/Kg</td><td>-∦</td><td><mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg ug/Kg</td><td>₩</td><td><mdl,h< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<></mdl,h 	8.7	17.5	ug/Kg ug/Kg	-∦	<mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg ug/Kg</td><td>₩</td><td><mdl,h< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	6.6	13.3	ug/Kg ug/Kg	₩	<mdl,h< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,h<>		13.9	ug/Kg
1,1-Dichloroethane			8.7			<u> </u>	<mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	6.6	13.3	ug/Kg		<mdl,h< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,h<>		13.9	ug/Kg
1,1-Dichloroethylene		<mdl,h <mdl,h< td=""><td>8.7 8.7</td><td>17.5 17.5</td><td>ug/Kg ug/Kg</td><td>. </td><td><mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg ug/Kg</td><td>· </td><td><mdl,h< td=""><td>'7</td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<></mdl,h 	8.7 8.7	17.5 17.5	ug/Kg ug/Kg	.	<mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg ug/Kg</td><td>· </td><td><mdl,h< td=""><td>'7</td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	6.6	13.3	ug/Kg ug/Kg	· 	<mdl,h< td=""><td>'7</td><td>13.9</td><td>ug/Kg</td></mdl,h<>	' 7	13.9	ug/Kg
1,1-Dichloroethane		<mdl,h< td=""><td> 8.7 8.7</td><td>17.5 17.5</td><td>ug/Kg ug/Kg</td><td>- </td><td><mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg ug/Kg</td><td>- </td><td><mdl,h< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	8.7 8.7	17.5 17.5	ug/Kg ug/Kg	-	<mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg ug/Kg</td><td>- </td><td><mdl,h< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	6.6	13.3	ug/Kg ug/Kg	-	<mdl,h< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,h<>	 7	13.9	ug/Kg
1,2-Dichloropropane				17.5 17.5			<mdl,h< td=""><td>6.6</td><td>13.3</td><td></td><td>- </td><td><mdl,h< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	6.6	13.3		-	<mdl,h< td=""><td></td><td>13.9</td><td>ug/Kg</td></mdl,h<>		13.9	ug/Kg
	· · · · = · · · · · · · · · · · · · · ·	<mdl,h< td=""><td>8.7</td><td></td><td>ug/Kg</td><td></td><td></td><td>33</td><td>66.3</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td>35</td><td>69.6</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>	8.7		ug/Kg			33	66.3	ug/Kg		<mdl,h< td=""><td>35</td><td>69.6</td><td>ug/Kg</td></mdl,h<>	35	69.6	ug/Kg
2-Butanone (MEK)		<mdl,h< td=""><td>44</td><td>87.4</td><td>ug/Kg</td><td></td><td><mdl,h< td=""><td></td><td></td><td>ug/Kg</td><td>. </td><td><mdl,h< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<></td></mdl,h<>	44	87.4	ug/Kg		<mdl,h< td=""><td></td><td></td><td>ug/Kg</td><td>. </td><td><mdl,h< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,h<></td></mdl,h<>			ug/Kg	.	<mdl,h< td=""><td>7</td><td>13.9</td><td>ug/Kg</td></mdl,h<>	7	13.9	ug/Kg
2-Chloroethylvinyl ether		<mdl,h< td=""><td>8.7</td><td>17.5</td><td>ug/Kg</td><td>1)</td><td><mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg</td><td>3)</td><td>YMUL, I</td><td>,</td><td>13.5</td><td>49119</td></mdl,h<></td></mdl,h<>	8.7	17.5	ug/Kg	1)	<mdl,h< td=""><td>6.6</td><td>13.3</td><td>ug/Kg</td><td>3)</td><td>YMUL, I</td><td>,</td><td>13.5</td><td>49119</td></mdl,h<>	6.6	13.3	ug/Kg	3)	YMUL, I	,	13.5	49119

2,6-Dinitrotoluene MDL 19 37.2 ug/Kg <mdl< th=""> 15 28.2 ug/Kg <mdl< th=""> 15 29.7 ug/Kg 2-Chloronaphthalene <mdl,g< td=""> 28 46.7 ug/Kg <mdl,g< td=""> 21 35.4 ug/Kg <mdl,g< td=""> 22 37.2 ug/Kg</mdl,g<></mdl,g<></mdl,g<></mdl<></mdl<>				9 •	Janey		•	Olicai	_							
Lab D. Lo209-6 Lab D. Lo209-6 Lab D. Lo209-7 Lab D. Lo209-8 Lab D. Lab D	PROJECT: 423056	Locator:	P53VG6				Locator:	P53VG7				Locator:	P53VG3			1
Matrix SALTMYRSED		Sampled:	Aug 12, 96	3			Sampled:	Aug 12, 96	6			Sampled:	Aug 12, 96	3		
Parameters Value Oual MDL RDL Units On Verget Basis Converget Basis		Lab ID:	L9209-6				Lab ID:	L9209-7				Lab ID:	L9209-8			1
Parameters Value Cus MDL RDL Units Value Cus Value Cus MDL RDL Units Value Cus Value Cus RDL Units Value Cus Value Cus RDL Units Value Cus Value Cus Value Cus Value Cus RDL Units Value Cus Value Cus Value Cus RDL Units Value Cus Value Cus Value Cus RDL RDL Units Value Cus Value		Matric:	SALTWIR	SED			41		SED			Matrix:	SALTWIR	SED		-
Parameters Value Qual MD. RDL Units Value Qual MDL RDL Units Qual Q		% Solids:	57.2									% Solids:	71.8			1
2-Hexanone		,					/ Coco.	. 10.1								1
2-Hearanne	Parameters	Value	Qual	MDI	RDI	Units	Value	Qual	MDI	RDL	Units	Value	Qual	MDL	RDL	Unils
2-Novamone						011110	, value				_,,,,		- Di	y Weight Basi	s	
Audity-2-Pentanone (MBK)				,	•			,	., rraigiz Duoia			i				
Audity-2-Pentanone (MBK)	2 Hevanono		∠MDI ⊔	44	97.4	ua/Ka	l	∠MD: H	22	66.3	ualKa		<mdi h<="" td=""><td>35</td><td>69.6</td><td>ug/Kg</td></mdi>	35	69.6	ug/Kg
Academic 118 B 23 87 4 1996 46 RND E 17 68 3 1996 67 RND E 18 63 6 1996 46 Ramelin 400 L 4 87 4 1996 400 L 33 68 3 1996 400 L 35 68 6 1996 400 L 35 400							II					l				
Acriberin AMDLX 44 89 x 19/49 AMDLX 33 663 19/49 AMDLX 35 66 19/49 AMDLX 37 10 19/49 AMDLX 38 10 19/49 AMDLX 38 10 19/49 AMDLX 37 17 19/49 AMDLX 37 17 19/49 AMDLX 38 133 19/49 AMDLX 7 13 9 19/49 AMDLX 7 17 19/49 AMDLX 7 18 9 19/49 AMDLX 7 17 19/49 AMDLX 7 18 19/49 AMDLX 7		110					ļ								69.6	ug/Kg
Actionable Act		116					 					∥				
Berizone	1 171 717						I					 			69.6	
Stromodichloromethane							 					 				
Submoderitor Subm							 					 				
Stromomethane							 									
Carbon Disulfide							 					 		' 7-		
Carbon Tetrachloride MDL,H 8.7 17.5 ug/Kg MDL,H 8.6 13.3 ug/Kg MDL,H 7 13.9 ug/Kg MDL,H 8 7 17.5 ug/Kg MDL,H							-∥					!		•		
Chlorobenzene							 					ļ	*****	•		
Chlorodibrommethane							ļ					 				
Simple Children Simple Chi												 				
Chibroteriane							4					I				
Shipping							 					ļ				
Silvation Silvation Silvator Silvato												 		•		
Similar Simi]		•		
Section Sect							 							' 7		
Methylene Chloride												 				
Stylene			·				<u> </u>					 				
Syling S												ļ				
Toluene							 					 		•		
Total Xylenes												 		_ - '		
Trans-1,2-Dichloroethylene							 					 				
Trians-1,3-Dichloropropene							<u> </u>						*****			
Trichlorofluoromethane							 					1				
Vinyl Acetate							<u> </u>					ļ				
Vitigit Celoride Image: MDL, H 8.7 17.5 ug/Kg Image: MDL, H 7.0 142 ug/Kg Image: MDL, G 3.0 2.0 ug/Kg Image: MDL, G 3.0 2.0 ug/Kg Image: MDL, G 3.0 2.0 2.0 ug/Kg Image: MDL, G 3.0							<u> </u>					<u> </u>		35		
MCode=sw 846 8270 MDL 93 187 ug/kg < MDL 70 142 ug/kg < MDL 74 149 ug/kg 297 ug/kg 24,5-Trichlorophenol < MDL 150 282 ug/kg < MDL 150 297 ug/kg < MDL 150 282 ug/kg < MDL 150 297 ug/kg < MDL 150 282 ug/kg < MDL 150 297 ug/kg < MDL 150 282 ug/kg < MDL 150 297 ug/kg < MDL 150 282 ug/kg < MDL 36 70.7 ug/kg < MDL,G 38 74.2 ug/kg 2.4-Dinitrohylaphenol < MDL,G 34 149 ug/kg < MDL,G 36							 									
1,2-Diphenylhydrazine <mdl< td=""> 93 187 ug/kg <mdl< td=""> 70 142 ug/kg <mdl< td=""> 74 149 ug/kg 2,4,5-Trichlorophenol <mdl< td=""> 190 372 ug/kg <mdl< td=""> 150 282 ug/kg <mdl< td=""> 150 297 ug/kg 2,4-Dichlorophenol <mdl< td=""> 190 372 ug/kg <mdl< td=""> 150 282 ug/kg <mdl< td=""> 150 297 ug/kg 2,4-Dichlorophenol <mdl,g< td=""> 47 93.2 ug/kg <mdl,g< td=""> 36 70.7 ug/kg <mdl,g< td=""> 38 74.2 ug/kg 2,4-Dimethylphenol <mdl,g< td=""> 47 93.2 ug/kg <mdl,g< td=""> 36 70.7 ug/kg <mdl,g< td=""> 38 74.2 ug/kg 2,4-Dinitrophenol <mdl,g< td=""> 47 93.2 ug/kg <mdl,g< td=""> 36 70.7 ug/kg <mdl,g< td=""> 38 74.2 ug/kg 2,4-Dinitrophenol <mdl,g< td=""> 93 187 ug/kg <mdl,g< td=""> 70 142 ug/kg <mdl,g< td=""> 74 149 ug/</mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl,g<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<>			<mdl,h< td=""><td>8.7</td><td>17.5</td><td>ug/Kg</td><td>.[]</td><td><mdl,h< td=""><td>5.6</td><td>13.3</td><td>ug/Kg</td><td> </td><td>\NIDL,⊓</td><td></td><td></td><td>49/1/9</td></mdl,h<></td></mdl,h<>	8.7	17.5	ug/Kg	.[]	<mdl,h< td=""><td>5.6</td><td>13.3</td><td>ug/Kg</td><td> </td><td>\NIDL,⊓</td><td></td><td></td><td>49/1/9</td></mdl,h<>	5.6	13.3	ug/Kg	 	\NIDL,⊓			49/1/9
2,4,5-Trichlorophenol							I						- IAD1	74	1/0	unKa
2,4,5-Trichlorophenol																
2,4-Direction of the first state							1					<u> </u>				
2,4-Dinitrotoluene												I				
2,4-Dinitrophenol																
2,4-Dinitrotoluene <mdl< td=""> 19 37.2 ug/Kg <mdl< td=""> 15 28.2 ug/Kg <mdl< td=""> 15 29.7 ug/Kg 2,6-Dinitrotoluene <mdl< td=""> 19 37.2 ug/Kg <mdl< td=""> 15 28.2 ug/Kg <mdl< td=""> 15 29.7 ug/Kg 2-Chloronaphthalene <mdl,g< td=""> 28 46.7 ug/Kg <mdl,g< td=""> 21 35.4 ug/Kg <mdl,g< td=""> 22 37.2 ug/Kg</mdl,g<></mdl,g<></mdl,g<></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<>			•							•						
2,6-Dinitrotoluene												1				
2-Chloronaphthalene <mdl,g 21="" 22="" 28="" 35.4="" 37.2="" 46.7="" <mdl,g="" kg="" kg<="" td="" ug=""><td>2,4-Dinitrotoluene</td><td></td><td></td><td></td><td></td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td>and the state of t</td><td></td><td></td><td></td><td>_</td><td></td></mdl,g>	2,4-Dinitrotoluene					ug/Kg					and the state of t				_	
2 distribution of the control of the	2,6-Dinitrotoluene					ug/Kg						1				
2-Chlorophenol <mdl,g 142="" 149="" 187="" 70="" 74="" 93="" <mdl,g="" kg="" kg<="" td="" ug=""><td>2-Chloronaphthalene</td><td></td><td></td><td></td><td>46.7</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>J</td><td></td><td></td><td></td><td></td></mdl,g>	2-Chloronaphthalene				46.7		1					J				
	2-Chlorophenol		<mdl,g< td=""><td>93</td><td>187</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>74</td><td>149</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	93	187	ug/Kg		<mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>74</td><td>149</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	70	142	ug/Kg		<mdl,g< td=""><td>74</td><td>149</td><td>ug/Kg</td></mdl,g<>	74	149	ug/Kg

		1 (1119	Journey		•	Cilai			-	. .				
PROJECT: 423056	Locator: P53	/G6			Locator:	P53VG7				Locator:	P53VG3			II .
	Sampled: Aug	12. 96			Sampled:	Aug 12, 96				Sampled:	Aug 12, 96	5		l l
	Lab ID: L920				Lab ID:	L9209-7				Lab ID:	L9209-8			
		TWTRSED			Matrix:	SALTWIR	SED			Matrix:	SALTWIR	SED		1
	% Solids: 57.2				% Solids:	75.4	CLD			% Solids:	71.8			- 1
	70 OSHQO. 07.E				// CO.IGS.	75.4				1,000,100				- 1
Parameters	Value Qu	ual MDL	RDL	Units	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units
	value at	- Dry Weight		OT MO	'4.40		y Weight Basis	NDL	Oillio	'	- Di	y Weight Basi	3	- 1
		- Diy Weight	Ju313		1	• 01	y vveigit basis					,		
2-Methylnaphthalene	<me< td=""><td>N.C. 7</td><td>5 140</td><td>ug/Kg</td><td>li .</td><td><mdl.g< td=""><td>57</td><td>106</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>60</td><td>111</td><td>ug/Kg</td></mdl.g<></td></mdl.g<></td></me<>	N.C. 7	5 140	ug/Kg	li .	<mdl.g< td=""><td>57</td><td>106</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>60</td><td>111</td><td>ug/Kg</td></mdl.g<></td></mdl.g<>	57	106	ug/Kg		<mdl.g< td=""><td>60</td><td>111</td><td>ug/Kg</td></mdl.g<>	60	111	ug/Kg
2-Methylphenol	<me< td=""><td></td><td></td><td>ug/Kg</td><td>4</td><td><mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></me<>			ug/Kg	4	<mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	36	70.7	ug/Kg	 	<mdl,g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl,g<>	38	74.2	ug/Kg
2-Nitroaniline	-\vii	-, -		ug/Kg	 	<mdl< td=""><td>150</td><td>212</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>150</td><td>223</td><td>ug/Kg</td></mdl<></td></mdl<>	150	212	ug/Kg	 	<mdl< td=""><td>150</td><td>223</td><td>ug/Kg</td></mdl<>	150	223	ug/Kg
2-Nitrophenol	<me< td=""><td></td><td></td><td>ug/Kg ug/Kg</td><td>. </td><td><mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl.g<></td></mdl,g<></td></me<>			ug/Kg ug/Kg	. 	<mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl.g<></td></mdl,g<>	36	70.7	ug/Kg	 	<mdl.g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl.g<>	38	74.2	ug/Kg
3,3'-Dichlorobenzidine	NVI.	, .		ug/Kg ug/Kg	II	<mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td>]</td><td><mdl,g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	36	70.7	ug/Kg]	<mdl,g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl,g<>	38	74.2	ug/Kg
3-Nitroaniline	<me< td=""><td></td><td></td><td>ug/Kg</td><td><u> </u></td><td><mdl,g< td=""><td>150</td><td>212</td><td>ug/Kg</td><td><u> </u></td><td><mdl,g< td=""><td>150</td><td>223</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></me<>			ug/Kg	<u> </u>	<mdl,g< td=""><td>150</td><td>212</td><td>ug/Kg</td><td><u> </u></td><td><mdl,g< td=""><td>150</td><td>223</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	150	212	ug/Kg	<u> </u>	<mdl,g< td=""><td>150</td><td>223</td><td>ug/Kg</td></mdl,g<>	150	223	ug/Kg
4.6-Dinitro-O-Cresol		DL 9			-	<mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg ug/Kg</td><td>I</td><td><mdl,g< td=""><td>74</td><td>149</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	70	142	ug/Kg ug/Kg	I	<mdl,g< td=""><td>74</td><td>149</td><td>ug/Kg</td></mdl,g<>	74	149	ug/Kg
4-Bromophenyl Phenyl Ether				ug/Kg	.]]		15			 	<mdl< td=""><td>15</td><td>22.3</td><td>ug/Kg</td></mdl<>	15	22.3	ug/Kg
	<m< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl< td=""><td></td><td>21.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>74</td><td>149</td><td>ug/Kg</td></mdl<></td></mdl<></td></m<>			ug/Kg		<mdl< td=""><td></td><td>21.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>74</td><td>149</td><td>ug/Kg</td></mdl<></td></mdl<>		21.2	ug/Kg		<mdl< td=""><td>74</td><td>149</td><td>ug/Kg</td></mdl<>	74	149	ug/Kg
4-Chloro-3-Methylphenol	<m< td=""><td></td><td></td><td>ug/Kg</td><td>∥</td><td><mdl< td=""><td>70</td><td>142</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>$-\frac{74}{74}$</td><td>149</td><td>ug/Kg</td></mdl.g<></td></mdl<></td></m<>			ug/Kg	∥	<mdl< td=""><td>70</td><td>142</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>$-\frac{74}{74}$</td><td>149</td><td>ug/Kg</td></mdl.g<></td></mdl<>	70	142	ug/Kg		<mdl.g< td=""><td>$-\frac{74}{74}$</td><td>149</td><td>ug/Kg</td></mdl.g<>	$-\frac{74}{74}$	149	ug/Kg
4-Chloroaniline	<mc< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mc<>			ug/Kg		<mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	70	142	ug/Kg	 	<mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<>	22	37.2	ug/Kg
4-Chlorophenyl Phenyl Ether	<m< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td>46</td><td></td><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<></td></m<>			ug/Kg		<mdl< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td>46</td><td></td><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<>	21	35.4	ug/Kg	46		38	74.2	ug/Kg
4-Methylphenol	423 (ug/Kg	10		36	70.7	ug/Kg	46	MDL	150	223	ug/Kg
4-Nitroaniline	<m< td=""><td></td><td></td><td>ug/Kg</td><td>.</td><td><mdl< td=""><td>150</td><td>212</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>74</td><td>149</td><td>ugiKg</td></mdl<></td></mdl<></td></m<>			ug/Kg	.	<mdl< td=""><td>150</td><td>212</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>74</td><td>149</td><td>ugiKg</td></mdl<></td></mdl<>	150	212	ug/Kg	 	<mdl< td=""><td>74</td><td>149</td><td>ugiKg</td></mdl<>	74	149	ugiKg
4-Nitrophenol	<m></m>			ug/Kg	.	<mdl< td=""><td>70</td><td>142</td><td>ug/Kg</td><td>1</td><td></td><td>15</td><td>29.7</td><td>ug/Kg</td></mdl<>	70	142	ug/Kg	1		15	29.7	ug/Kg
Acenaphthene	60	1		ug/Kg		<mdl< td=""><td>15</td><td>28.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>22</td><td>37.2</td><td>ugiKg</td></mdl<></td></mdl<>	15	28.2	ug/Kg	1	<mdl< td=""><td>22</td><td>37.2</td><td>ugiKg</td></mdl<>	22	37.2	ugiKg
Acenaphthylene	35 <r< td=""><td></td><td></td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td>ļ</td><td><mdl.g< td=""><td>$-\frac{22}{74}$</td><td>149</td><td>ug/Kg</td></mdl.g<></td></mdl<></td></r<>			ug/Kg	 	<mdl< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td>ļ</td><td><mdl.g< td=""><td>$-\frac{22}{74}$</td><td>149</td><td>ug/Kg</td></mdl.g<></td></mdl<>	21	35.4	ug/Kg	ļ	<mdl.g< td=""><td>$-\frac{22}{74}$</td><td>149</td><td>ug/Kg</td></mdl.g<>	$-\frac{22}{74}$	149	ug/Kg
Aniline	<mc< td=""><td></td><td></td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td>72</td><td></td><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mc<>			ug/Kg	 	<mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td>72</td><td></td><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<>	70	142	ug/Kg	72		22	37.2	ug/Kg
Anthracene	351 (_		ug/Kg	2	4 <rdl,g< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td>73.</td><td>MDL,X</td><td>890</td><td>1780</td><td>ug/Kg</td></rdl,g<>	21	35.4	ug/Kg	73.	MDL,X	890	1780	ug/Kg
Benzidine	<me< td=""><td> <u> </u></td><td></td><td>ug/Kg</td><td>II</td><td><mdl,x< td=""><td>850</td><td>1700</td><td>ug/Kg</td><td>ļ</td><td></td><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,x<></td></me<>	<u> </u>		ug/Kg	II	<mdl,x< td=""><td>850</td><td>1700</td><td>ug/Kg</td><td>ļ</td><td></td><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,x<>	850	1700	ug/Kg	ļ		22	37.2	ug/Kg
Benzo(a)anthracene	741			ug/Kg	73.		21	35.4	ug/Kg	18 20		38	74.2	ug/Kg
Benzo(a)pyrene	767 C			ug/Kg	11 -	9 <rdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td>20 29</td><td></td><td>60</td><td>111</td><td>ug/Kg</td></rdl,g<>	36	70.7	ug/Kg	20 29		60	111	ug/Kg
Benzo(b)fluoranthene	1120	7		ug/Kg	11		57	106	ug/Kg	92.		38	74.2	ug/Kg
Benzo(g,h,i)perylene	323 C			ug/Kg	3	6 <rdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td>92. 12</td><td></td><td>60</td><td>111</td><td>ug/Kg</td></rdl,g<>	36	70.7	ug/Kg	92. 12		60	111	ug/Kg
Benzo(k)fluoranthene	484 (ug/Kg	<u> </u>	<mdl,g< td=""><td>57</td><td>106</td><td>ug/Kg</td><td>12</td><td>/ G <mdl,l< td=""><td>150</td><td>223</td><td>ug/Kg</td></mdl,l<></td></mdl,g<>	57	106	ug/Kg	12	/ G <mdl,l< td=""><td>150</td><td>223</td><td>ug/Kg</td></mdl,l<>	150	223	ug/Kg
Benzoic Acid	<me< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>150</td><td>212</td><td>ug/Kg</td><td> </td><td><mdl,e< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl,e<></td></mdl,l<></td></me<>			ug/Kg		<mdl,l< td=""><td>150</td><td>212</td><td>ug/Kg</td><td> </td><td><mdl,e< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl,e<></td></mdl,l<>	150	212	ug/Kg	 	<mdl,e< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl,e<>	38	74.2	ug/Kg
Benzyl Alcohol	<me< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></me<>			ug/Kg		<mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	36	70.7	ug/Kg	 	<mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<>	22	37.2	ug/Kg
Benzyl Butyl Phthalate	51.7	2		ug/Kg	2	5 <rdl< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl.g<></td></rdl<>	21	35.4	ug/Kg	 	<mdl.g< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl.g<>	38	74.2	ug/Kg
Bis(2-Chloroethoxy) Methane	<mc< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td></td><td></td><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mc<>			ug/Kg		<mdl,g< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td></td><td></td><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<>	36	70.7	ug/Kg			22	37.2	ug/Kg
Bis(2-Chloroethyl)Ether	<mc< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>74</td><td>149</td><td>ug/Kg ug/Kg</td></mdl,g<></td></mdl,g<></td></mc<>			ug/Kg		<mdl,g< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>74</td><td>149</td><td>ug/Kg ug/Kg</td></mdl,g<></td></mdl,g<>	21	35.4	ug/Kg	 	<mdl,g< td=""><td>74</td><td>149</td><td>ug/Kg ug/Kg</td></mdl,g<>	74	149	ug/Kg ug/Kg
Bis(2-Chloroisopropyl)Ether	<mc< td=""><td></td><td></td><td>ug/<g< td=""><td>1</td><td><mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td>J</td><td><mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></g<></td></mc<>			ug/ <g< td=""><td>1</td><td><mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td>J</td><td><mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></g<>	1	<mdl,g< td=""><td>70</td><td>142</td><td>ug/Kg</td><td>J</td><td><mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	70	142	ug/Kg	J	<mdl,g< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl,g<>	22	37.2	ug/Kg
Bis(2-Ethylhexyl)Phthalate	281	2		ug/Kg	56.		21	35.4	ug/Kg	94.			74.2	ug/Kg ug/Kg
Carbazole	89 <r< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>38</td><td>37.2</td><td></td></mdl<></td></mdl<></td></r<>			ug/Kg		<mdl< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>38</td><td>37.2</td><td></td></mdl<></td></mdl<>	36	70.7	ug/Kg	1	<mdl< td=""><td>38</td><td>37.2</td><td></td></mdl<>	38	37.2	
Chrysene	1100	2		ug/Kg	12		21	35.4	ug/Kg	29		22		ug/Kg
Coprostanol	190 <r< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl< td=""><td>150</td><td>212</td><td>ug/Kg</td><td>17</td><td></td><td>150</td><td>223</td><td>ug/Kg</td></mdl<></td></r<>			ug/Kg		<mdl< td=""><td>150</td><td>212</td><td>ug/Kg</td><td>17</td><td></td><td>150</td><td>223</td><td>ug/Kg</td></mdl<>	150	212	ug/Kg	17		150	223	ug/Kg
Di-N-Butyl Phthalate	<m></m>			ug/Kg	<u> </u>	<mdl< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<></td></mdl<>	36	70.7	ug/Kg	1	<mdl< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<>	38	74.2	ug/Kg
Di-N-Octyl Phthalate	<m< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td>L</td><td><mdl< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></m<>			ug/Kg		<mdl< td=""><td>21</td><td>35.4</td><td>ug/Kg</td><td>L</td><td><mdl< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl<></td></mdl<>	21	35.4	ug/Kg	L	<mdl< td=""><td>22</td><td>37.2</td><td>ug/Kg</td></mdl<>	22	37.2	ug/Kg
Dibenzo(a,h)anthracene	100 <r< td=""><td></td><td></td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>57</td><td>106</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>60</td><td>111</td><td>uç/Kg</td></mdl<></td></mdl<></td></r<>			ug/Kg	1	<mdl< td=""><td>57</td><td>106</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>60</td><td>111</td><td>uç/Kg</td></mdl<></td></mdl<>	57	106	ug/Kg	1	<mdl< td=""><td>60</td><td>111</td><td>uç/Kg</td></mdl<>	60	111	uç/Kg
Dibenzofuran	54 <r< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></r<>			ug/Kg		<mdl< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<></td></mdl<>	36	70.7	ug/Kg		<mdl< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<>	38	74.2	ug/Kg
Diethyl Phthalate	<m< td=""><td></td><td></td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></m<>			ug/Kg	1	<mdl< td=""><td>36</td><td>70.7</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<></td></mdl<>	36	70.7	ug/Kg	1	<mdl< td=""><td>38</td><td>74.2</td><td>ug/Kg</td></mdl<>	38	74.2	ug/Kg
Dimethyl Phthalate	<m< td=""><td>DL 1</td><td>9 28</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>15</td><td>21.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>15</td><td>22.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></m<>	DL 1	9 28	ug/Kg		<mdl< td=""><td>15</td><td>21.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>15</td><td>22.3</td><td>ug/Kg</td></mdl<></td></mdl<>	15	21.2	ug/Kg	1	<mdl< td=""><td>15</td><td>22.3</td><td>ug/Kg</td></mdl<>	15	22.3	ug/Kg

1,3-Dichlorobenzene				9	J 41.11.y		•	Olitai	_							_
Lab D. 125/20-8 Malk: SALTVITESE % Solids: 57.2 Solids: 57.2 Solids: 57.2 Solids: 57.4 Solids: 57.4 Solids: 57.4 Solids: 57.4 Solids: 75.4 Solids:	PROJECT: 423056	Locator:	P53VG6				[Locator:	P53VG7				Locator:	P53VG3			
Lab D L25/09-6 Walker SALTVITRSED		Sampled:	Aug 12, 96	3			PI	Aug 12, 96	;			Sampled:	Aug 12, 96	3		
Matrix SALTWITRSED Matrix M		Lab ID:	L9209-6									Lab ID:	L9209-8			
Parameters Value				RSED			11		SED			11	SALTWIF	RSED		
Parameters Value							H		OLD.			H	71.8			
Fluoranthene 965 G 28 559 Ug/Kg 153 G 21 424 Ug/Kg 240 G 22 446 Ug/Kg 7Fluorene 113 G 28 467 Ug/Kg 4MDL,G 21 354 Ug/Kg 4MDL,G 38 72 Ug/Kg 4MDL,G 37 354 Ug/Kg 4MDL,G 38 72 Ug/Kg 4MDL,G		,	O1.2				70 Conds.	70.4				1	,			
Phocanithane	Parameters	\/alue	Oual	MDI	BUI	Unite	Value	Oual	MO	BUI	Unite	Value	Qual	MDL	RDL	Units
Fluoranthene	· didinotoro	value				OTHIS	Value			NDL	Oliito	Value				
Fluorene			- 01	y vveignt Dasis	,			- 0	ly vveigit basis			1		, , , , , , , , , , , , , , , , , , , ,		
Fluorene	Fluorenthana	005	•		cc 0		1					240		22	44.6	наЖа
Hezachlorobutaldene							153					240	_			
Hexachionocylopprilade re	1.11111 777	113	-									 				
Hexachloreifane												 				
IndemO(12,3-Cd) Pyrene 380												 				
Incidentation Incident Inci			•		_				-			I				
Number N		360	_				44					112				
New Color																
N-Mirosodiphenylamine							1					 				
Naphthalene							1									
Notice N																
Feniachforophenol																
Phenarthrene												 				
Phenol																
Pyrene 1070 G 28 46.7 ug/kg 139 G 21 35.4 ug/kg 263 G 22 37.2 ug/kg M. Code+Sk-948 8270 (SIM) M. Code-Sk-948 8270 (SIM) M. Cod						ug/Kg						11				
MCode=SW-946 8270 (SiM)												11				
1,2-Dichlorobenzene		1070	G	28	46.7	ug/Kg	139) G	21	35.4	ug/Kg	263	G	22	37.2	ug/Kg
1,3-Dichlorobenzene			<mdl,g< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mdl,g<></td></mdl,g<>			ug/Kg		<mdl,g< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mdl,g<>								
1,4-Dichlorobenzene	1,2-Dichlorobenzene		<mdl,g< td=""><td></td><td>2.33</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td></td><td>1.76</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,g<></td></mdl,g<>		2.33	ug/Kg		<mdl,g< td=""><td></td><td>1.76</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,g<>		1.76	ug/Kg					
Hexachloroberizene	1,3-Dichlorobenzene		<mdl,g< td=""><td>1.2</td><td>2.33</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.92</td><td>1.76</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,g<></td></mdl,g<>	1.2	2.33	ug/Kg		<mdl,g< td=""><td>0.92</td><td>1.76</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,g<>	0.92	1.76	ug/Kg					
Hexachlorobenzene	1,4-Dichlorobenzene		<mdl,g< td=""><td></td><td>2.33</td><td></td><td>1</td><td><mdl,g< td=""><td>0.92</td><td></td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,g<></td></mdl,g<>		2.33		1	<mdl,g< td=""><td>0.92</td><td></td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,g<>	0.92		ug/Kg					
*Indicates wet weight used for It METALS M.Code=METRO 16-01-001 Mercury, Total, CVAA 0.19 <rdl 0.025="" 0.026="" 0.033="" 0.041="" 0.060="" 0.063="" 0.063<="" 0.245="" 0.339="" <rdl="" kg="" mg="" td=""><td>Hexachlorobenzene</td><td></td><td><mdl,g< td=""><td>1.2</td><td>2.33</td><td></td><td></td><td><mdl,g< td=""><td>0.92</td><td>1.76</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.96</td><td>1.85</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></rdl>	Hexachlorobenzene		<mdl,g< td=""><td>1.2</td><td>2.33</td><td></td><td></td><td><mdl,g< td=""><td>0.92</td><td>1.76</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.96</td><td>1.85</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	1.2	2.33			<mdl,g< td=""><td>0.92</td><td>1.76</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.96</td><td>1.85</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	0.92	1.76	ug/Kg		<mdl,g< td=""><td>0.96</td><td>1.85</td><td>ug/Kg</td></mdl,g<>	0.96	1.85	ug/Kg
McCode=METRO 16-01-001 Mercury, Total, CVAA 0.19 RDL 0.033 0.339 mg/Kg 0.041 RDL 0.025 0.245 mg/Kg 0.063 RDL 0.026 0.26 mg/Kg McCode=METRO 16-02-004 McCode=MC	* indicates wet weight used for the		· · · · · · · · · · · · · · · · · · ·					<u>-</u>		· I						
McCode=METRO 16-01-001 Mercury, Total, CVAA 0.19 RDL 0.033 0.339 mg/Kg 0.041 RDL 0.025 0.245 mg/Kg 0.063 RDL 0.026 0.26 mg/Kg McCode=METRO 16-02-004 McCode=MC	-									1					1	
Mercury, Total, CVAA 0.19 <rdl< th=""> 0.033 0.339 mg/Kg 0.041 <rdl< th=""> 0.025 0.245 mg/Kg 0.063 <rdl< th=""> 0.026 0.26 mg/Kg MCode=METRO 16-02-004 MCode=METRO 16-02-02-004 MCode=METRO 16-02-02-02-02-02-02-02-02-02-02-02-02-02-</rdl<></rdl<></rdl<>	METALS				н		11			и		H				
Mercury, Total, CVAA 0.19 <rdl< th=""> 0.033 0.339 mg/Kg 0.041 <rdl< th=""> 0.025 0.245 mg/Kg 0.063 <rdl< th=""> 0.026 0.26 mg/Kg MCode=METRO 16-02-004 MCode=METRO 16-02-02-004 MCode=METRO 16-02-02-02-02-02-02-02-02-02-02-02-02-02-</rdl<></rdl<></rdl<>							1					1				
M.Code=METRO 16-02-004 Aluminum, Total, ICP		0.19	<rdl< td=""><td>0.033</td><td>0.339</td><td>ma/Ka</td><td>0.041</td><td><rdl< td=""><td>0.025</td><td>0.245</td><td>mg/Kg</td><td>0.063</td><td><rdl< td=""><td>0.026</td><td>0.26</td><td>mg/Kg</td></rdl<></td></rdl<></td></rdl<>	0.033	0.339	ma/Ka	0.041	<rdl< td=""><td>0.025</td><td>0.245</td><td>mg/Kg</td><td>0.063</td><td><rdl< td=""><td>0.026</td><td>0.26</td><td>mg/Kg</td></rdl<></td></rdl<>	0.025	0.245	mg/Kg	0.063	<rdl< td=""><td>0.026</td><td>0.26</td><td>mg/Kg</td></rdl<>	0.026	0.26	mg/Kg
Aluminum, Total, ICP							1					#				
Antimony, Total, ICP		14800	_T	8.4	41 8	ma/Ka	9430	<u> </u>	6.5	32.6	ma/Ka	11700) L.	6.8	34.4	mg/Kg
Arsenic, Total, ICP 8.9 < RDL 4.2 20.8 mg/Kg 5.3 < RDL 0.065 0.326 mg/Kg 4 < RDL 0.068 0.344 mg/Kg 8		14000												2.1	10.3	
Barium, Total, ICP Beryllium, Total, ICP Cadmium, Total, ICP 0.21 <rdl 0.065="" 0.068="" 0.084="" 0.13="" 0.15="" 0.2="" 0.24="" 0.27="" 0.28="" 0.3="" 0.326="" 0.33="" 0.344="" 0.35="" 0.418="" 0.42="" 0.5="" 0.979="" 1.25="" 1.31="" 1.37="" 1.63="" 1.67="" 1.71="" 10.3="" 11.8="" 11700="" 12.5="" 15.8="" 16.3="" 17.1="" 17.7="" 19.4="" 19800="" 2="" 2.08="" 2.1="" 2.4="" 20.8="" 21.3="" 21200="" 24300="" 3.3="" 3.5="" 30.9="" 3810="" 3970="" 4.2="" 40.7="" 4070="" 4500="" 50="" 5930="" 8.9="" 9.79="" <rdl="" cadmium,="" calcium,="" chromium,="" copper,="" g="" icp="" iron,="" kg="" kg<="" lead,="" magnesium,="" mg="" td="" total,=""><td></td><td>80</td><td></td><td></td><td></td><td></td><td>F .</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>17.1</td><td></td></rdl>		80					F .								17.1	
Beryllium, Total, ICP 0.21 <rdl< th=""> 0.084 0.418 mg/Kg 0.13 <rdl< th=""> 0.065 0.326 mg/Kg 0.15 <rdl< th=""> 0.068 0.344 mg/Kg Cadmium, Total, ICP 0.28 <rdl< td=""> 0.24 1.25 mg/Kg <mdl< td=""> 0.2 0.979 mg/Kg <mdl< td=""> 0.21 1.03 mg/Kg Calcium, Total, ICP 11700 4.2 20.8 mg/Kg 3810 3.3 16.3 mg/Kg 3970 3.5 17.1 mg/Kg Chromium, Total, ICP 21.3 0.42 2.08 mg/Kg 11.8 0.33 1.63 mg/Kg 19.4 0.35 17.1 mg/Kg Copper, Total, ICP 40.7 0.33 1.67 mg/Kg 15.8 0.27 1.31 mg/Kg 17.7 0.28 1.37 mg/Kg Icon, Total, ICP 24300 G 4.2 20.8 mg/Kg 21200 G 3.3 16.3 mg/Kg 19800 G 3.5 1</mdl<></mdl<></rdl<></rdl<></rdl<></rdl<>		J.5	יווטה		20.0	nighty	<u></u>			10.5	*11911/9	I				
Calmium, Total, ICP 0.28 <rdl 0.24="" 1.25="" kg<="" mg="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>- 5077</td><td></td></rdl>							1					1			- 5077	
Calcium, Total, ICP 11700 4.2 20.8 mg/Kg 3810 3.3 16.3 mg/Kg 3970 3.5 17.1 mg/Kg Chromium, Total, ICP 21.3 0.42 2.08 mg/Kg 11.8 0.33 1.63 mg/Kg 19.4 0.35 1.71 mg/Kg Copper, Total, ICP 40.7 0.33 1.67 mg/Kg 15.8 0.27 1.31 mg/Kg 17.7 0.28 1.37 mg/Kg Iron, Total, ICP 24300 G 4.2 20.8 mg/Kg 21200 G 3.3 16.3 mg/Kg 19800 G 3.5 17.1 mg/Kg Lead, Total, ICP 30.9 2.4 12.5 mg/Kg 8.9 <rdl 10.3="" 12.5="" 2="" 2.1="" 2.4="" 20.8="" 4070="" 4500="" 5930="" 9.79="" icp="" kg="" kg<="" magnesium,="" mg="" td="" total,=""><td></td><td></td><td></td><td></td><td></td><td>mg/Kg</td><td>0.13</td><td></td><td></td><td></td><td></td><td>0.1</td><td></td><td></td><td></td><td></td></rdl>						mg/Kg	0.13					0.1				
Chromium, Total, ICP 21.3 0.42 2.08 mg/Kg 11.8 0.33 1.63 mg/Kg 19.4 0.35 1.71 mg/Kg Copper, Total, ICP 40.7 0.33 1.67 mg/Kg 15.8 0.27 1.31 mg/Kg 17.7 0.28 1.37 mg/Kg Iron, Total, ICP 24300 G 4.2 20.8 mg/Kg 21200 G 3.3 16.3 mg/Kg 19800 G 3.5 17.1 mg/Kg Lead, Total, ICP 30.9 2.4 12.5 mg/Kg 8.9 <rdl 10.3="" 12.5="" 2="" 2.1="" 2.4="" 20.8="" 4070="" 4500="" 5930="" 9.79="" icp="" kg="" kg<="" magnesium,="" mg="" td="" total,=""><td></td><td></td><td><rdl< td=""><td></td><td>1.25</td><td>mg/Kg</td><td></td><td><mdl< td=""><td></td><td>0.979</td><td>mg/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></rdl<></td></rdl>			<rdl< td=""><td></td><td>1.25</td><td>mg/Kg</td><td></td><td><mdl< td=""><td></td><td>0.979</td><td>mg/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></rdl<>		1.25	mg/Kg		<mdl< td=""><td></td><td>0.979</td><td>mg/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>		0.979	mg/Kg					
Copper, Total, ICP 40.7 0.33 1.67 mg/Kg 15.8 0.27 1.31 mg/Kg 17.7 0.28 1.37 mg/Kg Iron, Total, ICP 24300 G 4.2 20.8 mg/Kg 21200 G 3.3 16.3 mg/Kg 19800 G 3.5 17.1 mg/Kg Lead, Total, ICP 30.9 2.4 12.5 mg/Kg 8.9 < RDL	Calcium, Total, ICP	11700		4.2	20,8	mg/Kg	3810)	3.3	16.3	mg/Kg					
Copper, Total, ICP 40.7 0.33 1.67 mg/Kg 15.8 0.27 1.31 mg/Kg 17.7 0.28 1.37 mg/Kg Iron, Total, ICP 24300 G 4.2 20.8 mg/Kg 21200 G 3.3 16.3 mg/Kg 19800 G 3.5 17.1 mg/Kg Lead, Total, ICP 30.9 2.4 12.5 mg/Kg 8.9 <rdl< td=""> 2 9.79 mg/Kg 20.8 2.1 10.3 mg/Kg Magnesium, Total, ICP 5930 2.4 12.5 mg/Kg 4070 2 9.79 mg/Kg 4500 2.1 10.3 mg/Kg</rdl<>	Chromium, Total, ICP	21.3		0.42	2.08	mg/Kg	11.8	3		1.63	mg/Kg					
Iron, Total, ICP 24300 G 4.2 20.8 mg/Kg 21200 G 3.3 16.3 mg/Kg 19800 G 3.5 17.1 mg/Kg Lead, Total, ICP 30.9 2.4 12.5 mg/Kg 8.9 RDL 2 9.79 mg/Kg 20.8 2.1 10.3 mg/Kg Magnesium, Total, ICP 5930 2.4 12.5 mg/Kg 4070 2 9.79 mg/Kg 4500 2.1 10.3 mg/Kg	Copper, Total, ICP	40.7		0.33	1.67		15.8	3	0.27	1.31	mg/Kg	17.	7			
Lead, Total, ICP 30.9 2.4 12.5 mg/Kg 8.9 < RDL 2 9.79 mg/Kg 20.8 2.1 10.3 mg/Kg Magnesium, Total, ICP 5930 2.4 12.5 mg/Kg 4070 2 9.79 mg/Kg 4500 2.1 10.3 mg/Kg	Iron, Total, ICP	24300	G		20.8		- II			16.3		1980) G			
Magnesium, Total, ICP 5930 2.4 12.5 mg/Kg 4070 2 9.79 mg/Kg 4500 2.1 10.3 mg/Kg	Lead, Total, ICP						Jl					20.	3			mg/Kg
	Magnesium, Total, ICP											450)	2.1	10.3	
								-	mprehensive R			. И				Page 14 of 25

		N	ing Co	Junty		ILOUIII	entai	Lab A	naiyu	Calr	ehorr				
PROJECT: 423056	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG6 Aug 12, 9 L9209-6 SALTWT 57.2				Locator: Sampled: Lab ID: Matrix: % Solids:	P53V37 Aug 12, 9 L9209-7 SALTWT 75.4				Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG3 Aug 12, 9 L9209-8 SALTWTF 71.8			
Parameters	Value	Qual - c	MDL Ory Weight Basis	RDL	Units	Value	Quai -	MDL Dry Weight Basis	RDL	Units	Value	Qual - D	MDL ry Weight Basis	RDL	Units
Molybdenum, Total, ICP		<mdl< td=""><td>1.7</td><td>8.36</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>1.3</td><td>6.53</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>1.4</td><td>6.87</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	8.36	mg/Kg		<mdl< td=""><td>1.3</td><td>6.53</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>1.4</td><td>6.87</td><td>mg/Kg</td></mdl<></td></mdl<>	1.3	6.53	mg/Kg		<mdl< td=""><td>1.4</td><td>6.87</td><td>mg/Kg</td></mdl<>	1.4	6.87	mg/Kg
Nickel, Total, ICP	17.2		1.7	8.36	mg/Kg	12.8		1.3	6.53	mg/Kg	13.2		1.4	6.87	mg/Kg
Potassium, Total, ICP	1980		170	836	mg/Kg	1090		130	653	mg/Kg	1360)	140	687	mg/Kg
Selenium, Total, ICP		<mdl< td=""><td>4.2</td><td>20.8</td><td>mg/Kg</td><td>1</td><td><mdl< td=""><td>3.3</td><td>16.3</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>3.5</td><td>17.1</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	4.2	20.8	mg/Kg	1	<mdl< td=""><td>3.3</td><td>16.3</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>3.5</td><td>17.1</td><td>mg/Kg</td></mdl<></td></mdl<>	3.3	16.3	mg/Kg		<mdl< td=""><td>3.5</td><td>17.1</td><td>mg/Kg</td></mdl<>	3.5	17.1	mg/Kg
Silver, Total, ICP		<mdl< td=""><td>0.33</td><td>1.67</td><td>mg/Kg</td><td>I</td><td><mdl< td=""><td>0.27</td><td>1.31</td><td>mg/Kg</td><td> </td><td><mdl< td=""><td>0.28</td><td>1.37</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	0.33	1.67	mg/Kg	I	<mdl< td=""><td>0.27</td><td>1.31</td><td>mg/Kg</td><td> </td><td><mdl< td=""><td>0.28</td><td>1.37</td><td>mg/Kg</td></mdl<></td></mdl<>	0.27	1.31	mg/Kg	 	<mdl< td=""><td>0.28</td><td>1.37</td><td>mg/Kg</td></mdl<>	0.28	1.37	mg/Kg
Sodium, Total, ICP					1113113	-l	- 11122				1				
Thallium, Total, ICP		<mdl< td=""><td>17</td><td>83.6</td><td>mg/Kg</td><td>╂</td><td><mdl< td=""><td>13</td><td>65.3</td><td>mg/Kg</td><td>1</td><td><mdl< td=""><td>14</td><td>63.7</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	17	83.6	mg/Kg	╂	<mdl< td=""><td>13</td><td>65.3</td><td>mg/Kg</td><td>1</td><td><mdl< td=""><td>14</td><td>63.7</td><td>mg/Kg</td></mdl<></td></mdl<>	13	65.3	mg/Kg	1	<mdl< td=""><td>14</td><td>63.7</td><td>mg/Kg</td></mdl<>	14	63.7	mg/Kg
Zinc, Total, ICP	78.3		0.42	2.08	mg/Kg	49.3		0.33	1.63	mg/Kg	55.7	,	0.35	171	mg/Kg
* indicates wet weight used for t						1					1				
CONVENTIONALS M.Code=PSEP p9															0/
p+0.00 *	1.2		0.1		%	6.9		0.1		%		-	0.1		<u>%</u>
p+1.00 *	11.5		0.1		%	36.		0.1		%	21.1		0.1		%
p+10.0 *	1.7		0.1		%		<mdl< td=""><td>0.1</td><td></td><td>%</td><td>0.3</td><td></td><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%	0.3		0.1		%
p+10.0(more than) *	4.4		0.1		%	1.9		0.1		%	1.8		0.1		%
p+2.00 *	35.8		0.1		%	41.0		0.1		%	53		0.1		%
p+3.00 *	16.1		0.1		%	5.6		0.1		%	10.3		0.1 0.1		%
p+4.00 *	4.6		0.1		%	0.9		0.1		%	1.3 5.0		0.1		 %
p+5.00 *	6.4		0.1		%	1.4		0.1		%	5.0	<mdl< td=""><td>0.1</td><td></td><td>-%</td></mdl<>	0.1		- %
p+6.00 *	3.1		0.1		%	 	<mdl< td=""><td>0.1</td><td></td><td>%</td><td></td><td></td><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%			0.1		%
p+7.00 *	4.3		0.1		%	0.4		0.1		%	l	<mdl< td=""><td>0.1</td><td></td><td>-%</td></mdl<>	0.1		- %
p+8.00 *	6.1		0.1		%	1.9		0.1		%	2.2		0.1		
p+9.00 *	3.5		0.1		%	0.3		0.1		%	0.3		0.1		
p-1.00 *	0.5		0.1		%	1.9		0.1		%	 		0.1		%
p-2.00 *		<mdl< td=""><td>0.1</td><td></td><td>%</td><td>0.1</td><td></td><td>0.1</td><td></td><td>%</td><td> </td><td><mdl< td=""><td>0.1</td><td></td><td></td></mdl<></td></mdl<>	0.1		%	0.1		0.1		%	 	<mdl< td=""><td>0.1</td><td></td><td></td></mdl<>	0.1		
p-2.00(less than) *	0.8		0.1		%	0.3	3	0.1		%	0.4	+	U. I		
M.Code=SM5310-B											- 556			·3.9	mg/Kg
Total Organic Carbon	26900		8.7	17.5	mg/Kg	4630	}	6.6	13.3	mg/Kg	336		<u>'</u>		mg//g
* Indicates wet weight used for this parameter															
"" Falameter						11					IJ				

PROJECT: 423056	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG4 Aug 12, 96 L9209-9 SALTWTR 75.9		,		Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG5 Aug 12, 9 L9209-10 SALT/VTF 61.1		•		Locator: Sampled: Lab ID: Matrix: % Solids:	P53C1 Aug 14, 96 L9316-1 SALTWTF 77.7			The second secon
Parameters	Value	Qual - Dry	MDL / Weight Basi	RDL s	Unils	Value	Qual - D	MDL ry WeightBasis	RDL	Units	Value	Qual - D	MDL ry Weight Basi:	RDL s	Units
ORGANICS															
M.Code=SW-846 8080											li .				
4.4-DDD		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>5.43</td><td>1</td><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	5.43	1	2.1	4.37	ug/Kg	1	<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
4,4-DDE		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg		<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
4,4'-DDT		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg		<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Aldrin		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>11</td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	11	<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg	1	<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Alpha-BHC		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td></td><td><mdl.< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl.<></td></mdl<>	1.7	3.52	ug/Kg		<mdl.< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl.<>	2.1	4.37	ug/Kg		<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Arcclor 1016		<mdl< td=""><td>17</td><td>35.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	17	35.2	ug/Kg		<mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.7	ug/Kg		<mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<>	17	34.4	ug/Kg
Arcclor 1221		<mdl< td=""><td>17</td><td>35.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	17	35.2	ug/Kg	1	<mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.7	ug/Kg		<mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<>	17	34.4	ug/Kg
Arcclor 1232		<mdl< td=""><td>17</td><td>35.2</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	17	35.2	ug/Kg	I	<mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.7	ug/Kg		<mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<>	17	34.4	ug/Kg
Arcclor 1242		<mdl< td=""><td>17</td><td>35.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kc</td></mdl<></td></mdl<></td></mdl<>	17	35.2	ug/Kg		<mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kc</td></mdl<></td></mdl<>	21	43.7	ug/Kg		<mdl< td=""><td>17</td><td>34.4</td><td>ug/Kc</td></mdl<>	17	34.4	ug/Kc
Arcclor 1248		<mdl< td=""><td>17</td><td>35.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	17	35.2	ug/Kg		<mdl< td=""><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.7	ug/Kg		<mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<>	17	34.4	ug/Kg
Arcclor 1254		<mdl< td=""><td>17</td><td>35.2</td><td>ug/Kg</td><td>49.1</td><td></td><td>21</td><td>43.7</td><td>ug/Kg_</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	17	35.2	ug/Kg	49.1		21	43.7	ug/Kg_		<mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<>	17	34.4	ug/Kg
Arcclor 1260		<mdl< td=""><td>17</td><td>35.2</td><td>ug/Kg</td><td>62.2</td><td></td><td>21</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	17	35.2	ug/Kg	62.2		21	43.7	ug/Kg		<mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<>	17	34.4	ug/Kg
Bela-BHC		<md1.< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.7</td><td>3.44 17.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></md1.<>	1.7	3.52	ug/Kg		<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.7</td><td>3.44 17.1</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg	1	<mdl< td=""><td>1.7</td><td>3.44 17.1</td><td>ug/Kg</td></mdl<>	1.7	3.44 17.1	ug/Kg
Chlordane		<mdl< td=""><td>8.8</td><td>17.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>11</td><td>21.8</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.6 1.7</td><td>3.44</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	8.8	17.5	ug/Kg		<mdl< td=""><td>11</td><td>21.8</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.6 1.7</td><td>3.44</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	11	21.8	ug/Kg		<mdl< td=""><td>8.6 1.7</td><td>3.44</td><td>ug/Kg ug/Kg</td></mdl<>	8.6 1.7	3.44	ug/Kg ug/Kg
Delta-BHC		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>_[</td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	_[<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg		<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Dieldrin		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>. </td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	.	<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg		<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Endosulfan I		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>6.79</td><td></td><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>_]]</td><td><mdl <mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></mdl </td></mdl<>	1.7	3.52	ug/Kg	6.79		2.1	4.37	ug/Kg	_]]	<mdl <mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></mdl 	1.7	3.44	ug/Kg
Endosulfan II		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>_ </td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	_	<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg		<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Endosulfan Sulfate		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>_ </td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>_ </td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg	_	<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Endrin		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td>#</td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>_}</td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/K3</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg	#	<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>_}</td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/K3</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg	_}	<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/K3</td></mdl<>	1.7	3.44	ug/K3
Endrin Aldehyde		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/<g< td=""><td></td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>_ </td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></g<></td></mdl<>	1.7	3.52	ug/ <g< td=""><td></td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>_ </td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></g<>		<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td>_ </td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg	_	<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Gamma-BHC (Lindane) Heptachlor		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td></td><td>ACM></td><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	1.7	3.52	ug/Kg		ACM>	2.1	4.37	ug/Kg		<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
2121		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.7	3.52	ug/Kg		<mdl< td=""><td>2.1</td><td>4.37</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.37	ug/Kg		<mdl< td=""><td>1.7</td><td>3.44</td><td>ug/Kg</td></mdl<>	1.7	3.44	ug/Kg
Heptachlor Epoxide		<mdl< td=""><td>1.7</td><td>3.52</td><td>ug/Kg</td><td></td><td><mdl <mdl< td=""><td>2.1</td><td>4.37 21.8</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl<></td></mdl<></mdl </td></mdl<>	1.7	3.52	ug/Kg		<mdl <mdl< td=""><td>2.1</td><td>4.37 21.8</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl<></td></mdl<></mdl 	2.1	4.37 21.8	ug/Kg	-	<mdl< td=""><td>8.6</td><td>17.1</td><td>ug/Kg</td></mdl<>	8.6	17.1	ug/Kg
Methoxychlor Toxaphene		<mdl< td=""><td>8.8</td><td>17.5</td><td>ug/Kg</td><td>-}}</td><td><mdl< td=""><td>11</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	8.8	17.5	ug/Kg	-}}	<mdl< td=""><td>11</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	11	43.7	ug/Kg		<mdl< td=""><td>17</td><td>34.4</td><td>ug/Kg</td></mdl<>	17	34.4	ug/Kg
		<mdl< td=""><td>17</td><td>35.2</td><td>ug/Kg</td><td>_</td><td></td><td></td><td>43.7</td><td>ug/Kg</td><td></td><td>-WDL</td><td></td><td></td><td></td></mdl<>	17	35.2	ug/Kg	_			43.7	ug/Kg		-WDL			
M.Code=SW-846 8260		-MDI II		42.0			<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td>- </td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg	-				
1, 1, 1-1 inchioroethane		<mdl,h< td=""><td>6.6 6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td>- </td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6 6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td>- </td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg ug/Kg	-				
1,1,2,7 retrachioroethane		<mdl,h <mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td>- </td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<></mdl,h 	6.6	13.2	ug/Kg	- 	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td>- </td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg ug/Kg	-				
1,1,2-Trichloroethylene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>-1]</td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	-1]	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg ug/Kg					
1,1,2-1 inchloroethylene		<mdl,h< td=""><td>6.6</td><td>13.2 13.2</td><td>ug/Kg</td><td></td><td><mdl <mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></mdl </td></mdl,h<>	6.6	13.2 13.2	ug/Kg		<mdl <mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></mdl 	8.2	16.4	ug/Kg ug/Kg					
1,1-Dichloroethylene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>3.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td></td><td></td><td></td><td></td><td>,</td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>3.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td></td><td></td><td></td><td></td><td>,</td></mdl<>	3.2	16.4	ug/Kg ug/Kg					,
1,2-Dichloroethane			6.6		ugiKg	-	<mdl< td=""><td>3.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td>- </td><td></td><td></td><td></td><td></td></mdl<>	3.2	16.4	ug/Kg ug/Kg	-				
1,2-Dichloropropane		<mdl,h <mdl,h< td=""><td></td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2 8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td>- </td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<></mdl,h 		13.2	ug/Kg		<mdl< td=""><td>8.2 8.2</td><td>16.4</td><td>ug/Kg ug/Kg</td><td>- </td><td></td><td></td><td></td><td></td></mdl<>	8.2 8.2	16.4	ug/Kg ug/Kg	-				
2-Butanone (MEK)			6.6	13.2 65.9	ug/Kg	-	<mdl <mdl< td=""><td>41</td><td>81.8</td><td>ug/Kg ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></mdl 	41	81.8	ug/Kg ug/Kg					
		<mdl,h< td=""><td></td><td></td><td>ug/Kg</td><td>-[</td><td></td><td></td><td></td><td></td><td>- </td><td></td><td></td><td></td><td></td></mdl,h<>			ug/Kg	-[-				
2-Chloroethylvinyl ether		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>. 11</td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	. 11	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					

		1711	ig ot	Juilty	L.IIV		Ciltai	Lab r	Tilaly	ucai i	(choi	L			
PROJECT: 423056	Locator: Sampled: Lab D: Matrx: % Solids:	P53VG4 Aug 12, 96 L9209-9 SALTWTR 75.9				Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG5 Aug 12, 96 L9209-10 SALTWTR 61.1				Locator: Sampled: Lab ID: Matrix: % Solids:	P53C1 Aug 14, 9 L9316-1 SALTWTI 77.7			
Parameters	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units
		- Dr	y Weight Basi:	6			- Dr	y Weight Basis				- E	ry Weight Bas	is	1
						1					1				
2-Hexanone		<mdl,h< td=""><td>33</td><td>65.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td>i</td></mdl<></td></mdl,h<>	33	65.9	ug/Kg		<mdl< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td>i</td></mdl<>	41	81.8	ug/Kg					i
4-Methyl-2-Pentanone (MIBK)		<mdl,h< td=""><td>33</td><td>65.9</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td> </td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	33	65.9	ug/Kg	- 	<mdl< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td> </td><td></td><td></td><td></td><td></td></mdl<>	41	81.8	ug/Kg	 				
Acetone	6	1 <rdl,b,f< td=""><td>17</td><td>65.9</td><td>ug/Kg</td><td>69</td><td><rdl,b< td=""><td>21</td><td>81.8</td><td>ug/Kg</td><td>1</td><td></td><td></td><td></td><td></td></rdl,b<></td></rdl,b,f<>	17	65.9	ug/Kg	69	<rdl,b< td=""><td>21</td><td>81.8</td><td>ug/Kg</td><td>1</td><td></td><td></td><td></td><td></td></rdl,b<>	21	81.8	ug/Kg	1				
Acrolein		<mdl,x,f< td=""><td>33</td><td>65.9</td><td>ug/Kg</td><td>1</td><td><mdl,x< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,x<></td></mdl,x,f<>	33	65.9	ug/Kg	1	<mdl,x< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,x<>	41	81.8	ug/Kg					
Acrylonitrile		<mdl,h< td=""><td>33</td><td>65.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	33	65.9	ug/Kg		<mdl< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	41	81.8	ug/Kg					
Benzene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Bromodichloromethane		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	1	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Bromoform		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Bromomethane		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	1	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Carbon Disulfide		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8:2</td><td>16.4</td><td>ug/Kg</td><td>1</td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	1	<mdl< td=""><td>8:2</td><td>16.4</td><td>ug/Kg</td><td>1</td><td></td><td></td><td></td><td></td></mdl<>	8:2	16.4	ug/Kg	1				
Carbon Tetrachloride		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	1	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Chlorobenzene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Chlorodibromomethane		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>" </td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	"	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Chloroethane		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Chloroform		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Chloromethane		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td>1</td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td>1</td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg	1				
Chloromethane		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Cis-1,3-Dichloropropene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Ethylbenzene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td>IL</td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td>IL</td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg	IL				
Methylene Chloride		<mdl,h< td=""><td>6.6</td><td>65.9</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8.2</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	65.9	ug/Kg	1	<mdl< td=""><td>8.2</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	81.8	ug/Kg					
Styrene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td><u> </u></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td><u> </u></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg	<u> </u>				
Tetrachloroethylene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td>1</td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td>1</td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg	1				
Toluene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Total Xylenes		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Trans-1,2-Dichloroethylene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td>_[[]</td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	_[[]	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Trans-1,3-Dichloropropene		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td>}</td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td>}</td></mdl<>	8.2	16.4	ug/Kg					}
Trichlorofluoromethane		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg	<u> </u>	<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg					
Vinyl Acetate		<mdl,x,f< td=""><td>33</td><td>65.9</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,x<></td></mdl,x,f<>	33	65.9	ug/Kg		<mdl,x< td=""><td>41</td><td>81.8</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td></td></mdl,x<>	41	81.8	ug/Kg					
Vinyl Chloride		<mdl,h< td=""><td>6.6</td><td>13.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td><u> </u></td><td></td><td></td><td></td><td></td></mdl<></td></mdl,h<>	6.6	13.2	ug/Kg		<mdl< td=""><td>8.2</td><td>16.4</td><td>ug/Kg</td><td><u> </u></td><td></td><td></td><td></td><td></td></mdl<>	8.2	16.4	ug/Kg	<u> </u>				
M.Code=SW-846 8270											<u> </u>				
1,2-Diphenylhydrazine		<mdl< td=""><td>70</td><td>141</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	70	141	ug/Kg		<mdl< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl<>	87	175	ug/Kg		<mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<>	68	138	ug/Kg
2,4,5-Trichlorophenol		<mdl< td=""><td>140</td><td>281</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>349</td><td>ug/Kg</td><td>_i </td><td><mdl< td=""><td>140</td><td>274</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	140	281	ug/Kg		<mdl< td=""><td>180</td><td>349</td><td>ug/Kg</td><td>_i </td><td><mdl< td=""><td>140</td><td>274</td><td>ug/Kg</td></mdl<></td></mdl<>	180	349	ug/Kg	_i	<mdl< td=""><td>140</td><td>274</td><td>ug/Kg</td></mdl<>	140	274	ug/Kg
2,4,6-Trichlorophenol		<mdl< td=""><td>140</td><td>281</td><td>ug/Kg</td><td></td><td>-MDL</td><td>180</td><td>349</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>140</td><td>274</td><td>ug/Kg</td></mdl<></td></mdl<>	140	281	ug/Kg		-MDL	180	349	ug/Kg		<mdl< td=""><td>140</td><td>274</td><td>ug/Kg</td></mdl<>	140	274	ug/Kg
2,4-Dichlorophenol		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td>_l[</td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	36	70.2	ug/Kg		<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td>_l[</td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl,g<>	44	87.2	ug/Kg	_l[<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
2,4-Dimethylphenol		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	36	70.2	ug/Kg		<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl,g<>	44	87.2	ug/Kg		<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
2,4-Dinitrophenol		<mdl< td=""><td>70</td><td>141</td><td>ug/Kg</td><td>1</td><td><mcl,g< td=""><td>B7</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mcl,g<></td></mdl<>	70	141	ug/Kg	1	<mcl,g< td=""><td>B7</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mcl,g<>	B7	175	ug/Kg		<mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<>	68	138	ug/Kg
2,4-Dinitrotoluene		<mdl< td=""><td>14</td><td>28.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>18</td><td>34.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>14</td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	14	28.1	ug/Kg	1	<mdl< td=""><td>18</td><td>34.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>14</td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<>	18	34.9	ug/Kg		<mdl< td=""><td>14</td><td>27.4</td><td>ug/Kg</td></mdl<>	14	27.4	ug/Kg
2,6-Dinitrotoluene		<mdl< td=""><td>14</td><td>28.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>18</td><td>34.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>14</td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	14	28.1	ug/Kg	1	<mdl< td=""><td>18</td><td>34.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>14</td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<>	18	34.9	ug/Kg		<mdl< td=""><td>14</td><td>27.4</td><td>ug/Kg</td></mdl<>	14	27.4	ug/Kg
2-Chloronaphthalene		<mdl< td=""><td>21</td><td>35.2</td><td>ug/Kg</td><td></td><td><mcl,g< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mcl,g<></td></mdl<>	21	35.2	ug/Kg		<mcl,g< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mcl,g<>	26	43.7	ug/Kg		<mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<>	21	34.4	ug/Kg
2-Chlorophenol		<mdl< td=""><td>70</td><td>141</td><td>ug/Kg</td><td>-11</td><td><mdl,g< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	70	141	ug/Kg	-11	<mdl,g< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl,g<>	87	175	ug/Kg		<mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<>	68	138	ug/Kg

			.9 •	.		. •									
PROJECT: 423056	Locator:	P53VG4				IlLocator:	P53VG5				Locator:	P53C1			1
	Sampled:	Aug 12, 96	3			Sampled:	Aug 12, 96	3			Sampled:	Aug 14, 9	3		1
	Lab ID:	L9209-9				Lab ID:	L9209-10	•			Lab ID:	L9316-1			j)
	Matrix:	SALTWTR	SED			Matrix:	SALTWIR	SED			Matrix:	SALTWTF	RSED		
	% Solids:	75.9				% Solids:	61.1	رمان			% Solids:	77.7			1
	70 Condo.	, 0.0				I'm Condo.	01.1				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Parameters	Value	Qual	MDL.	RDL	Units	Value	Qual	MDL	RDL	Units	Value	Qual	MDL.	RDL	Units
· diameters	74140		y Weight Basi		O,,,,	l value		y Welght Basis		o.m.c		- D	ry Weight Basis	;	1
		- 01	, weight basi	3		i i	- 01	, rreigin basi	•						
0.14 0.14 1.0 1				405		1		70	404		łł	<mdl< td=""><td>55</td><td>103</td><td>ug/Kg</td></mdl<>	55	103	ug/Kg
2-Methylnaphthalene		<mdl< td=""><td>57</td><td>105</td><td>ug/kg</td><td></td><td><mdl,g< td=""><td>70</td><td>131</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>35</td><td>68.5</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	57	105	ug/kg		<mdl,g< td=""><td>70</td><td>131</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>35</td><td>68.5</td><td>ug/Kg</td></mdl<></td></mdl,g<>	70	131	ug/Kg	1	<mdl< td=""><td>35</td><td>68.5</td><td>ug/Kg</td></mdl<>	35	68.5	ug/Kg
2-Methylphenol		<mdl< td=""><td>36</td><td>70.2</td><td>ug/kg</td><td>1</td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	36	70.2	ug/kg	1	<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl<></td></mdl,g<>	44	87.2	ug/Kg		<mdl< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl<>	140	206	ug/Kg
2-Nitroaniline		<mdl< td=""><td>140</td><td>211</td><td>ug/Kg</td><td>. </td><td><mdl< td=""><td>180</td><td>262</td><td>ug/Kg</td><td>. </td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	140	211	ug/Kg	.	<mdl< td=""><td>180</td><td>262</td><td>ug/Kg</td><td>. </td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<>	180	262	ug/Kg	. 	<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
2-Nitrophenol		<mdl< td=""><td>36</td><td>70.2</td><td>ug/kg</td><td></td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl.g<></td></mdl,g<></td></mdl<>	36	70.2	ug/kg		<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl.g<></td></mdl,g<>	44	87.2	ug/Kg		<mdl.g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl.g<>	35	68.6	ug/Kg
3,3'-Dichlorobenzidine		<mdl,g< td=""><td>36</td><td>70.2</td><td>ug/kg</td><td><u> </u></td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	36	70.2	ug/kg	<u> </u>	<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	44	87.2	ug/Kg	 	<mdl,g< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl,g<>	140	206	ug/Kg
3-Nitroaniline		<mdl,g< td=""><td>140</td><td>211</td><td>ug/kg</td><td><u> </u></td><td><mdl,g< td=""><td>180</td><td>262</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl,g<>	140	211	ug/kg	<u> </u>	<mdl,g< td=""><td>180</td><td>262</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl,g<>	180	262	ug/Kg	 	<mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<>	68	138	ug/Kg
4,6-Dinitro-O-Cresol		<mdl< td=""><td>70</td><td>141</td><td>ug/kg</td><td>4</td><td><mdl< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>14</td><td>20.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	70	141	ug/kg	4	<mdl< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>14</td><td>20.6</td><td>ug/Kg</td></mdl<></td></mdl<>	87	175	ug/Kg		<mdl< td=""><td>14</td><td>20.6</td><td>ug/Kg</td></mdl<>	14	20.6	ug/Kg
4-Bromophenyl Phenyl Ether		<mdl< td=""><td>14</td><td>21.1</td><td>ug/kg</td><td></td><td><mdl< td=""><td>18</td><td>26.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	14	21.1	ug/kg		<mdl< td=""><td>18</td><td>26.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl<>	18	26.2	ug/Kg		<mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<>	68	138	ug/Kg
4-Chloro-3-Methylphenol		<mdl< td=""><td>70</td><td>141</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>87</td><td>175</td><td>ug/Kg</td><td>1</td><td></td><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl<>	70	141	ug/Kg	1	<mdl< td=""><td>87</td><td>175</td><td>ug/Kg</td><td>1</td><td></td><td>68</td><td>138</td><td>ug/Kg</td></mdl<>	87	175	ug/Kg	1		68	138	ug/Kg
4-Chloroaniline		<mdl,g< td=""><td>70</td><td>141</td><td>ug/kg</td><td>1</td><td><mdl,g< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	70	141	ug/kg	1	<mdl,g< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	87	175	ug/Kg		<mdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl,g<>	21	34.4	ug/Kg
4-Chlorophenyl Phenyl Ether		<mdl< td=""><td>21</td><td>35.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	21	35.2	ug/Kg	1	<mdl< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.7	ug/Kg		<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
4-Methylphenol	92.2		36	70.2	ug/Kg	1020		44	87.2	ug/Kg		<mdl< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl<>	140	206	ug/Kg
4-Nitroaniline		<mdl< td=""><td>140</td><td>211</td><td>ug/kg</td><td></td><td><mdl< td=""><td>180</td><td>262</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	140	211	ug/kg		<mdl< td=""><td>180</td><td>262</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl<>	180	262	ug/Kg		<mdl< td=""><td>68</td><td>138</td><td>ug/Kg</td></mdl<>	68	138	ug/Kg
4-Nitrophenol		<mdl< td=""><td>70</td><td>141</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>87</td><td>175</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td></td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	70	141	ug/Kg	1	<mdl< td=""><td>87</td><td>175</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td></td><td>27.4</td><td>ug/Kg</td></mdl<></td></mdl<>	87	175	ug/Kg	1	<mdl< td=""><td></td><td>27.4</td><td>ug/Kg</td></mdl<>		27.4	ug/Kg
Acenaphthene		<mdl< td=""><td>14</td><td>28.1</td><td>ug/Kg</td><td>159</td><td></td><td>18</td><td>34.9</td><td>ug/Kg</td><td><u> </u> </td><td><mdl< td=""><td>14 21</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	14	28.1	ug/Kg	159		18	34.9	ug/Kg	<u> </u>	<mdl< td=""><td>14 21</td><td>34.4</td><td>ug/Kg</td></mdl<>	14 21	34.4	ug/Kg
Acenaphthylene		<mdl< td=""><td>21</td><td>35.2</td><td>ug/Kg</td><td>64.3</td><td></td><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>· 68</td><td>138</td><td>ug/Kg</td></mdl<></td></mdl<>	21	35.2	ug/Kg	64.3		26	43.7	ug/Kg		<mdl< td=""><td>· 68</td><td>138</td><td>ug/Kg</td></mdl<>	· 68	138	ug/Kg
Aniline		<mdl,g< td=""><td>70</td><td>141</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	70	141	ug/Kg	1	<mdl,g< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	87	175	ug/Kg		<mdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl,g<>	21	34.4	ug/Kg
Anthracene	54.2		21	35.2	ug/Kg	563	_	26	43.7	ug/Kg	<u> </u>	<mdl,g< td=""><td></td><td>1650</td><td>ug/Kg</td></mdl,g<>		1650	ug/Kg
Benzidine		<mdl,x< td=""><td>340</td><td>1690</td><td>ug/kg</td><td><u> </u></td><td><mdl,x< td=""><td>1000</td><td>2090</td><td>ug/Kg</td><td>ļ</td><td><mdl,x< td=""><td>820 21</td><td>34.4</td><td>ug/Kg</td></mdl,x<></td></mdl,x<></td></mdl,x<>	340	1690	ug/kg	<u> </u>	<mdl,x< td=""><td>1000</td><td>2090</td><td>ug/Kg</td><td>ļ</td><td><mdl,x< td=""><td>820 21</td><td>34.4</td><td>ug/Kg</td></mdl,x<></td></mdl,x<>	1000	2090	ug/Kg	ļ	<mdl,x< td=""><td>820 21</td><td>34.4</td><td>ug/Kg</td></mdl,x<>	820 21	34.4	ug/Kg
Benzo(a)anthracene	138		21	35.2	ug/Kg	1320		26	43.7	ug/Kg		<mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<>	35	68.6	ug/Kg
Benzo(a)pyrene	161	-	36	70.2	ug/Kg	1540	_	44	87.2	ug/Kg	4	<mdl,g <mdl< td=""><td>55 55</td><td>103</td><td>ug/Kg</td></mdl<></mdl,g 	55 55	103	ug/Kg
Benzo(b)fluoranthene	216		57	105	ug/Kg	2110		70	131	ug/Kg			35	68.6	ug/Kg
Benzo(g,h,i)perylene	81.9		36	70.2	ug/kg	344		44	87.2	ug/Kg	. L	<mdl,g< td=""><td>55 55</td><td>103</td><td>ug/Kg</td></mdl,g<>	55 55	103	ug/Kg
Benzo(k)fluoranthene	100		57	105	ug/k⁄g	987	_	70	131	ug/Kg		<mdl,g <mdl< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl<></mdl,g 	140	206	ug/Kg
Benzoic Acid		<mdl< td=""><td>140</td><td>211</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>180</td><td>262</td><td>ug/Kg</td><td>. </td><td></td><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,l<></td></mdl<>	140	211	ug/Kg		<mdl,l< td=""><td>180</td><td>262</td><td>ug/Kg</td><td>. </td><td></td><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,l<>	180	262	ug/Kg	.		35	68.6	ug/Kg
Benzyl Alcohol		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	36	70.2	ug/Kg		<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl,g<>	44	87.2	ug/Kg		<mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<>	21	34.4	ug/Kg
Benzyl Butyl Phthalate		<mdl< td=""><td>21</td><td>35.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<></td></mdl<>	21	35.2	ug/Kg	1	<mdl< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	26	43.7	ug/Kg		<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg ug/Kg</td></mdl<>	35	68.6	ug/Kg ug/Kg
Bis(2-Chloroethoxy) Methane		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>. </td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td></td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	36	70.2	ug/Kg	. 	<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td></td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl,g<>	44	87.2	ug/Kg		<mdl< td=""><td></td><td>34.4</td><td>ug/Kg</td></mdl<>		34.4	ug/Kg
Bis(2-Chloroethyl)Ether		<mdl,g< td=""><td>21</td><td>35.2</td><td>ug/Kg</td><td>I</td><td><mdl,g< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>21</td><td>138</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl,g<></td></mdl,g<>	21	35.2	ug/Kg	I	<mdl,g< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>21</td><td>138</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl,g<>	26	43.7	ug/Kg	II	<mdl< td=""><td>21</td><td>138</td><td>ug/Kg ug/Kg</td></mdl<>	21	138	ug/Kg ug/Kg
Bis(2-Chloroisopropyl)Ether		<mdl< td=""><td>70</td><td>141</td><td>ug/Kg</td><td>-II</td><td><mdl,g< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td></td><td></td></mdl<></td></mdl,g<></td></mdl<>	70	141	ug/Kg	-II	<mdl,g< td=""><td>87</td><td>175</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>68</td><td></td><td></td></mdl<></td></mdl,g<>	87	175	ug/Kg		<mdl< td=""><td>68</td><td></td><td></td></mdl<>	68		
Bis(2-Ethylhexyl)Phthalate	73.8		21	35.2	ug/Kg	318		26	43.7	ug/Kg	35.		21	34.4	ug/Kg
Carbazole		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>120</td><td></td><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<>	36	70.2	ug/Kg	120		44	87.2	ug/Kg		<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
Chrysene	219	•	21	35.2	ug/Kg	1910		26	43.7	ug/Kg		<mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<>	21	34.4	ug/Kg
Coprostanol	140		140	211	ug/Kg	460		180	262	ug/Kg		<mdl,e< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl,e<>	140	206	ug/Kg
Di-N-Butyl Phthalate		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	36	70.2	ug/Kg		<mdl< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<>	44	87.2	ug/Kg		<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
Di-N-Octyl Phthalate		<mdl< td=""><td>21</td><td>35.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	21	35.2	ug/Kg		<mdl< td=""><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.7	ug/Kg		<mdl< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl<>	21	34.4	ug/Kg
Dibenzo(a,h)anthracene		<mdl< td=""><td>57</td><td>105</td><td>ug/Kg</td><td>150</td><td></td><td>70</td><td>131</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>55</td><td>103</td><td>ug/Kg</td></mdl<></td></mdl<>	57	105	ug/Kg	150		70	131	ug/Kg		<mdl< td=""><td>55</td><td>103</td><td>ug/Kg</td></mdl<>	55	103	ug/Kg
Dibenzofuran		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>142</td><td>2</td><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<>	36	70.2	ug/Kg	142	2	44	87.2	ug/Kg		<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
Diethyl Phthalate		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	36	70.2	ug/Kg	1	<mdl< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl<>	44	87.2	ug/Kg		<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
Dimethyl Phthalate		<mdl< td=""><td>14</td><td>21.1</td><td>ug/Kg</td><td>#</td><td><mdl< td=""><td>18</td><td>26.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>14</td><td>20.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	14	21.1	ug/Kg	#	<mdl< td=""><td>18</td><td>26.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>14</td><td>20.6</td><td>ug/Kg</td></mdl<></td></mdl<>	18	26.2	ug/Kg		<mdl< td=""><td>14</td><td>20.6</td><td>ug/Kg</td></mdl<>	14	20.6	ug/Kg
						_4									

PROJECT: 423056 Parameters	Locator: Sampled: Lab ID: Matrix: % Solids: Value	P53VG4 Aug 12, 96 L9209-9 SALTWTR 75.9 Qual		RDL	Units	Locator: Sampled: Lab ID: Matrix: % Solids: Value	P53VG5 Aug 12, 9 L9209-10 SALTWT 61.1		RDL	Units	Locator: Sampled: Lab ID: Matrix: % Solids: Value	P53C1 Aug 14, 96 L9316-1 SALTWTR 77.7		RDL	Units
raidiffeters	value		WIDL y Weight Basis		Units	value		MUL Ory Weight Basis		Office	value		y Weight Basis		
Fluoranthene	187	7 G	21	42.2	ug/Kg	1750) G	26	52.4	ug/Kg	22	2 <rdl,g< td=""><td>21</td><td>41.2</td><td>ug/Kg</td></rdl,g<>	21	41.2	ug/Kg
Fluorene		<mdl.g< td=""><td>21</td><td>35.2</td><td>ug/Kg</td><td>209</td><td>) G</td><td>26</td><td>43.7</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl,g<></td></mdl.g<>	21	35.2	ug/Kg	209) G	26	43.7	ug/Kg		<mdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl,g<>	21	34.4	ug/Kg
Hexachlorobutadiene		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td>-[[</td><td><mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl<>	36	70.2	ug/Kg		<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td>-[[</td><td><mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	44	87.2	ug/Kg	-[[<mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<>	35	68.6	ug/Kg
Hexachlorocyclopentadiene		<mdl.g< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>- </td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td>1</td><td><mdl.g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl.g<></td></mdl,g<></td></mdl.g<>	36	70.2	ug/Kg	-	<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td>1</td><td><mdl.g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl.g<></td></mdl,g<>	44	87.2	ug/Kg	1	<mdl.g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl.g<>	35	68.6	ug/Kg
Hexachloroethane	***************************************	<mdl,g< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<></td></mdl.g<></td></mdl,g<>	36	70.2	ug/Kg		<mdl.g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<></td></mdl.g<>	44	87.2	ug/Kg	 	<mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<>	35	68.6	ug/Kg
Indeno(1,2,3-Cd)Pyrene	84.3		36	70.2	ug/Kg	543		44	87.2	ug/Kg	-	<mdl.g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl.g<>	35	68.6	ug/Kg
Isophorone	04.3	, G <mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td> </td><td><mdl.g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl.g<></td></mdl<>	36	70.2	ug/Kg	 	<mdl.g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl.g<>	44	87.2	ug/Kg	 	<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
N-Nitrosodi-N-Propylamine		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>· </td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	36	70.2	ug/Kg	·	<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl,g<>	44	87.2	ug/Kg		<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
N-Nitrosodimethylamine		<mdl,g< td=""><td>140</td><td>211</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>262</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	140	211	ug/Kg ug/Kg		<mdl,g< td=""><td>180</td><td>262</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	180	262	ug/Kg	 	<mdl,g< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl,g<>	140	206	ug/Kg
N-Nitrosodimenylamine		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>·</td><td><mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td>-⊪</td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl,g<></td></mdl<>	36	70.2	ug/Kg	·	<mdl,g< td=""><td>44</td><td>87.2</td><td>ug/Kg</td><td>-⊪</td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl,g<>	44	87.2	ug/Kg	-⊪	<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
Naphthalene		<mdl.g< td=""><td>57</td><td>105</td><td></td><td>250</td><td></td><td>70</td><td>131</td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>55</td><td>103</td><td>ug/Kg</td></mdl.g<></td></mdl.g<>	57	105		250		70	131	ug/Kg		<mdl.g< td=""><td>55</td><td>103</td><td>ug/Kg</td></mdl.g<>	55	103	ug/Kg
Nilrobenzene					ug/Kg	250	<mdl.g< td=""><td></td><td>87.2</td><td></td><td></td><td><mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<></td></mdl.g<>		87.2			<mdl< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl<>	35	68.6	ug/Kg
		<mdl< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>·I</td><td></td><td>44</td><td>87.2</td><td>ug/Kg</td><td>- </td><td><mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<></td></mdl<>	36	70.2	ug/Kg	·I		44	87.2	ug/Kg	-	<mdl,g< td=""><td>35</td><td>68.6</td><td>ug/Kg</td></mdl,g<>	35	68.6	ug/Kg
Pentachlorophenol	100	<mdl,g< td=""><td>36</td><td>70.2</td><td>ug/Kg</td><td>J</td><td><mdl,e,g< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl.g<></td></mdl,e,g<></td></mdl,g<>	36	70.2	ug/Kg	J	<mdl,e,g< td=""><td></td><td></td><td>ug/Kg</td><td></td><td><mdl.g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl.g<></td></mdl,e,g<>			ug/Kg		<mdl.g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></mdl.g<>	21	34.4	ug/Kg
Phenanthrene	102		21	35.2	ug/Kg	789		26	43.7	ug/Kg		<mdl< td=""><td>140</td><td>206</td><td>ug/Kg</td></mdl<>	140	206	ug/Kg
Phenol		<mdl< td=""><td>140</td><td>211</td><td>ug/Kg</td><td>640</td><td></td><td>180</td><td>262</td><td>ug/Kg</td><td>- I</td><td>1 <rdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></rdl,g<></td></mdl<>	140	211	ug/Kg	640		180	262	ug/Kg	- I	1 <rdl,g< td=""><td>21</td><td>34.4</td><td>ug/Kg</td></rdl,g<>	21	34.4	ug/Kg
Pyrene	179) G	21	35.2	ug/Kg	3960) G	26	43.7	ug/Kg		I KUL,G	. 41		ugity
M.Code=SW-846 8270 (SIM)											_	1101.0	0.89	1.71	ug/Kg
1,2,4-Trichlorobenzene		<mdl,g< td=""><td>0.91</td><td>1.75</td><td>ug/Kg</td><td><u> </u></td><td><mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td><u> </u></td><td><mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<></td></mcl,g<></td></mdl,g<>	0.91	1.75	ug/Kg	<u> </u>	<mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td><u> </u></td><td><mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<></td></mcl,g<>	1.1	2.18	ug/Kg	<u> </u>	<mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<>	0.89	1.71	ug/Kg
1,2-Dichlorobenzene		<mdl,g< td=""><td>0.91</td><td>1.75</td><td>ug/Kg</td><td>. </td><td><mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td></td><td>1.71</td><td>ug/Kg</td></mdl,g<></td></mcl,g<></td></mdl,g<>	0.91	1.75	ug/Kg	.	<mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td></td><td>1.71</td><td>ug/Kg</td></mdl,g<></td></mcl,g<>	1.1	2.18	ug/Kg		<mdl,g< td=""><td></td><td>1.71</td><td>ug/Kg</td></mdl,g<>		1.71	ug/Kg
1,3-Dichlorobenzene		<mdl,g< td=""><td>0.91</td><td>1.75</td><td>ug/Kg</td><td></td><td><mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.89</td><td></td><td></td></mdl,g<></td></mcl,g<></td></mdl,g<>	0.91	1.75	ug/Kg		<mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.89</td><td></td><td></td></mdl,g<></td></mcl,g<>	1.1	2.18	ug/Kg		<mdl,g< td=""><td>0.89</td><td></td><td></td></mdl,g<>	0.89		
1,4-Dichlorobenzene		<mdl,g< td=""><td>D.91</td><td>1.75</td><td>ug/Kg</td><td></td><td><mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<></td></mcl,g<></td></mdl,g<>	D.91	1.75	ug/Kg		<mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<></td></mcl,g<>	1.1	2.18	ug/Kg		<mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<>	0.89	1.71	ug/Kg
Hexachlorobenzene		<mdl,g< td=""><td>0.91</td><td>1.75</td><td>ug/Kg</td><td></td><td><mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td><u> L</u></td><td><mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<></td></mcl,g<></td></mdl,g<>	0.91	1.75	ug/Kg		<mcl,g< td=""><td>1.1</td><td>2.18</td><td>ug/Kg</td><td><u> L</u></td><td><mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<></td></mcl,g<>	1.1	2.18	ug/Kg	<u> L</u>	<mdl,g< td=""><td>0.89</td><td>1.71</td><td>ug/Kg</td></mdl,g<>	0.89	1.71	ug/Kg
* indicates wet weight used for t	ł													1	
4				1					- !!					11	
METALS						I					1				
M.Code=METRO 16-01-001						I					1			0.0	e- 44
Mercury, Total, CVAA	0.05	<rdl< td=""><td>0.024</td><td>0.233</td><td>mg/Kg</td><td>0.334</td><td>1</td><td>0.033</td><td>0.327</td><td>mg/Kg</td><td>_IL</td><td><mdl< td=""><td>0.024</td><td>0.247</td><td>mg/Kg</td></mdl<></td></rdl<>	0.024	0.233	mg/Kg	0.334	1	0.033	0.327	mg/Kg	_IL	<mdl< td=""><td>0.024</td><td>0.247</td><td>mg/Kg</td></mdl<>	0.024	0.247	mg/Kg
M.Code=METRO 16-02-004				-											
Aluminum, Total, ICP	10200) L	6.9	34.1	mg/Kg	13700		8.7	43	mg/Kg	1080		6.6	33.1	mg/Kg
Antimony, Total, ICP		<mdl,g< td=""><td>2.1</td><td>10.3</td><td>mg/Kg</td><td>1</td><td><mdl,g< td=""><td>2.6</td><td>12.9</td><td>mg/Kg</td><td></td><td><mdl,g< td=""><td>1.9</td><td>9.91</td><td>mg/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	2.1	10.3	mg/Kg	1	<mdl,g< td=""><td>2.6</td><td>12.9</td><td>mg/Kg</td><td></td><td><mdl,g< td=""><td>1.9</td><td>9.91</td><td>mg/Kg</td></mdl,g<></td></mdl,g<>	2.6	12.9	mg/Kg		<mdl,g< td=""><td>1.9</td><td>9.91</td><td>mg/Kg</td></mdl,g<>	1.9	9.91	mg/Kg
Arsenic, Total, ICP		<rdl< td=""><td>3.4</td><td>17.1</td><td>mg/Kg</td><td>7.4</td><td><rdl< td=""><td>4.3</td><td>21.4</td><td>mg/Kg</td><td>3.</td><td>3 <rdl< td=""><td>3.3</td><td>16.5</td><td>mg/kg</td></rdl<></td></rdl<></td></rdl<>	3.4	17.1	mg/Kg	7.4	<rdl< td=""><td>4.3</td><td>21.4</td><td>mg/Kg</td><td>3.</td><td>3 <rdl< td=""><td>3.3</td><td>16.5</td><td>mg/kg</td></rdl<></td></rdl<>	4.3	21.4	mg/Kg	3.	3 <rdl< td=""><td>3.3</td><td>16.5</td><td>mg/kg</td></rdl<>	3.3	16.5	mg/kg
Barium, Total, ICP						1					39.	5	0.066	0.331	mg/Kg
Beryllium, Total, ICP	0.16	<rdl< td=""><td>0.069</td><td>0.341</td><td>mg/Kg</td><td>0.2</td><td>RDL</td><td>0.087</td><td>0.43</td><td>mg/Kg</td><td>0.2</td><td></td><td>0.066</td><td>0.331</td><td>mg/Kg</td></rdl<>	0.069	0.341	mg/Kg	0.2	RDL	0.087	0.43	mg/Kg	0.2		0.066	0.331	mg/Kg
Cadmium, Total, ICP	U. 10	<mdl< td=""><td>0.21</td><td>1.03</td><td>mg/Kg</td><td>0.2</td><td></td><td>0.007</td><td>1.29</td><td>mg/Kg</td><td>1</td><td><mdl< td=""><td>0.19</td><td>0.991</td><td>mg/Kg</td></mdl<></td></mdl<>	0.21	1.03	mg/Kg	0.2		0.007	1.29	mg/Kg	1	<mdl< td=""><td>0.19</td><td>0.991</td><td>mg/Kg</td></mdl<>	0.19	0.991	mg/Kg
	3000					11		4.3			394		3,3	16.5	mg/Kg
Calcium, Total, ICP	3600		3.4	17.1	mg/Kg	4890			21.4	mg/Kg	11.		0.33	1.65	mg/Kg
Chromium, Total, ICP	14.5		0.34	1.71	mg/Kg	23.3		0.43	2.14	mg/Kg	13		0.33	1.33	mg/Kg
Copper, Total, ICP	14.9		0.28	1.37	mg/Kg	45.		0.34	1.72	mg/Kg	11.		3.3	16.5	mg/Kg
Iron, Total, ICP	18600		3.4	17.1	m g /Kg	22700		4.3	21.4	mg/Kg	1740				
Lead, Total, ICP	9.6	<rdl< td=""><td>2.1</td><td>10.3</td><td>mg/Kg</td><td>52.9</td><td>•</td><td>2.6</td><td>12.9</td><td>mg/Kg</td><td>4.</td><td></td><td>1.9</td><td>9.91</td><td>mg/Kg mg/Kg</td></rdl<>	2.1	10.3	mg/Kg	52.9	•	2.6	12.9	mg/Kg	4.		1.9	9.91	mg/Kg mg/Kg
Magnesium, Total, ICP	4300)	2.1	10.3	mg/Kg	5480		2.6 comprehensive	12.9	mg/Kg	380	0	1.9	9.91	Page 19

		1 / 1	ng oc	Juilly	-1171	Olilli	Ciitai	Lab /	THAI	ticai i	topo.	•			
PROJECT: 423056	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG4 Aug 12, 9 L9209-9 SALTWT 75.9				Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG5 Aug 12, 9 L9209-10 SALT/VTF 61.1				Locator: Sampled: Lab ID: Matrix: % Solids:	P53C1 Aug 14, 9 L9316-1 SALTWTI 77.7			
Parameters	Value	Qual - t	MCL Ory Weight Basis	RDL	Units	Value	Qual - D	MDL ry Weight Basi	RDL s	Units	Value	Qual - c	MDL ry Weight Basis	RDL	Units
Molybdenum, Total, ICP Nickel, Total, ICP	40.0	<mdl< td=""><td>1.3 1.3</td><td>6.84</td><td>mg/Kg</td><td>20.4</td><td><mdl< td=""><td>1.8</td><td>8.59 8.59</td><td>mg/Kg</td><td>12</td><td><mdl< td=""><td>1.3</td><td>6.6 6.6</td><td>mg/Kg mg/Kg</td></mdl<></td></mdl<></td></mdl<>	1.3 1.3	6.84	mg/Kg	20.4	<mdl< td=""><td>1.8</td><td>8.59 8.59</td><td>mg/Kg</td><td>12</td><td><mdl< td=""><td>1.3</td><td>6.6 6.6</td><td>mg/Kg mg/Kg</td></mdl<></td></mdl<>	1.8	8.59 8.59	mg/Kg	12	<mdl< td=""><td>1.3</td><td>6.6 6.6</td><td>mg/Kg mg/Kg</td></mdl<>	1.3	6.6 6.6	mg/Kg mg/Kg
	13.3		130	6.84	mg/Kg	20.1 1930				mg/Kg	969		130	660	mg/Kg
Potassium, Total, ICP Selenium, Total, ICP	1170	<mdl< td=""><td>3.4</td><td>684 17.1</td><td>mg/Kg</td><td>1930</td><td></td><td>180</td><td>859 21.4</td><td>mg/Kg</td><td>903</td><td><mdl< td=""><td>3.3</td><td>16.5</td><td>mg/Kg</td></mdl<></td></mdl<>	3.4	684 17.1	mg/Kg	1930		180	859 21.4	mg/Kg	903	<mdl< td=""><td>3.3</td><td>16.5</td><td>mg/Kg</td></mdl<>	3.3	16.5	mg/Kg
Silver, Total, ICP		<mdl <mdl< td=""><td>0.28</td><td>17.1</td><td>mg/Kg</td><td>I</td><td><mdl <rd></rd></mdl </td><td>4.3 0.34</td><td>1.72</td><td>mg/Kg</td><td> </td><td><mdl< td=""><td>0.27</td><td>1.33</td><td>mg/Kg</td></mdl<></td></mdl<></mdl 	0.28	17.1	mg/Kg	I	<mdl <rd></rd></mdl 	4.3 0.34	1.72	mg/Kg	 	<mdl< td=""><td>0.27</td><td>1.33</td><td>mg/Kg</td></mdl<>	0.27	1.33	mg/Kg
Sodium, Total, ICP		- MDL	0.20	1.37	mg/Kg	0.7	SKUL	0.34	1.72	mg/Kg	3580		33	165	mg/Kg
Thallium, Total, ICP		<mdl< td=""><td>13</td><td>68.4</td><td>wa Wa</td><td> </td><td><mdl< td=""><td>18</td><td>85.9</td><td>mg/Kg</td><td>3380</td><td>, <mdl< td=""><td>13</td><td>66</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	13	68.4	wa Wa	 	<mdl< td=""><td>18</td><td>85.9</td><td>mg/Kg</td><td>3380</td><td>, <mdl< td=""><td>13</td><td>66</td><td>mg/Kg</td></mdl<></td></mdl<>	18	85.9	mg/Kg	3380	, <mdl< td=""><td>13</td><td>66</td><td>mg/Kg</td></mdl<>	13	66	mg/Kg
Zinc, Total, ICP	48.7		0.34	1.71	mg/Kg	91.7		0.43	2.14	mg/Kg	45.2		0.33	1.65	mg/Kg
* indicates wet weight used for t			0.34	1./.1.	mg/Kg	91.7		0.43	Z. 14	ing/Ng	45.2				
CONVENTIONALS M.Code=PSEP p9													0.4		%
p+0.00 *	5.7		0.1		%	1.7		0.1		%	3.3		0.1		
p+1.00 *	36.5		0.1		%	20.2		0.1		%	0.3		0.1 0.1		- % -
p+10.0 *		<mdl< td=""><td>0.1</td><td></td><td>%</td><td>1.2</td><td></td><td>0,1</td><td></td><td>%</td><td>1.1</td><td></td><td>0.1</td><td></td><td>- %</td></mdl<>	0.1		%	1.2		0,1		%	1.1		0.1		- %
p+10.0(more than) *	1.2		0.1		%	5.8		0.1		%	46.5		0.1		%
p+2.00 *	44.3	-	0.1		%	36.1		0.1		%	46.3 5.9		0.1		%
p+3.00 *	4		0.1		%	9.6		0.1		%	0.8		0.1		- %
p+4.00 * p+5.00 *	0.7		0.1		%	3.9		0.1		%	1.8		0.1		~~~
p+6.00 *	2.1 0.5		0.1 0.1		%	6.2		0.1 0.1		%	l	, <mdl< td=""><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%
p+7.00 *	0.9		0.1		% %	3.7		0.1		 %	1.4		0.1		%
p+8.00 *	2.1		0.1		%	5.7		0.1		%	2.		0.1		%
p+9.00 *	0.3		0.1			2.5		0.1			0.		0.1		%
p-1.00 *	1.4		0.1		%	0.6		0.1		%	0.6		0.1		%
p-2.00 *		<mdl< td=""><td>0.1</td><td></td><td>%</td><td>0.0</td><td><mdl< td=""><td>0.1</td><td></td><td>%</td><td>0.</td><td></td><td>0.1</td><td></td><td>%</td></mdl<></td></mdl<>	0.1		%	0.0	<mdl< td=""><td>0.1</td><td></td><td>%</td><td>0.</td><td></td><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%	0.		0.1		%
p-2.00(less than) *	0.2		0.1		 %	0.3		0.1		%	0.4		0.1		%
M.Code=SM5310-B					- 70	0.3					· I				
Total Organic Carbon	2640		6.6	13.2	mg/Kg	25500		8.2	16.4	mg/Kg	3530	<u> </u>	6.4	12.9	mg/Kg
* indicates wet weight used for				15.2	mgmg	2000					l				
this parameter						I		-			1				

PROJECT: 423056	Localor: Sampled: Lab ID: Matrix: % Solids:	P53C4 Aug 14, 96 L9316-2 SALTWTRS 93.7	SED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53C5 Aug 15, 96 L9316-3 SALTWTRS 80.5	ED	·	
Parameters	Value	Qual - Di	MDL y Weight Basis	RDL	Units	Value	Qual - I	MDL Dry Weight Basis	RDL	Units
ORGANICS						ļi				į
M.Code=SW-846 8080)				
4,4'-DDD		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	1	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
4,4'-DDE		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	1	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
4,4'-DDT		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	1	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Aldrin		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	1	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Alpha-BHC		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg		<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Aroclor 1016		<mdl< td=""><td>14</td><td>28.5</td><td>ug/kg</td><td>1</td><td><mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<></td></mdl<>	14	28.5	ug/kg	1	<mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<>	16	33.2	ug/Kg
Aroclor 1221		<mdl< td=""><td>14</td><td>28.5</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<></td></mdl<>	14	28.5	ug/Kg	1	<mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<>	16	33.2	ug/Kg
Aroclor 1232		<mdl< td=""><td>14</td><td>28.5</td><td>ug/kg</td><td>1</td><td><mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<></td></mdl<>	14	28.5	ug/kg	1	<mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<>	16	33.2	ug/Kg
Aroclor 1242		<mdl< td=""><td>14</td><td>28.5</td><td>ug/kg</td><td>1</td><td><mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<></td></mdl<>	14	28.5	ug/kg	1	<mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<>	16	33.2	ug/Kg
Aroclor 1248		<mdl.< td=""><td>14</td><td>28.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<></td></mdl.<>	14	28.5	ug/Kg		<mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<>	16	33.2	ug/Kg
Aroclor 1254		<mdl< td=""><td>14</td><td>28.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<></td></mdl<>	14	28.5	ug/Kg		<mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<>	16	33.2	ug/Kg
Aroclor 1260		<mdl< td=""><td>14</td><td>28.5</td><td>ug/kg</td><td></td><td><mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<></td></mdl<>	14	28.5	ug/kg		<mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<>	16	33.2	ug/Kg
Beta-BHC		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg		<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Chlordane		<mdl< td=""><td>7.2</td><td>14.2</td><td>ug/Kg</td><td>Ĭ</td><td><mdl< td=""><td>8.3</td><td>16.5</td><td>ug/Kg</td></mdl<></td></mdl<>	7.2	14.2	ug/Kg	Ĭ	<mdl< td=""><td>8.3</td><td>16.5</td><td>ug/Kg</td></mdl<>	8.3	16.5	ug/Kg
Delta-BHC		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	1	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Dieldrin		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg		<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Endosulfan I		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	1	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Endosulfan II		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	1	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Endosulfan Sulfate		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	<u> </u>	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Endrin		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg		<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Endrin Aldehyde		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	1	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Gamma-BHC (Lindane)		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg		<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Heptachlor		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	 	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Heptachlor Epoxide		<mdl< td=""><td>1.4</td><td>2.85</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<></td></mdl<>	1.4	2.85	ug/Kg	- 	<mdl< td=""><td>1.6</td><td>3.32</td><td>ug/Kg</td></mdl<>	1.6	3.32	ug/Kg
Methoxychlor		<mdl< td=""><td>7.2</td><td>14.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.3</td><td>16.5</td><td>ug/Kg</td></mdl<></td></mdl<>	7.2	14.2	ug/Kg		<mdl< td=""><td>8.3</td><td>16.5</td><td>ug/Kg</td></mdl<>	8.3	16.5	ug/Kg
Toxaphene		<mdl< td=""><td>14</td><td>28.5</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<></td></mdl<>	14	28.5	ug/Kg	 	<mdl< td=""><td>16</td><td>33.2</td><td>ug/Kg</td></mdl<>	16	33.2	ug/Kg
M.Code=SW-846 8260						1				
1,1,1-Trichloroethane										
1,1,2,2-Tetrachloroethane						 				
1,1,2-Trichloroethane 1,1,2-Trichloroethylene										
1,1,2-Trichloroethylene						-				
1,1-Dichloroethylene						-				
						·]				
1,2-Dichloroethane										
1,2-Dichloropropane										
2-Butanone (MEK)						1				
2-Chloroethylvinyl ether										

			•	•					•	
PROJECT: 423056	Locator: Sampled: Lab ID: Matrx: % Solids:	P53C4 Aug 14, 96 L9316-2 SALTWTRS 93.7	ED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53C5 Aug 15, 96 L9316-3 SALTWTRSE 80.5	D		
Parameters	Value	Qual - Dry	MDL Weight Basis	RDL	Units	Value	Qual - Dr	MDL y Weight Basis	RDL	Units
2-Hexanone 4-Methyl-2-Pentanone (MIBK) Acetone										
Acrolein Acrylonitrile						<u> </u>				
Benzene Bromodichloromethane Bromoform						 				
Bromororm Bromomethane Carbon Disulfide										
Carbon Districte Carbon Tetrachloride Chlorobenzene										
Chlorodibromomethane Chloroethane										
Chloroform Chloromethane						ļ				
Chloromethane Cis-1,3-Dichloropropene										
Ethylbenzene Methylene Chloride						 				
Styrene Tetrachloroethylene						<u></u>				
Toluene Total Xylenes										
Trans-1,2-Dichloroethylene Trans-1,3-Dichloropropene										
Trichlorofluoromethane Vinyl Acetate										
Viryl Chloride M.Code=SW-846 8270										
1,2-Diphenylhydrazine 2,4,5-Trichlorophenol		<mdl <mdl< td=""><td>57 120</td><td>114 227</td><td>ug/Kg ug/Kg</td><td>-</td><td><mdl,g <mdl,g< td=""><td>66 140</td><td>133 265</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g </td></mdl<></mdl 	57 120	114 227	ug/Kg ug/Kg	-	<mdl,g <mdl,g< td=""><td>66 140</td><td>133 265</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g 	66 140	133 265	ug/Kg ug/Kg
2,4,6-Trichlorophenol 2,4-Dichlorophenol		<mdl <mdl< td=""><td>120 29</td><td>227 56.9</td><td>ug/Kg ug/Kg</td><td>1</td><td><mdl,g< td=""><td>140</td><td>265 66.2</td><td>ug/Kg ug/Kg</td></mdl,g<></td></mdl<></mdl 	120 29	227 56.9	ug/Kg ug/Kg	1	<mdl,g< td=""><td>140</td><td>265 66.2</td><td>ug/Kg ug/Kg</td></mdl,g<>	140	265 66.2	ug/Kg ug/Kg
2,4-Dimethylphenol 2,4-Dinitrophenol		<mdl <mdl< td=""><td>29 57</td><td>56.9 114</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,g <mdl,g< td=""><td>34 66</td><td>66.2 133</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g </td></mdl<></mdl 	29 57	56.9 114	ug/Kg ug/Kg		<mdl,g <mdl,g< td=""><td>34 66</td><td>66.2 133</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g 	34 66	66.2 133	ug/Kg ug/Kg
2,4-Dinitropherior 2,4-Dinitrotoluene 2,6-Dinitrotoluene		<mdl <mdl< td=""><td>12</td><td>22.7</td><td>ug/Kg ug/Kg</td><td></td><td><mdl,g <mdl,g< td=""><td>14 14</td><td>26.5 26.5</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g </td></mdl<></mdl 	12	22.7	ug/Kg ug/Kg		<mdl,g <mdl,g< td=""><td>14 14</td><td>26.5 26.5</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g 	14 14	26.5 26.5	ug/Kg ug/Kg
2-Chloronaphthalene 2-Chlorophenol		<mdl <mdl< td=""><td>17 57</td><td>28.5 114</td><td>ug/Kg ug/Kg</td><td>1</td><td><mdl,g <mdl,g< td=""><td>20 66</td><td>33.2 133</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g </td></mdl<></mdl 	17 57	28.5 114	ug/Kg ug/Kg	1	<mdl,g <mdl,g< td=""><td>20 66</td><td>33.2 133</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g 	20 66	33.2 133	ug/Kg ug/Kg
E-OUROIDHEUDI		-MDF		114	ugricy	JL	-IVIUL,G		100	ug/i\g

PROJECT: 423056	Locator:	P53C4	•			Locator:	P53C5		,	
	Sampled:	Aug 14, 96				Sampled:	Aug 15,96			
	Lab ID:	L9316-2				Lab ID:	L9316-3			
	Matrix:	SALTWTRS	FD ´			Matrix:	SALTWIRSE	:D		
	% Solids:	93.7				% Solids:	80.5			
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Parameters	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units
		- Dr	Weight Basis					y Weight Basis		
						ll .		,		
2-Methylnaphthalene		<mdl< td=""><td>46</td><td>85.4</td><td>ug/Kg</td><td></td><td><mdlg< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdlg<></td></mdl<>	46	85.4	ug/Kg		<mdlg< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdlg<>	53	99.4	ug/Kg
2-Methylphenol		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>1</td><td><mdlg< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdlg<></td></mdl<>	29	56.9	ug/Kg	1	<mdlg< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdlg<>	34	66.2	ug/Kg
2-Nitroaniline		<mdl< td=""><td>120</td><td>171</td><td>ug/Kg</td><td>l</td><td><mdlg< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdlg<></td></mdl<>	120	171	ug/Kg	l	<mdlg< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdlg<>	140	199	ug/Kg
2-Nitrophenol		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Ka</td><td></td><td><mdl.g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl.g<></td></mdl<>	29	56.9	ug/Ka		<mdl.g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl.g<>	34	66.2	ug/Kg
3,3'-Dichlorobenzidine		<mdl<sub>iG</mdl<sub>	29	56.9	ug/Ka	1	<mdlg< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdlg<>	34	66.2	ug/Kg
3-Nitroaniline		<mdl< td=""><td>120</td><td>171</td><td>ug/Kg</td><td>l</td><td><mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<></td></mdl<>	120	171	ug/Kg	l	<mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<>	140	199	ug/Kg
4,6-Dinitro-O-Cresol		<mdl< td=""><td>57</td><td>114</td><td>ug/Kg</td><td>JI</td><td><mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<></td></mdl<>	57	114	ug/Kg	JI	<mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<>	66	133	ug/Kg
4-Bromophenyl Phenyl Ether		<mdl< td=""><td>12</td><td>17.1</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>14</td><td>19.9</td><td>ug/Kg</td></mdl,g<></td></mdl<>	12	17.1	ug/Kg	1	<mdl,g< td=""><td>14</td><td>19.9</td><td>ug/Kg</td></mdl,g<>	14	19.9	ug/Kg
4-Chloro-3-Methylphenol		<mdl< td=""><td>57</td><td>114</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<></td></mdl<>	57	114	ug/Kg	1	<mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<>	66	133	ug/Kg
4-Chloroaniline		<mdl,g< td=""><td>57</td><td>114</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	57	114	ug/Kg	 	<mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<>	66	133	ug/Kg
4-Chlorophenyl Phenyl Ether		<mdl< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	17	28.5	ug/Kg	 	<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
4-Methylphenol		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>ii</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg	ii	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
4-Nitroaniline		<mdl< td=""><td>120</td><td>171</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<></td></mdl<>	120	171	ug/Kg	 	<mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<>	140	199	ug/Kg
4-Nitrophenol		<mdl< td=""><td>57</td><td>114</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<></td></mdl<>	57	114	ug/Kg	1	<mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<>	66	133	ug/Kg
Acenaphthene		<mdl< td=""><td>12</td><td>22.7</td><td>ug/Kg</td><td>II</td><td><mdlg< td=""><td>14</td><td>26.5</td><td>ug/Kg</td></mdlg<></td></mdl<>	12	22.7	ug/Kg	II	<mdlg< td=""><td>14</td><td>26.5</td><td>ug/Kg</td></mdlg<>	14	26.5	ug/Kg
Acenaphthylene		<mdl< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	17	28.5	ug/Kg	1	<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Aniline		<mdl,g< td=""><td>57</td><td>114</td><td>ug/Kg</td><td>i</td><td><mdlg< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdlg<></td></mdl,g<>	57	114	ug/Kg	i	<mdlg< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdlg<>	66	133	ug/Kg
Anthracene		<mdl,g< td=""><td>17</td><td>28.5</td><td>ug/kg</td><td>1</td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	17	28.5	ug/kg	1	<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Benzidine		<mdl,x< td=""><td>680</td><td>1370</td><td>ug/Kg</td><td>1</td><td><mdl,x,g< td=""><td>800</td><td>1590</td><td>ug/Kg</td></mdl,x,g<></td></mdl,x<>	680	1370	ug/Kg	1	<mdl,x,g< td=""><td>800</td><td>1590</td><td>ug/Kg</td></mdl,x,g<>	800	1590	ug/Kg
Benzo(a)anthracene		<mdl,g< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	17	28.5	ug/Kg	1	<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Benzo(a)pyrene		<mdl,g< td=""><td>29</td><td>56.9</td><td>ug/kg</td><td>1</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	29	56.9	ug/kg	1	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Benzo(b)fluoranthene		<mdl< td=""><td>46</td><td>85.4</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdl,g<></td></mdl<>	46	85.4	ug/Kg		<mdl,g< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdl,g<>	53	99.4	ug/Kg
Benzo(g,h,i)perylene		<mdl,g< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	29	56.9	ug/Kg		<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Benzo(k)fluoranthene		<mdl,g< td=""><td>46</td><td>85.4</td><td>ug/Kg</td><td>I</td><td><mdl,g< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	46	85.4	ug/Kg	I	<mdl,g< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdl,g<>	53	99.4	ug/Kg
Benzoic Acid		<mdl< td=""><td>120</td><td>171</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<></td></mdl<>	120	171	ug/Kg	1	<mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<>	140	199	ug/Kg
Benzyl Alcohol		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg		<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Benzyl Butyl Phthalate	_	<mdl< td=""><td>17</td><td>28.5</td><td>ug/kg</td><td></td><td><md_,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></md_,g<></td></mdl<>	17	28.5	ug/kg		<md_,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></md_,g<>	20	33.2	ug/Kg
Bis(2-Chloroethoxy)Methane		<mdl< td=""><td>29</td><td>56.9</td><td>ug/kg</td><td></td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/kg		<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Bis(2-Chloroethyl)Ether		<mdl< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	17	28.5	ug/Kg		<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Bis(2-Chloroisopropyl)Ether		<mdl< td=""><td>57</td><td>114</td><td>ug/Kg</td><td>J</td><td><mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<></td></mdl<>	57	114	ug/Kg	J	<mdl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td></mdl,g<>	66	133	ug/Kg
Bis(2-Ethylhexyl)Phthalate		<mdl< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	17	28.5	ug/Kg		<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Carbazole		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>]</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg]	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Chrysene		<mdl< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	17	28.5	ug/Kg		<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Coprostanol		<mdl,e< td=""><td>120</td><td>171</td><td>ug/Kg</td><td>1</td><td><mdl,g,e< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g,e<></td></mdl,e<>	120	171	ug/Kg	1	<mdl,g,e< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g,e<>	140	199	ug/Kg
Di-N-Butyl Phthalate		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>I</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg	I	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Di-N-Octyl Phthalate		<mdl< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	17	28.5	ug/Kg	1	<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Dibenzo(a,h)anthracene		<mdl< td=""><td>46</td><td>85.4</td><td>ug/Kg</td><td>II</td><td><mdl,g< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdl,g<></td></mdl<>	46	85.4	ug/Kg	II	<mdl,g< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdl,g<>	53	99.4	ug/Kg
						AL				
Dibenzofuran		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg	1	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Dibenzofuran Diethyl Phthalate		<mdl <mdl< td=""><td>29 29</td><td>56.9 56.9</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl,g <mdl,g< td=""><td>34 34</td><td>66.2 66.2</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g </td></mdl<></mdl 	29 29	56.9 56.9	ug/Kg ug/Kg	 	<mdl,g <mdl,g< td=""><td>34 34</td><td>66.2 66.2</td><td>ug/Kg ug/Kg</td></mdl,g<></mdl,g 	34 34	66.2 66.2	ug/Kg ug/Kg

			•	•					•	
PROJECT: 423056 Parameters	Locator: Sampled: Lab ID: Matiix: % Solids: Value	P53C4 Aug 14, 96 L9316-2 SALTWTRS 93.7	SED . MDL	RDL	Unils	Locator: Sampled: Lab ID: Matrix: % Solids: Value	P53C5 Aug 15, 96 L9316-3 SALTWTRSE 80.5	:D MDL	RDL	Units
· alameters	value		y Weight Basis		Onno	Value		y Weight Basis	NDL	Oillo
Fluoranthene		<mdl,g< td=""><td>. 17</td><td>34.2</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>20</td><td>39.8</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	. 17	34.2	ug/Kg	1	<mdl,g< td=""><td>20</td><td>39.8</td><td>ug/Kg</td></mdl,g<>	20	39.8	ug/Kg
Fluorene		<mdl,g< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	17	28.5	ug/Kg		<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Hexachlorobutadiene		<mdl,g< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	29	56.9	ug/Kg		<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Hexachlorocyclopentadiene		<mdl,g< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	29	56.9	ug/Kg	1	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Hexachloroethane		<mdl,g< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	29	56.9	ug/Kg		<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Indeno(1,2,3-Cd)Pyrene		<mdl,g< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	29	56.9	ug/Kg		<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Isophorone		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg	1	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
N-Nitrosodi-N-Propylamine		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg		<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
N-Nitrosodimethylamine		<mdl,g< td=""><td>120</td><td>171</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	120	171	ug/Kg		<mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<>	140	199	ug/Kg
N-Nitrosodiphenylamine		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg	1	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Naphthalene		<mdl,g< td=""><td>46</td><td>85.4</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	46	85.4	ug/Kg		<mdl,g< td=""><td>53</td><td>99.4</td><td>ug/Kg</td></mdl,g<>	53	99.4	ug/Kg
Nitrobenzene		<mdl< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl<>	29	56.9	ug/Kg		<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Pentachlorophenol		<mdl,g< td=""><td>29</td><td>56.9</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	29	56.9	ug/Kg	1	<mdl,g< td=""><td>34</td><td>66.2</td><td>ug/Kg</td></mdl,g<>	34	66.2	ug/Kg
Phenanthrene		<mdl,g< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	17	28.5	ug/Kg		<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
Phenol		<mdl< td=""><td>120</td><td>171</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<></td></mdl<>	120	171	ug/Kg	1	<mdl,g< td=""><td>140</td><td>199</td><td>ug/Kg</td></mdl,g<>	140	199	ug/Kg
Pyrene		<mdl,g< td=""><td>17</td><td>28.5</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	17	28.5	ug/Kg	1	<mdl,g< td=""><td>20</td><td>33.2</td><td>ug/Kg</td></mdl,g<>	20	33.2	ug/Kg
M.Code=SW-846 8270 (SIM)										
1,2,4-Trichlorobenzene		<mdl,g< td=""><td>0.74</td><td>1.42</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	0.74	1.42	ug/Kg		<mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<>	0.86	1.65	ug/Kg
1,2-Dichlorobenzene		<mdl,g< td=""><td>0.74</td><td>1.42</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	0.74	1.42	ug/Kg		<mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<>	0.86	1.65	ug/Kg
1,3-Dichlorobenzene		<mdl,g< td=""><td>0.74</td><td>1.42</td><td>ug/Kg</td><td>1</td><td><mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	0.74	1.42	ug/Kg	1	<mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<>	0.86	1.65	ug/Kg
1,4-Dichlorobenzene		<mdl,g< td=""><td>0.74</td><td>1.42</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	0.74	1.42	ug/Kg		<mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<>	0.86	1.65	ug/Kg
Hexachlorobenzene		<mdl,g< td=""><td>0.74</td><td>1.42</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	0.74	1.42	ug/Kg		<mdl,g< td=""><td>0.86</td><td>1.65</td><td>ug/Kg</td></mdl,g<>	0.86	1.65	ug/Kg
t indicates into f.						· 				

indicates wet weight used for th

METALS				"	-	1				
M.Code=METRO 16-01-061										
Mercury, Total, CVAA		<mdl< td=""><td>0.02</td><td>0.199</td><td>mg/Kg</td><td>·</td><td><mdl< td=""><td>0.025</td><td>0.243</td><td>mg/Kg</td></mdl<></td></mdl<>	0.02	0.199	mg/Kg	·	<mdl< td=""><td>0.025</td><td>0.243</td><td>mg/Kg</td></mdl<>	0.025	0.243	mg/Kg
M.Code=METRO 16-02-004										
Aluminum, Total, ICP	9380	T	5.3	26.9	mg/Kg	9020	L	6.1	30.7	mg/Kg
Antimony, Total, ICP		<mdl,g< td=""><td>1.6</td><td>8.06</td><td>mg/Kg</td><td></td><td><mdl,g< td=""><td>1.9</td><td>9.2</td><td>mg/Kg</td></mdl,g<></td></mdl,g<>	1.6	8.06	mg/Kg		<mdl,g< td=""><td>1.9</td><td>9.2</td><td>mg/Kg</td></mdl,g<>	1.9	9.2	mg/Kg
Arsenic, Total, ICP	2.9	<rdl< td=""><td>2.7</td><td>13.4</td><td>mg/Kg</td><td>5.5</td><td><rdl< td=""><td>3.1</td><td>15.3</td><td>mg/Kg</td></rdl<></td></rdl<>	2.7	13.4	mg/Kg	5.5	<rdl< td=""><td>3.1</td><td>15.3</td><td>mg/Kg</td></rdl<>	3.1	15.3	mg/Kg
Barium, Total, ICP	32.3		0.053	0.269	mg/Kg	50.6		0.061	0.307	mg/Kg
Beryllium, Total, ICP	0.22	<rdl< td=""><td>0.053</td><td>0.269</td><td>mg/Kg</td><td>0.22</td><td><rdl< td=""><td>0.061</td><td>0.307</td><td>mg/Kg</td></rdl<></td></rdl<>	0.053	0.269	mg/Kg	0.22	<rdl< td=""><td>0.061</td><td>0.307</td><td>mg/Kg</td></rdl<>	0.061	0.307	mg/Kg
Cadmium, Total, ICP		<mdl< td=""><td>0.16</td><td>0.806</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>0.19</td><td>0.92</td><td>mg/Kg</td></mdl<></td></mdl<>	0.16	0.806	mg/Kg		<mdl< td=""><td>0.19</td><td>0.92</td><td>mg/Kg</td></mdl<>	0.19	0.92	mg/Kg
Calcium, Total, ICP	3070		2.7	13.4	mg/Kg	2920		3.1	15.3	mg/Kg
Chromium, Total, ICP	11.8		0.27	1.34	mg/Kg	12.9		0.31	1.53	mg/Kg
Copper, Total, ICP	10.6		0.21	1.08	mg/Kg	10.5		0.25	1.23	mg/Kg
Iron, Total, ICP	16500		2.7	13.4	mg/Kg	18000		3.1	15.3	mg/Kg
Lead, Total, ICP	4.4	<rdl< td=""><td>1.6</td><td>8.06</td><td>mg/Kg</td><td>4.3</td><td><rdl< td=""><td>1.9</td><td>9.2</td><td>mg/Kg</td></rdl<></td></rdl<>	1.6	8.06	mg/Kg	4.3	<rdl< td=""><td>1.9</td><td>9.2</td><td>mg/Kg</td></rdl<>	1.9	9.2	mg/Kg
Magnesium, Total, ICP	3700		1.6	8.06	mg/Kg	3900		1.9	9.2	mg/Kg

10/08/97 - Appendix C2

Data Management and Analysis Section Comprehensive Report #6631

		1 /1	ing Oc	Juilty	-11V		Ciliai	Lav A	lialyti	Cail
PROJECT: 423056	Locator: Sampled: Lat ID: Matrix: % Solids:	P53C4 Aug 14, 96 L9316-2 SALTWTR 93.7			·	Locator: Sampled: Lab ID: Matrix: % Solids:	P53C5 Aug 15, 96 L9316-3 SALTWTR 80.5			
Parameters	Value	Qual - t	MDL Ory Weight Basis	RDL s	Units	Value	Qual	MDL · Dry Weight Basis	RDL	Units
Molybdenum, Total, ICP		<mdl< td=""><td>1.1</td><td>5.38</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>1.2</td><td>6.14</td><td>mg/Kg</td></mdl<></td></mdl<>	1.1	5.38	mg/Kg		<mdl< td=""><td>1.2</td><td>6.14</td><td>mg/Kg</td></mdl<>	1.2	6.14	mg/Kg
Nickel, Total, ICP	11.6		1.1	5,38	mg/Kg	11.2		1.2	6.14	mg/Kg
Potassium, Total, ICP	952		110	538	mg/Kg	984		120	614	mg/Kg
Selenium, Total, ICP		<mdl< td=""><td>2.7</td><td>13.4</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>3.1</td><td>15.3</td><td>mg/Kg</td></mdl<></td></mdl<>	2.7	13.4	mg/Kg		<mdl< td=""><td>3.1</td><td>15.3</td><td>mg/Kg</td></mdl<>	3.1	15.3	mg/Kg
Silver, Total, ICP		<mdl< td=""><td>0.21</td><td>1.08</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>0.25</td><td>1.23</td><td>mg/Kg</td></mdl<></td></mdl<>	0.21	1.08	mg/Kg		<mdl< td=""><td>0.25</td><td>1.23</td><td>mg/Kg</td></mdl<>	0.25	1.23	mg/Kg
Sodium, Total, ICP	1540		27	134	mgiKg	3200		31	153	mg/Kg
Thallium, Total, ICP		<mdl< td=""><td>11</td><td>53.8</td><td>mg/Kg</td><td> </td><td><mdl< td=""><td>12</td><td>61.4</td><td>mg/Kg</td></mdl<></td></mdl<>	11	53.8	mg/Kg	 	<mdl< td=""><td>12</td><td>61.4</td><td>mg/Kg</td></mdl<>	12	61.4	mg/Kg
Zinc, Total, ICP	47.4		0.27	1.34	mg/Kg	45.5	,	0.31	1.53	mg/Kg
CONVENTIONALS M.Code=PSEP p9										
p+0.00 *	5.2		0.1		%	5.5		0.1		%
p+1.00 *	36.8		0.1		%	38		0.1		%
p+10.0 *		<mdl< td=""><td>0.1</td><td></td><td>%</td><td></td><td><mdl< td=""><td>0.1</td><td></td><td>%</td></mdl<></td></mdl<>	0.1		%		<mdl< td=""><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%
p+10.0(more than) *		<mdl< td=""><td>0.1</td><td></td><td>%</td><td>3.1</td><td></td><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%	3.1		0.1		%
p+2.00 *	48.3		0.1		%	46.6		0.1		%
p+3.00 *	4.5		0.1		%	3.5		0.1		%
p+4.00 *	0.3		0.1		%	0.4		0.1		%
p+5.00 *	0.3		0.1		%		<mdl< td=""><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%
p+6.00 *		<mdl< td=""><td>0.1</td><td></td><td>%</td><td>L</td><td><mdl< td=""><td>0.1</td><td></td><td>%</td></mdl<></td></mdl<>	0.1		%	L	<mdl< td=""><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%
p+7.00 *	0.3		0.1		%	<u> </u>	<mdl< td=""><td>0.1</td><td></td><td>%</td></mdl<>	0.1		%
p+8.00 *	2		0.1		%	0.5		0.1		%
p+9.00 *	0.3		0.1		%	0.1		0.1		%
p-1.00 *	1.3		0.1		%	1.1		0.1		%
p-2.00 *	0.1		0.1		%	0.1		0.1		%
p-2.00(less than) *	0.4		0.1		%	1.1		0.1		%
M.Code=SM5310-B										
Total Organic Carbon	1600		5.3	10.7	mg/Kg	2970)	6.2	12.4	mg/Kg
*indicates wet weight used for this parameter										İ

APPENDIX D 1994 CHEMISTRY DATA

TABLE OF CONTENTS

METRO Environmental Laboratory Quality Assurance Review

		page(s)
•	Table of Contents	î î
•	Introduction	2
•	General Comments	2-4
•	Conventionals	5- 6
•	Metals	7- 9
•	Organics	10-12
Ta	ables	
•	Table 1 Sample Inventory	13
•	Table 2 Data Qualifiers	14
Q	C Data	
•	Conventionals	not numbered
•	Metals	not numbered
•	Organics	not numbered

INTRODUCTION

This QA review accompanies data from samples submitted to the METRO Environmental Laboratory from the consultant Hart Crowser Inc. of Seattle Washington. This QA review is organized into four sections, as follows:

- General Comments
- Conventionals
- Metals
- Organics

An overview of the approach used for this QA review is detailed in the *General Comments* section which follows. Additional comments specific to each analysis are included in the appropriate section for that analysis.

This QA1 review has been conducted in accordance with guidelines established thorough the PSDDA program, primarily in the *Puget Sound Dredged Disposal Analysis Guidance Manual, Data Quality Evaluation for Proposed Dredged Material Disposal Projects*. Additionally, many of the approaches incorporated in this QA1 review have been established through collaboration between METRO and the Washington Department of Ecology Sediment Management Unit.

GENERAL COMMENTS

SCOPE OF SAMPLES SUBMITTED

This Quality Assurance Review is associated with Marine Sediment samples taken on 28 July and 29 July of 1994. These samples were taken in support of on-going studies conducted at Pier 53. Except where noted in the subcontracting sections of this QA review, all analyses have been conducted at the METRO Environmental Laboratory. The data are reported with associated data qualifiers and have undergone OA1 review, as summarized in this narrative report.

COMPLETENESS

Completeness has been evaluated for this data submission and QA review by considering the following criteria:

- Comparing available data with the planned project analytical scheme.
- Compliance with storage conditions, preservation requirements and hold times.
- A complete set of QC samples should be associated with each analysis.

Instances where these conditions are not met are noted in the appropriate section of this narrative.

METHODS

Methods are noted in the appropriate sections of this QA review.

TARGET LIST

The reported target list has been compared to the substances listed on the Sediment Quality Standards-Chemical Criteria to ensure that all applicable parameters have been analyzed, reported and included in this QA review.

DETECTION LIMITS

Achieved detection limits have been compared to the *Sediment Quality Standards-Chemical Criteria* to ensure that reported detection limits are sufficient to compare the reported data to the criteria values. This comparison is summarized in the appropriate sections of this report.

The METRO lab distinguishes between the Method Detection Limit (MDL) and the Reporting Detection Limit (RDL).

- The RDL is defined as the minimum concentration of a constituent that can be reliably quantified.
- The MDL is defined as the minimum concentration of a constituent that can be detected.

Some subcontractor data is available with an MDL only, in accordance with the subcontracting lab policies. All analytical data is reported with either a result or a detection limit.

HOLDING CONDITIONS AND TIMES

Holding conditions and times have been evaluated using guidelines established during the *Third Annual PSDDA Review Meeting*.

METHOD BLANK

Method blanks have been evaluated for the presence of positive results at or greater than the MDL. These instances and the qualification of the associated data are noted in the appropriate section.

STANDARD REFERENCE MATERIAL

Data have been qualified based on available SRM results. Instances of data reported without associated SRM analysis are noted in the narrative.

REPLICATES

Data have been qualified based on available replicate results. However, not all replicate data have been used as an indicator for data qualification. Only sets of replicate results which contain at least one result significantly greater than the MDL have been considered for data qualification. Where an RDL is present, only replicate data that contains at least one result greater than the RDL have been considered for data qualification. These guidelines have been used to account for the fact that precision obtained near the MDL is not representative of precision obtained throughout the entire analytical range.

MATRIX SPIKES

Matrix spikes have been used to qualify data for both organics and metals data. Matrix spikes are not required for conventionals parameters.

DATA QUALIFIERS

The data qualification system used for this data submission is listed in Table 2 of this QA review. These data qualifiers address situations which require qualification, according to QA1 guidance. The exact qualifiers used generally conform to QA1 guidance. METRO qualifiers indicating <MDL and <RDL have been used as replacements for the T and U specified under QA1 guidance.

UNITS AND SIGNIFICANT FIGURES

Data have been reported in accordance with lab policy at the time of data generation. When an RDL and MDL are reported, data have been reported to three significant figures above the RDL, and two significant figures equal to or below the RDL. Data with only an MDL have been reported to two significant figures.

All inorganic analytical results are reported in mg/Kg on a dry weight basis, whereas organic results are in ug/Kg on a dry weight basis.

Data is stored in wet weight basis on the data base and converted to dry weight basis during the reporting process. Should only one reported digit be available, rounding error can be significant. This rounding error can occur during the conversion from wet to dry weight.

SUBCONTRACTING

Analysis which have been subcontracted, and the issues associated with these subcontracted analyses are noted in this narrative. Note that the following parameter has always been submitted to a subcontractor for analysis:

• total organic carbon

CONVENTIONALS

COMPLETENESS

Results for all requested parameters are included in this report.

A total of 7 samples were analyzed for total solids (TOTS), particle size distribution (PSD) and total organic carbon (TOC). A complete set of QC samples are reported for all parameters.

Hold time exceedances occurred for some of the parameters and are discussed further in the hold time section.

SUBCONTRACTING

PSD was subcontracted to AmTest Inc. in Redmond, Washington.

METHODS

For TOC, PSEP (page 23) was used for preparation and SW 9060 was used for analysis. Please note that SM 5310-B is referenced for TOC analysis. The comprehensive report method code refers to the analytical method which is equivalent to the SW 9060 used to determine the TOC data. For Percent Solids, SM 2540 was used to perform the analysis. For PSD, PSEP (page 9) was used to perform the analysis. The optional peroxide digestion was not used, and particle size distribution was determined on the entire sample.

TARGET LIST

The reported phi size target list for particle size distribution corresponds to data obtained from the subcontracting laboratory.

DETECTION LIMITS

A positive result has been reported for all TOTS and TOC analyses. An MDL and RDL are reported for TOC. A positive result or MDL has been reported for all PSD phi sizes.

HOLDING CONDITIONS AND TIMES

All the analyses for PSD were completed within the recommended holding times for analysis. For PSD the recommended holding time is six months for refrigerated samples.

All the analyses for TOC and total solids were completed within 28 days of receipt. Twenty eight days is a commonly recognized hold time for these parameters. For this project, however, the recommended holding time for TOC and total solids analysis is 14 days for refrigerated samples. The analysis was not completed within the required 14 days. Note that these samples were received by the METRO lab well into the specified hold time.

METHOD BLANK

One unique method blank has been reported for TOC analysis. There is no indication of positive bias in the method blank results, and the data have not been qualified because of method blank contamination. Similarly for TOTS, one unique blank has been reported with no apparent positive bias.

STANDARD REFERENCE MATERIAL

One TOC SRM sample has been reported in association with the reported samples. The percent recovery was acceptable and well within the 80-120% range used to indicate data qualification.

REPLICATES

For TOC, one triplicate has been included in the data submission. The RSD was within acceptance windows. The TOC data have not been qualified based on the analytical results of sample replicates.

For TOTS, one triplicate sample has been included in the data submission. The RSD was well within the acceptance windows. Percent solids have not been qualified based on the analytical results of sample replicate or triplicates.

For PSD, one triplicate sample has been included in the data submission. The RSD for a number of phi sizes was well outside the acceptable window. Poor precision was observed throughout the range without a consistent pattern. All PSD data have been qualified with the data qualifier E.

UNITS AND SIGNIFICANT FIGURES

Data are reported in accordance with lab policy at the time of data generation.

TOC data are reported in ppm on a dry weight basis. Total Solids and PSD data are reported in percent.

METALS

COMPLETENESS

Data are reported for all parameters listed in Table 1. These data have been evaluated for completeness, and those comments are noted below.

All metal samples reported in this data submission have been analyzed in conjunction with a Standard Reference Material, Method Blank and Replicate. The sample selected for QC is a part of this data submission.

Sample storage conditions were not complaint for samples reported in this data submission. Further discussion will be addressed in the "hold time" section.

METHODS

The descriptive heading information "M.Code=" on the data report associates the elements in this data set with the specific method used for trace metals determination. The methods and their associated M. CODE used for the analysis of trace metals in this data set are listed in the table below.

Listing of Metals Methods

M.CODE	METHOD			
PE	EPA Method 3050/6010			
CV	EPA Method 7471			

TARGET LIST

The reported target list contains all Sediment Quality Standards-Chemical Criteria metals for all samples. Additional metals have been reported as available.

DETECTION LIMITS

A positive result, MDL and RDL have been reported for all metals. All reported detection limits for metals analysis are below *Sediment Quality Standards-Chemical Criteria* for metals.

HOLDING CONDITIONS AND TIMES

Sample storage conditions have been evaluated using guidelines established during the *Third Annual PSDDA Review Meeting*. The criteria used to evaluate storage conditions for these analyses are listed in the table below.

PARAMETER	FROZEN HOLD TIME	REFRIGERATED HOLD TIME	COMMENT
metals	2 years	6 months	psdda guidance
mercury	28 days	not recommended	none

All metals samples reported in this data submission were placed into refrigeration after collection and had never been frozen. Refrigeration is a commonly approved storage technique for mercury but is not approved for this program. Sample preparation and analysis for Mercury was completed within 21 days after samples were collected.

METHOD BLANK

Method blank contamination was not factor affecting data quality. All method blank

results were below the MDL.

Metals results are not corrected for the concentrations of metals determined in the method blanks.

STANDARD REFERENCE MATERIAL

The reference materials analyzed in association with reported METRO analytical results are listed below:

SRM	Comment
NR CC-PACS 1	does not contain silver

SRM Recovery of less than 80% has not been used as an indicator to qualify associated data. This is due to the fact that the digestion technique used for the reported samples is different from the one used to determine the SRM certified values.

SRM recovery of less than 80% and concurrent/compliant matrix spike recovery of greater than 75% was observed for the following elements: Cd, Cr, Ni. In accordance with qualification criteria outlined in this section and Table 2, associated data were not qualified.

SRM recovery of less than 50% was observed for Sb. Instances where the SRM recovery is below 50% are noted in the table below:

AFFECTED SAMPLES	SRM RECOVERY	MATRIX SPIKE RECOVERY
L4298-1 to L4298-7	Sb=39%	Sb=34%

REPLICATES

In general, reported RPD's for replicate samples included in this QA review are compliant and have not resulted in data qualification. Data associated with replicate RPD of greater than 20% have been qualified with the data qualifier "E".

MATRIX SPIKES

Note that matrix spike recoveries have also been included in the SRM recovery discussion.

Data associated with matrix spike recoveries which have not met the 75% to 125% criteria have been qualified with either the "G" or "L" flag, whichever is appropriate

Matrix spike recoveries of note are listed in the Table below:

Samples	COMMENT
L4298-1 to L4298-7	Mn=178% matrix spike, qualified with L
	Sb=34% matrix spike, qualified with G

UNITS AND SIGNIFICANT FIGURES

Data are reported in accordance with lab policy at the time of data generation. Metals sample results are reported in units of mg/Kg on a dry weight basis. Date are reported to three significant figures above the RDL and two significant figures when equal to or below the RDL.

Note that quality control samples such as spikes, duplicates and SRM material are reported in units of mg/L. This does not indicate that these quality control samples were performed on a water matrix. Rather,

METRO ENVIRONMENTAL LABORATORY QUALITY ASSURANCE REVIEW PIER53/HART CROWSER

sufficient information was available in the reported format (mg/L) to calculate information such as percent recoveries and qualify the data as needed. Because sufficient information was available to qualify the data, the data has not been calculated on a soil basis. Based on method dilution factors, the reported data may be converted to a soil basis by multiplying by a factor of 50. This calculation assumes a typical sample size of 1 gram wet weight and a final volume of 50 mL.

ORGANICS

COMPLETENESS

Data are reported for all parameters listed in Table 1. These data have been evaluated for completeness, and those comments are noted below.

All samples are accompanied by a method blank and reported surrogate recoveries. All samples are accompanied by a matrix spike and matrix spike duplicate. Note that for BNA and pesticides the marine sediment sample selected for spiking is not a sample from this sample set. These MS/MSD have been spiked and analyzed for all target compounds for BNA and volatiles. The spike target list for the pesticides matrix spike includes nearly all target compounds. The non spike list for pesticides is indicated in the QC summary. Replicate and SRM samples have not been analyzed with this data submission. Note that the matrix spike duplicate recoveries provide useful information regarding replication of results.

All samples were analyzed within hold time.

METHODS

Analyses were performed in accordance with EPA methods SW-846, -8270, -8080, -8260 for BNA, PEST/PCB, and VOA, respectively.

TARGET LIST

The BNA target list includes all Sediment Quality Standards-Chemical Criteria compounds with the exception of benzo(j)fluoranthene. Note that all three of the benzo-fluoranthene isomers elute in the same region of the chromatogram. The organics section has verified that the analytical conditions used are sufficient to calculate a total benzo-fluoranthene result using the b and k isomers reported.

Because there are no Sediment Quality Standards-Chemical Criteria for pesticides and volatiles, these target lists have been compared to the PSDDA Chemicals of Concern list.

The reported pesticides target list complies with the PSDDA pesticides of concern. It should be noted that DDT, DDE, and DDD have been reported as p,p' isomers. The reported PCB data includes Aroclors 1016, 1221, 1232, 1242, 1248, 1254, and 1260.

The reported volatile organics target list includes all of the PSDDA volatile compounds of concern.

DETECTION LIMITS

A positive result, MDL, and RDL have been reported for all organics parameters. In general, reported detection limits for organics analysis are below *Sediment Quality Standards-Chemical Criteria* for organics. Note that TOC normalized detection limits for chlorinated benzenes generally exceed SQS criteria. Additionally, the detection limit for 2,4-dimethyl phenol exceeds the SQS criteria.

HOLDING CONDITIONS AND TIMES

Sample storage conditions have been evaluated using guidelines established during the *Third Annual PSDDA Review Meeting*. The criteria used to evaluate storage conditions for these analyses are listed in the table below.

PARAMETER	FROZEN HOLD TIME	REFRIGERATED HOLD TIME	COMMENT
volatiles	NA	14 days	none
BNA	1 year	14 days	40 days to analyze
pesticides/PCB	l year	14 days	40 days to analyze

All samples were analyzed within hold time.

METHOD BLANK

No contaminants were detected in any PEST/PCB method blanks. Where contaminants were detected in method blanks the associated data have been qualified with "B".

Significant method blank contamination issues are noted in the table below:

SAMPLES	Comment
L4298-1 through L4298-7	Bis(2-ethylhexyl)phthalate and Di-N-butylphthalate >MDL, samples qualified with B
L4298-1, L4298-3, L4298-4, L4298-5, L4298-7	Methylene chloride, Chloroform, Acetone, 1,1,2,2-Tetrachloroethane >MDL, samples qualified with B
L4298-2, L4298-6	Methylene chloride, chloroform, acetone> MDL, samples qualified with B

STANDARD REFERENCE MATERIAL

No SRM was extracted with this data set.

REPLICATES

Sample replicates were not analyzed for organics parameters for this data submission. Matrix spike replicates were analyzed and are reported with this data submission. Matrix spike and matrix spike replicate recoveries and RPD of those recoveries were calculated and this data is included in this QA review. Data have not been qualified due to MS/MSD RPD.

MATRIX SPIKES

Data requiring qualification due to non-compliant matrix spike recovery are summarized in the tables below:

Summary of VOA Matrix Spike Recoveries Outside Acceptance Limits

SITUATION	COMPOUNDS	SAMPLES AFFECTED
matrix spike recoveries >150%, compounds qualified with L	Acetone, MEK,	L4298-1 through L4298-7
matrix spike recoveries <50%, compound qualified with G	Vinyl acetate	L4298-1 through L4298-7
matrix spike recoveries <10%, compounds qualified with X	Acrolein	L4298-1 through L4298-7

Summary of BNA Matrix Spike Recoveries Outside Acceptance Limits

SITUATION	COMPOUNDS	SAMPLES AFFECTED
matrix spike recoveries <50%, compounds qualified with G	Hexachloroethane, Benzo(g,h,i)perylene, 4-Chloroaniline, 4-Nitroaniline	L4298-1 through L4298-7
matrix spike recoveries >150%, compounds qualified with I.	2,4,6-trichlorophenol, 4-Nitrophenol, 1,2-Diphenylhydrazine, Carbazole	L4298-1 through L4298-7
matrix spike recoveries <10%, compounds qualified with X	Hexachlorocyclopentadiene, Benzidine, 3,3'-Dichlorobenzidine Aniline	L4298-1 through L4298-7

Summary of Pest/PCB Matrix Spike Recoveries Outside Acceptance Limits

SITUATION	COMPOUNDS	SAMPLES AFFECTED
matrix spike recoveries >150%,	Aroclor 1260	L4298-1 through L4298-7
compounds qualified with L		

Note that the high aroclor 1260 recovery appears to be due, at least in part, to poor sample homogeneity.

UNITS AND SIGNIFICANT FIGURES

Data are reported in accordance with lab policy at the time of data generation. Organics results are reported in ug/Kg on a dry weight basis. Results above the RDL are reported to three significant figures. Results equal to or below the RDL are reported to two significant figures.

Note that quality control samples such as spikes, duplicates and SRM material are reported in units of mg/L. This does not indicate that these quality control samples were performed on a water matrix. Rather, sufficient information was available in the reported format (mg/L) to calculate information such as percent recoveries and qualify the data as needed.

SURROGATES

Surrogate recoveries for all parameters and samples analyzed were within QC limits with the exception of the following:

Summary of Non Compliant Surrogate Recoveries

SITUATION	COMPOUNDS	SAMPLE AFFECTED
BNA Surrogate recoveries >150%	2,4,6, tribromophenol	L4298-1 through L4298-7

The above instances do not meet criteria for qualification as detailed in Table 2. Only when all surrogates for a fraction are non compliant are criteria met for data qualification.

Table 1 page 1 of 1

Sample Inventory for Pier 53/Hart Crowser 1994 Project A44703

STATION	SAMPLE DEPTH INCM.	SAMPLE DATE	LATITUDE	LONGITUDE	SAMPLE NUMBER	BNA	VOA	PEST/PCB	METAL	PERCENT SOLIDS	TOC	PSD
P53VG1	0-10 cm	940729	47 36' 14"	122 20' 24"	4298-1	X	Х	X	X	Х	X	X
P53VG3	0-10 cm	940728	47 36' 17"	122 20' 25"	4298-2	X	X	X	X	X	X	X
P53VG5	0-10 cm	940729	47 36' 14"	122 20' 21"	4298-3	X	X	Х	Х	X	X	X
P53VG6	0-10 cm	940729	47 36' 15"	122 20'22"	4298-4	X	X	X	X	X	X	X
P53VG8	0-10 cm	940729	47 36' 12"	122 20' 23"	4298-5	X	X	X	X	X	X	Х
P53VG10	0-10 cm	940729	47 36' 13"	122 20' 19"	4298-6	X	X	X	X	X	X	X
P53VG11	0-10 cm	940729	47 36' 13"	122 20' 20"	4298-7	X	X	X	X	X	X	Х

Table 2. Summary of Data Qualifiers Used

Condition to Qualify	SEDQUAL Qualifier	Organics QC Limits	Metals QC Limits	Conventionals QC Limits	METRO Equivalent Qualifier
very low matrix spike recovery	Х	< 10 %	< 10 %	NA	Х
low matrix spike recovery	G	< 50%	< 75%	NA	G
high matrix spike recovery	L	> 150%	>125%	NA	L
low SRM recovery	G	SRM not available	NA	< 80%*	G
high SRM recovery	L	SRM not available	>120%	>120%*	L
high duplicate RPD	Е	>100 %	>20%	> 20 %	E, estimated
high triplicate RSD	E	> 100%	NA	> 20 %	E, estimated
less than the reporting detection limit	Т	NA	NA	NA	< RDL .
less than the method detection limit	U	NA	NA	NA	< MDL
contamination reported in blank	В	> MDL	> MDL	> MDL	В
very biased data, based on surrogate recoveries	Х	all fraction surrogates are <10%	NA	NA	X
biased data, based on surrogate recoveries	E	all fraction surrogates are < 50% or >150%	NA	NA	E, estimated
estimate based on presumptive evidence	N	NA	NA	NA	J# used to indicate the presence of TIC's
rejected, unusable for all purposes	R	NA	NA	NA	R

^{*} Note that PSDDA guidance uses a 95% confidence window for this parameter/qualification.

			. –		V 1111	ioritai	Lub Ai	,		[-					
PROJECT: A44703	Locator: Sampled:	P53/G1 Jul 29, 94				Locator: Sampled:	P53VG3 Jul 28, 94				Locator: Sampled:	P53VG5 Jul 29, 94			
	Lab ID:	L4298-1				Lab ID:	L4298-2	_			Lab ID:	L4298-3	ocn		
	Matrix:	SALTWIRS	SED			Matrix:	SALTWTRS	ED			Matrix:	SALTWTR	SED		- 1
	% Solids:	80.7				% Solids:	61.7				% Solids:	62.5			1
D	A. I	01		201		I	٠,	A 4 D 1	001	11-34-	Value	Qual	MDL	RDL	Units
Parameters	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units	value		Ory Weight Ba		0,,,,,
		- Di	y Weight Ba	ISIS			-	Dry Weight Ba	ISIS			- 1	ny weight bu	313	
ORGANICS															İ
M.Code=SW-846 8080														4.07	
4,4'-DDD		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>11.1</td><td></td><td>2.1</td><td>4.27</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	1.6	3.31	ug/Kg		<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>11.1</td><td></td><td>2.1</td><td>4.27</td><td>ug/Kg ug/Kg</td></mdl<>	2.1	4.33	ug/Kg	11.1		2.1	4.27	ug/Kg ug/Kg
4,4'-DDE		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>5.18</td><td></td><td>2.1</td><td>4.27</td><td>ug/Kg ug/Kg</td></mdl<></td></mdl<>	1.6	3.31	ug/Kg		<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>5.18</td><td></td><td>2.1</td><td>4.27</td><td>ug/Kg ug/Kg</td></mdl<>	2.1	4.33	ug/Kg	5.18		2.1	4.27	ug/Kg ug/Kg
4,4'-DDT		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>288</td><td></td><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	1.6	3.31	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>288</td><td></td><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.33	ug/Kg	288		2.1	4.27	ug/Kg
Aldrin		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td><u> </u> </td><td><mdl <mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></mdl </td></mdl<></td></mdl<>	1.6	3.31	ug/Kg		<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td><u> </u> </td><td><mdl <mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></mdl </td></mdl<>	2.1	4.33	ug/Kg	<u> </u>	<mdl <mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></mdl 	2.1	4.27	ug/Kg
Alpha-BHC		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.1</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg	<u> </u>	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.1</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg	<u> </u>	<mdl< td=""><td>2.1</td><td>42.7</td><td>ug/Kg</td></mdl<>	2.1	42.7	ug/Kg
Aroclor 1016		<mdl< td=""><td>16</td><td>33.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	33.1	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.3	ug/Kg	 	<mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<>	21	42.7	ug/Kg
Aroclor 1221		<mdl< td=""><td>16</td><td>33.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	33.1	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.3	ug/Kg	 	<mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<>	21	42.7	ug/Kg
Aroclor 1232		<mdl< td=""><td>16</td><td>33.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	33.1	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.3	ug/Kg		<mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<>	21	42.7	ug/Kg
Aroclor 1242		<mdl< td=""><td>16</td><td>33.1</td><td>ug/Kg</td><td>!</td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	33.1	ug/Kg	!	<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.3	ug/Kg	<u> </u>	<mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<>	21	42.7	ug/Kg
Aroclor 1248		<mdl< td=""><td>16</td><td>33.1</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td>37</td><td></td><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	16	33.1	ug/Kg	 	<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td>37</td><td></td><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<>	21	43.3	ug/Kg	37		21	42.7	ug/Kg
Aroclor 1254		<mdl< td=""><td>16</td><td>33.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td>43.4</td><td></td><td>21</td><td>42.7</td><td>ug/kg</td></mdl<></td></mdl<>	16	33.1	ug/Kg		<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td>43.4</td><td></td><td>21</td><td>42.7</td><td>ug/kg</td></mdl<>	21	43.3	ug/Kg	43.4		21	42.7	ug/kg
Aroclor 1260		<ndl,l< td=""><td>16</td><td>33.1</td><td>ug/Kg</td><td></td><td>29 <rdl,l< td=""><td>21</td><td>43.3 4.33</td><td>ug/Kg</td><td>43.4</td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></rdl,l<></td></ndl,l<>	16	33.1	ug/Kg		29 <rdl,l< td=""><td>21</td><td>43.3 4.33</td><td>ug/Kg</td><td>43.4</td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></rdl,l<>	21	43.3 4.33	ug/Kg	43.4	<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Beta-BHC		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>21.6</td><td>ug/Kg ug/Kg</td><td>╂</td><td><mdl< td=""><td>13</td><td>21.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg		<mdl< td=""><td>2.1</td><td>21.6</td><td>ug/Kg ug/Kg</td><td>╂</td><td><mdl< td=""><td>13</td><td>21.3</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	21.6	ug/Kg ug/Kg	╂	<mdl< td=""><td>13</td><td>21.3</td><td>ug/Kg</td></mdl<>	13	21.3	ug/Kg
Chlordane		<mdl< td=""><td>9.9</td><td>16.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td></td><td>4.33</td><td></td><td> </td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	9.9	16.5	ug/Kg		<mdl< td=""><td></td><td>4.33</td><td></td><td> </td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>		4.33		 	<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Delta-BHC Dieldrin		<mdl <mdl< td=""><td>1.6 1.6</td><td>3.31</td><td>ug/Kg</td><td>∦</td><td><mdl <mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></mdl </td></mdl<></mdl 	1.6 1.6	3.31	ug/Kg	∦	<mdl <mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></mdl 	2.1	4.33	ug/Kg ug/Kg	<u> </u>	<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Endosulfan I		<mdl< td=""><td>1.6</td><td>3.31 3.31</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31 3.31	ug/Kg ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Endosulfan II		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>- </td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg	- 	<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Endosulfan Sulfate		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg		<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Endrin		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Endrin Aldehyde		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg		<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Gamma-BHC (Lindane)		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg	1	<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Heptachlor		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Heptachlor Epoxide		<mdl< td=""><td>1.6</td><td>3.31</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.31	ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.33</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.33	ug/Kg		<mdl< td=""><td>2.1</td><td>4.27</td><td>ug/Kg</td></mdl<>	2.1	4.27	ug/Kg
Methoxychlor		<mdl< td=""><td>9.9</td><td>16.5</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>13</td><td>21.6</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>13</td><td>21.3</td><td></td></mdl<></td></mdl<></td></mdl<>	9.9	16.5	ug/Kg	I	<mdl< td=""><td>13</td><td>21.6</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>13</td><td>21.3</td><td></td></mdl<></td></mdl<>	13	21.6	ug/Kg	1	<mdl< td=""><td>13</td><td>21.3</td><td></td></mdl<>	13	21.3	
Toxaphene		<mdl< td=""><td>16</td><td>33.1</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	33.1	ug/Kg	 	<mdl< td=""><td>21</td><td>43.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.3	ug/Kg		<mdl< td=""><td>21</td><td>42.7</td><td>ug/Kg</td></mdl<>	21	42.7	ug/Kg
M.Code=SW-846 B260						1									
1,1,1-Trichloroethane		<mdl< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<></td></mdl<>	6.2	12.4	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>8</td><td>16</td><td></td></mdl<>	8	16	
1,1,2,2-Tetrachloroethane		<mdl,b< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl,b< td=""><td>8</td><td>16</td><td></td></mdl,b<></td></mdl<></td></mdl,b<>	6.2	12.4	ug/Kg	1	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl,b< td=""><td>8</td><td>16</td><td></td></mdl,b<></td></mdl<>	8.1	16.2	ug/Kg		<mdl,b< td=""><td>8</td><td>16</td><td></td></mdl,b<>	8	16	
1,1,2-Trichloroethane		<mdl< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<></td></mdl<>	6.2	12.4	ug/Kg	1	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>8</td><td>16</td><td></td></mdl<>	8	16	
1,1,2-Trichloroethylene		<mdl< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<></td></mdl<>	6.2	12.4	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>8</td><td>16</td><td></td></mdl<>	8	16	
1,1-Dichloroethane		<mdl< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td>H</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<></td></mdl<>	6.2	12.4	ug/Kg	H	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>8</td><td>16</td><td></td></mdl<>	8	16	
1,1-Dichloroethylene		<vidl< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td>]</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<></td></vidl<>	6.2	12.4	ug/Kg]	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>8</td><td>16</td><td></td></mdl<>	8	16	
1,2-Dichloroethane		<ndl< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<></td></ndl<>	6.2	12.4	ug/Kg	1	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td>16</td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>8</td><td>16</td><td></td></mdl<>	8	16	
1,2-Dichloropropane		<vidl< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td></td><td></td></mdl<></td></mdl<></td></vidl<>	6.2	12.4	ug/Kg	1	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td></td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>8</td><td></td><td></td></mdl<>	8		
2-Butanone (MEK)		<ndl,l< td=""><td>31</td><td>62</td><td>ug/Kg</td><td>1</td><td><mdl,l< td=""><td>41</td><td>81</td><td>ug/Kg</td><td>4:</td><td></td><td>40</td><td>80</td><td></td></mdl,l<></td></ndl,l<>	31	62	ug/Kg	1	<mdl,l< td=""><td>41</td><td>81</td><td>ug/Kg</td><td>4:</td><td></td><td>40</td><td>80</td><td></td></mdl,l<>	41	81	ug/Kg	4:		40	80	
2-Chloroethylvinyl ether		<vdl< td=""><td>6.2</td><td>12.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td></td><td></td></mdl<></td></mdl<></td></vdl<>	6.2	12.4	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8</td><td></td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>8</td><td></td><td></td></mdl<>	8		
2-Hexanone		<vidl< td=""><td>31</td><td>62</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>81</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>40</td><td></td><td></td></mdl<></td></mdl<></td></vidl<>	31	62	ug/Kg		<mdl< td=""><td>41</td><td>81</td><td>ug/Kg</td><td>I</td><td><mdl< td=""><td>40</td><td></td><td></td></mdl<></td></mdl<>	41	81	ug/Kg	I	<mdl< td=""><td>40</td><td></td><td></td></mdl<>	40		
4-Methyl-2-Pentanone (MIBK)		<wdl< td=""><td>31</td><td>62</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>41</td><td>81</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>40</td><td>80</td><td></td></mdl<></td></mdl<></td></wdl<>	31	62	ug/Kg	1	<mdl< td=""><td>41</td><td>81</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>40</td><td>80</td><td></td></mdl<></td></mdl<>	41	81	ug/Kg		<mdl< td=""><td>40</td><td>80</td><td></td></mdl<>	40	80	
Acetone	78.		31	62	ug/Kg		79 <rdl,b,l< td=""><td>41</td><td>81</td><td>ug/Kg</td><td></td><td></td><td>40</td><td></td><td></td></rdl,b,l<>	41	81	ug/Kg			40		
Acrolein		<mdl,x< td=""><td>31</td><td>62</td><td>ug/Kg</td><td>1</td><td><mdl,x< td=""><td>41</td><td>81</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td></td><td></td><td></td></mdl,x<></td></mdl,x<></td></mdl,x<>	31	62	ug/Kg	1	<mdl,x< td=""><td>41</td><td>81</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td></td><td></td><td></td></mdl,x<></td></mdl,x<>	41	81	ug/Kg		<mdl,x< td=""><td></td><td></td><td></td></mdl,x<>			
Acrylonitrile		<vidl< td=""><td>31</td><td>62</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>41</td><td>81</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>40</td><td>80</td><td>ug/Kg</td></mdl<></td></mdl<></td></vidl<>	31	62	ug/Kg	1	<mdl< td=""><td>41</td><td>81</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>40</td><td>80</td><td>ug/Kg</td></mdl<></td></mdl<>	41	81	ug/Kg		<mdl< td=""><td>40</td><td>80</td><td>ug/Kg</td></mdl<>	40	80	ug/Kg
															

PROJECT: A44703 P53VG5 Locator: P53VG1 P53VG3 Locator: Locator: Sampled: Jul 29, 94 Sampled: Jul 29, 94 Sampled: Jul 28, 94 Lab ID: L4298-2 Lab ID: L4298-3 L4298-1 Lab ID: SALTWTRSED Matrix: SALTWTRSED Matrix: SALTWTRSED Matrix: % Solids: 62.5 % Solids: 80.7 % Solids: 61.7 RDL Units MDL Value Qual **Parameters** Value Qual MDL RDL Units Value Qual MDL RDL Units - Dry Weight Basis - Dry Weight Basis - Dry Weight Basis <MDL 8 16 ug/Kg Benzene <MDL <MDL 6.2 12.4 ug/Kg 8.1 16.2 ug/Kg 16 <MDL ug/Kg Bromodichloromethane <MDL 6.2 12.4 ua/Ka <MDI 16.2 ug/Kg 16 ug/Kg Bromoform <MDL <MDL 6.2 12.4 <MDL 8.1 16.2 ug/Kg ug/Kg 16 ug/Kg Bromomethane <MDL <MDL <MDL 12.4 ug/Kg 16.2 ug/Kg 8 16 ug/Kg <RDL Carbon Disulfide <MDL 6.2 12.4 ug/Kg <MDL 8.1 16.2 ug/Kg 98 <MDL 8 16 ug/Kg Carbon Tetrachloride <MDL 6.2 12.4 ug/Kg <MDL 8.1 16.2 ug/Kg 16 ug/Kg Chlorobenzene <MDL <MDL 6.2 12.4 ug/Kg <MDL 8.1 16.2 ug/Kg ug/Kg <MDL 8 16 Chlorodibromomethane <MDL 6.2 12.4 ug/Kg <MDL 8.1 16.2 ug/Kg ug/Kg 8 16 Chloroethane <MDL 12.4 <MDL 16.2 ug/Kg <MDL ug/Kg 16 ug/Kg Chloroform В 13.3 6.2 12.4 <MDL.B 8.1 16.2 ug/Kg 25.8 В ug/Kg 8 16 ug/Kg Chloromethane <MDI <MDL 6.2 12.4 ug/Kg <MDL 8.1 16.2 ug/Kg <MDL 16 ug/Kg Chloromethane <MDL 6.2 <MDL 8.1 16.2 ug/Kg 12.4 ug/Kg cis-1.3-Dichloropropene <MDL 8 16 ug/Kg 6.2 12.4 <MDL ug/Kg <MDI ug/Kg 8.1 16.2 8 16 ug/Kg <MDL Elhylbenzene 12.4 ug/Ka <MDL ug/Kg <NDL 6.2 8.1 16.2 80 ug/Kg В 40 Methylene Chloride 99.4 <RDL.B 31 62 ug/Kg 84.1 В 41 81 ug/Kg <MDL 8 16 ug/Kg Styrene <MDL <MDL 6.2 12.4 ug/Kg 8.1 16.2 ug/Kg <MDL 8 16 ug/Kg Tetrachloroethylene ug/Kg <MDL <MDL 81 16.2 12.4 ug/Kg 8 16 ug/Kg <MDL Toluene <MDL ug/Kg <MDL 6.2 12.4 ug/Kg 8.1 16.2 <MDL 16 ug/Kg Total Xylenes <MDL 12.4 <MDL 8.1 16.2 ug/Kg 62 ug/Kg <MDL 16 ug/Kg Trans-1,2-Dichloroethylene <MDL 16.2 ug/Kg <MDL 6.2 12.4 ug/Kg 8.1 8 ug/Kg <MDL 16 Trans-1,3-Dichloropropene <MDL 6.2 12.4 ug/Kg <MDL 8.1 16.2 ug/Kg 16 ug/Kg <MDL 8 Trichlorofluoromethane <MDL 12.4 ug/Kg <MDL 8.1 16.2 ug/Kg 40 80 ug/Kg Vinvl Acetate <MDL.G <MDL,G 31 62 ug/Kg <MDL,G 41 81 ug/Kg <MDL 8 16 ug/Kg Vinyl Chloride <MOL <MDL 8.1 16.2 ug/Kg 6.2 12.4 ug/Kg M.Code=SW-846 B270 <MDL 26 42.7 ug/Kg 1,2,4-Trichlorobenzene <MDL 20 33.1 ug/Kg <MDL 26 43.3 ug/Kg 42.7 1.2-Dichlorobenzene <MDL 26 ug/Kg <MDL 20 <MDL 26 43.3 ug/Kg 33.1 ug/Kg <MDL,L 85 171 ug/Kg 1,2-Diphenylhydrazine <MDL.L 66 ug/Kg <MDL.L 86 173 ug/Kg 133 26 42.7 ug/Kg <MDL 1.3-Dichlorobenzene <MDL 20 33.1 ug/Kg <MDL 26 43.3 ug/Kg 1.4-Dichlorobenzene 26 ug/Kg <MDL 26 42.7 ug/Kg <MDL 43.3 <MDI 20 33.1 ug/Kg 341 ug/Kg <MDL 180 2,4,5-Trichloropheno <MDL 345 ug/Kg 140 264 180 <MDL ug/Kg 341 ug/Kg 180 <MDL.L 2,4,6-Trichlorophenol <MDL.L 140 264 ug/Kg <MDL.L 180 345 ug/Kg 43 85.3 ug/Kg 2.4-Dichlorophenol <MDL <MDL 33 66 ug/Kg <MDL 44 86.4 ug/Kg 43 85.3 ug/Kg <MDL 2,4-Dimethylphenol <MDL <MDL 33 66 ug/Kg 44 86.4 ug/Kg <MDL 85 171 ug/Kg 86 2.4-Dinitrophenol <MDL 66 133 ug/Kg <MDL 173 ug/Kg <MDL 18 34.1 ug/Kg 2.4-Dinitrotoluene <MDL 26.4 ug/Kg <MOL 18 34.5 ug/Kg 14 34.1 ug/Kg <MDL 18 2.6-Dinitrotoluene <MDI <MDL 14 26.4 ug/Kg 18 34.5 ug/Kg ug/Kg 26 42.7 2-Chloronaphthalene 26 <MDL <MDL 20 33.1 ug/Kg <MDL 43.3 ug/Kg 171 ug/Kg 2-Chlorophenol <MDL 86 173 <MDL 85 133 ug/Kg <MDL 66 ug/Kg 69 128 ug/Kg 129 2-Methylnaphthalene <MDL 53 99.1 <MDL 70 130 ug/Kg ug/Kg 85.3 ug/Kg 2-Methylphenol <MDL 43 ug/Kg <MDL 33 66 ug/Kg <MDL 44 86.4 256 ug/Kg 2-Nitroaniline <MDL 180 <MDL 140 198 ug/Kg <MDL 180 259 ug/Kg 43 85.3 ug/Kg <MDL 2-Nitrophenol <MDL 33 66 ug/Kg <MDL 44 86.4 ug/Kg ug/Kg <MDL.X 43 85.3 3.3'-Dichlorobenzidine <MDL.X 33 66 ug/Kg <MDLX 44 86.4 ug/Kg 256 259 <MDL 180 ug/Kg 3-Nitroaniline 140 <MDL 180 ug/Kg <MDL 198 ug/Kg

PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG1 Jul 29, 94 L4298-1 SALTWTRS 80.7	SED			Locator: Sampled; Lab ID: Matrix: % Solids;	P53VG3 Jul 28, 94 L4298-2 SALTWTRSED 61.7)		-	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG5 Jul 29, 94 L4298-3 SALTWTRS 62.5	ED		ST. Ang St. Communication and Admires
Parameters	Value	Qual - Da	MDL y Weight Ba	RDL sis	Units	Value	Qual - Dry	MDL / Weight Bas	RDL	Units	Value	Qual - D	MDL ry Weight Bas	RDL is	Units
4,6-Dinitro-O-Cresol		<mdl< td=""><td>66</td><td>133</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	66	133	ug/Kg		<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<></td></mdl<>	86	173	ug/Kg		<mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<>	85	171	ug/Kg
4-Bromophenyl Phenyl Ether		<mdl< td=""><td>14</td><td>19.8</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>25.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	14	19.8	ug/Kg	l	<mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>25.6</td><td>ug/Kg</td></mdl<></td></mdl<>	18	25.9	ug/Kg		<mdl< td=""><td>18</td><td>25.6</td><td>ug/Kg</td></mdl<>	18	25.6	ug/Kg
4-Chloro-3-Methylphenol		<mdl< td=""><td>66</td><td>133</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	66	133	ug/Kg	 	<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<></td></mdl<>	86	173	ug/Kg		<mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<>	85	171	ug/Kg
4-Chloroaniline		<mjl,g< td=""><td>66</td><td>133</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mjl,g<>	66	133	ug/Kg		<mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	86	173	ug/Kg	 	<mdl,g< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,g<>	85	171	ug/Kg
4-Chlorophenyl Phenyl Ether		<mdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	33.1	ug/Kg	 	<mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.3	ug/Kg		<mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<>	26	42.7	ug/Kg
4-Methylphenol		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	33	66	ug/Kg	l	<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.4	ug/Kg	<u> </u>	<mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<>	43	85.3	ug/Kg
4-Nitroaniline		<mdl,g< td=""><td>140</td><td>198</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>259</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>256</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	140	198	ug/Kg		<mdl,g< td=""><td>180</td><td>259</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>180</td><td>256</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	180	259	ug/Kg		<mdl,g< td=""><td>180</td><td>256</td><td>ug/Kg</td></mdl,g<>	180	256	ug/Kg
4-Nitrophenol		<mdl,l< td=""><td>66</td><td>133</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>86</td><td>173</td><td>ug/Kg</td><td>1</td><td><mdl,l< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,l<></td></mdl,l<></td></mdl,l<>	66	133	ug/Kg		<mdl,l< td=""><td>86</td><td>173</td><td>ug/Kg</td><td>1</td><td><mdl,l< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,l<></td></mdl,l<>	86	173	ug/Kg	1	<mdl,l< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,l<>	85	171	ug/Kg
Acenaphthene		<mdl< td=""><td>14</td><td>26.4</td><td>ug/Kg</td><td>50.6</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>18</td><td>34.5</td><td>ug/Kg</td><td>323</td><td></td><td>18</td><td>34.1</td><td>ug/Kg</td></mdl<>	14	26.4	ug/Kg	50.6	· · · · · · · · · · · · · · · · · · ·	18	34.5	ug/Kg	323		18	34.1	ug/Kg
Acenaphthylene		<mdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td>44.7</td><td></td><td>26</td><td>43.3</td><td>ug/Kg</td><td>163</td><td></td><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<>	20	33.1	ug/Kg	44.7		26	43.3	ug/Kg	163		26	42.7	ug/Kg
Aniline		<mdl,x< td=""><td>66</td><td>133</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,x<></td></mdl,x<></td></mdl,x<>	66	133	ug/Kg		<mdl,x< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,x<></td></mdl,x<>	86	173	ug/Kg		<mdl,x< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl,x<>	85	171	ug/Kg
Anthracene		<mdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td>365</td><td></td><td>26</td><td>43.3</td><td>ug/Kg</td><td>1480</td><td></td><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<>	20	33.1	ug/Kg	365		26	43.3	ug/Kg	1480		26	42.7	ug/Kg
Benzidine		<mdl,x< td=""><td>790</td><td>1590</td><td>ug/Kg</td><td>1</td><td><mdl,x< td=""><td>1000</td><td>2070</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>1000</td><td>2050</td><td>ug/Kg</td></mdl,x<></td></mdl,x<></td></mdl,x<>	790	1590	ug/Kg	1	<mdl,x< td=""><td>1000</td><td>2070</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>1000</td><td>2050</td><td>ug/Kg</td></mdl,x<></td></mdl,x<>	1000	2070	ug/Kg		<mdl,x< td=""><td>1000</td><td>2050</td><td>ug/Kg</td></mdl,x<>	1000	2050	ug/Kg
Benzo(a)anthracene	25	<rdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td>744</td><td></td><td>26</td><td>43.3</td><td>ug/Kg</td><td>4620</td><td></td><td>26</td><td>42.7</td><td>ug/Kg</td></rdl<>	20	33.1	ug/Kg	744		26	43.3	ug/Kg	4620		26	42.7	ug/Kg
Benzo(a)pyrene		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td>630</td><td></td><td>44</td><td>86.4</td><td>ug/Kg</td><td>2160</td><td></td><td>43</td><td>35.3</td><td>ug/Kg</td></mdl<>	33	66	ug/Kg	630		44	86.4	ug/Kg	2160		43	35.3	ug/Kg
Benzo(b)fluoranthene		<mdl< td=""><td>53</td><td>99.1</td><td>ug/Kg</td><td>1010</td><td></td><td>70</td><td>130</td><td>ug/Kg</td><td>3580</td><td></td><td>69</td><td>128</td><td>ug/Kg</td></mdl<>	53	99.1	ug/Kg	1010		70	130	ug/Kg	3580		69	128	ug/Kg
Benzo(g,h,i)perylene	57	<rdl,g< td=""><td>33</td><td>66</td><td>ug/Kg</td><td>288</td><td>G</td><td>44</td><td>86.4</td><td>ug/Kg</td><td>346</td><td>G</td><td>43</td><td>35.3</td><td>ug/Kg</td></rdl,g<>	33	66	ug/Kg	288	G	44	86.4	ug/Kg	346	G	43	35.3	ug/Kg
Benzo(k)fluoranthene		<mdl< td=""><td>53</td><td>99.1</td><td>ug/Kg</td><td>329</td><td></td><td>70</td><td>130</td><td>ug/Kg</td><td>1200</td><td></td><td>69</td><td>128</td><td>ug/Kg</td></mdl<>	53	99.1	ug/Kg	329		70	130	ug/Kg	1200		69	128	ug/Kg
Benzoic Acid		<mdl< td=""><td>140</td><td>198</td><td>ug/Kg</td><td>230</td><td></td><td>180</td><td>259</td><td>ug/Kg</td><td>294</td><td></td><td>180</td><td>256</td><td>ug/Kg</td></mdl<>	140	198	ug/Kg	230		180	259	ug/Kg	294		180	256	ug/Kg
Benzyl Alcohol		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>43</td><td>B5.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	33	66	ug/Kg	l	<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>43</td><td>B5.3</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.4	ug/Kg		<mdl< td=""><td>43</td><td>B5.3</td><td>ug/Kg</td></mdl<>	43	B5.3	ug/Kg
Benzyl Butyl Phthalate		<mdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	33.1	ug/Kg		<mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.3	ug/Kg	<u> </u>	<mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<>	26	42.7	ug/Kg
Bis(2-Chloroethoxy) Methane		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td><u> </u> </td><td><mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	33	66	ug/Kg		<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td><u> </u> </td><td><mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.4	ug/Kg	<u> </u>	<mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<>	43	85.3	ug/Kg
Bis(2-Chloroethyl)Ether		<mdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	33.1	ug/Kg		<mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.3	ug/Kg	<u> </u>	<mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<>	26	42.7	ug/Kg
Bis(2-Chloroisopropyl)Ether		<mdl< td=""><td>66</td><td>133</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	66	133	ug/Kg		<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<></td></mdl<>	86	173	ug/Kg	l	<mdl< td=""><td>85</td><td>171</td><td>ug/Kg</td></mdl<>	85	171	ug/Kg
Bis(2-Ethylhexyl)Phthalate	51.7	В	20	33.1	ug/Kg	222	В .	26	43.3	ug/Kg	317		26	42.7	ug/Kg
Carbazole		<mdl,l< td=""><td>33</td><td>66</td><td>ug/Kg</td><td>147</td><td>L</td><td>44</td><td>86.4</td><td>ug/Kg</td><td>549</td><td></td><td>43</td><td>85.3 42.7</td><td>ug/Kg</td></mdl,l<>	33	66	ug/Kg	147	L	44	86.4	ug/Kg	549		43	85.3 42.7	ug/Kg
Chrysene	37.5		20	33.1	ug/Kg	1060		26	43.3	ug/Kg	3660		26		ug/Kg
Coprostanol		<mdl< td=""><td>140</td><td>198</td><td>ug/Kg</td><td>502</td><td></td><td>180</td><td>259</td><td>ug/Kg</td><td>862</td><td></td><td>180 43</td><td>256 85.3</td><td>ug/Kg ug/Kg</td></mdl<>	140	198	ug/Kg	502		180	259	ug/Kg	862		180 43	256 85.3	ug/Kg ug/Kg
Di-N-Butyl Phthalate	74.2		33	66	ug/Kg	191	В	44	86.4	ug/Kg	173	B <mdl< td=""><td>26</td><td>42.7</td><td>ug/kg</td></mdl<>	26	42.7	ug/kg
Di-N-Octyl Phthalate		<mdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td>435</td><td></td><td>69</td><td>128</td><td>ug/kg</td></mdl<></td></mdl<>	20	33.1	ug/Kg		<mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td>435</td><td></td><td>69</td><td>128</td><td>ug/kg</td></mdl<>	26	43.3	ug/Kg	435		69	128	ug/kg
Dibenzo(a,h)anthracene		<mdl< td=""><td>53</td><td>99.1</td><td>ug/Kg</td><td>110</td><td></td><td>70</td><td>130</td><td>ug/Kg</td><td>192</td><td></td><td>43</td><td>85.3</td><td></td></mdl<>	53	99.1	ug/Kg	110		70	130	ug/Kg	192		43	85.3	
Dibenzofuran		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td>318</td><td><mdl< td=""><td>43</td><td>85.3</td><td></td></mdl<></td></mdl<></td></mdl<>	33	66	ug/Kg		<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td>318</td><td><mdl< td=""><td>43</td><td>85.3</td><td></td></mdl<></td></mdl<>	44	86.4	ug/Kg	318	<mdl< td=""><td>43</td><td>85.3</td><td></td></mdl<>	43	85.3	
Diethyl Phthalate		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td><u></u></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>25.6</td><td></td></mdl<></td></mdl<></td></mdl<>	33	66	ug/Kg	<u></u>	<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>25.6</td><td></td></mdl<></td></mdl<>	44	86.4	ug/Kg		<mdl< td=""><td>18</td><td>25.6</td><td></td></mdl<>	18	25.6	
Dimethyl Phthalate		<mdl< td=""><td>14</td><td>19.8</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td><td>16600</td><td></td><td>26</td><td>51.2</td><td></td></mdl<></td></mdl<>	14	19.8	ug/Kg		<mdl< td=""><td>18</td><td>25.9</td><td>ug/Kg</td><td>16600</td><td></td><td>26</td><td>51.2</td><td></td></mdl<>	18	25.9	ug/Kg	16600		26	51.2	
Fluoranthene	62.6		20	39.7	ug/Kg	1410		26	51.9	ug/Kg	1		26	42.7	ug/Kg
Fluorene		<mdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td>92.5</td><td></td><td>26</td><td>43.3</td><td>ug/Kg</td><td>571</td><td><mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<></td></mdl<>	20	33.1	ug/Kg	92.5		26	43.3	ug/Kg	571	<mdl< td=""><td>26</td><td>42.7</td><td>ug/Kg</td></mdl<>	26	42.7	ug/Kg
Hexachlorobenzene		<mdl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>43</td><td>85.3</td><td></td></mdl<></td></mdl<></td></mdl<>	20	33.1	ug/Kg	 	<mdl< td=""><td>26</td><td>43.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>43</td><td>85.3</td><td></td></mdl<></td></mdl<>	26	43.3	ug/Kg	 	<mdl< td=""><td>43</td><td>85.3</td><td></td></mdl<>	43	85.3	
Hexachlorobutadiene		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td>- </td><td><mdl,x< td=""><td>43</td><td>85.3</td><td></td></mdl,x<></td></mdl<></td></mdl<>	33	66	ug/Kg		<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td>- </td><td><mdl,x< td=""><td>43</td><td>85.3</td><td></td></mdl,x<></td></mdl<>	44	86.4	ug/Kg	-	<mdl,x< td=""><td>43</td><td>85.3</td><td></td></mdl,x<>	43	85.3	
Hexachlorocyclopentadiene		<mdl,x< td=""><td>33</td><td>66</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>43</td><td>85.3</td><td></td></mdl,x<></td></mdl,x<></td></mdl,x<>	33	66	ug/Kg		<mdl,x< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>43</td><td>85.3</td><td></td></mdl,x<></td></mdl,x<>	44	86.4	ug/Kg		<mdl,x< td=""><td>43</td><td>85.3</td><td></td></mdl,x<>	43	85.3	
Hexachloroethane		<mdl,g< td=""><td>33</td><td>66</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td>-</td><td></td><td>43</td><td>85.3</td><td></td></mdl,g<></td></mdl,g<>	33	66	ug/Kg	 	<mdl,g< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td>-</td><td></td><td>43</td><td>85.3</td><td></td></mdl,g<>	44	86.4	ug/Kg	-		43	85.3	
Indeno(1,2,3-Cd)Pyrene		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td>387</td><td></td><td>44</td><td>86.4</td><td>ug/Kg</td><td>634</td><td><mdl< td=""><td>$-\frac{43}{43}$</td><td>85.3</td><td></td></mdl<></td></mdl<>	33	66	ug/Kg	387		44	86.4	ug/Kg	634	<mdl< td=""><td>$-\frac{43}{43}$</td><td>85.3</td><td></td></mdl<>	$-\frac{43}{43}$	85.3	
Isophorone		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td></td><td>43</td><td>85.3</td><td></td></mdl<></td></mdl<>	33	66	ug/Kg		<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td></td><td>43</td><td>85.3</td><td></td></mdl<>	44	86.4	ug/Kg			43	85.3	
N-Nitrosodi-N-Propylamine		<mdl< td=""><td>33</td><td>66</td><td>ыg/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>256</td><td></td></mdl<></td></mdl<></td></mdl<>	33	66	ыg/Kg		<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>256</td><td></td></mdl<></td></mdl<>	44	86.4	ug/Kg		<mdl< td=""><td>180</td><td>256</td><td></td></mdl<>	180	256	
N-Nitrosodimethylamine		<mdl< td=""><td>140</td><td>198</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mdl<></td></mdl<>	140	198	ug/Kg	1	<mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td></td><td></td><td></td></mdl<></td></mdl<>	180	259	ug/Kg	<u> </u>	<mdl< td=""><td></td><td></td><td></td></mdl<>			
N-Nitrosodiphenylamine		<mdl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	33	66	ug/Kg	1	<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.4	ug/Kg	l	<mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<>	43	85.3	ug/Kg

PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG1 Jul 29, 94 L4298-1 SALTWTRS 80.7	SED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG3 Jul 28, 94 L4298-2 SALTWTRSE 61.7	:D			Sampled: Lab ID: Matrix:	P53VG5 Jul 29, 94 L4298-3 SALTWTR: 62.5	SED		
Parameters	Value	Qual - Di	MDL ry Weight Ba	RDL sis	Units	Value ·	Qual - D	MDL Bry Weight Ba	RDL sis	Units	Value	Qual - t	MDL Ory Weight Bas	RDL sis	Units
Naphthalene		<ndl< td=""><td>53</td><td>99.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>70</td><td>130</td><td>ug/Kg</td><td>517</td><td></td><td>69</td><td>128</td><td>ug/Kg</td></mdl<></td></ndl<>	53	99.1	ug/Kg		<mdl< td=""><td>70</td><td>130</td><td>ug/Kg</td><td>517</td><td></td><td>69</td><td>128</td><td>ug/Kg</td></mdl<>	70	130	ug/Kg	517		69	128	ug/Kg
Nitrobenzene		<ndl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>43</td><td>B5.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl<>	33	66	ug/Kg		<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>43</td><td>B5.3</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.4	ug/Kg		<mdl< td=""><td>43</td><td>B5.3</td><td>ug/Kg</td></mdl<>	43	B5.3	ug/Kg
Pentachlorophenol		<ndl< td=""><td>33</td><td>66</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl<>	33	66	ug/Kg	l	<mdl< td=""><td>44</td><td>86.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.4	ug/Kg		<mdl< td=""><td>43</td><td>85.3</td><td>ug/Kg</td></mdl<>	43	85.3	ug/Kg
Phenanthrene		<ndl< td=""><td>20</td><td>33.1</td><td>ug/Kg</td><td>512</td><td></td><td>26</td><td>43.3</td><td>ug/Kg</td><td>1890</td><td></td><td>26</td><td>42.7</td><td>ug/Kg</td></ndl<>	20	33.1	ug/Kg	512		26	43.3	ug/Kg	1890		26	42.7	ug/Kg
Phenol		<mdl< td=""><td>140</td><td>198</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>256</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	140	198	ug/Kg		<mdl< td=""><td>180</td><td>259</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>256</td><td>ug/Kg</td></mdl<></td></mdl<>	180	259	ug/Kg		<mdl< td=""><td>180</td><td>256</td><td>ug/Kg</td></mdl<>	180	256	ug/Kg
Pyrene	38		20	33.1	ug/Kg	956		26	43.3	ug/Kg	7580		26	42.7	ug/Kg
						l									
METALS															l l
M.Code=METRO 16-01-005											1				1
Mercury, Total, CVAA	0.047	<rdl< td=""><td>0.025</td><td>0.247</td><td>mg/Kg</td><td>0.13</td><td><rdl< td=""><td>0.032</td><td>0.327</td><td>mg/Kg</td><td>0.418</td><td></td><td>0.032</td><td>0.312</td><td>mg/Kg</td></rdl<></td></rdl<>	0.025	0.247	mg/Kg	0.13	<rdl< td=""><td>0.032</td><td>0.327</td><td>mg/Kg</td><td>0.418</td><td></td><td>0.032</td><td>0.312</td><td>mg/Kg</td></rdl<>	0.032	0.327	mg/Kg	0.418		0.032	0.312	mg/Kg
M.Code=METRO 16-02-004															
Aluminum, Total, ICP	9640		12	61.5	mg/Kg	13500		16	81	mg/Kg	12300		16	79.4	mg/Kg
Antimony, Total, ICP		<mdl,g< td=""><td>3.7</td><td>18.5</td><td>mg/Kg</td><td></td><td><mdl,g< td=""><td>4.9</td><td>24.3</td><td>mg/Kg</td><td>8</td><td><mdl,g< td=""><td>4.8</td><td>23.8</td><td>mg/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	3.7	18.5	mg/Kg		<mdl,g< td=""><td>4.9</td><td>24.3</td><td>mg/Kg</td><td>8</td><td><mdl,g< td=""><td>4.8</td><td>23.8</td><td>mg/Kg</td></mdl,g<></td></mdl,g<>	4.9	24.3	mg/Kg	8	<mdl,g< td=""><td>4.8</td><td>23.8</td><td>mg/Kg</td></mdl,g<>	4.8	23.8	mg/Kg
Arsenic, Total, ICP	14	<rdl< td=""><td>6.2</td><td>30.7</td><td>mg/Kg</td><td>14</td><td><rdl< td=""><td>8.1</td><td>40.5</td><td>mg/Kg</td><td>16</td><td><rdl< td=""><td>8</td><td>39.7</td><td>mg/Kg</td></rdl<></td></rdl<></td></rdl<>	6.2	30.7	mg/Kg	14	<rdl< td=""><td>8.1</td><td>40.5</td><td>mg/Kg</td><td>16</td><td><rdl< td=""><td>8</td><td>39.7</td><td>mg/Kg</td></rdl<></td></rdl<>	8.1	40.5	mg/Kg	16	<rdl< td=""><td>8</td><td>39.7</td><td>mg/Kg</td></rdl<>	8	39.7	mg/Kg
Barium, Total, ICP	46	E	0.12	0.615	mg/Kg	42.6	E	0.16	0.81	mg/Kg	48.8	E	0.16	0.794	mg/Kg
Beryllium, Total, ICP	0.25	<rdl< td=""><td>0.12</td><td>0.615</td><td>mg/Kg</td><td>0.34</td><td><rdl< td=""><td>0.16</td><td>0.81</td><td>mg/Kg</td><td>0.3</td><td><rdl< td=""><td>0.16</td><td>0.794</td><td>mg/Kg</td></rdl<></td></rdl<></td></rdl<>	0.12	0.615	mg/Kg	0.34	<rdl< td=""><td>0.16</td><td>0.81</td><td>mg/Kg</td><td>0.3</td><td><rdl< td=""><td>0.16</td><td>0.794</td><td>mg/Kg</td></rdl<></td></rdl<>	0.16	0.81	mg/Kg	0.3	<rdl< td=""><td>0.16</td><td>0.794</td><td>mg/Kg</td></rdl<>	0.16	0.794	mg/Kg
Cadmium, Total, ICP		<mdl< td=""><td>0.37</td><td>1.85</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>0.49</td><td>2.43</td><td>mg/Kg</td><td>0.56</td><td><rdl< td=""><td>0.48</td><td>2.38</td><td>mg/kg</td></rdl<></td></mdl<></td></mdl<>	0.37	1.85	mg/Kg		<mdl< td=""><td>0.49</td><td>2.43</td><td>mg/Kg</td><td>0.56</td><td><rdl< td=""><td>0.48</td><td>2.38</td><td>mg/kg</td></rdl<></td></mdl<>	0.49	2.43	mg/Kg	0.56	<rdl< td=""><td>0.48</td><td>2.38</td><td>mg/kg</td></rdl<>	0.48	2.38	mg/kg
Calcium, Total, ICP	3400		6.2	30.7	mg/Kg	4730		8.1	40.5	mg/Kg			8	39.7	mg/Kg
Chromium, Total, ICP	13		0.62	3.07	mg/Kg	23.5		0.81	4.05	mg/Kg	23.4		0.8	3.97	mg/Kg
Copper, Total, ICP	12.3		0.5	2.45	mg/Kg	29.8		0.65	3.24	mg/Kg			0.64	3.17	mg/Kg
Iron, Total, ICP	20000		6.2	30.7	mg/Kg	22500		8.1	40.5	mg/Kg	21900		8	39.7	mg/Kg
Lead, Total, ICP	6.9	<rdl< td=""><td>3.7</td><td>18.5</td><td>mg/Kg</td><td>27.9</td><td></td><td>4.9</td><td>24.3</td><td>mg/Kg</td><td></td><td></td><td>4.8</td><td>23.8</td><td>mg/Kg</td></rdl<>	3.7	18.5	mg/Kg	27.9		4.9	24.3	mg/Kg			4.8	23.8	mg/Kg
Magnesium, Total, ICP	4050	E	3.7		mg/Kg	5610	E	4.9	24.3	mg/Kg	5100	E	4.8	23.8	
Manganese, Total, ICP	201	L	0.25	1.23	mg/Kg	222	L	0.32	1.62	mg/Kg	221	L	0.32	1.59	mg/Kg
Molybdenum, Total, ICP		<mdl< td=""><td>2.5</td><td>12.3</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>3.2</td><td>16.2</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>3.2</td><td>15.9</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	2.5	12.3	mg/Kg		<mdl< td=""><td>3.2</td><td>16.2</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>3.2</td><td>15.9</td><td>mg/Kg</td></mdl<></td></mdl<>	3.2	16.2	mg/Kg		<mdl< td=""><td>3.2</td><td>15.9</td><td>mg/Kg</td></mdl<>	3.2	15.9	mg/Kg
Nickel, Total, ICP	12.3		2.5	12.3	mg/Kg	17.5		3.2	16.2	mg/Kg	17.1		3.2	15.9	
Selenium, Total, ICP		<mdl< td=""><td>6.2</td><td>30.7</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>40.5</td><td>mg/Kg</td><td>I</td><td><mdl< td=""><td>8</td><td>39.7</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	30.7	mg/Kg		<mdl< td=""><td>8.1</td><td>40.5</td><td>mg/Kg</td><td>I</td><td><mdl< td=""><td>8</td><td>39.7</td><td>mg/Kg</td></mdl<></td></mdl<>	8.1	40.5	mg/Kg	I	<mdl< td=""><td>8</td><td>39.7</td><td>mg/Kg</td></mdl<>	8	39.7	mg/Kg
Silver, Total, ICP		<mdl< td=""><td>0.5</td><td>2.45</td><td>mg/Kg</td><td></td><td><mdl< td=""><td>0.65</td><td>3.24</td><td>mg/Kg</td><td>0.75</td><td></td><td>0.64</td><td>3.17</td><td>mg/Kg</td></mdl<></td></mdl<>	0.5	2.45	mg/Kg		<mdl< td=""><td>0.65</td><td>3.24</td><td>mg/Kg</td><td>0.75</td><td></td><td>0.64</td><td>3.17</td><td>mg/Kg</td></mdl<>	0.65	3.24	mg/Kg	0.75		0.64	3.17	mg/Kg
Sodium, Total, ICP	3140		62	307	mg/Kg	7120		81	405	mg/Kg	7120		80	397	mg/Kg
Thallium, Total, ICP		<mdl< td=""><td>25</td><td></td><td>mg/Kg</td><td></td><td><mdl< td=""><td>32</td><td>162</td><td>mg/Kg</td><td> </td><td><mdl< td=""><td>32</td><td>159</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	25		mg/Kg		<mdl< td=""><td>32</td><td>162</td><td>mg/Kg</td><td> </td><td><mdl< td=""><td>32</td><td>159</td><td>mg/Kg</td></mdl<></td></mdl<>	32	162	mg/Kg	 	<mdl< td=""><td>32</td><td>159</td><td>mg/Kg</td></mdl<>	32	159	mg/Kg
Zinc, Total, ICP	47.5		0.62	3.07	mg/Kg	72		0.81	4.05	mg/Kg	86.7		0.8	3.97	mg/Kg
CONVENTIONALS															
M.Code=SM5310-B						1			40.0		45400		8	16	mg/Kg
Total Organic Carbon	3070		6.2	12.4	mg/Kg	17000		8.1	16.2	mg/Kg	15100			10	פיייפייי
M.Code≈(No Method Code)						ļ				- 0/	 	<mdl.e< td=""><td>0.1</td><td></td><td>%</td></mdl.e<>	0.1		%
p-2.25	0.5	E	0.1		%	0.9		0.1		%	1		0.1		- % - %
p-2.00		<mdl,e< td=""><td>0.1</td><td></td><td>%</td><td>0.2</td><td></td><td>0.1</td><td></td><td>%</td><td>- </td><td><mdl,e< td=""><td>0.1</td><td></td><td>%</td></mdl,e<></td></mdl,e<>	0.1		%	0.2		0.1		%	- 	<mdl,e< td=""><td>0.1</td><td></td><td>%</td></mdl,e<>	0.1		%
p-1.00	3.8	E	0.1		%	0.5		0.1		%	0.5	Ē	0.1		% %
p+0.00	13	E	0.1		%	1.4		0.1		%	1.4		0.1		
p+1.00	42	E	0.1		%	14		0.1		%	21				 %
p+2.00	35	E	0.1		%	45		0.1		%	42		0.1		%
p+3.00	3.3	E	0.1		% '	15		0.1		%	9.8		0.1		
p+4.00	0.2	E	0.1		%	3.5		0.1		%	3.4	Ē	0.1		%
p+5.00	1.4	E	0.1		%	4	E	0.1		%	4.2	Ε	0.1		%

,			. –											
PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG1 Jul 29, 94 L4293-1 SALTWTRS 80.7	SED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG3 Jul 28, 94 L4298-2 SALTWTR 61.7	SED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG5 Jul 29, 94 L4298-3 SALTWTR 62.5		
Parameters	Value	Qual - Di	MDL ry Weight B	RDL asis	Units	Value	Qual	MDL. - Dry Weight Ba	RDL asis	Units	Value	Qual -	MDL Dry Weight Basis	 Units
p+6.00		<mdl,e< td=""><td>0.1</td><td></td><td>%</td><td>2.</td><td>.8 E</td><td>0.1</td><td></td><td>%</td><td>3.</td><td></td><td>0.1</td><td> %</td></mdl,e<>	0.1		%	2.	.8 E	0.1		%	3.		0.1	 %
p+7.00		<mdl,e< td=""><td>0.1</td><td></td><td>%</td><td>3</td><td>.3 E</td><td>0.1</td><td></td><td>%</td><td>4.</td><td>8 E</td><td>0.1</td><td> %</td></mdl,e<>	0.1		%	3	.3 E	0.1		%	4.	8 E	0.1	 %
p+8.00	0.5	E	0.1		%	3.	.7 E	0.1		%	4.	2 E	0.1	 %
p+9.00	0.1	E	0.1		%	1	.1 E	0.1		%	1.	1 E	0.1	 %
p+10.0		<mdl,e< td=""><td>0.1</td><td></td><td>%</td><td>0</td><td>.4 E</td><td>0.1</td><td></td><td>%</td><td>0.</td><td>4 E</td><td>0.1</td><td>%</td></mdl,e<>	0.1		%	0	.4 E	0.1		%	0.	4 E	0.1	%
p+11.0	0.6	F	0.1		%	3	8 F	0.1		%	3.	9 E	0.1	%

PROJECT: A44703

Locator:

P53VG6 Jul 29. 94

Sampled: Lab ID:

Value

L4298-4 SALTWIRSED

Qual

Matrix: % Solids:

55.5

RDL MDL

Units

- Dry Weight Basis

ORGANICS

Parameters

M.Code=SW-846 8080					
4,4'-DDD	4.3	<rdl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></rdl<>	2.3	4.81	ug/Kg
4,4'-DDE	2.5	<rdl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></rdl<>	2.3	4.81	ug/Kg
4,4'-DDT		<mdl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></mdl<>	2.3	4.81	ug/Kg
Aldrin		<ndl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></ndl<>	2.3	4.81	ug/Kg
Alpha-BHC		<ndl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></ndl<>	2.3	4.81	ug/Kg
Aroclor 1016		<ndl< td=""><td>23</td><td>48.1</td><td>ug/Kg</td></ndl<>	23	48.1	ug/Kg
Arcclor 1221		<mdl< td=""><td>23</td><td>48.1</td><td>ug/Kg</td></mdl<>	23	48.1	ug/Kg
Arcclor 1232		<mdl< td=""><td>23</td><td>48.1</td><td>ug/Kg</td></mdl<>	23	48.1	ug/Kg
Aroclor 1242		<mdl< td=""><td>23</td><td>48.1</td><td>ug/Kg</td></mdl<>	23	48.1	ug/Kg
Arcclor 1248		<mdl< td=""><td>23</td><td>48.1</td><td>ug/Kg</td></mdl<>	23	48.1	ug/Kg
Arcclor 1254	40	<rdl< td=""><td>23</td><td>48.1</td><td>ug/Kg</td></rdl<>	23	48.1	ug/Kg
Aroclor 1260	49.7	L	23	48.1	ug/Kg
Beta-BHC		<mdl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></mdl<>	2.3	4.81	ug/Kg
Chlordane		<mdl< td=""><td>14</td><td>24</td><td>ug/Kg</td></mdl<>	14	24	ug/Kg
Delta-BHC		<mdl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></mdl<>	2.3	4.81	ug/Kg
Dieldrin		<mdl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></mdl<>	2.3	4.81	ug/Kg
Endosulfan I		<mdl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></mdl<>	2.3	4.81	ug/Kg
Endosulfan II		<ndl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></ndl<>	2.3	4.81	ug/Kg
Endosulfan Sulfate		<mdl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></mdl<>	2.3	4.81	ug/Kg
Endrin		<ndl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></ndl<>	2.3	4.81	ug/Kg
Endrin Aldehyde		<ndl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></ndl<>	2.3	4.81	ug/Kg
Gamma-BHC (Lindane)		<ndl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></ndl<>	2.3	4.81	ug/Kg
Heptachlor		<ndl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></ndl<>	2.3	4.81	ug/Kg
Heptachlor Epoxide		<ndl< td=""><td>2.3</td><td>4.81</td><td>ug/Kg</td></ndl<>	2.3	4.81	ug/Kg
Methoxychlor		<ndl< td=""><td>14</td><td>24</td><td>ug/Kg</td></ndl<>	14	24	ug/Kg
Toxaphene		<mdl< td=""><td>23</td><td>48.1</td><td>ug/Kg</td></mdl<>	23	48.1	ug/Kg
M. Code=SW-846 8260					
1,1,1-Trichloroethane		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
1,1,2,2-Tetrachloroethane		<mdl,b< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl,b<>	9	18	ug/Kg
1,1,2-Trichloroethane		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
1,1,2-Trichloroethylene		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
1,1-Dichloroethane		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
1,1-Dichloroethylene		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
1,2-Dichloroethane		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
1,2-Dichloropropane		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
2-Butanone (MEK)	58	<rdl,l< td=""><td>45</td><td>90.1</td><td>ug/Kg</td></rdl,l<>	45	90.1	ug/Kg
2-Chloroethylvinyl ether		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
2-Hexanone		<mdl< td=""><td>45</td><td>90.1</td><td>ug/Kg</td></mdl<>	45	90.1	ug/Kg
4-Methyl-2-Pentanone (MIBK)		<mdl< td=""><td>45</td><td>90.1</td><td>ug/Kg</td></mdl<>	45	90.1	ug/Kg
Acetone	254	B,L	45	90.1	ug/Kg
Acrolein		<mdl,x< td=""><td>45</td><td>90.1</td><td>ug/Kg</td></mdl,x<>	45	90.1	ug/Kg
Acrylonitrile		<mdl< td=""><td>45</td><td>90.1</td><td>ug/Kg</td></mdl<>	45	90.1	ug/Kg

PROJECT: A44703

Locator:

P53VG6

Sampled: Lab ID: Jul 29, 94 L4298-4

SALTWTRSED

Matrix: % Solids:

55.5

	% Solids:	55.5			
Parameters	Value	Gual	MDL	RDL	Units
r alameters	value		Dry Weight Ba		Ullis
		•	Oly Weight Da	515	
Benzene		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
Bromodichloromethane		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
Bromoform		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
Bromomethane		<ndl< td=""><td>9</td><td>18</td><td>ug/Kg</td></ndl<>	9	18	ug/Kg
Carbon Disulfide Carbon Tetrachloride	9.7	<rdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></rdl<>	9	18	ug/Kg
Chlorobenzene		<ndl< td=""><td>9</td><td>18</td><td>ug/Kg</td></ndl<>	9	18	ug/Kg
Chlorodibromomethane		<ndl< td=""><td>9</td><td>18</td><td>ug/Kg</td></ndl<>	9	18	ug/Kg
	· · · · · · · · · · · · · · · · · · ·	<ndl< td=""><td>9</td><td>18</td><td>ug/Kg</td></ndl<>	9	18	ug/Kg
Chloroethane		<ndl< td=""><td>9</td><td>18</td><td>ug/Kg</td></ndl<>	9	18	ug/Kg
Chloroform Chloromethane	35.5	В	9	18	ug/Kg
Chloromethane		<ndl< td=""><td>9</td><td>18</td><td>ug/Kg</td></ndl<>	9	18	ug/Kg
		<ndl< td=""><td>9</td><td>18</td><td>ug/Kg</td></ndl<>	9	18	ug/Kg
cis-1,3-Dichloropropene		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
Ethylbenzene		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
Methylene Chloride	88	<rdl,b< td=""><td>45</td><td>90.1</td><td>ug/Kg</td></rdl,b<>	45	90.1	ug/Kg
Styrene		<mdl< td=""><td>9</td><td>18</td><td>ug/Kg</td></mdl<>	9	18	ug/Kg
Tetrachloroethylene Toluene		<mdl< td=""><td>9</td><td>13 13</td><td>ug/Kg</td></mdl<>	9	13 13	ug/Kg
Total Xylenes		<mdl< td=""><td>9</td><td>13</td><td>ug/Kg</td></mdl<>	9	13	ug/Kg
		<mdl< td=""><td>9</td><td></td><td>ug/Kg</td></mdl<>	9		ug/Kg
Trans-1,2-Dichloroethylene		<mdl< td=""><td>_</td><td>18</td><td>ug/Kg</td></mdl<>	_	18	ug/Kg
Trans-1,3-Dichloropropene Trichlorofluoromethane		<mdl< td=""><td>9</td><td>18 18</td><td>ug/Kg</td></mdl<>	9	18 18	ug/Kg
Vinyl Acetate		<mdl< td=""><td>_</td><td>90,1</td><td>ug/Kg ug/Kg</td></mdl<>	_	90,1	ug/Kg ug/Kg
Vinyl Chloride		<mdl,g <mdl< td=""><td>45</td><td>18</td><td>ug/Kg</td></mdl<></mdl,g 	45	18	ug/Kg
M.Code=SW-846 8270		NIDL	9	10	ug/r\g
1,2,4-Trichlorobenzene		<mdl< td=""><td>29</td><td>48.1</td><td>ug/Kg</td></mdl<>	29	48.1	ug/Kg
1,2-Dichlorobenzene		<mdl< td=""><td><u>25</u></td><td>48.1</td><td>ug/Kg</td></mdl<>	<u>25</u>	48.1	ug/Kg
1,2-Diphenylhydrazine		<mdl,l< td=""><td>95</td><td>193</td><td>ug/Kg</td></mdl,l<>	95	193	ug/Kg
1,3-Dichlorobenzene		<mdl,l< td=""><td>29</td><td>48.1</td><td>ug/Kg</td></mdl,l<>	29	48.1	ug/Kg
1,4-Dichlorobenzene		<mdl< td=""><td>29</td><td>48.1</td><td>ug/Kg</td></mdl<>	29	48.1	ug/Kg
2,4,5-Trichlorophenol		<mdl< td=""><td>200</td><td>384</td><td>ug/Kg</td></mdl<>	200	384	ug/Kg
2,4,6-Trichlorophenol		<mdl,l< td=""><td>200</td><td>384</td><td>ug/Kg</td></mdl,l<>	200	384	ug/Kg
2.4-Dichlorophenol	······································	<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
2,4-Dimethylphenol		≺MDL	49	96	ug/Kg
2,4-Dinitrophenol		<mdl< td=""><td>95</td><td>193</td><td>ug/Kg</td></mdl<>	95	193	ug/Kg
2.4-Dinitrotoluene		- √MDL	20	38.4	ug/Kg
2,6-Dinitrotoluene		4MDL	20	38.4	ug/Kg
2-Chloronaphthalene		<mdl< td=""><td>29</td><td>481</td><td>ug/Kg</td></mdl<>	29	481	ug/Kg
2-Chlorophenol		<mdl< td=""><td>95</td><td>193</td><td>ug/Kg</td></mdl<>	95	193	ug/Kg
2-Methylnaphthalene		- ✓MDL	77	144	ug/Kg
2-Methyliphenol		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
2-Nitroaniline		<mdl< td=""><td>200</td><td>288</td><td>ug/Kg</td></mdl<>	200	288	ug/Kg
2-Nitrophenol		- ✓WDL	49	96	ug/Kg
3.3'-Dichlorobenzidine		<mdl,x< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl,x<>	49	96	ug/Kg
3-Nitroaniline		<mdl,x< td=""><td>200</td><td>288</td><td>ug/Kg ug/Kg</td></mdl,x<>	200	288	ug/Kg ug/Kg
Januariiii ie		NIDL	200	200	ug/r\g

PROJECT: A44703

Locator:

Sampled: Lab ID:

P53VG6 Jul 29, 94 L4298-4

SALTWTRSED Matrix:

% Solids: 55.5

Parameters	Value	Qual	MDL	RDL	Units
	. 4.40		y Weight Bas		J.,
			,		İ
4.6-Dinitro O Crosol		<mdl< td=""><td>95</td><td>193</td><td>U0/1/2</td></mdl<>	95	193	U0/1/2
4,6-Dinitro-O-Cresol 4-Bromophenyl Phenyl Ether		<mdl< td=""><td>20</td><td>28.8</td><td>ug/Kg</td></mdl<>	20	28.8	ug/Kg
		<mdl< td=""><td>95</td><td>193</td><td>ug/Kg</td></mdl<>	95	193	ug/Kg
4-Chloro-3-Methylphenol 4-Chloroaniline			95 95	193	ug/Kg
		<mdl,g< td=""><td></td><td></td><td>ug/Kg</td></mdl,g<>			ug/Kg
4-Chlorophenyl Phenyl Ether		<mdl <mdl< td=""><td>29 49</td><td>48.1 96</td><td>ug/Kg</td></mdl<></mdl 	29 49	48.1 96	ug/Kg
4-Methylphenol 4-Nitroaniline			200		ug/Kg ug/Kg
4-Nitrophenol		<mdl,g <mdl,l< td=""><td>95</td><td>288 193</td><td></td></mdl,l<></mdl,g 	95	288 193	
	153	-MDL,L	20		ug/Kg
Acenaphthene Acenaphthylene	129		20	38.4 48.1	ug/Kg
Aniline	129	-NDLY	29 95	48.1 193	ug/Kg
	704	<mdl,x< td=""><td></td><td></td><td>ug/Kg</td></mdl,x<>			ug/Kg
Anthracene	791	-NOLV	29	48.1	ug/Kg
Benzidine	2220	<mdl,x< td=""><td>1200</td><td>2310</td><td>ug/Kg</td></mdl,x<>	1200	2310	ug/Kg
Benzo(a)anthracene	2320	·	29	48.1	ug/Kg
Benzo(a)pyrene	1510		49	96	ug/Kg
Benzo(b)fluoranthene	2450		77	144	ug/Kg
Benzo(g,h,i)perylene	330	G	49	96	ug/Kg
Benzo(k)fluoranthene	915		77	144	ug/Kg
Benzoic Acid	308	4401	200	288	ug/Kg
Benzyl Alcohol		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
Benzyl Butyl Phthalate		<mdl< td=""><td>29</td><td>48.1</td><td>ug/Kg</td></mdl<>	29	48.1	ug/Kg
Bis(2-Chloroethoxy)Methane		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
Bis(2-Chloroethyl)Ether		<mdl< td=""><td>29</td><td>48.1</td><td>ug/Kg</td></mdl<>	29	48.1	ug/Kg
Bis(2-Chloroisopropyl)Ether		<mdl< td=""><td>95</td><td>193</td><td>ug/Kg</td></mdl<>	95	193	ug/Kg
Bis(2-Ethylhexyl)Phthalate	541	В	29	48.1 96	ug/Kg
Carbazole	308 2410	<u>L</u>	49 29		ug/Kg
Chrysene				48.1	ug/Kg
Coprostanol	759 163	- 6	200	288 96	ug/Kg
Di-N-Butyl Phthalate	162	B	49		ug/Kg
Di-N-Octyl Phthalate		<mdl< td=""><td>29</td><td>48.1</td><td>ug/Kg</td></mdl<>	29	48.1	ug/Kg
Dibenzo(a,h)anthracene	140	<rdl< td=""><td>77</td><td>144</td><td>ug/Kg</td></rdl<>	77	144	ug/Kg
Dibenzofuran	152		49	96	ug/Kg
Diethyl Phthalate		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
Dimethyl Phthalate		<mdl< td=""><td>20</td><td>28.8</td><td>ug/Kg</td></mdl<>	20	28.8	ug/Kg
Fluoranthene	4810		29	57.7	ug/Kg
Fluorene	285		29	48.1	ug/Kg
Hexachlorobenzene		<mdl< td=""><td>29</td><td>48.1</td><td>ug/Kg</td></mdl<>	29	48.1	ug/Kg
Hexachlorobutadiene		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
Hexachlorocyclopentadiene		<mdl,x< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl,x<>	49	96	ug/Kg
Hexachloroethane		<mdl,g< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl,g<>	49	96	ug/Kg
Indeno(1,2,3-Cd)Pyrene	533		49	96	ug/Kg
Isophorone		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	9 6	ug/Kg
N-Nitrosodi-N-Propylamine		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
N-Nitrosodimethylamine		<mdl< td=""><td>200</td><td>288</td><td>ug/Kg</td></mdl<>	200	288	ug/Kg
N-Nitrosodiphenylamine	49	<rdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></rdl<>	49	96	ug/Kg

•		MIT	NO E	1 1 V II	OHIII
PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG6 Jul 29, 94 L4298-4 SALTWTR: 55.5	SED		
Parameters	Value	Qual - 0	MDL Ory Weight Ba	RDL sis	Units
Naphthalene	240		77	144	ug/Kg
Nitrobenzene		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
Pentachlorophenol		<mdl< td=""><td>49</td><td>96</td><td>ug/Kg</td></mdl<>	49	96	ug/Kg
Phenanthrene	1050		29	48.1	ug/Kg
Phenol		<ndl< td=""><td>200</td><td>283</td><td>ug/Kg</td></ndl<>	200	283	ug/Kg
Pyrene	2900		29	48.1	ug/Kg
METALS					
M.Code=METRO 16-01-005					
Mercury, Total, CVAA	0.42		0.036	0.359	mg/Kg
M.Code=METRO 16-02-004	0.42				11191119
Aluminum, Total, ICP	15200		18	89.2	mg/Kg
Antimony, Total, ICP	10200	<mdl,g< td=""><td>5.4</td><td>26.7</td><td>mg/Kg</td></mdl,g<>	5.4	26.7	mg/Kg
Arsenic, Total, ICP	16		8.8	44.5	mg/Kg
Barium, Total, ICP	66,3		0.18	0.892	mg/Kg
Beryllium, Total, ICP	0.36		0.18	0.892	mg/Kg
Cadmium, Total, ICP	0.61	<rdl< td=""><td>0.54</td><td>2.67</td><td>mg/Kg</td></rdl<>	0.54	2.67	mg/Kg
Calcium, Total, ICP	5100		8.8	44.5	mg/Kg
Chromium, Total, ICP	26.7		0.88	4.45	mg/Kg
Copper, Total, ICP	46.8		0.72	3.57	mg/Kg
Iron, Total, ICP	25000		8.8	44.5	mg/Kg
Lead, Total, ICP	49.7		5.4	26.7	mg/Kg
Magnesium, Total, ICP	6250	E	5.4	26.7	mg/Kg
Manganese, Total, ICP	240	L	0.36	1.78	mg/Kg
Molybdenum, Total, ICP		<mdl< td=""><td>3.6</td><td>17.8</td><td>mg/Kg</td></mdl<>	3.6	17.8	mg/Kg
Nickel, Total, ICP	21.4		3.6	17.8	mg/Kg
Selenium, Total, ICP		<mdl< td=""><td>8.8</td><td>44.5</td><td>mg/Kg</td></mdl<>	8.8	44.5	mg/Kg
Silver, Total, ICP	0.77	<rdl< td=""><td>0.72</td><td>3.57</td><td>mg/Kg</td></rdl<>	0.72	3.57	mg/Kg
Sodium, Total, ICP	9260		88	445	mg/Kg
Thallium, Total, ICP		<mdl< td=""><td>36</td><td>178</td><td>mg/Kg</td></mdl<>	36	178	mg/Kg
Zinc, Total, ICP	97.7		0.88	4.45	mg/Kg
CONVENTIONALS					
M.Code=SM5310-B	10400		_	40	m=11-
Total Organic Carbon	19100		9	18	mg/Kg
M.Code=(No Method Code)	1.1	E	0.1		%
p-2.23		<ndl.e< td=""><td>0.1</td><td></td><td>- %</td></ndl.e<>	0.1		- %
p-1.00	0.5		0.1		%
p+0.00	1.6		0.1		- / /%
p+1.00	11	<u>_</u>	0.1		- %
p+2.00	30		0.1		<u>%</u>
p+3.00	16		0.1		%
p+3.00 p+4.00	5.8		0.1		%
p+5.00	7.9		0.1		%
P+3.00	7.9	<u> </u>	U. I		

PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG6 Jul 29, 94 L4298-4 SALTWTR 55.5	SED		
Parameters	Value	Qual - I	MDL Dry Weight Ba	RDL asis	Units
p+6.00	7	' E	0.1		%
p+7.00	7.8	3 E	0.1		%
p+8.00	4.3	E	0.1	.,	%
p+9.00	1.1	E	0.1		%
p+10.0	0.4	·	0.1		%
p+11.0	5.1	E	0.1		%

				-1 L V E	VIIII	Citai	Lub A	liuly	JUUI	1 10h	OIL				
PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG8 Jul 29, 94 L4298-5 SALTWTR: 81.1	SED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG10 Jul 29, 94 L4298-6 SALTWTR 61.9	SED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG11 Jul 29, 94 L4298-7 SALTWTR 66.1	SED		
Parameters	Value	Qual - D	MDL bry Weight Ba	RDL asis	Units	Value	Qual -I	MDL Dry Welght Ba	RDL sis	Units	Value	Qual - ເ	MDL Ory Weight Ba	RDL isis	Units
ORGANICS															
M.Code=SW-8468080															
4,4'-DDD		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td>5.01</td><td>ı</td><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>34.8</td><td></td><td>2</td><td>4.C4</td><td>ug/Kg</td></mdl<>	1.6	3.29	ug/Kg	5.01	ı	2.1	4.31	ug/Kg	34.8		2	4.C4	ug/Kg
4,4'-DDE		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>9.82</td><td></td><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>9.82</td><td></td><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2.1	4.31	ug/Kg	9.82		2	4.04	ug/Kg
4,4'-DDT		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td>li</td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>]</td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg	li	<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>]</td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg]	<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Aldrin		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg	l	<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Alpha-BHC		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Aroclor 1016		<mdl< td=""><td>16</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>20</td><td>404</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	32.9	ug/Kg		<mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>20</td><td>404</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.1	ug/Kg	1	<mdl< td=""><td>20</td><td>404</td><td>ug/Kg</td></mdl<>	20	404	ug/Kg
Aroclor 1221		<mdl< td=""><td>16</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>T</td><td><mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	32.9	ug/Kg		<mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>T</td><td><mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.1	ug/Kg	T	<mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<>	20	40.4	ug/Kg
Aroclor 1232		<mdl< td=""><td>16</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	32.9	ug/Kg		<mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.1	ug/Kg		<mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<>	20	40.4	ug/Kg
Aroclor 1242		<mdl< td=""><td>16</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	32.9	ug/Kg		<mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.1	ug/Kg		<mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<>	20	40.4	ug/Kg
Aroclor 1248		<mdl< td=""><td>16</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>27</td><td></td><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	16	32.9	ug/Kg		<mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>27</td><td></td><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<>	21	43.1	ug/Kg	27		20	40.4	ug/Kg
Aroclor 1254		<mdl< td=""><td>16</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>60.7</td><td></td><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	16	32.9	ug/Kg		<mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>60.7</td><td></td><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<>	21	43.1	ug/Kg	60.7		20	40.4	ug/Kg
Aroclor 1260		<mdl,l< td=""><td>16</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>64.4</td><td></td><td>20</td><td>40.4</td><td>ug/Kg</td></mdl,l<></td></mdl,l<>	16	32.9	ug/Kg		<mdl,l< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td>64.4</td><td></td><td>20</td><td>40.4</td><td>ug/Kg</td></mdl,l<>	21	43.1	ug/Kg	64.4		20	40.4	ug/Kg
Beta-BHC		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Chlordane		<mdl< td=""><td>9.9</td><td>16.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>13</td><td>21.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>12</td><td>20.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	9.9	16.4	ug/Kg		<mdl< td=""><td>13</td><td>21.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>12</td><td>20.1</td><td>ug/Kg</td></mdl<></td></mdl<>	13	21.5	ug/Kg		<mdl< td=""><td>12</td><td>20.1</td><td>ug/Kg</td></mdl<>	12	20.1	ug/Kg
Delta-BHC		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Dieldrin		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Endosulfan I		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg	1	<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Endosulfan II		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Endosulfan Sulfate		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>L</td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td>L</td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg	L	<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Endrin		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td>}</td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg	}	<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg	<u> </u>	<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Endrin Aldehyde		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Gamma-BHC (Lindane)		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Heptachlor		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg	 	<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Heptachlor Epoxide		<mdl< td=""><td>1.6</td><td>3.29</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	1.6	3.29	ug/Kg		<mdl< td=""><td>2.1</td><td>4.31</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<></td></mdl<>	2.1	4.31	ug/Kg		<mdl< td=""><td>2</td><td>4.04</td><td>ug/Kg</td></mdl<>	2	4.04	ug/Kg
Methoxychlor		<mdl< td=""><td>9.9</td><td>16.4</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>13</td><td>21.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>12</td><td>20.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	9.9	16.4	ug/Kg		<mdl< td=""><td>13</td><td>21.5</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>12</td><td>20.1</td><td>ug/Kg</td></mdl<></td></mdl<>	13	21.5	ug/Kg		<mdl< td=""><td>12</td><td>20.1</td><td>ug/Kg</td></mdl<>	12	20.1	ug/Kg
Toxaphene		<mdl< td=""><td>16</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	16	32.9	ug/Kg		<mdl< td=""><td>21</td><td>43.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	21	43.1	ug/Kg	<u> </u>	<mdl< td=""><td>20</td><td>40.4</td><td>ug/Kg</td></mdl<>	20	40.4	ug/Kg
M.Code=SW-8468260						 							7.0	45.4	· · · · · · · · · · · · · · · · · · ·
1,1,1-Trichloroethane		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6 7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg	 	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6 7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>7.6 7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<>	7.6 7.6	15.1 15.1	ug/Kg
1,1,2,2-Tetrachloroethane		<ndl,b< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl,b< td=""><td>7.6</td><td></td><td>ug/Kg</td></mdl,b<></td></mdl<></td></ndl,b<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl,b< td=""><td>7.6</td><td></td><td>ug/Kg</td></mdl,b<></td></mdl<>	8.1	16.2	ug/Kg		<mdl,b< td=""><td>7.6</td><td></td><td>ug/Kg</td></mdl,b<>	7.6		ug/Kg
1,1,2-Trichloroethane		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<></mdl </td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<></mdl </td></mdl<>	8.1	16.2	ug/Kg	 	<mdl <mdl< td=""><td>7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<></mdl 	7.6	15.1 15.1	ug/Kg
1,1,2-Trichloroethylene		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td><u> </u></td><td></td><td></td><td></td><td>ug/Kg</td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td><u> </u></td><td></td><td></td><td></td><td>ug/Kg</td></mdl<>	8.1	16.2	ug/Kg	<u> </u>				ug/Kg
1,1-Dichloroethane		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg	ļ	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
1,1-Dichloroethylene		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>]</td><td><mdl <mdl< td=""><td>7.6 7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<></mdl </td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>]</td><td><mdl <mdl< td=""><td>7.6 7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<></mdl </td></mdl<>	8.1	16.2	ug/Kg]	<mdl <mdl< td=""><td>7.6 7.6</td><td>15.1 15.1</td><td>ug/Kg</td></mdl<></mdl 	7.6 7.6	15.1 15.1	ug/Kg
1,2-Dichloroethane		<mdl td="" ·<=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td>ug/Kg</td></mdl<></td></mdl>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td></td><td></td><td></td><td>ug/Kg</td></mdl<>	8.1	16.2	ug/Kg					ug/Kg
1,2-Dichloropropane		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6 38</td><td>15.1 75.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6 38</td><td>15.1 75.6</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>7.6 38</td><td>15.1 75.6</td><td>ug/Kg</td></mdl<>	7.6 38	15.1 75.6	ug/Kg
2-Butanone (MEK)		<mdl,l< td=""><td>31</td><td>61.7</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td></td><td></td><td></td></mdl,l<></td></mdl,l<></td></mdl,l<>	31	61.7	ug/Kg		<mdl,l< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td></td><td></td><td></td></mdl,l<></td></mdl,l<>	40	80.8	ug/Kg		<mdl,l< td=""><td></td><td></td><td></td></mdl,l<>			
2-Chloroethylvinyl ether		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>/</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td></td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>/</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td></td></mdl<></td></mdl<>	8.1	16.2	ug/Kg	/	<mdl< td=""><td>7.6</td><td>15.1</td><td></td></mdl<>	7.6	15.1	
2-Hexanone		<mdl< td=""><td>31</td><td>61.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td>-H</td><td><mdl< td=""><td>38 38</td><td>75.6 75.6</td><td></td></mdl<></td></mdl<></td></mdl<>	31	61.7	ug/Kg		<mdl< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td>-H</td><td><mdl< td=""><td>38 38</td><td>75.6 75.6</td><td></td></mdl<></td></mdl<>	40	80.8	ug/Kg	-H	<mdl< td=""><td>38 38</td><td>75.6 75.6</td><td></td></mdl<>	38 38	75.6 75.6	
4-Methyl-2-Pentanone (MIBK)		<mdl< td=""><td>31</td><td>61.7</td><td>ug/Kg</td><td>,</td><td><mdl< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td></td><td><mdl< td=""><td></td><td>75.6</td><td></td></mdl<></td></mdl<></td></mdl<>	31	61.7	ug/Kg	,	<mdl< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td></td><td><mdl< td=""><td></td><td>75.6</td><td></td></mdl<></td></mdl<>	40	80.8	ug/Kg		<mdl< td=""><td></td><td>75.6</td><td></td></mdl<>		75.6	
Acetone	90.6		31	61.7	ug/Kg	174		40	80.8	ug/Kg	146		38 38		
Acrolein		<mdl,x< td=""><td>31</td><td>61.7</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td>I</td><td><mdl,x< td=""><td>38</td><td>75.6</td><td></td></mdl,x<></td></mdl,x<></td></mdl,x<>	31	61.7	ug/Kg		<mdl,x< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td>I</td><td><mdl,x< td=""><td>38</td><td>75.6</td><td></td></mdl,x<></td></mdl,x<>	40	80.8	ug/Kg	I	<mdl,x< td=""><td>38</td><td>75.6</td><td></td></mdl,x<>	38	75.6	
Acrylonitrile		<mdl< td=""><td>31</td><td>61.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>38</td><td>75.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	31	61.7	ug/Kg		<mdl< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>38</td><td>75.6</td><td>ug/Kg</td></mdl<></td></mdl<>	40	80.8	ug/Kg	l	<mdl< td=""><td>38</td><td>75.6</td><td>ug/Kg</td></mdl<>	38	75.6	ug/Kg

					V 1111	Olitai	Lub A	ilaly t	Jour	op	•				10
PROJECT: A44703	Locator:	P53/G8				Locator:	P53VG10				Locator:	P53VG11			ll ll
	Sampled:	Jul 29, 94				Sampled:	Jul 29, 94				Sampled:	Jul 29, 94			i
	Lab ID:	L4298-5				Lab ID:	L4298-6				Lab ID:	L4298-7			ll ll
	Matrix:	SALTWIRS	FD			Matrix:	SALTWIRS	SED			Matrix:	SALTWIRS	ED		li li
	% Solids:	81.1				% Solids:	61.9	525			% Solids:	66.1			1
	70 Collas.	01.1				70 Collas.	01.5				, comac				
Parameters	Value	Qual	MDL -	RDL	Units	Value	Qual	MDL	RDL	Units	Value	Qual	MDL	RDL	Units
	•		y Weight Ba					ory Weight Ba				- Di	y Weight Ba	sis]
			,				_	.,							į.
Benzene		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Bromodichloromethane		<wdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></wdl<>	6.2	12.3	ug/Kg	ļ	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg	ļ	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Bromoform		<wdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td>J</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></wdl<>	6.2	12.3	ug/Kg	J	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg	 	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Bromomethane		<wdl< td=""><td>6.2</td><td>12.3</td><td></td><td><u> </u></td><td></td><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>!}</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></wdl<>	6.2	12.3		<u> </u>		8.1	16.2	ug/Kg	! }	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Carbon Disulfide		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td>ļ</td><td>- KDL - KDL</td><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	6.2	12.3	ug/Kg	ļ	- KDL - KDL	8.1	16.2	ug/Kg		<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Carbon Tetrachloride	·	<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>]</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg	ļ	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>]</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg]	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Chlorobenzene					ug/Kg	J		8.1	16.2		 	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Chlorodibromomethane		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg	l	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg	 	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Chloroethane		<mdl <mdl< td=""><td>6.2 6.2</td><td>12.3</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></mdl </td></mdl<></mdl 	6.2 6.2	12.3	ug/Kg	 	<mdl <mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></mdl 	8.1	16.2	ug/Kg ug/Kg	 	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Chloroform				12.3	ug/Kg			8.1	16.2		8.		7.6	15.1	ug/Kg
Chloromethane	6.3		6.2	12.3	ug/Kg	 	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>] <u>-</u>-</td><td><mdl,b< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl,b<></td></mdl<>	8.1	16.2	ug/Kg] <u>-</u> -	<mdl,b< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl,b<>	7.6	15.1	ug/Kg
		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>8.1</td><td>$-\frac{16.2}{16.2}$</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></mdl </td></mdl<>	6.2	12.3	ug/Kg	 	<mdl <mdl< td=""><td>8.1</td><td>$-\frac{16.2}{16.2}$</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></mdl 	8.1	$-\frac{16.2}{16.2}$	ug/Kg	 	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Chloromethane		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td></td><td>8.1</td><td>16.2</td><td>ug/Kg ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	6.2	12.3	ug/Kg			8.1	16.2	ug/Kg ug/Kg	<u> </u>	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
cis-1,3-Dichloropropene	·	<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td></td><td></td><td></td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg	ļ	<mdl< td=""><td></td><td></td><td></td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>				 	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Ethylbenzene Matter Chlorid		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1 40</td><td>16.2 80.8</td><td>ug/Kg ug/Kg</td><td>13</td><td></td><td>38</td><td>75.6</td><td>ug/Kg</td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1 40</td><td>16.2 80.8</td><td>ug/Kg ug/Kg</td><td>13</td><td></td><td>38</td><td>75.6</td><td>ug/Kg</td></mdl<>	8.1 40	16.2 80.8	ug/Kg ug/Kg	13		38	75.6	ug/Kg
Methylene Chloride	104	·	31	61.7	ug/Kg	82				ug/Kg ug/Kg	13	- MDL	7.6	15.1	ug/Kg
Styrene		<mdl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>16.2 16.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	6.2	12.3	ug/Kg		<mdl< td=""><td>8.1</td><td>16.2 16.2</td><td>ug/Kg ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2 16.2	ug/Kg ug/Kg	 	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Tetrachloroethylene Toluene		<mdl <mdl< td=""><td>6.2 6.2</td><td>12.3</td><td>ug/Kg</td><td> </td><td><mdl <mdl< td=""><td>8.1 8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></mdl </td></mdl<></mdl 	6.2 6.2	12.3	ug/Kg	 	<mdl <mdl< td=""><td>8.1 8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></mdl 	8.1 8.1	16.2	ug/Kg		<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Total Xvlenes				12.3	ug/Kg	ļ	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg		<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Trans-1,2-Dichloroethylene		<ndl< td=""><td>6.2 6.2</td><td>12.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>8.1</td><td>$-\frac{16.2}{16.2}$</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl<>	6.2 6.2	12.3	ug/Kg	 	<mdl< td=""><td>8.1</td><td>$-\frac{16.2}{16.2}$</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	$-\frac{16.2}{16.2}$	ug/Kg	ļ	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Trans-1,3-Dichloropropene		<ndl <ndl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl<></ndl 	6.2	12.3	ug/Kg ug/Kg	<u> </u>	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg	 	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Trichlorofluoromethane		<ndl< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl<>	6.2	12.3	ug/Kg	ļ	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg	1	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
Vinyl Acetate		<mdl.g< td=""><td>31</td><td>61.7</td><td>ug/Kg</td><td>l</td><td><mdl.g< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>38</td><td>75.6</td><td></td></mdl,g<></td></mdl.g<></td></mdl.g<>	31	61.7	ug/Kg	l	<mdl.g< td=""><td>40</td><td>80.8</td><td>ug/Kg</td><td> </td><td><mdl,g< td=""><td>38</td><td>75.6</td><td></td></mdl,g<></td></mdl.g<>	40	80.8	ug/Kg	 	<mdl,g< td=""><td>38</td><td>75.6</td><td></td></mdl,g<>	38	75.6	
Vinyl Chloride		<ndl,g< td=""><td>6.2</td><td>12.3</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>!</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl,g<>	6.2	12.3	ug/Kg	 	<mdl< td=""><td>8.1</td><td>16.2</td><td>ug/Kg</td><td>!</td><td><mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<></td></mdl<>	8.1	16.2	ug/Kg	!	<mdl< td=""><td>7.6</td><td>15.1</td><td>ug/Kg</td></mdl<>	7.6	15.1	ug/Kg
M.Code=SW-846 8270		-MDF	0.2	12.5	ugnig	 	-WDL		10.2	49,1(9	₩				
1,2,4-Trichlorobenzene		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td>II</td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg	II	<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.1	ug/Kg	1	<mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<>	24	40.4	ug/Kg
1,2-Dichlorobenzene		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td>ļ</td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg	ļ	<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.1	ug/Kg	1	<mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<>	24	40.4	ug/Kg
1,2-Diphenylhydrazine		<mdl.l< td=""><td>65</td><td>132</td><td>ug/Kg</td><td></td><td><mdl.l< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>80</td><td>152</td><td>ug/Kg</td></mdl,l<></td></mdl.l<></td></mdl.l<>	65	132	ug/Kg		<mdl.l< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>80</td><td>152</td><td>ug/Kg</td></mdl,l<></td></mdl.l<>	86	173	ug/Kg		<mdl,l< td=""><td>80</td><td>152</td><td>ug/Kg</td></mdl,l<>	80	152	ug/Kg
1,3-Dichlorobenzene		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg	l	<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.1	ug/Kg	l	<mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<>	24	40.4	ug/Kg
1,4-Dichlorobenzene		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td> -</td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg	 	<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td> -</td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.1	ug/Kg	 -	<mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<>	24	40.4	ug/Kg
2,4.5-Trichlorophenol		<mdl< td=""><td>140</td><td>263</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>180</td><td>344</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>170</td><td>322</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	140	263	ug/Kg	l	<mdl< td=""><td>180</td><td>344</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>170</td><td>322</td><td>ug/Kg</td></mdl<></td></mdl<>	180	344	ug/Kg	1	<mdl< td=""><td>170</td><td>322</td><td>ug/Kg</td></mdl<>	170	322	ug/Kg
2,4,6-Trichlorophenol		<mdl.l< td=""><td>140</td><td>263</td><td>ug/Kg</td><td>i</td><td><mdl,l< td=""><td>180</td><td>344</td><td>ug/Kg</td><td>1</td><td><mdl,l< td=""><td>170</td><td>322</td><td>ug/Kg</td></mdl,l<></td></mdl,l<></td></mdl.l<>	140	263	ug/Kg	i	<mdl,l< td=""><td>180</td><td>344</td><td>ug/Kg</td><td>1</td><td><mdl,l< td=""><td>170</td><td>322</td><td>ug/Kg</td></mdl,l<></td></mdl,l<>	180	344	ug/Kg	1	<mdl,l< td=""><td>170</td><td>322</td><td>ug/Kg</td></mdl,l<>	170	322	ug/Kg
2.4-Dichlorophenol		<mdl,l< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td> </td><td><mdl,l< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl,l<></td></mdl,l<>	33	65.7	ug/Kg	 	<mdl,l< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl,l<>	44	86.1	ug/Kg	1	<mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<>	41	80.6	
2,4-Dimethylphenol		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td> 44</td><td>86.1</td><td>ug/Kg</td><td>1 5</td><td>9 <rdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></rdl<></td></mdl<></td></mdl<>	33	65.7	ug/Kg	l	<mdl< td=""><td> 44</td><td>86.1</td><td>ug/Kg</td><td>1 5</td><td>9 <rdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></rdl<></td></mdl<>	44	86.1	ug/Kg	1 5	9 <rdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></rdl<>	41	80.6	ug/Kg
2,4-Dinitrophenol		<mdl< td=""><td>65</td><td>132</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>80</td><td>162</td><td></td></mdl<></td></mdl<></td></mdl<>	65	132	ug/Kg	 	<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>80</td><td>162</td><td></td></mdl<></td></mdl<>	86	173	ug/Kg	1	<mdl< td=""><td>80</td><td>162</td><td></td></mdl<>	80	162	
2,4-Dinitrophenor		<mdl< td=""><td>14</td><td>26.3</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>18</td><td>34.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>17</td><td>32.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	14	26.3	ug/Kg	l	<mdl< td=""><td>18</td><td>34.4</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>17</td><td>32.2</td><td>ug/Kg</td></mdl<></td></mdl<>	18	34.4	ug/Kg	1	<mdl< td=""><td>17</td><td>32.2</td><td>ug/Kg</td></mdl<>	17	32.2	ug/Kg
2.6-Dinitrotoluene		<mdl< td=""><td>14</td><td>26.3</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>34.4</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>17</td><td>32.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	14	26.3	ug/Kg		<mdl< td=""><td>18</td><td>34.4</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>17</td><td>32.2</td><td>ug/Kg</td></mdl<></td></mdl<>	18	34.4	ug/Kg	l	<mdl< td=""><td>17</td><td>32.2</td><td>ug/Kg</td></mdl<>	17	32.2	ug/Kg
2-Chloronaphthalene		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>24</td><td>40.4</td><td></td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg	 	<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>24</td><td>40.4</td><td></td></mdl<></td></mdl<>	26	43.1	ug/Kg	l	<mdl< td=""><td>24</td><td>40.4</td><td></td></mdl<>	24	40.4	
2-Chlorophenol		<mdl< td=""><td>65</td><td>132</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>86</td><td> 43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>80</td><td>162</td><td></td></mdl<></td></mdl<></td></mdl<>	65	132	ug/Kg	 	<mdl< td=""><td>86</td><td> 43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>80</td><td>162</td><td></td></mdl<></td></mdl<>	86	43.1	ug/Kg		<mdl< td=""><td>80</td><td>162</td><td></td></mdl<>	80	162	
2-Methylnaphthalene		<mdl< td=""><td>53</td><td>98.6</td><td>ug/Kg ug/Kg</td><td>17</td><td></td><td>69</td><td>129</td><td>ug/Kg</td><td>29</td><td></td><td>65</td><td>121</td><td></td></mdl<>	53	98.6	ug/Kg ug/Kg	17		69	129	ug/Kg	29		65	121	
2-Methylphenol		<mdl< td=""><td>33</td><td>65.7</td><td></td><td>J</td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td>·</td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<></td></mdl<>	33	65.7		J	<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td>·</td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<>	44	86.1	ug/Kg	·	<mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<>	41	80.6	
2-Methylphenol 2-Nitroaniline					ug/Kg	 	<mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>170</td><td>242</td><td></td></mdl<></td></mdl<>	180	258	ug/Kg	 	<mdl< td=""><td>170</td><td>242</td><td></td></mdl<>	170	242	
		<mdl< td=""><td>140</td><td>197</td><td>ug/Kg</td><td> </td><td></td><td>180</td><td>86.1</td><td>ug/Kg ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<>	140	197	ug/Kg	 		180	86.1	ug/Kg ug/Kg		<mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<>	41	80.6	
2-Nitrophenol		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td></td><td></td><td>ug/Kg ug/Kg</td><td></td><td><mdl,x< td=""><td>41</td><td>80.6</td><td></td></mdl,x<></td></mdl<></td></mdl<>	33	65.7	ug/Kg	 	<mdl< td=""><td></td><td></td><td>ug/Kg ug/Kg</td><td></td><td><mdl,x< td=""><td>41</td><td>80.6</td><td></td></mdl,x<></td></mdl<>			ug/Kg ug/Kg		<mdl,x< td=""><td>41</td><td>80.6</td><td></td></mdl,x<>	41	80.6	
3,3'-Dichlorobenzidine		<mdl,x< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td>]]</td><td><mdl,x< td=""><td>44</td><td>86.1</td><td></td><td>·}</td><td><mdl,x< td=""><td>170</td><td>242</td><td></td></mdl,x<></td></mdl,x<></td></mdl,x<>	33	65.7	ug/Kg]]	<mdl,x< td=""><td>44</td><td>86.1</td><td></td><td>·}</td><td><mdl,x< td=""><td>170</td><td>242</td><td></td></mdl,x<></td></mdl,x<>	44	86.1		·}	<mdl,x< td=""><td>170</td><td>242</td><td></td></mdl,x<>	170	242	
3-Nitroaniline		<mdl< td=""><td>140</td><td>197</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td>1</td><td>-MDL</td><td>1/0</td><td>242</td><td>- ug/1/g</td></mdl<></td></mdl<>	140	197	ug/Kg	1	<mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td>1</td><td>-MDL</td><td>1/0</td><td>242</td><td>- ug/1/g</td></mdl<>	180	258	ug/Kg	1	-MDL	1/0	242	- ug/1/g

PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG8 Jul 29, 94 L4298-5 SALTWTRS 81.1	SED			Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG10 Jul 29, 94 L4298-6 SALTWTR 61.9	SED		•	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG11 Jul 29, 94 L4298-7 SALTWTRS 66.1			
Parameters	Value	Qual - D	MDL ry Weight Ba	RDL sis	Units	Value	Qual . c	MDL Ory Weight Ba	RDL	Units	Value	Qual - Di	MDL y Weight Ba	RDL sis	Units
4,6-Dinitro-O-Cresol		<mdl< td=""><td>65</td><td>132</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>80</td><td>162</td><td></td></mdl<></td></mdl<></td></mdl<>	65	132	ug/Kg		<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>80</td><td>162</td><td></td></mdl<></td></mdl<>	86	173	ug/Kg		<mdl< td=""><td>80</td><td>162</td><td></td></mdl<>	80	162	
4-Bromophenyl Phenyl Ether		<mdl< td=""><td>14</td><td>19.7</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>18</td><td>25.8</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>24.2</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	14	19.7	ug/Kg	l	<mdl< td=""><td>18</td><td>25.8</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>17</td><td>24.2</td><td>ug/Kg</td></mdl<></td></mdl<>	18	25.8	ug/Kg		<mdl< td=""><td>17</td><td>24.2</td><td>ug/Kg</td></mdl<>	17	24.2	ug/Kg
4-Chloro-3-Methylphenol		<mdl< td=""><td>65</td><td>132</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	65	132	ug/Kg	l	<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl<></td></mdl<>	86	173	ug/Kg		<mdl< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl<>	80	162	ug/Kg
4-Chloroaniline		<mdl,g< td=""><td>65</td><td>132</td><td>ug/Kg</td><td>ļ</td><td><mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	65	132	ug/Kg	ļ	<mdl,g< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	86	173	ug/Kg		<mdl,g< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,g<>	80	162	ug/Kg
4-Chlorophenyl Phenyl Ether		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg	l	<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.1	ug/Kg		<mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<>	24	40.4	ug/Kg
4-Methylphenol		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td>97.4</td><td></td><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<></td></mdl<>	33	65.7	ug/Kg	97.4		44	86.1	ug/Kg		<mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<>	41	80.6	ug/Kg
4-Nitroaniline		<mdl.g< td=""><td>140</td><td>197</td><td>ug/Kg</td><td>l</td><td><mdl,g< td=""><td>180</td><td>258</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>170</td><td>242</td><td>ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl.g<>	140	197	ug/Kg	l	<mdl,g< td=""><td>180</td><td>258</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>170</td><td>242</td><td>ug/Kg</td></mdl,g<></td></mdl,g<>	180	258	ug/Kg		<mdl,g< td=""><td>170</td><td>242</td><td>ug/Kg</td></mdl,g<>	170	242	ug/Kg
4-Nitrophenol		<mdl.l< td=""><td>65</td><td>132</td><td>ug/Kg</td><td>l</td><td><mdl,l< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,l<></td></mdl,l<></td></mdl.l<>	65	132	ug/Kg	l	<mdl,l< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,l< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,l<></td></mdl,l<>	86	173	ug/Kg		<mdl,l< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,l<>	80	162	ug/Kg
Acenaphthene		<mdl< td=""><td>14</td><td>26.3</td><td>ug/Kg</td><td>425</td><td></td><td>18</td><td>34.4</td><td>ug/Kg</td><td>5610</td><td></td><td>17</td><td>32.2</td><td>ug/Kg</td></mdl<>	14	26.3	ug/Kg	425		18	34.4	ug/Kg	5610		17	32.2	ug/Kg
Acenaphthylene		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td>267</td><td></td><td>26</td><td>43.1</td><td>ug/Kg</td><td>327</td><td></td><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<>	20	32.9	ug/Kg	267		26	43.1	ug/Kg	327		24	40.4	ug/Kg
Aniline		<mdl,x< td=""><td>65</td><td>132</td><td>ug/Kg</td><td>l</td><td><mdl,x< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,x<></td></mdl,x<></td></mdl,x<>	65	132	ug/Kg	l	<mdl,x< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,x<></td></mdl,x<>	86	173	ug/Kg		<mdl,x< td=""><td>80</td><td>162</td><td>ug/Kg</td></mdl,x<>	80	162	ug/Kg
Anthracene	52.7		20	32.9	ug/Kg	1070		26	43.1	ug/Kg	2250		24	40.4	ug/Kg
Benzidine		<mdl,x< td=""><td>790</td><td>158C</td><td>ug/Kg</td><td>l</td><td><mdl,x< td=""><td>1000</td><td>2070</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>970</td><td>1940</td><td>ug/Kg</td></mdl,x<></td></mdl,x<></td></mdl,x<>	790	158C	ug/Kg	l	<mdl,x< td=""><td>1000</td><td>2070</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>970</td><td>1940</td><td>ug/Kg</td></mdl,x<></td></mdl,x<>	1000	2070	ug/Kg		<mdl,x< td=""><td>970</td><td>1940</td><td>ug/Kg</td></mdl,x<>	970	1940	ug/Kg
Benzo(a)anthracene	91.4		20	32.9	ug/Kg	2700	T	26	43.1	ug/Kg	6900		24	40.4	ug/Kg
Benzo(a)pyrene	66		33	65.7	ug/Kg	1760		44	86.1	ug/Kg	3000		41	80.6	ug/Kg
Benzo(b)fluoranthene	114		53	98.6	ug/Kg	3780		69	129	ug/Kg	6020		65	121	ug/Kg
Benzo(g,h,i)perylene		<mdl,g< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td>481</td><td>G</td><td>44</td><td>86.1</td><td>ug/Kg</td><td>526</td><td></td><td>41</td><td>80.6</td><td>ug/Kg</td></mdl,g<>	33	65.7	ug/Kg	481	G	44	86.1	ug/Kg	526		41	80.6	ug/Kg
Benzo(k)fluoranthene		<mdl< td=""><td>53</td><td>98.6</td><td>ug/Kg</td><td>1600</td><td></td><td>69</td><td>129</td><td>ug/Kg</td><td>2010</td><td></td><td>65</td><td>121</td><td>ug/Kg</td></mdl<>	53	98.6	ug/Kg	1600		69	129	ug/Kg	2010		65	121	ug/Kg
Benzoic Acid		<mdl< td=""><td>140</td><td>197</td><td>ug/Kg</td><td>363</td><td></td><td>180</td><td>258</td><td>ug/Kg</td><td>313</td><td></td><td>170</td><td>242</td><td></td></mdl<>	140	197	ug/Kg	363		180	258	ug/Kg	313		170	242	
Benzyl Alcohol		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td>l</td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<></td></mdl<>	33	65.7	ug/Kg	l	<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<>	44	86.1	ug/Kg		<mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<>	41	80.6	
Benzyl Butyl Phthalate		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg		<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<></td></mdl<>	26	43.1	ug/Kg		<mdl< td=""><td>24</td><td>40.4</td><td>ug/Kg</td></mdl<>	24	40.4	ug/Kg
Bis(2-Chloroethoxy) Methane		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<></td></mdl<>	33	65.7	ug/Kg		<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<>	44	86.1	ug/Kg		<mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<>	41	80.6	
Bis(2-Chloroethyl)Ether		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td>40.4</td><td></td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg		<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td>40.4</td><td></td></mdl<></td></mdl<>	26	43.1	ug/Kg		<mdl< td=""><td>24</td><td>40.4</td><td></td></mdl<>	24	40.4	
Bis(2-Chloroisopropyl)Ether		<mdl< td=""><td>65</td><td>132</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>80</td><td>152</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	65	132	ug/Kg		<mdl< td=""><td>86</td><td>173</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>80</td><td>152</td><td>ug/Kg</td></mdl<></td></mdl<>	86	173	ug/Kg		<mdl< td=""><td>80</td><td>152</td><td>ug/Kg</td></mdl<>	80	152	ug/Kg
Bis(2-Ethylhexyl)Phthalate	49	В	20	32.9	ug/Kg		<mdl,b< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td>236</td><td></td><td>24</td><td>40.4</td><td></td></mdl,b<>	26	43.1	ug/Kg	236		24	40.4	
Carbazole		<mdl,l< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td>743</td><td>L</td><td>44</td><td>86.1</td><td>ug/Kg</td><td>1770</td><td></td><td>41</td><td>80.6</td><td></td></mdl,l<>	33	65.7	ug/Kg	743	L	44	86.1	ug/Kg	1770		41	80.6	
Chrysene	152		20	32.9	ug/Kg	3020		26	43.1	ug/Kg	5230		24	40.4	
Coprostanol		<mdl< td=""><td>140.</td><td>197</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>170</td><td>242</td><td></td></mdl<></td></mdl<></td></mdl<>	140.	197	ug/Kg		<mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>170</td><td>242</td><td></td></mdl<></td></mdl<>	180	258	ug/Kg		<mdl< td=""><td>170</td><td>242</td><td></td></mdl<>	170	242	
Di-N-Butyl Phthalate	87.7		33	65.7	ug/Kg	131		44	86.1	ug/Kg	90.2		41	80.6	
Di-N-Octyl Phthalate		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td>40.4 121</td><td></td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg		<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td>40.4 121</td><td></td></mdl<></td></mdl<>	26	43.1	ug/Kg		<mdl< td=""><td>24</td><td>40.4 121</td><td></td></mdl<>	24	40.4 121	
Dibenzo(a,h)anthracene		<mdl< td=""><td>53</td><td>98.6</td><td>ug/Kg</td><td>334</td><td></td><td>69</td><td>129</td><td>ug/Kg</td><td>245</td><td></td><td>65</td><td></td><td>ug/Kg</td></mdl<>	53	98.6	ug/Kg	334		69	129	ug/Kg	245		65		ug/Kg
Dibenzofuran		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td>333</td><td></td><td>44</td><td>86.1</td><td>ug/Kg</td><td>1600</td><td></td><td>41</td><td>80.6</td><td></td></mdl<>	33	65.7	ug/Kg	333		44	86.1	ug/Kg	1600		41	80.6	
Diethyl Phthalate	•	<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<></td></mdl<>	33	65.7	ug/Kg		<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<>	44	86.1	ug/Kg		<mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<>	41	80.6	
Dimethyl Phthalate		<mdl< td=""><td>14</td><td>19.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>18</td><td>25.8</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>17</td><td>24.2</td><td></td></mdl<></td></mdl<></td></mdl<>	14	19.7	ug/Kg		<mdl< td=""><td>18</td><td>25.8</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>17</td><td>24.2</td><td></td></mdl<></td></mdl<>	18	25.8	ug/Kg	 	<mdl< td=""><td>17</td><td>24.2</td><td></td></mdl<>	17	24.2	
Fluoranthene	208		20	39.5	ug/Kg	4750		26	51.7	ug/Kg	23600		24	48.4	
Fluorene		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td>512</td><td></td><td>26</td><td>43.1</td><td>ug/Kg</td><td>1980</td><td></td><td>24</td><td>40.4 40.4</td><td></td></mdl<>	20	32.9	ug/Kg	512		26	43.1	ug/Kg	1980		24	40.4 40.4	
Hexachlorobenzene		<mdl< td=""><td>20</td><td>32.9</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td></td><td></td></mdl<></td></mdl<></td></mdl<>	20	32.9	ug/Kg		<mdl< td=""><td>26</td><td>43.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>24</td><td></td><td></td></mdl<></td></mdl<>	26	43.1	ug/Kg		<mdl< td=""><td>24</td><td></td><td></td></mdl<>	24		
Hexachlorobutadiene		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<></td></mdl<>	33	65.7	ug/Kg		<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<>	44	86.1	ug/Kg	<u> </u>	<mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<>	41	80.6	
Hexachlorocyclopentadiene		<mdl,x< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td> </td><td><mdl,x< td=""><td>41</td><td>80.6</td><td></td></mdl,x<></td></mdl,x<></td></mdl,x<>	33	65.7	ug/Kg		<mdl,x< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td> </td><td><mdl,x< td=""><td>41</td><td>80.6</td><td></td></mdl,x<></td></mdl,x<>	44	86.1	ug/Kg		<mdl,x< td=""><td>41</td><td>80.6</td><td></td></mdl,x<>	41	80.6	
Hexachloroethane		<mdl,g< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td>II</td><td><mdl,g< td=""><td>41</td><td>80.6</td><td></td></mdl,g<></td></mdl,g<></td></mdl,g<>	33	65.7	ug/Kg		<mdl,g< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td>II</td><td><mdl,g< td=""><td>41</td><td>80.6</td><td></td></mdl,g<></td></mdl,g<>	44	86.1	ug/Kg	II	<mdl,g< td=""><td>41</td><td>80.6</td><td></td></mdl,g<>	41	80.6	
Indeno(1,2,3-Cd)Pyrene	43		33	65.7	ug/Kg	761		44	86.1	ug/Kg	809		41	80.6	
Isophorone		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<></td></mdl<>	33	65.7	ug/Kg		<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<></td></mdl<>	44	86.1	ug/Kg	<u> </u>	<mdl< td=""><td>41</td><td>80.6</td><td></td></mdl<>	41	80.6	
N-Nitrosodi-N-Propylamine		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td>1</td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td>JL</td><td><mdl< td=""><td>41</td><td>83.6</td><td></td></mdl<></td></mdl<></td></mdl<>	33	65.7	ug/Kg	1	<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td>JL</td><td><mdl< td=""><td>41</td><td>83.6</td><td></td></mdl<></td></mdl<>	44	86.1	ug/Kg	JL	<mdl< td=""><td>41</td><td>83.6</td><td></td></mdl<>	41	83.6	
N-Nitrosodimethylamine	*****	<mdl< td=""><td>140</td><td>197</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>170</td><td>242</td><td></td></mdl<></td></mdl<></td></mdl<>	140	197	ug/Kg		<mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>170</td><td>242</td><td></td></mdl<></td></mdl<>	180	258	ug/Kg	<u> </u>	<mdl< td=""><td>170</td><td>242</td><td></td></mdl<>	170	242	
N-Nitrosodiphenylamine		<mdl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></mdl<>	33	65.7	ug/Kg		<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td><u> </u></td><td><mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.1	ug/Kg	<u> </u>	<mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<>	41	80.6	ug/Kg

PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG8 Jul 29, 94 L4298-5 SALTWTRS 81.1	SED			Sampled: Lab ID: Matrix:	P53VG10 Jul 29, 94 L4298-6 SALTWTR 61.9	SED		-	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG11 Jul 29, 94 L4298-7 SALTWTRS 66.1	SED		
Parameters	Value	Qual - Di	MDL ry Weight Ba	RDL asis	Units	Value	Qual - p	MDL Ory Weight Ba	RDL sis	Units	Value	Qual - D	MDL ry Weight Ba	RDL sis	Units
Naphthalene		<ndl< td=""><td>53</td><td>98.6</td><td>ug/Kg</td><td>187</td><td></td><td>69</td><td>129</td><td>ug/Kg</td><td>2130</td><td></td><td>65</td><td>121</td><td>ug/Kg</td></ndl<>	53	98.6	ug/Kg	187		69	129	ug/Kg	2130		65	121	ug/Kg
Nitrobenzene		<ndl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl<>	33	65.7	ug/Kg		<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td> </td><td><mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.1	ug/Kg	 	<mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<>	41	80.6	ug/Kg
Pentachlorophenol		<ndl< td=""><td>33</td><td>65.7</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl<>	33	65.7	ug/Kg		<mdl< td=""><td>44</td><td>86.1</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<></td></mdl<>	44	86.1	ug/Kg		<mdl< td=""><td>41</td><td>80.6</td><td>ug/Kg</td></mdl<>	41	80.6	ug/Kg
Phenanthrene	78.1		20	32.9	ug/Kg	2460		26	43.1	ug/Kg	9590		24	40.4	ug/Kg
Phenol		<ndl< td=""><td>140</td><td>197</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>170</td><td>242</td><td>ug/Kg</td></mdl<></td></mdl<></td></ndl<>	140	197	ug/Kg		<mdl< td=""><td>180</td><td>258</td><td>ug/Kg</td><td></td><td><mdl< td=""><td>170</td><td>242</td><td>ug/Kg</td></mdl<></td></mdl<>	180	258	ug/Kg		<mdl< td=""><td>170</td><td>242</td><td>ug/Kg</td></mdl<>	170	242	ug/Kg
Pyrene	97.4		20	32.9	ug/Kg	11600		26	43.1	ug/Kg	29300		24	40.4	ug/Kg
METALS M.Code=METRO 16-01-005		-DD1	0.005					0.000			0.935		0.03	0.303	mg/Kg
Mercury, Total, CVAA M.Code=METRO 16-02-004	0.031	<rdl< td=""><td>0.025</td><td>0.248</td><td>mg/Kg</td><td>1.66</td><td></td><td>0.032</td><td>0.318</td><td>mg/Kg</td><td>0.935</td><td></td><td>0.03</td><td>0.000</td><td>iligirity</td></rdl<>	0.025	0.248	mg/Kg	1.66		0.032	0.318	mg/Kg	0.935		0.03	0.000	iligirity
Aluminum, Total, ICP	10700		12	60.0	mg/Kg	12600		16	80.3	mg/Kg	11600		15	75.2	mg/Kg
Antimony, Total, ICP	10700	<mdl,g< td=""><td>3.7</td><td>18.2</td><td></td><td>12000</td><td><mdl,g< td=""><td>4.8</td><td>24.1</td><td>mg/Kg</td><td>11000</td><td><mdl.g< td=""><td>4.5</td><td>22.5</td><td></td></mdl.g<></td></mdl,g<></td></mdl,g<>	3.7	18.2		12000	<mdl,g< td=""><td>4.8</td><td>24.1</td><td>mg/Kg</td><td>11000</td><td><mdl.g< td=""><td>4.5</td><td>22.5</td><td></td></mdl.g<></td></mdl,g<>	4.8	24.1	mg/Kg	11000	<mdl.g< td=""><td>4.5</td><td>22.5</td><td></td></mdl.g<>	4.5	22.5	
Arsenic, Total, ICP		<rdl< td=""><td>6</td><td>30.5</td><td>mg/Kg</td><td>15</td><td><rdl< td=""><td>8.1</td><td>40.1</td><td>mg/Kg</td><td>17</td><td><rdl< td=""><td>7.6</td><td>37.7</td><td>mg/Kg</td></rdl<></td></rdl<></td></rdl<>	6	30.5	mg/Kg	15	<rdl< td=""><td>8.1</td><td>40.1</td><td>mg/Kg</td><td>17</td><td><rdl< td=""><td>7.6</td><td>37.7</td><td>mg/Kg</td></rdl<></td></rdl<>	8.1	40.1	mg/Kg	17	<rdl< td=""><td>7.6</td><td>37.7</td><td>mg/Kg</td></rdl<>	7.6	37.7	mg/Kg
Barium, Total, ICP	20.6	E	0.12	0.609	mg/Kg	620	E	0.16	0.803	mg/Kg	72.5	E	0.15	0.752	mg/Kg
Beryllium, Total, ICP	0.22	<rdl< td=""><td>0.12</td><td>0.609</td><td>mg/Kg</td><td>0.34</td><td></td><td>0.16</td><td>0.803</td><td>mg/Kg</td><td>0.27</td><td><rdl< td=""><td>0.15</td><td>0.752</td><td>mg/Kg</td></rdl<></td></rdl<>	0.12	0.609	mg/Kg	0.34		0.16	0.803	mg/Kg	0.27	<rdl< td=""><td>0.15</td><td>0.752</td><td>mg/Kg</td></rdl<>	0.15	0.752	mg/Kg
Cadmium, Total, ICP		<ndl< td=""><td>0.12</td><td></td><td>mg/Kg</td><td>1.5</td><td><rdl< td=""><td>0.48</td><td>2.41</td><td>mg/Kg</td><td>1.3</td><td><rdl< td=""><td>0.45</td><td>2.25</td><td></td></rdl<></td></rdl<></td></ndl<>	0.12		mg/Kg	1.5	<rdl< td=""><td>0.48</td><td>2.41</td><td>mg/Kg</td><td>1.3</td><td><rdl< td=""><td>0.45</td><td>2.25</td><td></td></rdl<></td></rdl<>	0.48	2.41	mg/Kg	1.3	<rdl< td=""><td>0.45</td><td>2.25</td><td></td></rdl<>	0.45	2.25	
Calcium, Total, ICP	4560	-MDL	6		mg/Kg	7770	-NDL	8.1	40.1	mg/Kg	31000		7.6	37.7	mg/Kg
Chromium, Total, ICP	19.6		0.6		mg/Kg	60.9		0.81	4.01	mg/Kg	37.5		0.76	3.77	mg/Kg
Copper, Total, ICP	18.2		0.49		mg/Kg	111		0.65	3.21	mg/Kg	55.7		0.61	3.01	mg/Kg
Iron, Total, ICP	14200		6		mg/Kg	19900		8.1	40.1	mg/Kg	18500		7.6	377	mg/Kg
Lead, Total, ICP	5.9	<rdl< td=""><td>3.7</td><td></td><td>mg/Kg</td><td>394</td><td></td><td>4.8</td><td>24.1</td><td>mg/Kg</td><td>121</td><td></td><td>4.5</td><td>22.5</td><td>mg/Kg</td></rdl<>	3.7		mg/Kg	394		4.8	24.1	mg/Kg	121		4.5	22.5	mg/Kg
Magnesium, Total, ICP	4280	E	3.7	18.2	mg/Kg	6560	E	4.8	24.1	mg/Kg	6200	E	4.5	22.5	mg/Kg
Manganese, Total, ICP	173	— ī —	0.25			221	— - -	0.32	1.6	mg/Kg	228	L	0.3	1.5	mg/Kg
Molybdenum, Total, ICP		<mdl< td=""><td>2.5</td><td></td><td>mg/Kg</td><td>6.5</td><td><rdl< td=""><td>3.2</td><td>16</td><td>mg/Kg</td><td>3.6</td><td><rdl< td=""><td>3</td><td>15</td><td>mg/Kg</td></rdl<></td></rdl<></td></mdl<>	2.5		mg/Kg	6.5	<rdl< td=""><td>3.2</td><td>16</td><td>mg/Kg</td><td>3.6</td><td><rdl< td=""><td>3</td><td>15</td><td>mg/Kg</td></rdl<></td></rdl<>	3.2	16	mg/Kg	3.6	<rdl< td=""><td>3</td><td>15</td><td>mg/Kg</td></rdl<>	3	15	mg/Kg
Nickel, Total, ICP	19.1		2.5		mg/Kg	36.8		3.2	16	mg/Kg	36.5		3	15	mg/Kg
Selenium, Total, ICP		<mdl< td=""><td>6</td><td></td><td>mg/Kg</td><td></td><td><mdl< td=""><td>8.1</td><td>40.1</td><td>mg/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>37.7</td><td>mg/Kg</td></mdl<></td></mdl<></td></mdl<>	6		mg/Kg		<mdl< td=""><td>8.1</td><td>40.1</td><td>mg/Kg</td><td> </td><td><mdl< td=""><td>7.6</td><td>37.7</td><td>mg/Kg</td></mdl<></td></mdl<>	8.1	40.1	mg/Kg	 	<mdl< td=""><td>7.6</td><td>37.7</td><td>mg/Kg</td></mdl<>	7.6	37.7	mg/Kg
Silver, Total, ICP		<mdl< td=""><td>0.49</td><td></td><td>mg/Kg</td><td>5.19</td><td></td><td>0.65</td><td>3.21</td><td>mg/Kg</td><td>3.49</td><td></td><td>0.61</td><td>3.01</td><td>mg/Kg</td></mdl<>	0.49		mg/Kg	5.19		0.65	3.21	mg/Kg	3.49		0.61	3.01	mg/Kg
Sodium, Total, ICP	3880		60		mg/Kg	8510		81	401	mg/Kg	5850		76	377	
Thallium, Total, ICP		<mdl< td=""><td>25</td><td></td><td>mg/Kg</td><td>ļ ————</td><td><mdl< td=""><td>32</td><td>160</td><td>mg/Kg</td><td>1</td><td><mdl< td=""><td>30</td><td>150</td><td></td></mdl<></td></mdl<></td></mdl<>	25		mg/Kg	ļ ————	<mdl< td=""><td>32</td><td>160</td><td>mg/Kg</td><td>1</td><td><mdl< td=""><td>30</td><td>150</td><td></td></mdl<></td></mdl<>	32	160	mg/Kg	1	<mdl< td=""><td>30</td><td>150</td><td></td></mdl<>	30	150	
Zinc, Total, ICP	30.6	***************************************	0.6		mg/Kg	208		0.81	4.01	mg/Kg	132		0.76	3.77	mg/Kg
CONVENTIONALS M.Code=SM5316-B		-													
Total Organic Carbon	4020		6.2	12.3	mg/Kg	41500		8.1	16.2	mg/Kg	16500		7.6	15.1	mg/Kg
M.Code≈(No Method Code)															
p-2.25	15	E	0.1		%	27	E	0.1		%	1.9		0.1		%
p-2.00	3.6	E	0.1		%	4.2	E	0.1		%	0.3		0.1		%
p-1.00	11	E	0.1		%	17	E	0.1		%	3.9		0.1		%
p+0.00	9.6	E	0.1		%	8	E	0.1		%	5.8		0.1		%
p+1.00	13	E	0.1		%	7.5	E	0.1		%	26		0.1		%
p+2.00	15	E	0.1		%	7.2	E	0.1		%	31		0.1		%
p+3,00	4.4	E	0.1		%	5.9	E	0.1		%	9.7		0.1		%
p+4.00	1.6	E	0.1		%	4.7	E	0.1		%	2.5		0.1		%
p+5.00	5.6	E	0.1		%	1.3	E -	0.1		%	5.5	E	0.1		%

PROJECT: A44703	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG8 Jul 29, 94 L4298-5 SALTWTF 81.1	RSED		Locator: Sampled: Lab ID; Matrix; % Solids:	P53VG10 Jul 29, 94 L4298-6 SALTWT1 61.9	•	·	Locator: Sampled: Lab ID: Matrix: % Solids:	P53VG11 Jul 29, 94 L4298-7 SALTWTR 66.1	SED	
Parameters	Value	Qual	MDL RE	OL Units	Value	Qual	MDL RI Ory Weight Basis	OL Units	Value	Qual - (MDL RDL Dry Weight Basis	_ Units
p+6.00	5.	3 E	0.1	%	4	.1 E	0.1	%	4.	2 E	0.1	%
p+7.00		6 E	0.1	%	3	.9 E	0.1	%	3.	3 E	0.1	%
p+8.00	3.	7 E	0.1	%	3	i.3 E	0.1	%	2.	4 E	0.1	%
p+9.00	1.	4 E	0.1	%	1	.1 E	0.1	%	0.	4 E	0.1	%
p+10.0	0.	6 E	0.1	%	0	.4 E	0.1	%	1	<mdl,e< td=""><td>0.1</td><td>%</td></mdl,e<>	0.1	%
p+11.0	4.	8 E	0.1	%	3	.9 E	0.1	%	3.	6 E	0.1	%

APPENDIX E BENTHIC TAXONOMY DATA

PIER 53-55 CAP						
METRO - SEATTLE		***				
INVERTEBRATE SPECIES DATA				<u> </u>		
By Marine Taxonomic Services, Ltd				<u> </u>		
December, 1996	d.					
December, 1990						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
TAXON	NODOC CODE	VG1-1	VG1-2	V/C4 2	1/04.4)/O4 5
Amage anops	5001670101	<u> </u>		VG1-3	VG1-4	VG1-5
Ampharete labrops	5001670101	9	1		-	4
	5001670213	<u> </u>	1	5	5	11
Ampharete sp. Indet.	5001670200	 -				
Ampharete cf. crassiseta	E004070000					
Ampharetidae sp. Indet.	5001670000			1		
Amphicties mucronata	5001670306		11			
Anobothrus gracilis	5001670701			4		
Aphelochaeta monilaris	5001500301	2	1	1	3	
Aphelochaeta sp. Indet.						
Aphelochaeta sp. N-1		4	2		1	1
Aphrodita sp. Juv.	5001010100					
Aricidea ramosa	5001410706				2	
Aricidea wassi	5001410206					
Armandia brevis	5001580202					1
Ascleriocheilus beringainus	5001570201					
Barantolla nr. americana	5001600601					
Capitella capitata 'hyperspecies'	5001600101					
Capitellidae sp. Indet.	5001600000					
Caulleriella pacifica		4	3	2	2	1
Chaetozone acuta						
Chaetozone nr. setosa	5001500401	7	5	4	2	2
Chaetozone sp. Indet.	5001500400					
Cirratulidae sp. Indet.	5001500000	1	3	1	2	1
Cirratulidae sp. Juv.	5001500000					
Cirratulus robustus	5001500102					
'Clymenura' gracilis	5001631203	3				
Cossura pygodactyla	5001520106				_2	
Demonax sp. Indet.	5001702800				<u> </u>	<u> </u>
Diopatra ornata	5001290202		1	3		2
Dipolydora cardalia	5001430431				1	1
Dipolydora caulleryi	5001430404			11		
Dipolydora socialis	5001430402					
Dorvillea annulata	5001360502					
Dorvillea pseudorubrovittata	5001360101				1	
Dorvillidae sp. Indet.	5001360000					
Drilonereis longa	5001330103				1	
Ehlersia heterochaeta	5001232201			11		
Ehlersia hyperioni	5001230321	2	1	ļ		
Ehlersia sp. Indet.	5001232200			ļ		
Eteone sp. Indet.	5001130200					
Euchone incolor	5001700204	2				
Euclymeninae sp. Indet.		1	1	1		
Eulalia californiensis		2	1	1	6	11
Eumida longicornuta		1	4	1	11	5

PIER 53-55 CAP			1			
METRO - SEATTLE			-			
INVERTEBRATE SPECIES DATA			1			
By Marine Taxonomic Services, Ltd						
December, 1996						
., 1000						
						<u> </u>
						
TAXON	NODOC CODE	VG1-1	VG1-2	VG1-3	VG1-4	VG1-5
Exogone lourei	5001230703	<u> </u>	V 0 1-2	VO 1-3	VO1-4	VG1-5
Exogone sp. Juv.	5001230700	1	•			
Gattyana ciliata	5001020602	_				
Gattyana cirrosa	5001020603	4	4	9	2	4
Glycera americana	5001020003	1	-	<u> </u>		4
Glycera nana	3001270104	4	7	7	1	1
Glycera sp. Indet.	5001270100			•	1	
Glycera sp. Juv.	5001270100				·	
Glycinde armigera	5001270100	4	4	2	1	1
Glycinde polygnatha	5001280105				1	
Glycinde sp. Juv.	5001280100					
Goniada maculata	5001280202	2	2		1	1
Harmothoe imbricata	5001020806					
Hesionidae sp. Indet.	5001210000					
Heteromastus filobranchus	5001600203					
Isocirrus longiceps	5001600203	······································				
Laonice cirrata	5001032001	2	6	2		
Laonice pugettensis	5001430201		0			1
Leitoscolopios pugettensis	5001430204		2			
Levinsenia gracilis	5001410801	1		1	2	
Lumbrineridae sp. Indet.	5001310000	39	55	46	42	17
Lumbrineris californiensis	5001310000	4	7	9	23	11
Lumbrineris limicola	5001310132		-	9	23	11
Magelona longicornis	5001440105	1		2		1
Maldanidae sp. Indet.	5001630000					<u> </u>
Mediomastus sp. Indet.	5001600400		2		1	
	5001490401		1			1
Mesochaetopterus taylori						
Microphthalmus sczelkowii Micropodarke dubia	5001210201 5001210801		1			1
Neosabellaria cementarium	5001650201		1			1
	5001050201		1	1		<u> </u>
Nephtys caeca Nephtys cornuta	5001250103	1	5	3	4	1
	5001250104	9	8	7	1	3
Nephtys ferruginea	5001250102	3	-	•		
Nephtys nr. ciliata	5001250102				<u> </u>	1
Nephtys sp. luy	5001250100				1	
Nephtys sp. Juv. Nereidae sp. Indet.	5001240000		 		<u> </u>	
	5001240404	2	2		1	2
Nereis procera	5001240400		1		<u> </u>	
Nereis sp. Juv.	5001600306		†			
Notomastus latericius	5001600300					
Notomastus sp. Indet. Notomastus tenuis	5001600300	1	3	1	2	3
Odontosyllis phosphorea	5001231303	5	<u> </u>	2		
Oligochaeta sp. Indet.	0001201000				<u> </u>	
Oligochaeta sp. indet.	<u> </u>		·		4	

PIER 53-55 CAP	· 1					
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
					 	
TAXON	NODOC CODE	VG1-1	VG1-2	VG1-3	VG1-4	VG1-5
Onuphidae sp. Indet.	5001290000			70.0	7014	VO 1-5
Onuphis elegans	5001290111					
Onuphis iridescens	5001290103					
Onuphis sp. Juv.	5001290100					
Ophelina acuminata	5001580607	1				
Orbinildae sp. Indet.	5001400000	· · · · · · · · · · · · · · · · · · ·				
Paleonotus bellis	5001080101					
Paranaitis polynoides	5001130803	· · · · · · · · · · · · · · · · · · ·				
Parandalia fauveli	5001220802		2	1	1	4
Paraprionospio pinnata	5001431701	3	3		4	1
Parougia caeca						
Pectinaria californiensis	5001660304					
Pectinaria granulata	5001660303	5	1	1	2	1
Pectinaria sp. Indet.	5001660300					
Pholoe glabra	5001060102					
Pholoe minuta	5001060101					
Pholoides aspera	5001040202	9	2	6	8	8
Phyllochaetopterus prolifica	5001490202	1				
Phyllodoce groenlandica	5001130102	1	1	2		
Phyllodoce hartmanae	5001131402		1			
Phyllodoce sp. Indet.	5001131400					
Phyllodoce sp. Juv.	5001131400					
Phyllodocidae sp. Juv.	5001130000				,	
Phylo felix	5001400401					
Pilargis maculata	5001220303				2	
Pionosyllis sp. Indet.	5001230200					
Pista bansei						
Pista elongata	5001680703	1				
Pista sp. Indet.	5001680700			<u> </u>	1	
Platynereis bicanaliculata	5001240501		<u> </u>			
Podarkeopsis glabrus	5001211903	1			2	
Polycirrus californicus	5001680810	1				
Polycirrus sp. Indet.	5001680800					
Polycirrus sp. complex						
Polydora limicola	5001430415			11		
Polydora sp. Indet.	5001430400		<u> </u>	<u> </u>	1 1	<u> </u>
Polynoidae sp. Indet.	5001020000	1	3	1 1	4	64
Prionospio jubata		83	58	59	51	61
Prionospio lighti	5001430521			ļ	-	
Prionospio multibranchiata	5001433601		<u> </u>	 	 	
Prionospio sp. Indet.	5001430500			ļ		
Prionospio sp. Juv.	5001430500	1		<u> </u>	<u> </u>	
Proclea graffi	5001681702		11	4	ļ	-
Protodorvillea gracilis	5001360201	1 1	1	11	<u> </u>	<u> </u>

METRO - SEATTLE	PIER 53-55 CAP						
INVERTEBRATE SPECIES DATA							
By Marine Taxonomic Services, Ltd. December, 1996							
December, 1996							
TAXON NODOC CODE VG1-1 VG1-2 VG1-3 VG1-4 VG1-5 Rhodine bitorquata 5001631001 Scoletoma luti 5001310109 5 17 10 11 5 Scoletoma luti 5001310109 5 17 10 11 5 Scoletoma luti 5001310109 5 17 10 11 5 Scoletoma luti 5001310109 5 17 10 11 5 Scoletoma luti 50013010109 5 17 10 11 5 Scoletoma luti 5001200202 1 4 2 2 2 1 Sphaerosyllis californiensis 5001230800 Sphaerosyllis californiensis 5001230800 Sphaerosyllis ranuculus							
Rhodine bitorquata 5001631001 5	20001112011, 1000						
Rhodine bitorquata 5001631001 5							
Rhodine bitorquata 5001631001 5							
Rhodine bitorquata 5001631001 5	TAXON	NODOC CODE	VG1-1	VG1-2	V/G1-3	VG1-4	VG1-5
Scoletoma luti			<u> </u>	VO1-2	VO1-5	VO 1-4	- VG1-5
Scoloplos armiger 5001400301 Sigalion spinosa Sphaerodoropsis splaerulifer 500120202 1			5	17	10	11	
Sigalion spinosa							
Sphaerodoropsis sphaerulifer S001280202 1 4 2 2 1		0001400001			·		
Sphaerosyllis ranunculus		5001260202	1	4	2	2	1
Sphaerosyllis ranunculus			•				
Sphaerosyllis sp. Indet. 5001230800 Spio cirrifera 5001430703 Spio sp. Indet. 5001430700 Spio sp. Indet. 5001430700 Spio sp. Indet. 5001430700 Spiontial sp. Juv. 5001430000 Spiontial sp. Juv. 5001431004 6		000120000	***				
Spio cirrifera S001430703 Spio sp. Indet. S001430700 Spio sp. Indet. S001430700 Spiochaetoptrus costarum S001490302 27 46 30 9 18 Spionidae sp. Juv. S001430000 Spiophanes berkeleyorum S001431004 6 1 1 1 1 1 1 1 1 1		5001230800					
Spio sp. Indet. 5001430700 Spiochaetopterus costarum 5001490302 27 46 30 9 18 Spionidae sp. Juv. 5001430000 Spiophanes berkeleyorum 5001431004 6 1 1 1 1 1 1 1 1 1					······································		
Spiochaetopterus costarum 5001490302 27 46 30 9 18 Spionidae sp. Juv. 5001430000 Spiophanes berkeleyorum 5001431004 6 1 1 1 1 1 1 1 1 1							
Spionidae sp. Juv. 5001430000			27	46	30	a	18
Spiophanes berkeleyorum				- 40	30	9	10
Sthenalais fusca			6		1	1	1
Streblosoma bairdi							
Syllidae sp. Indet. 5001230000 1 1			<u>'</u>		<u> </u>		
Syllis sp. Indet. 5001230300 1							1
Tenonia priops			1	1			
Terebellidae sp. Juv. 5001680000							
Terebellides californica 5001690103							
Terebellides sp. Indet. 5001690100							
Travisia forbesii 5001580402 1 1			17 1				
Travisia sp. Juv. 5001580400 Trochochaeta multisetosa 5001450203 1 1 1 2 Typosyllis harti 5001230510 1 1 3 2 4 MOLLUSCA Acila castrensis 5502020101 3 2 4 Adontorhina cyclia 5515020102 1 1 Acilia castrensis 1 1 Acilia castrensis 1 Acilia castrensis 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 3 2 1 1 3 2							1
Trochochaeta multisetosa 5001450203 1							·
Typosyllis harti			1	1	1	2	
MOLLUSCA Acila castrensis 5502020101 Adontorhina cyclia 5515020102 1 Aeolidiidae sp. Indet. 5142030000 1 Alvania compacta 5103200106 1 Articulata sp. Juv. 1 1 Astarte elliptica 5515190114 1 Astyris gausapata 2 1 Axinopsida serricata 5515020201 164 174 150 126 187 Balcis sp. Indet. 5103530600 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></t<>							4
Acila castrensis 5502020101 Adontorhina cyclia 5515020102 Aeolidiidae sp. Indet. 5142030000 Alvania compacta 5103200106 1 Articulata sp. Juv. 1 Astarte elliptica 5515190114 Astyris gausapata 2 1 Axinopsida serricata 5515020201 164 174 150 126 187 Balcis sp. Indet. 5103530600 510350600 5103530600 5103530600 5103530600 5103530600 5103530600 5103530600 5103530600	1 yposyme mara	0001200010	•		J		
Acila castrensis 5502020101 Adontorhina cyclia 5515020102 Aeolidiidae sp. Indet. 5142030000 Alvania compacta 5103200106 1 Articulata sp. Juv. 1 Astarte elliptica 5515190114 Astyris gausapata 2 1 Axinopsida serricata 5515020201 164 174 150 126 187 Balcis sp. Indet. 5103530600 510350600 5103530600 5103530600 5103530600 5103530600 5103530600 5103530600 5103530600	MOLLUSCA						
Adontorhina cyclia 5515020102 1 Aeolidiidae sp. Indet. 5142030000 1 Alvania compacta 5103200106 1 Articulata sp. Juv. 1 1 Astarte elliptica 5515190114 2 Astyris gausapata 2 1 Axinopsida serricata 5515020201 164 174 150 126 187 Balcis sp. Indet. 5103530600 5103530600 5500000000 5500000000 5515220000 2 2 2 Cardiidae sp. Juv. 5515220000 2 2 2 2 Chaetoderma sp. Indet. 5402010100 2 2 2 Clinocardium blandum 5515220102 5515220102 5515220100 5515220100 Clinocardium sp. Juv. 5515220100 5515220100 5515220100 5515220100		5502020101					
Aeolidiidae sp. Indet. 5142030000 1 Alvania compacta 5103200106 1 Articulata sp. Juv. 1 Astarte elliptica 5515190114 Astyris gausapata 2 1 Axinopsida serricata 5515020201 164 174 150 126 187 Balcis sp. Indet. 5103530600						1	
Alvania compacta 5103200106 1 Articulata sp. Juv. 1 Astarte elliptica 5515190114 Astyris gausapata 2 1 Axinopsida serricata 5515020201 164 174 150 126 187 Balcis sp. Indet. 5103530600 5103530600 5500000000 5500000000 5515220000 5515220000 5515220000 2 5402010100 2 2 5402010100 2 2 5402010100 2 5515220102 5515220102 5515220102 5515220100 <							
Articulata sp. Juv. 1 Astarte elliptica 5515190114 Astyris gausapata 2 Axinopsida serricata 5515020201 Balcis sp. Indet. 5103530600 Bivalvia sp. Juv. 55000000000 Cardiidae sp. Juv. 5515220000 Cardiomya pectinata 5520100101 Chaetoderma sp. Indet. 5402010100 Clinocardium blandum 2 Clinocardium nuttalli 5515220102 Clinocardium sp. Juv. 5515220100				1			
Astarte elliptica 5515190114 Astyris gausapata 2 Axinopsida serricata 5515020201 Balcis sp. Indet. 5103530600 Bivalvia sp. Juv. 5500000000 Cardiidae sp. Juv. 5515220000 Cardiomya pectinata 5520100101 Chaetoderma sp. Indet. 5402010100 Clinocardium blandum 2 Clinocardium nuttalli 5515220102 Clinocardium sp. Juv. 5515220100			1				
Astyris gausapata 2 1 Axinopsida serricata 5515020201 164 174 150 126 187 Balcis sp. Indet. 5103530600 Index Index <td< td=""><td></td><td>5515190114</td><td></td><td></td><td></td><td></td><td></td></td<>		5515190114					
Axinopsida serricata 5515020201 164 174 150 126 187 Balcis sp. Indet. 5103530600 Index Index <td< td=""><td></td><td></td><td>2</td><td>1</td><td>,</td><td></td><td></td></td<>			2	1	,		
Balcis sp. Indet. 5103530600 Bivalvia sp. Juv. 5500000000 Cardiidae sp. Juv. 5515220000 Cardiomya pectinata 5520100101 Chaetoderma sp. Indet. 5402010100 Clinocardium blandum 2 Clinocardium nuttalli 5515220102 Clinocardium sp. Juv. 5515220100		5515020201		174	150	126	187
Bivalvia sp. Juv. 5500000000 Cardiidae sp. Juv. 5515220000 Cardiomya pectinata 5520100101 Chaetoderma sp. Indet. 5402010100 Clinocardium blandum 2 Clinocardium nuttalli 5515220102 Clinocardium sp. Juv. 5515220100							
Cardiidae sp. Juv. 5515220000 Cardiomya pectinata 5520100101 Chaetoderma sp. Indet. 5402010100 Clinocardium blandum 2 Clinocardium nuttalli 5515220102 Clinocardium sp. Juv. 5515220100							
Cardiomya pectinata 5520100101 2 Chaetoderma sp. Indet. 5402010100 2 Clinocardium blandum 5515220102 Clinocardium sp. Juv. 5515220100							
Chaetoderma sp. Indet. 5402010100 2 Clinocardium blandum 5515220102 Clinocardium nuttalli 5515220100 Clinocardium sp. Juv. 5515220100				2			
Clinocardium blandum Clinocardium nuttalli 5515220102 Clinocardium sp. Juv. 5515220100						2	
Clinocardium nuttalli 5515220102 Clinocardium sp. Juv. 5515220100							
Clinocardium sp. Juv. 5515220100		5515220102					
			1			1	

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
TAXON	NODOC CODE	VG1-1	VG1-2	VG1-3	VG1-4	VG1-5
Crepipatella lingulata	5103640301		10.2		7017	
Cryptonatica affinis	5103760201					2
Cylichna attonsa	5110040214					
Gastropoda sp. Indet.	5100000000					
Gastropteron pacificum	5110070101			1		
Hiatella arctica	5517060201			· ·		
Kurtzia arteaga	5106024101	· · · · · · · · · · · · · · · · · · ·	1			
Lacuna vincta	5103090305		·			
Lirobittium sp. Indet.	2.000000					
Lottia pelta						
Lottia sp. Juv.						
Lucinoma annulatum	5515010201					1
Lyonsia californica	5520050202	12	1	2		6
Macoma calcarea	5515310101		 		1	
Macoma carlottensis	5515310112	1	8		1	7
Macoma elimata	5515310112	7	3	4	4	1
Macoma inquinata	5515310102	/	3_			
Macoma obliqua	5515310113	2				1
Macoma sp. Juv.	5515310100	20	7	3	4	7
Macoma yoldiformis	5515310100		1			
Margarites pupillus	5102100308		 			
Megacrenella columbiana	5507010301	6	4	2	1	4
Melanochlamys diomedea	5110060101	<u>V</u>	 			
Modiolus sp. Juv.	5507010600					1
Mysella tumida	5515100102		 			
Mytilidae sp. Juv.	5507010000		-			
Mytilus edulis sp. complex	5507010100					
Nassarius mendicus	5101080101					
Nemocardium centrifilosum	5515220301	1		2		1
Nucula tenuis	5502020201		1		2	1
Nuculana minuta	5502040202					
Nudibranchia sp. Juv.	5127000000	1		1	1	
Odostomia sp. Indet.	5108010100			<u> </u>	·	
Olivella baetica	5105100102			·		
Onchidoris bilamellata	5131050507					
Pandora filosa	5520020102	1	T			
Pandora sp. Juv.	5520020100	2	1			
Panomya ampla	5517060303		1			
Parvilucina tenuisculpta	5515010101	13	28	37	24	43
Pododesmus macroschisma	5509090101					
Protothaca staminea	5515470701		1			
Psephidia lordi	5515470501	3	2	1		
Rictaxis punctocaelatus	5110010401					
Saxidomus giganteus	5515470201					

PIER 53-55 CAP						
METRO - SEATTLE					 	
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
				· · · · · · · · · · · · · · · · · · ·		
TAXON	NODOC CODE	VG1-1	VG1-2	VG1-3	VG1-4	VG1-5
Solen sicarius	5515290201				1017	
Tellina modesta	5515310204			-		
Tellina nuculoides	5515310202					
Teredinidae sp. Indet.	5518020000					
Thracia cf. challisiana	5520080207					
Thracia sp. Juv.	5520080200					
Thracia trapezoides	5520080203					
Thyasira gouldi	5515020325		2	1	2	2
Turbonilla sp. Indet.	5108010200	1	2			_
				<i></i>		
CRUSTACEA						
Ampelisca careyi	6169020135					
Ampelisca cristata	6169020112					
Ampelisca hancocki	6169020113					
Ampelisca lobata	6169020134					1
Aoroides exilis	6169060106					
Aoroides exilis	6169060104		1			1
Aoroides intermedia	6169060107		<u>'</u>			
Aruga oculata	0103000107					
Balanomorpha sp. Indet.	6134000000					
Balanus glandula	6134020107					
Bopyroides hippolytes	6165040401		2			
Brachyura sp. Indet.	6184000000					
Byblis millsi	6169020209	9	2	3	1	
Byblis sp. Indet.	6169020200					
Cancer gracilis	6188030105	3	2			2
Cancer gracins Cancer productus	6188030101					
Caprella laeviuscula	6171010710					
Caprella mendax	6171010719					
Chthamalus dalli	6134010101					
Corophium crassicorne	6169150203					
Crangon alaskensis	6179221003	2	1			1
Crangon sp. Indet.	6179220100					
Crangonidae sp. Indet.	6179220000					
Cyclopoida sp. Indet.	6120000000					1
Deflexilodes aenigmaticus		2	1	1	1	2
Desdimelita californica	6169211005		T			
Diastylis santamariensis						
Eobrolgus chumashi	6169421902					
Euaulus pusiolus	6179160408		1	l		
Eudorella pacifica	6154040202	7	3	3	3	3
Euphilomedes carcharodonta	6111070301	332	143	194	114	221
Euphilomedes producta	6111070303	7	5	8	5	11
Exosphaeroma inornata	6161020402					
LAGOPHICO OHIGH HIGHIGA						

PIER 53-55 CAP METRO - SEATTLE INVERTEBRATE SPECIES DATA						
					}	
THE PROPERTY OF LOILS BATA	l l					
By Marine Taxonomic Services, Ltd						
December, 1996						
December, rece						
TAXON	NODOC CODE	VG1-1	VG1-2	VG1-3	VG1-4	VG1-5
Gammaridea sp. Indet.	6169210000	VO1	1	VO 1-3	VG 1-4	_ VG1-5 _
Gammaropsis thompsoni	6169260401					
Haliophasma geminatum	6160011601					
Harpacticoida sp. Indet.	6119000000					
Hemigrapsus oregonensis	6189070102					
Heterophoxus contanae	0100070102		1	3	4	4
Hippolytidae sp. Indet.	6179160000					
Hippomedon coecus	6169341411		• 1			3
Leptochelia dubia	6157020103			2		
Leptognathia gracilis	6157090102					
Mayerella banksia	6171010301					
Melphisana "bola"	6169350201			<u> </u>	,	
Munnogonium tillerae	6163120303					
Mysidae sp. Indet.	6153010000					
Nebalia "pugettensis"	6145010102					
Neotrypaea sp. Indet.	0143010102			1		
Nymphon pixellae	6001010107		1	<u></u>		
Opisa tridentata	6169342802		<u> </u>			
Orchomene pacificus	6169342903					
Orchomene pinguis	6169342904					
Pachynus barnardi	6169343101					
Pagurus dalli	6183060223	1				
Pagurus granosimanus	6183060211	•				
Pagurus sp. Indet.	6183060200					
Parametaphoxus quaylei	0100000200		1	2	5	8
Parasterope barnesi	6111030503	1	5	2	1	4
Peramphithoe tea	0111000000					
Photis brevipes	6169260201					
Phoxichelidium femoratum	6001060102					1
Pinnixa schmitti	6189060404			3		
Pinnixa sp. Indet.	6189060400					1
Pinnotheridae sp. Indet.	6189060000					
Pleusymtes sp A						
Protomedeia prudens	6169260312					
Protomedeia sp. Indet.	6169260300					
Rhepoxynius abronius	6169421504					
Rutiderma Iomae	6111060103				1	
Solidobalanus hesperius	6134050201	1				
Spirontocaris snyderi	6179160204		1			
Spirontocaris sp. Indet.	6179160200	1				
Synchelidium pectinatum				1	1	
Synchelidium rectipalmum	6169371403					
Synchelidium variabilum						
Westwoodilla caecula	6169371502		2	4	1	2

	,		,			
PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
TAXON	NODOC CODE	VG1-1	VG1-2	VG1-3	VG1-4	VG1-5
MISCELLANEOUS						
Amphiodia periercta	8129030107					
Amphiodia sp. Indet.	8129030100					
Amphipholis sp. Indet.	8129030900					1
Amphipholis squamata	8129030202					
Amphiuridae sp. Indet.	8129030000					
Anthozoa sp. Indet.	3740000000					
Chironomidae sp. Juv.	6505080000					
Crossaster papposus	8113010103					
Cucumaria piperata	8172060111					
Ephemeroptera sp. Juv.						
Golfingia sp. Indet.	7200020100	4	5	3	5	5
Golfingia sp. Juv.	7200020100					
Holothuroidea sp. Indet.	8170000000	1				
Nematoda sp. Indet.	4700000000					
Nemertinea sp. Indet.	4300000000	3	5	4	7 .	1
Nynantheae sp. Indet.		1		1	2	1
Ophiura lutkeni	8127010607			1	2	
Ophiura sarsi	8127010610					
Ophiura sp. Indet.	8127010600			1		
Pentamera sp. Indet.	8172060300					
Phoronis sp. Indet.	7700010200					
Platyhelminthes sp. Indet.	3900000000				1	
Spinulosida sp. Indet.	8112000000			1		1
Strongylocentrotus sp. Juv.	8149030200					
Tunicate sp. Indet.				1		

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
TAXON	NODOC CODE	VG2-1	VG2-2	VG2-3	VG2-4	VG2-5
Amage anops	5001670101					
Ampharete labrops	5001670215	,				
Ampharete sp. Indet.	5001670200			****		
Ampharete cf. crassiseta						
Ampharetidae sp. Indet.	5001670000	2			1	
Amphicties mucronata	5001670306	_				
Anobothrus gracilis	5001670701	8	2	1	1	
Aphelochaeta monilaris	5001500301		2		1	1
Aphelochaeta sp. Indet.		2	2	1	1	2
Aphelochaeta sp. N-1			3	<u> </u>		2
Aphrodita sp. Juv.	5001010100					
Aricidea ramosa	5001410706					
Aricidea wassi	5001410206			***************************************		
Armandia brevis	5001580202					1
Ascleriocheilus beringainus	5001570201					<u></u>
Barantolla nr. americana	5001600601					******
Capitella capitata 'hyperspecies'	5001600101					
Capitellidae sp. Indet.	5001600000					
Caulleriella pacifica	000.00000					
Chaetozone acuta						
Chaetozone nr. setosa	5001500401	5	1	2	4	6
Chaetozone sp. Indet.	5001500400	· · · · · · · · · · · · · · · · · · ·				
Cirratulidae sp. Indet.	5001500000	······································				
Cirratulidae sp. Juv.	5001500000	1	1			
Cirratulus robustus	5001500102					
'Clymenura' gracilis	5001631203	1		2		
Cossura pygodactyla	5001520106		1			3
Demonax sp. Indet.	5001702800					
Diopatra ornata	5001290202	4	2	1	4	1
Dipolydora cardalia	5001430431					
Dipolydora caulleryi	5001430404					
Dipolydora socialis	5001430402					
Dorvillea annulata	5001360502					
Dorvillea pseudorubrovittata	5001360101					
Dorvillidae sp. Indet.	5001360000		1			
Drilonereis longa	5001330103					1
Ehlersia heterochaeta	5001232201	1	4			
Ehlersia hyperioni	5001230321	1	4			
Ehlersia sp. Indet.	5001232200					
Eteone sp. Indet.	5001130200			1		
Euchone incolor	5001700204	1				
Euclymeninae sp. Indet.						
Eulalia californiensis			2	ļ	ļ	
Eumida longicornuta			3	1	1	2

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA					l	
By Marine Taxonomic Services, Ltd						
December, 1996					 	
TAXON	NODOC CODE	VG2-1	VG2-2	VG2-3	VG2-4	VG2-5
Exogone lourei	5001230703	1	1	1		
Exogone sp. Juv.	5001230700					
Gattyana ciliata	5001020602					
Gattyana cirrosa	5001020603				1	
Glycera americana	5001270104				•	
Glycera nana	3301213101	1			2	1
Glycera sp. Indet.	5001270100		1			
Glycera sp. Juv.	5001270100					
Glycinde armigera	5001280103	1		····		
Glycinde polygnatha	5001280105	•				
Glycinde sp. Juv.	5001280100			· · · · · · · · · · · · · · · · · · ·		
Goniada maculata	5001280202	.1	1			1
Harmothoe imbricata	5001020806					•
Hesionidae sp. Indet.	5001210000					
Heteromastus filobranchus	5001600203				1	
Isocirrus longiceps	5001632001					
Laonice cirrata	5001430201		2	····		
Laonice pugettensis	5001430204					
Leitoscoloplos pugettensis	5001401601			4		
Levinsenia gracilis	5001410801	2				4
Lumbrineridae sp. Indet.	5001310000	20	31	7	16	10
Lumbrineris californiensis	5001310132		1			2
Lumbrineris limicola	5001310128					
Magelona longicornis	5001440105					
Maldanidae sp. Indet.	5001630000	1		2	1	1
Mediomastus sp. Indet.	5001600400	1	1	1		
Mesochaetopterus taylori	5001490401					
Microphthalmus sczelkowii	5001210201					
Micropodarke dubia	5001210801					
Neosabellaria cementarium	5001650201					
Nephtys caeca	5001250103					
Nephtys cornuta	5001250104	6	9	1	6	11
Nephtys ferruginea	5001250111	4	2	3	6	5
Nephtys nr. ciliata	5001250102					
Nephtys sp. Indet.	5001250100					
Nephtys sp. Juv.	5001250100		1			
Nereidae sp. Indet.	5001240000					
Nereis procera	5001240404	2	1	2	11	<u> </u>
Nereis sp. Juv.	5001240400					11
Notomastus latericius	5001600306		ļ		ļ	ļ[
Notomastus sp. Indet.	5001600300					
Notomastus tenuis	5001600302	1	3	2	4	3
Odontosyllis phosphorea	5001231303					
Oligochaeta sp. Indet.				<u> </u>	<u> </u>	<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
TAXON	NODOC CODE	VG2-1	VG2-2	VG2-3	VG2-4	VG2-5
Onuphidae sp. Indet.	5001290000					
Onuphis elegans	5001290111					
Onuphis iridescens	5001290103					
Onuphis sp. Juv.	5001290100					
Ophelina acuminata	5001580607	1		1		2
Orbinildae sp. Indet.	5001400000		1		·	
Paleonotus bellis	5001080101					1
Paranaitis polynoides	5001130803		1			
Parandalia fauveli	5001220802			1		1
Paraprionospio pinnata	5001431701	1	2	1	2	2
Parougia caeca						
Pectinaria californiensis	5001660304					
Pectinaria granulata	5001660303		1			
Pectinaria sp. Indet.	5001660300					
Pholoe glabra	5001060102					
Pholoe minuta	5001060101					
Pholoides aspera	5001040202					1
Phyllochaetopterus prolifica	5001490202					
Phyllodoce groenlandica	5001130102	2			. 1	1
Phyllodoce hartmanae	5001131402					
Phyllodoce sp. Indet.	5001131400	11	1			
Phyllodoce sp. Juv.	5001131400					
Phyllodocidae sp. Juv.	5001130000					
Phylo felix	5001400401	······································				
Pilargis maculata	5001220303		ļ			
Pionosyllis sp. Indet.	5001230200					
Pista bansei						
Pista elongata	5001680703	******	_			
Pista sp. Indet.	5001680700					
Platynereis bicanaliculata	5001240501					
Podarkeopsis glabrus	5001211903					
Polycirrus californicus	5001680810				1	
Polycirrus sp. Indet.	5001680800					
Polycirrus sp. complex	F004420445					4
Polydora limicola	5001430415					1
Polydora sp. Indet.	5001430400 5001020000		1			2
Polynoidae sp. Indet.	5001020000	34	35	19	34	43
Prionospio jubata	5001430521	<u>34</u> 1	33	19	J-7	75
Prionospio lighti	5001430521			·		
Prionospio multibranchiata	5001433601		 			
Prionospio sp. Indet.	5001430500		 			
Prionospio sp. Juv.	5001430300	1	 			
Proclea graffi	5001360201	2	2			
Protodorvillea gracilis	1 3001300201			<u> </u>		

PIER 53-55 CAP						·
METRO - SEATTLE				· · · · · · · · · · · · · · · · · · ·		
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996		· · · · · · · · · · · · · · · · · · ·				<u> </u>
Document, 1000		· · · · · · · · · · · · · · · · · · ·	i			
						
TAXON	NODOC CODE	VG2-1	VG2-2	VG2-3	VG2-4	VG2-5
Rhodine bitorquata	5001631001	1	V U Z - Z	V GZ-3	VG2-4	VG2-3
Scoletoma luti	5001310109	6	7	6	6	16
Scoloplos armiger	5001400301				<u> </u>	10
Sigalion spinosa	0001100001					
Sphaerodoropsis sphaerulifer	5001260202	5	4	1	4	3
Sphaerosyllis californiensis	5001230808			<u> </u>	<u> </u>	
Sphaerosyllis ranunculus	3001230000	2				
Sphaerosyllis sp. Indet.	5001230800					
Spio cirrifera	5001430703		1			
Spio sp. Indet.	5001430700		<u> </u>	2.		
Spiochaetopterus costarum	5001490302	7	20		4	10
Spionidae sp. Juv.	5001430000		20			10
Spionidae sp. Juv. Spiophanes berkeleyorum	5001430000	1				3
	5001060306	1				1
Sthenalais fusca	5001080308	1				
Streblosoma bairdi						
Syllidae sp. Indet.	5001230000			4		
Syllis sp. Indet.	5001230300			1		
Tenonia priops	5001022302					
Terebellidae sp. Juv.	5001680000					
Terebellides californica	5001690103	1				
Terebellides sp. Indet.	5001690100					
Travisia forbesii	5001580402	· · · · · · · · · · · · · · · · · · ·				
Travisia sp. Juv.	5001580400					
Trochochaeta multisetosa	5001450203	1	1			2
Typosyllis harti	5001230510	22	3	11	2	2
			`			
MOLLUSCA	5500000404					
Acila castrensis	5502020101 5515020102					
Adontorhina cyclia		22				
Aeolidiidae sp. Indet.	5142030000					
Alvania compacta	5103200106					
Articulata sp. Juv.	5545400444		<u> </u>			
Astarte elliptica	5515190114			12		2
Astyris gausapata	EE4E000004	205	1 127	13	5 191	176
Axinopsida serricata	5515020201	335	12/	201	191	1/6
Balcis sp. Indet.	5103530600	4	2		-	1
Bivalvia sp. Juv.	5500000000	11	 		 	
Cardiidae sp. Juv.	5515220000		 			
Cardiomya pectinata	5520100101	4	 			2
Chaetoderma sp. Indet.	5402010100	11	 		1	
Clinocardium blandum	EE4E000400			 	 	
Clinocardium nuttalli	5515220102		 		 	
Clinocardium sp. Juv.	5515220100	 	<u> </u>		1 1	1
Compsomyax subdiaphana	5515470301	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd		· \				
December, 1996						
						
TAXON	NODOC CODE	VG2-1	VG2-2	VG2-3	VG2-4	VG2-5
Crepipatella lingulata	5103640301					
Cryptonatica affinis	5103760201					
Cylichna attonsa	5110040214					
Gastropoda sp. Indet.	5100000000					
Gastropteron pacificum	5110070101			1	1	5
Hiatella arctica	5517060201		1			
Kurtzia arteaga	5106024101					
Lacuna vincta	5103090305					
Lirobittium sp. Indet.						
Lottia pelta						
Lottia sp. Juv.						
Lucinoma annulatum	5515010201	2	2			1
Lyonsia californica	5520050202	4		1	1	2
Macoma calcarea	5515310101					
Macoma carlottensis	5515310112	8	2	18_	11	6
Macoma elimata	5515310102			2		2
Macoma inquinata	5515310115		·			
Macoma obliqua	5515310106					
Macoma sp. Juv.	5515310100	22	14	14	2	4
Macoma yoldiformis	5515310111		1		1	
Margarites pupillus	5102100308					
Megacrenella columbiana	5507010301	5	5		3	1
Melanochlamys diomedea	5110060101		<u> </u>		·	
Modiolus sp. Juv.	5507010600	1				
Mysella tumida	5515100102	1		3	1	11
Mytilidae sp. Juv.	5507010000					
Mytilus edulis sp. complex	5507010100					
Nassarius mendicus	5101080101					
Nemocardium centrifilosum	5515220301		1	1		1
Nucula tenuis	5502020201	1	4		11	
Nuculana minuta	5502040202		ļ			
Nudibranchia sp. Juv.	5127000000					
Odostomia sp. Indet.	5108010100					11
Olivella baetica	5105100102				<u> </u>	
Onchidoris bilamellata	5131050507		 			
Pandora filosa	5520020102		<u> </u>		<u> </u>	
Pandora sp. Juv.	5520020100	1	11			
Panomya ampla	5517060303		 			
Parvilucina tenuisculpta	5515010101	38	23	23	25	23
Pododesmus macroschisma	5509090101					
Protothaca staminea	5515470701		<u> </u>		<u> </u>	
Psephidia lordi	5515470501		 			
Rictaxis punctocaelatus	5110010401		<u> </u>			
Saxidomus giganteus	5515470201		1	L	1	<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Lt						
December, 1996						
i .						
TAXON	NODOC CODE	VG2-1	VG2-2	VG2-3	VG2-4	VG2-5
Solen sicarius	5515290201					
Tellina modesta	5515310204					
Tellina nuculoides	5515310202					
Teredinidae sp. Indet.	5518020000					
Thracia cf. challisiana	5520080207					
Thracia sp. Juv.	5520080200					
Thracia trapezoides	5520080203					1
Thyasira gouldi	5515020325		1	1		3
Turbonilla sp. Indet.	5108010200		-			
CRUSTACEA						
Ampelisca careyi	6169020135					
Ampelisca cristata	6169020112					
Ampelisca hancocki	6169020113					1
Ampelisca lobata	6169020134					
Aoroides exilis	6169060106				-	
Aoroides inermis	6169060104	2				
Aoroides intermedia	6169060107					
Aruga oculata	0100000101					
Balanomorpha sp. Indet.	6134000000					
Balanus glandula	6134020107					
Bopyroides hippolytes	6165040401					
Brachyura sp. Indet.	6184000000					
Byblis millsi	6169020209	1				
Byblis sp. Indet.	6169020200					
Cancer gracilis	6188030105			2	1	1
Cancer productus	6188030101					
Caprella laeviuscula	6171010710				\ <u></u>	
Caprella mendax	6171010719					
Chthamalus dalli	6134010101					
Corophium crassicorne	6169150203					
Crangon alaskensis	6179221003				3	1
Crangon sp. Indet.	6179220100					
Crangonidae sp. Indet.	6179220000					
Cyclopoida sp. Indet.	6120000000					
Deflexilodes aenigmaticus						1
Desdimelita californica	6169211005					
Diastylis santamariensis						
Eobrolgus chumashi	6169421902					
Euaulus pusiolus	6179160408					
Eudorella pacifica	6154040202	10	5	5	5	5
Euphilomedes carcharodonta	6111070301	76	75	64	72	50
Euphilomedes producta	6111070303	5	5		4	2
Exosphaeroma inornata	6161020402					

PIER 53-55 CAP			_			
METRO - SEATTLE		*			 	
INVERTEBRATE SPECIES DATA						
						
By Marine Taxonomic Services, Ltd December, 1996	I.					
December, 1996			-			
						[
TAXON	NODOC CODE	V/00.4	1/00.0	1/00.0	11001	
	NODOC CODE	VG2-1	VG2-2	VG2-3	VG2-4	VG2-5
Gammaridea sp. Indet.	6169210000					
Gammaropsis thompsoni	6169260401					
Haliophasma geminatum	6160011601					
Harpacticoida sp. Indet.	6119000000					
Hemigrapsus oregonensis	6189070102					
Heterophoxus conlanae	0470400000	- 3		1	2	8
Hippolytidae sp. Indet.	6179160000					
Hippomedon coecus	6169341411				2	
Leptochelia dubia	6157020103		11	2		
Leptognathia gracilis	6157090102					
Mayerella banksia	6171010301					
Melphisana "bola"	6169350201					
Munnogonium tillerae	6163120303					
Mysidae sp. Indet.	6153010000		2			
Nebalia "pugettensis"	6145010102					
Neotrypaea sp. Indet.		2			11	
Nymphon pixellae	6001010107				1	
Opisa tridentata	6169342802	····				
Orchomene pacificus	6169342903					
Orchomene pinguis	6169342904					
Pachynus barnardi	6169343101					
Pagurus dalli	6183060223					
Pagurus granosimanus	6183060211	·····				
Pagurus sp. Indet.	6183060200					
Parametaphoxus quaylei		4	3		2	1
Parasterope barnesi	6111030503	1			1	1
Peramphithoe tea						
Photis brevipes	6169260201				<u> </u>	
Phoxichelidium femoratum	6001060102			ļ		
Pinnixa schmitti	6189060404					
Pinnixa sp. Indet.	6189060400		1	1		2
Pinnotheridae sp. Indet.	6189060000		ļ			
Pleusymtes sp A						
Protomedeia prudens	6169260312					
Protomedeia sp. Indet.	6169260300					
Rhepoxynius abronius	6169421504			<u> </u>		
Rutiderma lomae	6111060103		11			
Solidobalanus hesperius	6134050201	1				2
Spirontocaris snyderi	6179160204					
Spirontocaris sp. Indet.	6179160200					
Synchelidium pectinatum						
Synchelidium rectipalmum	6169371403					
Synchelidium variabilum			 		<u> </u>	<u></u>
Westwoodilla caecula	6169371502		<u> </u>			<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE			<u> </u>			
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd				 		
December, 1996						
TAXON	NODOC CODE	VG2-1	VG2-2	VG2-3	VG2-4	VG2-5
MISCELLANEOUS						
Amphiodia periercta	8129030107					
Amphiodia sp. Indet.	8129030100					
Amphipholis sp. Indet.	8129030900					
Amphipholis squamata	8129030202					
Amphiuridae sp. Indet.	8129030000					
Anthozoa sp. Indet.	3740000000					
Chironomidae sp. Juv.	6505080000					
Crossaster papposus	8113010103					
Cucumaria piperata	8172060111					
Ephemeroptera sp. Juv.			2			
Golfingia sp. Indet.	7200020100			3	3	
Golfingia sp. Juv.	7200020100					
Holothuroidea sp. Indet.	8170000000					
Nematoda sp. Indet.	4700000000					
Nemertinea sp. Indet.	4300000000	3	6		3	2
Nynantheae sp. Indet.		3	2			
Ophiura lutkeni	8127010607		5			
Ophiura sarsi	8127010610					
Ophiura sp. Indet.	8127010600					2
Pentamera sp. Indet.	8172060300					
Phoronis sp. Indet.	7700010200					
Platyhelminthes sp. Indet.	3900000000		1			
Spinulosida sp. Indet.	8112000000					
Strongylocentrotus sp. Juv.	8149030200					
Tunicate sp. Indet.					1	

PIER 53-55 CAP		·				
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
TAXON	NODOC CODE	VG3-1	VG3-2	VG3-3	VG3-4	VG3-5
Amage anops	5001670101					
Ampharete labrops	5001670215	1	5	5	3	5
Ampharete sp. Indet.	5001670200	•				
Ampharete cf. crassiseta						
Ampharetidae sp. Indet.	5001670000					
Amphicties mucronata	5001670306					
Anobothrus gracilis	5001670701		1	1		
Aphelochaeta monilaris	5001500301		3	<u> </u>	7	4
Aphelochaeta sp. Indet.	0001000001		Ŭ	1	1	1
Aphelochaeta sp. N-1	· · · · · · · · · · · · · · · · · · ·	1		5	13	1
Aphrodita sp. Juv.	5001010100	•			10	-
Aricidea ramosa	5001410706					
Aricidea wassi	5001410706			1	1	
Armandia brevis	5001580202				· · · · · · · · · · · · · · · · · · ·	
Ascleriocheilus beringainus	5001570201			1		
Barantolla nr. americana	5001570201		1			
Capitella capitata 'hyperspecies'	5001600001		<u>'</u>			
	5001600101	1	-		2	
Capitellidae sp. Indet.	3001000000		1	1	2	
Caulleriella pacifica		· · · · · · · · · · · · · · · · · · ·	<u>'</u>		•	
Chaetozone acuta	5001500401	1	2	5	2	2
Chaetozone nr. setosa	5001500401			3		
Chaetozone sp. Indet.	5001500400	***************************************				
Cirratulidae sp. Indet.	5001500000			· · · · · · · · · · · · · · · · · · ·		
Cirratulidae sp. Juv.	5001500000					
Cirratulus robustus	5001631203			<u> </u>		
'Clymenura' gracilis	5001531203	2		2	4	
Cossura pygodactyla	5001702800			_		
Demonax sp. Indet.	5001702800	1	3	2	6	1
Diopatra ornata Dipolydora cardalia	5001430431					<u> </u>
	5001430404					1
Dipolydora caulleryi	5001430402	· · · · · · · · · · · · · · · · · · ·				
Dipolydora socialis	5001360502		1			
Dorvillea annulata	5001360302			4	2	1
Dorvillea pseudorubrovittata	5001360000		 	 		
Dorvillidae sp. Indet.			 	-		<u> </u>
Drilonereis longa	5001330103 5001232201		 		 	
Ehlersia heterochaeta			 	<u> </u>	 	
Ehlersia hyperioni	5001230321 5001232200	7	4	2	2	2
Ehlersia sp. Indet.	5001232200		1	 	1	
Eteone sp. Indet.	5001700204		 '		 	
Euchone incolor	5001700204		 -		 	
Euclymeninae sp. Indet.			2.	1	2	1
Eulalia californiensis	-	1	 	3	1	<u> </u>
Eumida longicornuta	1	<u> </u>		<u> </u>	' 	1

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
						
TAXON	NODOC CODE	VG3-1	VG3-2	VG3-3	VG3-4	VG3-5
Exogone lourei	5001230703				100 1	7000
Exogone sp. Juv.	5001230700					,
Gattyana ciliata	5001020602					
Gattyana cirrosa	5001020603	1	1	2		
Glycera americana	5001270104	**************************************	1			
Glycera nana		1	5	3	4	
Glycera sp. Indet.	5001270100					
Glycera sp. Juv.	5001270100	**				
Glycinde armigera	5001280103	·		1		
Glycinde polygnatha	5001280105	3	2	1	3	
Glycinde sp. Juv.	5001280100			•	2	
Goniada maculata	5001280202	2	1			
Harmothoe imbricata	5001020806					
Hesionidae sp. Indet.	5001210000	1		1	3	-
Heteromastus filobranchus	5001600203					
Isocirrus longiceps	5001632001					
Laonice cirrata	5001430201	1	3	1	2	1
Laonice pugettensis	5001430204			1		****
Leitoscolopios pugettensis	5001401601		1	1		1
Levinsenia gracilis	5001410801	" ' 		2		1
Lumbrineridae sp. Indet.	5001310000	18	21	40	33	30
Lumbrineris californiensis	5001310132	5	12	33	14	4
Lumbrineris limicola	5001310128					
Magelona longicornis	5001440105				1	
Maldanidae sp. Indet.	5001630000	1		2		1
Mediomastus sp. Indet.	5001600400			2	2	1
Mesochaetopterus taylori	5001490401					
Microphthalmus sczelkowii	5001210201					
Micropodarke dubia	5001210801					
Neosabellaria cementarium	5001650201					
Nephtys caeca	5001250103					
Nephtys cornuta	5001250104	4	4	6	25	6
Nephtys ferruginea	5001250111	4	9	10	18	6
Nephtys nr. ciliata	5001250102					
Nephtys sp. Indet.	5001250100					
Nephtys sp. Juv.	5001250100	1				
Nereidae sp. Indet.	5001240000					
Nereis procera	5001240404	3	3	4	2	3
Nereis sp. Juv.	5001240400					
Notomastus latericius	5001600306					
Notomastus sp. Indet.	5001600300					
Notomastus tenuis	5001600302	1	10	10	7	4
Odontosyllis phosphorea	5001231303		ļ	11		<u> </u>
Oligochaeta sp. Indet.			<u></u>	<u> </u>		<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
TAXON	NODOC CODE	VG3-1	VG3-2	VG3-3	VG3-4	VG3-5
Onuphidae sp. Indet.	5001290000	1				
Onuphis elegans	5001290111					
Onuphis iridescens	5001290103					
Onuphis sp. Juv.	5001290100	<u> </u>			· · · · · · · · · · · · · · · · · · ·	
Ophelina acuminata	5001580607	1		2		
Orbinildae sp. Indet.	5001400000					1
Paleonotus bellis	5001080101					
Paranaitis polynoides	5001130803					
Parandalia fauveli	5001220802	1		2	1	5
Paraprionospio pinnata	5001431701	1	1	4	11	2
Parougia caeca				3		
Pectinaria californiensis	5001660304			1	11	
Pectinaria granulata	5001660303					
Pectinaria sp. Indet.	5001660300					
Pholoe glabra	5001060102	1				
Pholoe minuta	5001060101					
Pholoides aspera	5001040202		1	3	2	
Phyllochaetopterus prolifica	5001490202					
Phyllodoce groenlandica	5001130102	1	2	1	1	1
Phyllodoce hartmanae	5001131402					
Phyllodoce sp. Indet.	5001131400					
Phyllodoce sp. Juv.	5001131400					
Phyllodocidae sp. Juv.	5001130000					
Phylo felix	5001400401		1 1	1	1	
Pilargis maculata	5001220303				1	11
Pionosyllis sp. Indet.	5001230200					
Pista bansei						
Pista elongata	5001680703				1	
Pista sp. Indet.	5001680700					
Platynereis bicanaliculata	5001240501					
Podarkeopsis glabrus	5001211903		1			
Polycirrus californicus	5001680810					
Polycirrus sp. Indet.	5001680800					
Polycirrus sp. complex			ļ			
Polydora limicola	5001430415		 			11
Polydora sp. Indet.	5001430400		ļ			
Polynoidae sp. Indet.	5001020000	1	1	2		1 1
Prionospio jubata		26	57	65	97	36
Prionospio lighti	5001430521		_		 	
Prionospio multibranchiata	5001433601		<u> </u>	<u> </u>	2	
Prionospio sp. Indet.	5001430500				ļ	<u> </u>
Prionospio sp. Juv.	5001430500		 		<u> </u>	<u> </u>
Proclea graffi	5001681702		ļ			
Protodorvillea gracilis	5001360201		<u> </u>	<u></u>		<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
TAXON	NODOC CODE	VG3-1	VG3-2	VG3-3	VG3-4	VG3-5
Rhodine bitorquata	5001631001	700 1	1002	V 00 0	V 0 0 -	- 100-0
Scoletoma luti	5001310109	8	10	12	46	6
Scoloplos armiger	5001400301		l v		70	
Sigalion spinosa	0001400001		<u> </u>			
Sphaerodoropsis sphaerulifer	5001260202	3	8	4	9	2
Sphaerosyllis californiensis	5001230808	<u> </u>	0		- 3	
Sphaerosyllis ranunculus	3001230000					
Sphaerosyllis sp. Indet.	5001230800		l			
Spio cirrifera	5001230000				1	
Spio sp. Indet.	5001430703					
Spiochaetopterus costarum	5001430700	1	15	12	1	12
Spionidae sp. Juv.	5001430302		15	12		2
Spiophanes berkeleyorum	5001430000	1	. 1	1	5	
Sthenalais fusca	5001431004	<u> </u>	<u> </u>			
						
Streblosoma bairdi	5001682502					
Syllidae sp. Indet.	5001230000					
Syllis sp. Indet.	5001230300		4		·	
Tenonia priops	5001022302		11			1
Terebellidae sp. Juv.	5001680000		4			
Terebellides californica	5001690103		11			
Terebellides sp. Indet.	5001690100					
Travisia forbesii	5001580402					
Travisia sp. Juv.	5001580400					
Trochochaeta multisetosa	5001450203	2	3	2	2	1
Typosyllis harti	5001230510				1	1
MOLLUSCA						
Acila castrensis	5502020101					
Adontorhina cyclia	5515020102					
Aeolidiidae sp. Indet.	5142030000					
Alvania compacta	5103200106				<u></u>	
Articulata sp. Juv.						
Astarte elliptica	5515190114		 			
Astyris gausapata			12	7	10	1 054
Axinopsida serricata	5515020201	214	368	266	273	251
Balcis sp. Indet.	5103530600					<u> </u>
Bivalvia sp. Juv.	5500000000			 		3
Cardiidae sp. Juv.	5515220000		 		 	
Cardiomya pectinata	5520100101		 	 _ _ _	 	
Chaetoderma sp. Indet.	5402010100		11	2	<u> </u>	
Clinocardium blandum	<u> </u>		-	ļ	-	-
Clinocardium nuttalli	5515220102		 		 	<u> </u>
Clinocardium sp. Juv.	5515220100		 		 	
Compsomyax subdiaphana	5515470301		1		J	1

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd		***************************************	_			
December, 1996						
TAXON	NODOC CODE	VG3-1	VG3-2	VG3-3	VG3-4	VG3-5
Crepipatella lingulata	5103640301	***********				
Cryptonatica affinis	5103760201					
Cylichna attonsa	5110040214	***************************************				
Gastropoda sp. Indet.	5100000000	-				
Gastropteron pacificum	5110070101	1	2	2		
Hiatella arctica	5517060201					
Kurtzia arteaga	5106024101		·			
Lacuna vincta	5103090305					
Lirobittium sp. Indet.						
Lottia pelta						
Lottia sp. Juv.					···	
Lucinoma annulatum	5515010201	2		1		
Lyonsia californica	5520050202	3		1	1	
Macoma calcarea	5515310101		1		1	1
Macoma carlottensis	5515310112	1	2	5	14	
Macoma elimata	5515310102		1	4		1
Macoma inquinata	5515310115					
Macoma obliqua	5515310106	1				
Macoma sp. Juv.	5515310100	1	8	3	1	15
Macoma yoldiformis	5515310111			1		
Margarites pupillus	5102100308					
Megacrenella columbiana	5507010301	1			1	6
Melanochlamys diomedea	5110060101					
Modiolus sp. Juv.	5507010600					1
Mysella tumida	5515100102					1
Mytilidae sp. Juv.	5507010000					
Mytilus edulis sp. complex	5507010100					
Nassarius mendicus	5101080101					
Nemocardium centrifilosum	5515220301	1	1	3	2	
Nucula tenuis	5502020201		2	2	2	5
Nuculana minuta	5502040202			1		1
Nudibranchia sp. Juv.	5127000000					
Odostomia sp. Indet.	5108010100					
Olivella baetica	5105100102					
Onchidoris bilamellata	5131050507				ļ	
Pandora filosa	5520020102	11	ļ	<u> </u>	ļ	11
Pandora sp. Juv.	5520020100		<u> </u>			
Panomya ampla	5517060303					
Parvilucina tenuisculpta	5515010101	29	51	42	39	57
Pododesmus macroschisma	5509090101				1	ļ
Protothaca staminea	5515470701			ļ	ļ	
Psephidia lordi	5515470501					ļ
Rictaxis punctocaelatus	5110010401		 		 	
Saxidomus giganteus	5515470201		11	<u>l</u>	<u> </u>	<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
Dodomber, 1000						<u> </u>
			1			
TAXON	NODOC CODE	VG3-1	VG3-2	VG3-3	VG3-4	VG3-5
Solen sicarius	5515290201	1001	1002	7000	V 00 4	V 0 3 - 3
Tellina modesta	5515310204					
Tellina nuculoides	5515310202					
Teredinidae sp. Indet.	5518020000					
Thracia cf. challisiana	5520080207					
Thracia sp. Juv.	5520080200					
Thracia trapezoides	5520080203	1				
Thyasira gouldi	5515020325	3	4	1	3	
Turbonilla sp. Indet.	5108010200		7		<u> </u>	
rurbonina sp. muer.	3100010200					
CRUSTACEA						
Ampelisca carevi	6169020135			1		
Ampelisca cristata	6169020112					
Ampelisca hancocki	6169020112					
	6169020134					
Ampelisca lobata	6169060106					
Acroides exilis			1	2		
Acroides inermis	6169060104 6169060107					
Aoroides intermedia	0109000107					
Aruga oculata	6134000000					
Balanomorpha sp. Indet.	6134020107					
Balanus glandula	6165040401					
Bopyroides hippolytes	6184000000					
Brachyura sp. Indet. Byblis millsi	6169020209		1	1	1	3
	6169020200		 	<u>'</u>		
Byblis sp. Indet.	6188030105	1	4	2	2	1
Cancer gracilis	6188030103	<u> </u>	7			'
Cancer productus	6171010710				 	l
Caprella laeviuscula	6171010719		<u> </u>	-		
Caprella mendax Chthamalus dalli	6134010101					
	6169150203		 			
Corophium crassicorne	6179221003		1		6	3
Crangon alaskensis	6179220100		 		1	
Crangon sp. Indet.	6179220000		 		 	
Crangonidae sp. Indet.	6120000000		 		 	
Cyclopoida sp. Indet.	6120000000		 			
Deflexilodes aenigmaticus	6169211005					
Desdimelita californica	0103211003		 		1	
Diastylis santamariensis	6169421902		†	<u> </u>		
Eobrolgus chumashi	6179160408				<u> </u>	
Euaulus pusiolus	6154040202	3	7	16	11	12
Eudorella pacifica	6111070301	88	152	140	154	97
Euphilomedes carcharodonta	6111070301	4	11	5	6	4
Euphilomedes producta	6161020402		1			1
Exosphaeroma inornata	1 0101020402					

PIER 53-55 CAP						
METRO - SEATTLE					<u> </u>	
INVERTEBRATE SPECIES DATA			ļ			
By Marine Taxonomic Services, Ltd						
December, 1996						
Dodniber, 1999						
TAXON	NODOC CODE	VG3-1	VG3-2	VG3-3	VG3-4	VG3-5
Gammaridea sp. Indet.	6169210000		7002	- 	V U U U	VG3-3
Gammaropsis thompsoni	6169260401		_			
Haliophasma geminatum	6160011601					
Harpacticoida sp. Indet.	6119000000			*		
Hemigrapsus oregonensis	6189070102		<u> </u>			
Heterophoxus conianae	0103070102	1		1	4	1
Hippolytidae sp. Indet.	6179160000	•		2		
Hippomedon coecus	6169341411		1			3
Leptochelia dubia	6157020103		<u> </u>			1
Leptognathia gracilis	6157090103		 			<u> </u>
Mayerella banksia	6171010301					
Melphisana "bola"	6169350201	*		· · · · · · · · · · · · · · · · · · ·		
Munnogonium tillerae	6163120303					
Mysidae sp. Indet.	6153010000					
Nebalia "pugettensis"	6145010102				7	<u> </u>
	0143010102					
Neotrypaea sp. Indet.	6001010107					
Nymphon pixellae Opisa tridentata	6169342802					
Orchomene pacificus	6169342903					
Orchomene pinguis	6169342904					
Pachynus barnardi	6169343101					
Pagurus dalli	6183060223					
Pagurus granosimanus	6183060223					
Pagurus sp. Indet.	6183060200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 			
Parametaphoxus quaylei	0103000200	4		1	4	1
Parasterope barnesi	6111030503		8	<u> </u>	3	5
Peramphithoe tea	0111030303	,		2	<u> </u>	
Photis brevipes	6169260201		<u> </u>			
Phoxichelidium femoratum	6001060102					
Pinnixa schmitti	6189060404	3				
Pinnixa sp. Indet.	6189060400		1			1
Pinnotheridae sp. Indet.	6189060000			<u> </u>		· ·
Pleusymtes sp A	010000000					
Protomedeia prudens	6169260312		 			
Protomedeia sp. Indet.	6169260300					
Rhepoxynius abronius	6169421504				<u> </u>	
Rutiderma Iomae	6111060103		<u> </u>	†		
Solidobalanus hesperius	6134050201		1 1		2	
Spirontocaris snyderi	6179160204	1	<u> </u>	1		1
Spirontocaris snyderi	6179160200	•	1	·		
Synchelidium pectinatum	0.7.0.700200			2		†
Synchelidium rectipalmum	6169371403		1			
Synchelidium variabilum					<u> </u>	
Westwoodilla caecula	6169371502		2	2	1	
TT CSTANOOGING OGGOGIG						

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA					-	
By Marine Taxonomic Services, Ltd						
December, 1996						

TAXON	NODOC CODE	VG3-1	VG3-2	VG3-3	VG3-4	VG3-5
MISCELLANEOUS						
Amphiodia periercta	8129030107					
Amphiodia sp. Indet.	8129030100					
Amphipholis sp. Indet.	8129030900					
Amphipholis squamata	8129030202					
Amphiuridae sp. Indet.	8129030000					1
Anthozoa sp. Indet.	3740000000					
Chironomidae sp. Juv.	6505080000					
Crossaster papposus	8113010103					
Cucumaria piperata	8172060111					
Ephemeroptera sp. Juv.						
Golfingia sp. Indet.	7200020100	2	1	2	1	
Golfingia sp. Juv.	7200020100					
Holothuroidea sp. Indet.	8170000000					
Nematoda sp. Indet.	4700000000					
Nemertinea sp. Indet.	4300000000	2	3	6	4	1
Nynantheae sp. Indet.		2		3	1	2
Ophiura lutkeni	8127010607			8	1	
Ophiura sarsi	8127010610					
Ophiura sp. Indet.	8127010600		1			
Pentamera sp. Indet.	8172060300					
Phoronis sp. Indet.	7700010200				·	
Platyhelminthes sp. Indet.	3900000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				2
Spinulosida sp. Indet.	8112000000					1
Strongylocentrotus sp. Juv.	8149030200					
Tunicate sp. Indet.						

PIER 53-55 CAP						
METRO - SEATTLE	 					
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996	J.					
December, 1990						
						
TAXON	NODOC CODE	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
Amage anops	5001670101	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
Ampharete labrops	5001670101		3	3	1	
	5001670213		3	<u> </u>		
Ampharete sp. Indet.	3001070200					
Ampharete cf. crassiseta	5001670000	2	2		1	
Ampharetidae sp. Indet.					!	
Amphicties mucronata	5001670306	E				
Anobothrus gracilis	5001670701	5		3	<u> </u>	<u> </u>
Aphelochaeta monilaris	5001500301					1
Aphelochaeta sp. Indet.	ļ		 		 	
Aphelochaeta sp. N-1	5004040400	2	3	2	3	3
Aphrodita sp. Juv.	5001010100		ļ		11	
Aricidea ramosa	5001410706					
Aricidea wassi	5001410206				1	
Armandia brevis	5001580202					
Ascleriocheilus beringainus	5001570201					
Barantolla nr. americana	5001600601				2	11
Capitella capitata 'hyperspecies'	5001600101				·	,
Capitellidae sp. Indet.	5001600000		1			
Caulleriella pacifica						
Chaetozone acuta			ļ			
Chaetozone nr. setosa	5001500401	2	1	11	1 1	2
Chaetozone sp. Indet.	5001500400					
Cirratulidae sp. Indet.	5001500000	<u> </u>				
Cirratulidae sp. Juv.	5001500000					
Cirratulus robustus	5001500102					
'Clymenura' gracilis	5001631203	2		2	11	1
Cossura pygodactyla	5001520106		1			
Demonax sp. Indet.	5001702800					
Diopatra ornata	5001290202	5	6	9	3	3
Dipolydora cardalia	5001430431			1		
Dipolydora caulleryi	5001430404			<u> </u>		
Dipolydora socialis	5001430402					
Dorvillea annulata	5001360502			1		
Dorvillea pseudorubrovittata	5001360101	1				
Dorvillidae sp. Indet.	5001360000					
Drilonereis longa	5001330103					
Ehlersia heterochaeta	5001232201	3	2	2	1	2
Ehlersia hyperioni	5001230321		1	2	11	11
Ehlersia sp. Indet.	5001232200					
Eteone sp. Indet.	5001130200				1	
Euchone incolor	5001700204			1		
Euclymeninae sp. Indet.						
Eulalia californiensis		1	1		1	
Eumida longicornuta			3		1	3

PIER 53-55 CAP						}
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						

				· · · · · · · · · · · · · · · · · · ·		
TAXON	NODOC CODE	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
Exogone lourei	5001230703					10,0
Exogone sp. Juv.	5001230700					
Gattyana ciliata	5001020602					
Gattyana cirrosa	5001020603	1	1	3	3	7
Glycera americana	5001270104	······································		1		
Glycera nana		1	6	4	14	6
Glycera sp. Indet.	5001270100			·		
Glycera sp. Juv.	5001270100					
Glycinde armigera	5001280103	2	1	1	2	1
Glycinde polygnatha	5001280105			•		
Glycinde sp. Juv.	5001280100					
Goniada maculata	5001280202	2	3	1	4	2
Harmothoe imbricata	5001020806	 			1	
Hesionidae sp. Indet.	5001210000					
Heteromastus filobranchus	5001600203		1			
Isocirrus longiceps	5001632001					
Laonice cirrata	5001430201	3		1		
Laonice pugettensis	5001430204	<u>~</u>		- •		
Leitoscolopios pugettensis	5001401601		5	1	1	3
Levinsenia gracilis	5001410801	· · · · · · · · · · · · · · · · · · ·		1		1
Lumbrineridae sp. Indet.	5001310000	27	30	29	27	29
Lumbrineris californiensis	5001310132			3		
Lumbrineris limicola	5001310128	***************************************				
Magelona longicornis	5001440105		1			
Maldanidae sp. Indet.	5001630000				2	
Mediomastus sp. Indet.	5001600400	1		2	1	1
Mesochaetopterus taylori	5001490401					
Microphthalmus sczelkowii	5001210201	·····				
Micropodarke dubia	5001210801					
Neosabellaria cementarium	5001650201					
Nephtys caeca	5001250103					
Nephtys cornuta	5001250104	1	6	4	3	2
Nephtys ferruginea	5001250111	7	10	7	3	4
Nephtys nr. ciliata	5001250102				_	
Nephtys sp. Indet.	5001250100					
Nephtys sp. Juv.	5001250100					
Nereidae sp. Indet.	5001240000					
Nereis procera	5001240404		4	1	2	
Nereis sp. Juv.	5001240400					
Notomastus latericius	5001600306	1				
Notomastus sp. Indet.	5001600300					
Notomastus tenuis	5001600302	8	7	14	6	5
Odontosyllis phosphorea	5001231303					
Oligochaeta sp. Indet.			<u> </u>	<u> </u>	<u> </u>	<u> </u>

PIER 53-55 CAP					[
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA					 	
By Marine Taxonomic Services, Ltd					<u> </u>	
December, 1996						
			-			
					-	
TAXON	NODOC CODE	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
Onuphidae sp. Indet.	5001290000					70.70
Onuphis elegans	5001290111			. " "		
Onuphis iridescens	5001290103	1			1	1
Onuphis sp. Juv.	5001290100				·	
Ophelina acuminata	5001580607		1		1	2
Orbiniidae sp. Indet.	5001400000					
Paleonotus bellis	5001080101					
Paranaitis polynoides	5001130803					
Parandalia fauveli	5001220802	2	3		2	
Paraprionospio pinnata	5001431701	. 1			2	4
Parougia caeca		·				
Pectinaria californiensis	5001660304					
Pectinaria granulata	5001660303		1			3
Pectinaria sp. Indet.	5001660300				1	2
Pholoe glabra	5001060102					
Pholoe minuta	5001060101					
Pholoides aspera	5001040202					
Phyllochaetopterus prolifica	5001490202					
Phyllodoce groenlandica	5001130102	2	1			
Phyllodoce hartmanae	5001131402	2				
Phyllodoce sp. Indet.	5001131400					
Phyllodoce sp. Juv.	5001131400					
Phyllodocidae sp. Juv.	5001130000					
Phylo felix	5001400401					1
Pilargis maculata	5001220303	1	1	1	1	
Pionosyllis sp. Indet.	5001230200					
Pista bansei						
Pista elongata	5001680703		1			
Pista sp. Indet.	5001680700					
Platynereis bicanaliculata	5001240501					
Podarkeopsis glabrus	5001211903					
Polycirrus californicus	5001680810		1			
Polycirrus sp. Indet.	5001680800					
Polycirrus sp. complex						
Polydora limicola	5001430415	1	1	1	ļ	
Polydora sp. Indet.	5001430400				ļ	
Polynoidae sp. Indet.	5001020000			1	<u> </u>	<u></u>
Prionospio jubata		37	60	67	38	75
Prionospio lighti	5001430521		<u> </u>			
Prionospio multibranchiata	5001433601			ļ	<u> </u>	
Prionospio sp. Indet.	5001430500				ļ	ļ
Prionospio sp. Juv.	5001430500					
Proclea graffi	5001681702		6	2	11	
Protodorvillea gracilis	5001360201	11	<u> </u>	1	<u> </u>	<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA				····		
By Marine Taxonomic Services, Ltd						
December, 1996	<u> </u>					
TAXON	NODOC CODE	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
Rhodine bitorquata	5001631001			70.,0	1044	VO0
Scoletoma luti	5001310109	4	8	11	7	3
Scoloplos armiger	5001400301					
Sigalion spinosa	0001400001					
Sphaerodoropsis sphaerulifer	5001260202		3	3	5	1
Sphaerosyllis californiensis	5001230808			<u>J</u>		<u> </u>
Sphaerosyllis ranunculus	3001230000		l	· · · · · · · · · · · · · · · · · · ·		
Sphaerosyllis sp. Indet.	5001230800	-				
Spio cirrifera	5001430703	1				1
Spio sp. Indet.	5001430700	<u> </u>				<u> </u>
Spiochaetopterus costarum	5001430700	5	31	7	8	10
Spionidae sp. Juv.	5001430000		31		0	10
Spiophanes berkeleyorum	5001431004	2		1	2	
Sthenalais fusca	5001060306					
	5001682502					
Streblosoma bairdi	5001082302					
Syllidae sp. Indet.						
Syllis sp. Indet.	5001230300 5001022302					
Tenonia priops	5001022302					
Terebellidae sp. Juv.	5001690103		1			1
Terebellides californica	5001690100		1			
Terebellides sp. Indet. Travisia forbesii	5001580402		'			
Travisia forbesti Travisia sp. Juv.	5001580402					
	5001350400		2		1	2
Trochochaeta multisetosa	5001230510			1		2
Typosyllis harti	5001230510					
MOLLUSCA						
Acila castrensis	5502020101		<u> </u>			1
Adontorhina cyclia	5515020102					
Aeolidiidae sp. Indet.	5142030000		 	-		
	5103200106			1	1	
Alvania compacta	3103200100			•		
Articulata sp. Juv.	5515190114		<u> </u>			
Astarte elliptica	3313190114	8	4	3	3	7
Astyris gausapata	5515020201	237	498	402	279	275
Axinopsida serricata	5103530600		1 -30	402	2,3	2,3
Balcis sp. Indet.	5500000000		2			
Bivalvia sp. Juv.	5515220000		 	·		
Cardiidae sp. Juv.	5520100101	2	2	<u> </u>	1	1
Cardiomya pectinata	5402010101			l	 	
Chaetoderma sp. Indet.	3702010100		1		<u> </u>	1
Clinocardium blandum Clinocardium nuttalli	5515220102		1		 	
Clinocardium nuttaili Clinocardium sp. Juv.	5515220102			 		<u> </u>
Compsomyax subdiaphana	5515470301	1	1	2		1
Componity ax Subulaphana	1 30 10-17 000 7	·			•	

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA	A .					
By Marine Taxonomic Services, L						
December, 1996						
				_		
TAXON	NODOC CODE	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
Crepipatella lingulata	5103640301					
Cryptonatica affinis	5103760201					
Cylichna attonsa	5110040214					
Gastropoda sp. Indet.	5100000000					
Gastropteron pacificum	5110070101	1		1		
Hiatella arctica	5517060201					
Kurtzia arteaga	5106024101					
Lacuna vincta	5103090305					
Lirobittium sp. Indet.						
Lottia pelta						
Lottia sp. Juv.						
Lucinoma annulatum	5515010201		3	1		2
Lyonsia californica	5520050202	2		2	3	3
Macoma calcarea	5515310101					
Macoma carlottensis	5515310112	8	17	5	3	3
Macoma elimata	5515310102		3		1	1
Macoma inquinata	5515310115					
Macoma obliqua	5515310106	1				
Macoma sp. Juv.	5515310100	5	7	4	9	4
Macoma yoldiformis	5515310111		1			
Margarites pupillus	5102100308					
Megacrenella columbiana	5507010301	4	9	11	3	3
Melanochlamys diomedea	5110060101	· · · · · · · · · · · · · · · · · · ·				
Modiolus sp. Juv.	5507010600					1
Mysella tumida	5515100102				1	2
Mytilidae sp. Juv.	5507010000				1	
Mytilus edulis sp. complex	5507010100					
Nassarius mendicus	5101080101					
Nemocardium centrifilosum	5515220301	2	5		2	1
Nucula tenuis	5502020201					1
Nuculana minuta	5502040202				1	2
Nudibranchia sp. Juv.	5127000000					
Odostomia sp. Indet.	5108010100		1			
Olivella baetica	5105100102					
Onchidoris bilamellata	5131050507					
Pandora filosa	5520020102		4			
Pandora sp. Juv.	5520020100					
Panomya ampia	5517060303					
Parvilucina tenuisculpta	5515010101	48	74	76	47	31
Pododesmus macroschisma	5509090101					
Protothaca staminea	5515470701		1			
Psephidia lordi	5515470501				I	
Rictaxis punctocaelatus	5110010401					
Saxidomus giganteus	5515470201					
Camacina Significan						

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA	A			-		
By Marine Taxonomic Services, Li						
December, 1996						
					· 	
					· · · · · · · · · · · · · · · · · · ·	
TAXON	NODOC CODE	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
Solen sicarius	5515290201					
Tellina modesta	5515310204					
Tellina nuculoides	5515310202	· · · · · · · · · · · · · · · · · · ·				
Teredinidae sp. Indet.	5518020000					
Thracia cf. challisiana	5520080207					
Thracia sp. Juv.	5520080200					
Thracia trapezoides	5520080203					
Thyasira gouldi	5515020325	1	2	4	2	1
Turbonilla sp. Indet.	5108010200		1			
				V-11		
CRUSTACEA						
Ampelisca careyi	6169020135		1		1	
Ampelisca cristata	6169020112					
Ampelisca hancocki	6169020113		1			
Ampelisca lobata	6169020134					
Aoroides exilis	6169060106			1		
Aoroides inermis	6169060104			1		
Aoroides intermedia	6169060107					
Aruga oculata	0,00000.00					
Balanomorpha sp. Indet.	6134000000			4		
Balanus glandula	6134020107					
Bopyroides hippolytes	6165040401					
Brachyura sp. Indet.	6184000000		<u> </u>			
Byblis millsi	6169020209	2	5	4	9	4
Byblis sp. Indet.	6169020200				- 	
Cancer gracilis	6188030105	2	5	3	2	1
Cancer productus	6188030101		l			
Caprella laeviuscula	6171010710					
Caprella mendax	6171010719					
Chthamalus dalli	6134010101					
Corophium crassicorne	6169150203					
Crangon alaskensis	6179221003			2	1	2
Crangon sp. Indet.	6179220100					
Crangonidae sp. Indet.	6179220000		<u> </u>		[
Cyclopoida sp. Indet.	6120000000					
Deflexilodes aenigmaticus						2
Desdimelita californica	6169211005					
Diastylis santamariensis			1			
Eobrolgus chumashi	6169421902					
Euaulus pusiolus	6179160408		†			
Eudorella pacifica	6154040202	2	12	9	• 4	9
Euphilomedes carcharodonta	6111070301	172	216	177	248	208
Euphilomedes carcharodonia Euphilomedes producta	6111070303	3	3	7	4	4
Exosphaeroma inornata	6161020402		1			
LAUSPHACIUMA INCINALA	1 0.0.020,02					

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996	I.					
December, 1990						
TAXON	NODOC CODE	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
Gammaridea sp. Indet.	6169210000	V 0 7 1	VG4-2	VG 4 -5	V G 4-4	VG4-5
Gammaropsis thompsoni	6169260401	.				
Haliophasma geminatum	6160011601					
Harpacticoida sp. Indet.	6119000000					
	6189070102					
Hemigrapsus oregonensis	0109070102		1	5	2	4
Heterophoxus conlanae	6179160000		<u> </u>			1
Hippolytidae sp. Indet.	6169341411				4	
Hippomedon coecus					1	4
Leptochelia dubia	6157020103		1		4	
Leptognathia gracilis	6157090102	<u> </u>			1	
Mayerella banksia	6171010301] 			
Melphisana "bola"	6169350201					
Munnogonium tillerae	6163120303					
Mysidae sp. Indet.	6153010000		4			
Nebalia "pugettensis"	6145010102		1			
Neotrypaea sp. Indet.					11	11
Nymphon pixellae	6001010107					1 .
Opisa tridentata	6169342802					
Orchomene pacificus	6169342903					
Orchomene pinguis	6169342904					
Pachynus barnardi	6169343101					
Pagurus dalli	6183060223					
Pagurus granosimanus	6183060211					
Pagurus sp. Indet.	6183060200	1				2
Parametaphoxus quaylei		1	1	2	3	5
Parasterope barnesi	6111030503		1		11	11
Peramphithoe tea						
Photis brevipes	6169260201					
Phoxichelidium femoratum	6001060102					
Pinnixa schmitti	6189060404		1	1		3
Pinnixa sp. Indet.	6189060400	11	1	1	1	
Pinnotheridae sp. Indet.	6189060000					
Pleusymtes sp A			<u> </u>			
Protomedeia prudens	6169260312			 		1
Protomedeia sp. Indet.	6169260300			_		
Rhepoxynius abronius	6169421504			 	 	
Rutiderma lomae	6111060103		11	1 1	11	<u> </u>
Solidobalanus hesperius	6134050201		-	11	 	
Spirontocaris snyderi	6179160204				 	
Spirontocaris sp. Indet.	6179160200		 		1	
Synchelidium pectinatum		11		1	1 1	
Synchelidium rectipalmum	6169371403			-	 	
Synchelidium variabilum			 	ļ	1	
Westwoodilla caecula	6169371502	<u> </u>	2	1	1	2

PIER 53-55 CAP			1			
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996						
		··				
TAXON	NODOC CODE	VG4-1	VG4-2	VG4-3	VG4-4	VG4-5
MISCELLANEOUS					1	
Amphiodia periercta	8129030107					
Amphiodia sp. Indet.	8129030100					
Amphipholis sp. Indet.	8129030900					
Amphipholis squamata	8129030202		·			
Amphiuridae sp. Indet.	8129030000					
Anthozoa sp. Indet.	3740000000					
Chironomidae sp. Juv.	6505080000					
Crossaster papposus	8113010103	1				
Cucumaria piperata	8172060111					111
Ephemeroptera sp. Juv.						
Golfingia sp. Indet.	7200020100	3	3	2	11	2
Golfingia sp. Juv.	7200020100					
Holothuroidea sp. Indet.	8170000000					
Nematoda sp. Indet.	4700000000					
Nemertinea sp. Indet.	43000000000		2	2		
Nynantheae sp. Indet.					11	2
Ophiura lutkeni	8127010607	1	3	7	4	
Ophiura sarsi	8127010610					11
Ophiura sp. Indet.	8127010600				·	
Pentamera sp. Indet.	8172060300					
Phoronis sp. Indet.	7700010200			×=		
Platyhelminthes sp. Indet.	3900000000					
Spinulosida sp. Indet.	8112000000		1			
Strongylocentrotus sp. Juv.	8149030200					
Tunicate sp. Indet.						

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996	<u> </u>					
December, 1000						
					<u> </u>	
TAXON	NODOC CODE	27DEE_1	27REF-2	27REF-3	27REF-4	27REF-5
Amage anops	5001670101	Z/IXLI - I	2/11/21-2	2/11/1-3	Z/NEF-4	Z/REF-5
Ampharete labrops	5001670215					
Ampharete sp. Indet.	5001670200					
Ampharete cf. crassiseta	0001070200		3	1	3	2
Ampharetidae sp. Indet.	5001670000	1			3	
Amphicties mucronata	5001670306				 	
Anobothrus gracilis	5001670701	3		3		
Aphelochaeta monilaris	5001570701	<u> </u>		<u> </u>		
Aphelochaeta sp. Indet.	3001300301					
Aphelochaeta sp. N-1		1	1			
Aphrodita sp. Juv.	5001010100					
Aricidea ramosa	5001010100					
Aricidea vassi	5001410706	1		8	2	1
Armandia brevis	5001580202	1		<u> </u>		1
	5001570201					
Ascleriocheilus beringainus Barantolla nr. americana	5001670201					
				1		
Capitella capitata 'hyperspecies'	5001600101	1		1	<u> </u>	1
Capitellidae sp. Indet.	5001600000				4	
Caullerlella pacifica Chaetozone acuta			1		1	
	5001500401	4	<u> </u>			
Chaetozone nr. setosa	5001500401	2	3	7	2	1
Chaetozone sp. Indet.	5001500400		<u> </u>			
Cirratulidae sp. Indet.	5001500000					
Cirratulidae sp. Juv.		1				
Cirratulus robustus	5001500102	<u> !</u>				
'Clymenura' gracilis	5001631203		-			
Cossura pygodactyla	5001520106			 		
Demonax sp. Indet.	5001702800	1	1	3	1	1 3
Diopatra ornata	5001290202 5001430431	3		3	<u>'</u>	
Dipolydora cardalia	5001430431	 				
Dipolydora caulleryi				1		
Dipolydora socialis	5001430402		 	1		
Dorvillea annulata	5001360502 5001360101	 	 	 		
Dorvillea pseudorubrovittata		 	 	 		
Dorvillidae sp. Indet.	5001360000 5001330103	 	 	-	 	
Drilonereis longa	5001330103	-		-	 	
Ehlersia heterochaeta	5001232201	1	1	1 1	 	
Ehlersia hyperioni	5001230321	 	 	 '	 	
Ehlersia sp. Indet.	5001232200	 				
Eteone sp. Indet.	5001730200	 	 			
Euchone incolor	3001700204		 	-	 	
Euclymeninae sp. Indet.	 		 	1		
Eulalia californiensis		1	1	15	1	2
Eumida longicornuta	<u> </u>	1	<u> </u>	1 10	1	<u> </u>

METRO - SEATILE	PIER 53-55 CAP						
INVERTERRATE SPECIES DATA							
By Marine Taxonomic Services, Ltd. December, 1996							
December, 1996							
TAXON							
Exogone lourei							
Exogone lourei							
Exogone lourei							
Exogone lourei	TAXON	NODOC CODE	27REF-1	27REF-2	27REF-3	27REF-4	27REF-5
Exogone sp. Juv. 5001230700 Gattyana ciliata 5001020602 Gattyana ciliata 5001020602 Gattyana ciliata 5001020603 1 Gattyana cirrosa 5001270104 2 3 5 3 Glycera nama 5001270100 Glycera nama 5001270100 Glycera sp. Indet. 5001270100 Glycera sp. Juv. 5001270100 Glycera sp. Juv. 5001280103 4 2 1 4 4 Glycinde polygnatha 5001280105 Glycinde armigera 5001280105 Glycinde sp. Juv. 5001280100 Glycinde sp. Juv. 5001280100 Glycinde sp. Juv. 5001280100 Goniada maculata 5001280202 1 I I I I I I I I I							
Gattyana cirrosa 5001020602 Gattyana cirrosa 5001020603 Glycera americana 5001270104 Glycera sp. Indet. 5001270100 Glycera sp. Indet. 5001270100 Glycera sp. Juv. 5001280103 4 2 1 Glycinde armigera 5001280105 9 1 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 2 4 4 2 1 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 4 4 2 4 4 2 2							
Gattyana cirrosa 5001020603 1 Glycera americana 5001270104 2 3 5 3 Glycera americana 5001270100 Glycera sp. Juv. 5001270100 Glycera sp. Juv. 5001270100 Glycinde amigera 5001280103 4 2 1 4 4 2 1 4 4 Glycinde polydnatha 5001280105 Glycinde polydnatha 5001280105 Glycinde sp. Juv. 5001280100 Goniada maculata 5001280100 Goniada maculata 5001280202 1 1 4 2 1 4 2 1 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 4 2 1 4 2 1 4 2 1 3 1<							
Glycera americana S001270104 2 3 5 3				· · · · ·			1
Glycera nana			2		3	5	
Glycera sp. Indet. 5001270100							
Silycera sp. Juv. S001270100 Silycinde armigera S001280103 4		5001270100					
Slycinde armigera		5001270100					
Glycinde polygnatha			4		2	1	4
Glycinde sp. Juv. 5001280100							
Goniada maculata							
Harmothoe imbricata						1	
Hesionidae sp. Indet.			1		4		2
Heteromastus filobranchus							
Socirrus longiceps							
Laonice cirrata 5001430201 Laonice pugettensis 5001430204 Leitoscoloplos pugettensis 5001401601 Levinsenia gracilis 5001410801 Lumbrineridae sp. Indet. 5001310000 Lumbrineris californiensis 5001310132 Lumbrineris limicola 5001310128 Magelona longicornis 5001440105 Magelona longicornis 5001630000 Mediomastus sp. Indet. 5001600400 Mediomastus sp. Indet. 5001400401 Microphthalmus sczelkowii 5001210201 Micropodarke dubia 5001210201 Neosabellaria cementarium 5001250103 Nephtys caeca 5001250103 Nephtys ferruginea 5001250104 Nephtys frr. ciliata 5001250102 Nephtys sp. Indet. 5001250100 Nephtys sp. Indet. 5001250100 Nereidae sp. Indet. 5001240400 Nereis procera 5001240400 Nereis sp. Juv. 5001240000 Notomastus latericius 5001600300 Notomastus tenuis 5001600300				-			
Laitoscoloplos pugettensis 5001430204 2 2 5 1 3 Levinsenia gracilis 5001410801 2 2 5 1 3 Lumbrineria gracilis 5001410801 1	· · · · · · · · · · · · · · · · · · ·						
Leitoscoloplos pugettensis 5001401601 2 2 5 1 3							
Levinsenia gracilis			2	2	5	1	3
Lumbrineridae sp. Indet. 5001310000 1 Lumbrineris californiensis 5001310132 3 1 6 8 Lumbrineris limicola 5001310128							
Lumbrineris californiensis 5001310132 3 1 6 8 Lumbrineris limicola 5001310128		5001310000			1		
Lumbrineris limicola 5001310128		5001310132	3	3	1	6	8
Magelona longicornis 5001440105 3 1 1 Maldanidae sp. Indet. 5001630000 2 3 3 Mediomastus sp. Indet. 5001600400 2 3 3 Mesochaetopterus taylori 5001490401 3 3 3 Micropotarke dubia 5001210201 3 3 3 Micropodarke dubia 5001210801 3 3 3 Neosabellaria cementarium 5001250201 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 1 2		5001310128					
Maldanidae sp. Indet. 5001630000 2 3 3 Mesochaetopterus taylori 5001490401 3 3 Microphthalmus sczelkowii 5001210201 5001210201 5001210801 Micropodarke dubia 5001210801 5001210801 5001210801 5001250201 1 Neosabellaria cementarium 5001250103 5001250103 5001250103 5001250104 5001250104 5001250104 5001250101 5001250101 5001250101 5001250102 2		5001440105			3	1	1
Mediomastus sp. Indet. 5001600400 2 3 3 Mesochaetopterus taylori 5001490401 Microphthalmus sczelkowii 5001210201 Micropodarke dubia 5001210801 Neosabellaria cementarium 5001650201 1 Nephtys caeca 5001250103 Nephtys cornuta 5001250104 Nephtys ferruginea 5001250101 1 4 3 1 2 Nephtys pr. ciliata 5001250102 2 2 2 2 Nephtys sp. Indet. 5001250100		5001630000					
Mesochaetopterus taylori 5001490401 Microphthalmus sczelkowii 5001210201 Micropodarke dubia 5001210801 Neosabellaria cementarium 5001650201 Nephtys caeca 5001250103 Nephtys cornuta 5001250104 Nephtys ferruginea 5001250111 Nephtys nr. ciliata 5001250102 Nephtys sp. Indet 5001250100 Nephtys sp. Juv. 5001250100 Nereidae sp. Indet. 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600302 Notomastus tenuls 5001231303		5001600400		2	3	3	
Microphthalmus sczelkowii 5001210201 Micropodarke dubia 5001210801 Neosabellaria cementarium 5001650201 Nephtys caeca 5001250103 Nephtys cornuta 5001250104 Nephtys ferruginea 5001250111 Nephtys nr. ciliata 5001250102 Nephtys sp. Indet 5001250100 Nephtys sp. Juv. 5001250100 Nereidae sp. Indet 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet 5001600300 Notomastus tenuls 5001600302 Odontosyllis phosphorea 5001231303							
Micropodarke dubia 5001210801 Neosabellaria cementarium 5001650201 Nephtys caeca 5001250103 Nephtys cornuta 5001250104 Nephtys ferruginea 5001250111 Nephtys nr. ciliata 5001250102 Nephtys sp. Indet 5001250100 Nephtys sp. Juv. 5001250100 Nereidae sp. Indet 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet 5001600302 Notomastus tenuls 5001231303		5001210201					
Neosabellaria cementarium 5001650201 1 Nephtys caeca 5001250103 Nephtys cornuta 5001250104 Nephtys ferruginea 5001250111 1 4 3 1 2 Nephtys nr. ciliata 5001250102 2 2 2 Nephtys sp. Indet. 5001250100 Nereidae sp. Indet. 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus tenuis 5001600302 Odontosyllis phosphorea 5001231303		5001210801					
Nephtys cornuta 5001250104 1 2 Nephtys ferruginea 5001250111 1 4 3 1 2 Nephtys nr. ciliata 5001250102 2 2 2 Nephtys sp. Indet. 5001250100 1 1 4 3 1 2 Nephtys sp. Indet. 5001250100 1 1 4 3 1 2 Nereidae sp. Indet. 5001250100 1 1 4 3 1 2 Nereidae sp. Indet. 5001240000 1 1 4 3 1 2 Nereis procera 5001240000 1 1 4 3 1 2 2 Notomastus latericius 5001240400 1 1 4 3 1 2 <td></td> <td>5001650201</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>		5001650201	1				
Nephtys cornuta 5001250104 Nephtys ferruginea 5001250111 1 4 3 1 2 Nephtys nr. ciliata 5001250102 2 2 Nephtys sp. Indet. 5001250100 Nereidae sp. Indet. 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600302 Notomastus tenuis 5001600302 Odontosyllis phosphorea 5001231303	Nephtys caeca	5001250103	1				
Nephtys ferruginea 5001250111 1 4 3 1 2 Nephtys nr. ciliata 5001250102 2 2 Nephtys sp. Indet 5001250100 5001250100 5001250100 Nereidae sp. Indet 5001240000 5001240000 5001240404 Nereis procera 50012404040 5001240404 5001240400 Notomastus latericius 5001600306 5001600300 5001600300 Notomastus tenuls 5001600302 2 Odontosyllis phosphorea 5001231303 2		5001250104					
Nephtys nr. ciliata 5001250102 2 2 Nephtys sp. Indet. 5001250100 Nereidae sp. Indet. 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600300 Notomastus tenuis 5001600302 Odontosyllis phosphorea 5001231303		5001250111	1	4	3	1	
Nephtys sp. Juv. 5001250100 Nereidae sp. Indet. 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600300 Notomastus tenuis 5001600302 Odontosyllis phosphorea 5001231303		5001250102		2			2
Nereidae sp. Indet. 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600300 Notomastus tenuis 5001600302 Odontosyllis phosphorea 5001231303	Nephtys sp. Indet.	5001250100		<u> </u>			
Nereidae sp. Indet. 5001240000 Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600300 Notomastus tenuis 5001600302 Odontosyllis phosphorea 5001231303		5001250100					<u> </u>
Nereis procera 5001240404 Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600300 Notomastus tenuis 5001600302 Odontosyllis phosphorea 5001231303							
Nereis sp. Juv. 5001240400 Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600300 Notomastus tenuls 5001600302 Odontosyllis phosphorea 5001231303							
Notomastus latericius 5001600306 Notomastus sp. Indet. 5001600300 Notomastus tenuls 5001600302 Odontosyllis phosphorea 5001231303						<u> </u>	
Notomastus sp. Indet. 5001600300 Notomastus tenuls 5001600302 Odontosyllis phosphorea 5001231303							
Notomastus tenuis 5001600302 2 Odontosyllis phosphorea 5001231303		5001600300					<u> </u>
Oddinio O, mo Programma					ļ		2
Oligochaeta sp. Indet.		5001231303	ļ	ļ			
	Oligochaeta sp. Indet.		<u> </u>	1		1	<u> </u>

PIER 53-55 CAP			1		1	
METRO - SEATTLE			 			
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd			<u> </u>			
December, 1996						
December, 1996						
TAXON	NODOC CODE	27REF-1	27REF-2	27REF-3	27000	07055
Onuphidae sp. Indet.	5001290000	Z/KEF-1	Z/REF-Z	2/KEF-3	27REF-4	27REF-5
Onuphis elegans	5001290000					
Onuphis elegans Onuphis iridescens	5001290111					
Onuphis sp. Juv.	5001290103			2	4	6
Ophelina acuminata	5001290100			2		
Orbinildae sp. Indet.	5001380607					
Paleonotus bellis	5001400000	-				
Paranaitis polynoides	5001130803					
Parandalia fauveli	5001220802					
Paraprionospio pinnata	5001431701					
Parougia caeca	5004000004					
Pectinaria californiensis	5001660304					
Pectinaria granulata	5001660303			2		1
Pectinaria sp. Indet.	5001660300					
Pholoe glabra	5001060102					
Pholoe minuta	5001060101			11		11
Pholoides aspera	5001040202	13	3	6	1	1
Phyllochaetopterus prolifica	5001490202					
Phyllodoce groenlandica	5001130102	2		11		2
Phyllodoce hartmanae	5001131402					1
Phyllodoce sp. Indet.	5001131400					
Phyllodoce sp. Juv.	5001131400		<u> </u>			
Phyllodocidae sp. Juv.	5001130000		<u> </u>			
Phylo felix	5001400401					
Pilargis maculata	5001220303					
Pionosyllis sp. Indet.	5001230200					
Pista bansei		2		11		
Pista elongata	5001680703					
Pista sp. Indet.	5001680700	11	↓			
Platynereis bicanaliculata	5001240501		<u> </u>		11	2
Podarkeopsis glabrus	5001211903		ļ			
Polycirrus californicus	5001680810	11		3		1
Polycirrus sp. Indet.	5001680800			11	1	11
Polycirrus sp. complex			↓			
Polydora limicola	5001430415					
Polydora sp. Indet.	5001430400					ļ
Polynoidae sp. Indet.	5001020000		<u> </u>	ļ		
Prionospio jubata		3	2	5	4	10
Prionospio lighti	5001430521			11	ļ	
Prionospio multibranchiata	5001433601	<u> </u>				<u> </u>
Prionospio sp. Indet.	5001430500			<u> </u>	<u> </u>	
Prionospio sp. Juv.	5001430500			 	 	ļ
Proclea graffi	5001681702				 	
Protodorvillea gracilis	5001360201	<u></u>	<u> </u>	<u> </u>	1	1

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd					<u> </u>	
December, 1996						
200011201, 1000						
TAXON	NODOC CODE	27REF-1	27REF-2	27REF-3	27REF-4	27055
Rhodine bitorquata	5001631001	2/11/21 -1	ZINLI-Z	21 NEP-3	2/KEF-4	27REF-5
Scoletoma luti	5001310109				1	
Scolopios armiger	5001400301	· · · · · · · · · · · · · · · · · · ·	2		,	
Sigalion spinosa	0001400001			1		
Sphaerodoropsis sphaerulifer	5001260202	1				
Sphaerosyllis californiensis	5001230808	<u> </u>		2		
Sphaerosyllis ranunculus	3001230000					
Sphaerosyllis sp. Indet.	5001230800			1		
Spio cirrifera	5001230000					1
Spio sp. Indet.	5001430700	1				<u> </u>
Spiochaetopterus costarum	5001490302	<u> </u>		3		1
Spionidae sp. Juv.	5001430000			<u>3</u>		1
Spiophanes berkeleyorum	5001431004					
Sthenalais fusca	5001060306					
Streblosoma bairdi	5001682502				1	
Syllidae sp. Indet.	5001082302				1	
Syllis sp. Indet.	5001230000	_				
Tenonia priops	5001230300	1		2	2	
Terebellidae sp. Juv.	5001022302	1		12	1	2
Terebellides californica	5001690103	'		12		
Terebellides sp. Indet.	5001690103					
Travisia forbesii	5001580402					
Travisia sp. Juv.	5001580402	1		2		1
Trochochaeta multisetosa	5001450203					<u> </u>
Typosyllis harti	5001230510					
r yposynis riaru	3001230310					
MOLLUSCA				·····		
Acila castrensis	5502020101					
Adontorhina cyclia	5515020102					
Aeolidiidae sp. Indet.	5142030000					
Alvania compacta	5103200106				-	
Articulata sp. Juv.						
Astarte elliptica	5515190114			1		
Astyris gausapata				1		2
Axinopsida serricata	5515020201	4		2	1	4
Balcis sp. Indet.	5103530600					
Bivalvia sp. Juv.	5500000000					
Cardiidae sp. Juv.	5515220000			1		
Cardiomya pectinata	5520100101	1			2	
Chaetoderma sp. Indet.	5402010100					
Clinocardium blandum				2	1	
Clinocardium nuttalli	5515220102	1			1	
Clinocardium sp. Juv.	5515220100	1		1		
Compsomyax subdiaphana	5515470301					<u> </u>

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltc						
December, 1996	I .					
7000						
TAXON	NODOC CODE	27REF-1	27REF-2	27REF-3	27REF-4	27REF-5
Crepipatella lingulata	5103640301			3		27112.0
Cryptonatica affinis	5103760201				1	
Cylichna attonsa	5110040214	1				
Gastropoda sp. Indet.	5100000000					
Gastropteron pacificum	5110070101					
Hiatelia arctica	5517060201					
Kurtzia arteaga	5106024101					
Lacuna vincta	5103090305					
Lirobittium sp. Indet.		******		2	3	
Lottia pelta						
Lottia sp. Juv.						
Lucinoma annulatum	5515010201				2	
Lyonsia californica	5520050202	1	1	4	= =	
Macoma calcarea	5515310101	1				
Macoma carlottensis	5515310112			1		
Macoma elimata	5515310102					
Macoma inquinata	5515310115					
Macoma obliqua	5515310106		1			
Macoma sp. Juv.	5515310100			10		
Macoma yoldiformis	5515310111	1	1	6	3	8
Margarites pupillus	5102100308	1	1			
Megacrenella columbiana	5507010301	3	1	5	1	2
Melanochlamys diomedea	5110060101					
Modiolus sp. Juv.	5507010600					
Mysella tumida	5515100102	1		11		
Mytilidae sp. Juv.	5507010000					
Mytilus edulis sp. complex	5507010100					
Nassarius mendicus	5101080101				1	
Nemocardium centrifilosum	5515220301		1			
Nucula tenuis	5502020201	<u> </u>				
Nuculana minuta	5502040202		<u> </u>			
Nudibranchia sp. Juv.	5127000000	<u> </u>	<u> </u>	L		
Odostomia sp. Indet.	5108010100		<u> </u>		<u> </u>	
Olivella baetica	5105100102					
Onchidoris bilamellata	5131050507					
Pandora filosa	5520020102			2	<u> </u>	
Pandora sp. Juv.	5520020100			11	ļ	ļ
Panomya ampla	5517060303	1	<u> </u>		<u> </u>	1.5
Parvilucina tenuisculpta	5515010101	16	8	8	16	13
Pododesmus macroschisma	5509090101		<u> </u>	<u> </u>	<u> </u>	ļ
Protothaca staminea	5515470701			 	 	
Psephidia lordi	5515470501	6	10	11	13	3
Rictaxis punctocaelatus	5110010401				 	
Saxidomus giganteus	5515470201		ــــــــــــــــــــــــــــــــــــــ	<u></u>		

PIER 53-55 CAP	I		1			
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996	l.		 	-	_	
December, 1990						
			<u> </u>			
TAXON	NODOC CODE	27REF-1	27REF-2	27REF-3	07055 4	07055
Solen sicarius	5515290201	Z/KEF-I	ZIKEF-Z		27REF-4	27REF-5
Tellina modesta				2		
Tellina nuculoides	5515310204	4		3		
	5515310202	1		2		
Teredinidae sp. Indet.	5518020000	1				
Thracia cf. challisiana	5520080207			1		
Thracia sp. Juv.	5520080200			11	_	
Thracia trapezoides	5520080203				1	
Thyasira gouldi	5515020325					
Turbonilla sp. Indet.	5108010200				_	
CDUIGE A OF A						
CRUSTACEA	6460000407		,			
Ampelisca careyi	6169020135	4		4	2	
Ampelisca cristata	6169020112	11		1	2	
Ampelisca hancocki	6169020113	1				
Ampelisca lobata	6169020134	2	1			
Aoroides exilis	6169060106					
Aoroides inermis	6169060104				11	1
Aoroides intermedia	6169060107					
Aruga oculata	040400000				1	
Balanomorpha sp. Indet.	6134000000				53	
Balanus glandula	6134020107					
Bopyroides hippolytes	6165040401					
Brachyura sp. Indet.	6184000000	1				
Byblis millsi	6169020209	1	1	1	3	3
Byblis sp. Indet.	6169020200					
Cancer gracilis	6188030105		1	11		1
Cancer productus	6188030101					1
Caprella laeviuscula	6171010710					
Caprella mendax	6171010719		 		1	
Chthamalus dalli	6134010101			40	<u> </u>	
Corophium crassicorne	6169150203	1		12	4	
Crangon alaskensis	6179221003	2	5	6	1	7
Crangon sp. Indet.	6179220100	ļ	11		3	5
Crangonidae sp. Indet.	6179220000	 				
Cyclopoida sp. Indet.	6120000000	3		5	3	
Deflexilodes aenigmaticus	C460044005	<u> </u>	1	5	1 3	1
Desdimelita californica	6169211005		 		 	
Diastylis santamariensis	0400404000	 	1	1	 	
Eobrolgus chumashi	6169421902	5				<u> </u>
Euaulus pusiolus	6179160408	1	 	<u> </u>	 	
Eudorella pacifica	6154040202	400	1 040	004	045	404
Euphilomedes carcharodonta	6111070301	169	340	234	215	191
Euphilomedes producta	6111070303	 	 	 	 	
Exosphaeroma inornata	6161020402			<u> </u>	<u> </u>	J

PIER 53-55 CAP						
METRO - SEATTLE	 					
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd						
December, 1996	1.	<u> </u>				
December, 1990						
<u> </u>						
TAXON	NODOC CODE	27000 4	OZDEE	07055.0	070== 4	07555.5
	NODOC CODE	27REF-1	27REF-2	27REF-3	27REF-4	27REF-5
Gammaridea sp. Indet.	6169210000					
Gammaropsis thompsoni	6169260401	2	5		1	2
Haliophasma geminatum	6160011601				11	
Harpacticoida sp. Indet.	6119000000					
Hemigrapsus oregonensis	6189070102					
Heterophoxus conlanae	047040000					
Hippolytidae sp. Indet.	6179160000	3				5
Hippomedon coecus	6169341411	2	2		5	1
Leptochelia dubia	6157020103			4		
Leptognathia gracilis	6157090102					
Mayerella banksia	6171010301				2	
Melphisana "bola"	6169350201					1
Munnogonium tillerae	6163120303		ļ			
Mysidae sp. Indet.	6153010000					
Nebalia "pugettensis"	6145010102	1	1	2	2	
Neotrypaea sp. Indet.			1	11	3	
Nymphon pixellae	6001010107					
Opisa tridentata	6169342802				11	
Orchomene pacificus	6169342903	2	11	5	3	1
Orchomene pinguis	6169342904				1	
Pachynus barnardi	6169343101					
Pagurus dalli	6183060223			1	1	1
Pagurus granosimanus	6183060211					
Pagurus sp. Indet.	6183060200		<u> </u>			1
Parametaphoxus quaylei	<u> </u>			1		
Parasterope barnesi	6111030503	·		2		
Peramphithoe tea						
Photis brevipes	6169260201					
Phoxichelidium femoratum	6001060102					
Pinnixa schmitti	6189060404	4	2	11	3	4
Pinnixa sp. Indet.	6189060400			l		
Pinnotheridae sp. Indet.	6189060000					
Pleusymtes sp A		1		2		
Protomedeia prudens	6169260312				2	5
Protomedeia sp. Indet.	6169260300			1		11
Rhepoxynius abronius	6169421504	8	10	17	10	7
Rutiderma lomae	6111060103					
Solidobalanus hesperius	6134050201					<u> </u>
Spirontocaris snyderi	6179160204				1	
Spirontocaris sp. Indet.	6179160200		1			
Synchelidium pectinatum		3	2	6	2	1
Synchelidium rectipalmum	6169371403		11			
Synchelidium variabilum						
Westwoodilla caecula	6169371502	2	7	1	3	3

PIER 53-55 CAP						
METRO - SEATTLE						
INVERTEBRATE SPECIES DATA						
By Marine Taxonomic Services, Ltd	•					
December, 1996						
TAXON	NODOC CODE	27REF-1	27REF-2	27REF-3	27REF-4	27REF-5
MISCELLANEOUS						
Amphiodia periercta	8129030107					
Amphiodia sp. Indet.	8129030100					
Amphipholis sp. Indet.	8129030900					
Amphipholis squamata	8129030202	11			·	11
Amphiuridae sp. Indet.	8129030000				1	
Anthozoa sp. Indet.	3740000000	11				
Chironomidae sp. Juv.	6505080000	· · · · · · · · · · · · · · · · · · ·				
Crossaster papposus	8113010103	1				
Cucumaria piperata	8172060111		3			2
Ephemeroptera sp. Juv.					ļ	
Golfingia sp. Indet.	7200020100					11
Golfingia sp. Juv.	7200020100					
Holothuroidea sp. Indet.	8170000000					
Nematoda sp. Indet.	4700000000					
Nemertinea sp. Indet.	4300000000	5	5	7	3	1
Nynantheae sp. Indet.				3		
Ophiura lutkeni	8127010607		ļ	ļ	<u> </u>	
Ophiura sarsi	8127010610		ļ			
Ophiura sp. Indet.	8127010600					
Pentamera sp. Indet.	8172060300		ļ	2		
Phoronis sp. Indet.	7700010200	1		3		
Platyhelminthes sp. Indet.	390000000					
Spinulosida sp. Indet.	8112000000		,			
Strongylocentrotus sp. Juv.	8149030200	1				
Tunicate sp. Indet.				ł		