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Figure 1: The Global Risks Landscape 2016
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U.S. National Climate Assessment

Adaptation and Institutional Responses
Key Message 10: Water Resources Management

In most U.S. regions, water resources managers and planners will encounter new risks,
vulnerabilities, and opportunities that may not be properly managed within existing practices.
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Climate Change Impacts in the United States
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National Climate Assessment

Key Message 1: Water-related Challenges
Changes in the timing of streamflow related to changing snowmelt have been observed and

will continue, reducing the supply of water for many competing demands and causing far-
reaching ecological and socioeconomic consequences.
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Figure 21.2. (Left) Projected increased winter flows and decreased summer flows in many Northwest rivers will cause widespread
impacts. Mixed rain-snow watersheds, such as the Yakima River basin, an important agricultural area in eastern Washington, will see
increased winter flows, earlier spring peak flows, and decreased summer flows in a warming climate. Changes in average monthly
streamflow by the 2020s, 2040s, and 2080s (as compared to the period 1916 to 2006) indicate that the Yakima River basin could
change from a snow-dominant to a rain-dominant basin by the 2080s under the A1B emissions scenario (with eventual reductions
from current rising emissions trends). (Figure source: adapted from Elsner et al. 2010)™.

(Right) Natural surface water availability during the already dry late summer period is projected to decrease across most of the
Northwest. The map shows projected changes in local runoff (shading) and streamflow (colored circles) for the 2040s (compared
fo the period 1915 to 2006) under the same scenario as the left figure (A1B).* Streamflow reductions such as these would stress
freshwater fish species (for instance, endangered salmon and bull trout) and necessitate increasing tradeoffs among conflicting
uses of summer water. Watersheds with significant groundwater contributions to summer streamflow may be less responsive to
climate change than indicated here *
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EMBRACING UNCERTAINTY

A Case Study Examination of How Climate Change
is Shifting Water Utility Planning
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ACTIDNABLE SCIENCE IN PRACTICE

Co-praducing Climate irmation for Water Utility Vul bility

R
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What is PUMA?

ACTIONABLE SCIENCE IN PRACTICE

* Piloting Utility Modeling Applications

“An effort to (co)-produce actionable
science through close collaboration
between climate experts and utility
personnel to meet the needs of four
water utilities.”

e« “.four WUCA utilities agreed to forge
partnerships with scientific institutions to
explore how to integrate climate
considerations into their specific -
management context.” B o o

* NYC, Portland, Tampa Bay, Seattle

e WUCA funded the white paper that
documents the PUMA activities of the
Seattle
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What is PUMA (cont'd)?

 SPU partnered with CIRC — Climate Impacts Research
Consortium

 Multi-year study

 Opportunity to use new science to update impacts assessment
o obtained met data for 40 climate scenarios at 16 locations in the region

o expand focus to examine: AR’s, ENSO, timing of fall rains, fire, changes in
thresholds

e Foster collaboration with researchers and utilities

Seattle
@ CIRC o
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Assessing climate impacts:
the chain of models approach

GCM Ensemble
|

* Temperature
* Precipitation
* Solar
*Wind...

v

Downscaling

* Watershed scale
* Sub-daily timestep

v

Hydrologic model
|

* Watershed features
« Climate characteristics

v

Operations model
|

* Reservoir operations
* Transportation and distribution
* Demand

“Adaptation” Seattle
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SPU’s evolving institutional capacity:
co-production and the chain of models

Researchers role in
chain of models

PUMA:

researchers “manage” 2links in
chain of models ‘

2007 Study:

researchers “manage” 3 links in ‘

chain of models

2002 Study:

researchers “manage” 4 links in ‘

chain of models
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GCM Ensemble

I

* Temperature
* Precipitation
* Solar
*Wind...

v

Downscaling

* Watershed scale
* Sub-daily timestep

v

Hydrologic model

* Watershed features
« Climate characteristics

v

Operations model

* Reservoir operations
* Transportation and distribution

*Demand
v

Water utility planning

| 11

“Adaptation”

SPU’s role in chain of
models

PUMA:

SPU “manages” 3 links in chain
of models — hydrologic model,
operations/system model and
utility planning

2007 Study:

SPU “manages” 2 links in chain
of models — operations/system
model and utility planning

2002 Study:
SPU “manages” one link in chain
of models - utility planning



Mean Annual Temperture, degreesF

Cedar Lake, Washington

Mean Annual Temperature - IPSL-CM5B-LR RCP 8.5

Draft- All data is provisionaland subject to revision
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PUMA projections: change in # of cold
days

Multi-Model Median and Range of Annual COLDDAY at StampedePass
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PUMA climate-altered snowpack

1950-1999
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PUMA climate-altered hydrology

Preliminary Draft
Modeled Historical, Near Future and Far Future Periods
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Proposed climate scenarios for
Water Supply Forum

The 8 PUMA Scenarios selected by our model selection team:

* CCSM4 RCP 8.5
* CCSM4 RCP 4.5
* CSIRO-Mk3-6-0 RCP 8.5
* CSIRO-Mk3-6-0 RCP 4.5
* HadGEM2-CC365 RCP 8.5
* IPSL-CM5B-LR RCP 8.5
* MIROC-ESM-CHEM RCP 8.5
* MIROC-ESM CHEM RCP 4.5

Seattle‘
| . % Public
1sNote: 40 PUMA Scenarios are available. Utilities



Method for Calculating
Relative Reduction or Gain in Baseline Yield

* For each of the 8 PUMA climate-altered hydrology
datasets, calculate the baseline yield for the
historical baseline (H), near future (NF), and far
future (FF) periods which are defined as:

e H =1951 to 2000 (50-years)
e NF=2001 to 2050 (50-years)
e FF =2051to 2099 (49-years)

* Then, calculate the reduction or gain in yield for the
near future and far future periods relative to the

historical baseline period. Seattle
©Public

Utilities
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A Quick Review of Some Official Firm Yield
Modeling Assumptions

98 percent reliability standard

Monthly demand distribution based on actual demands
experienced during 2005 through 2009 (no curtailments)

*  Current in-stream flow requirements (includes ability to switch
to critical flows).

 Current reservoir storage operating levels
*  Fixed reservoir rule curves (no early refill on Cedar Supply)

* No pumps turned on to access emergency storage in CML below
1532 feet.

 SF Tolt Reservoir storage drawdown limited to 1710 feet.

Reference: SPU, Firm Yield of Seattle’s Existing Water Supply Sources
November 2011

Seattle

9 Public
Utilities




***Preliminary Draft***

200 Preliminary Baseline Yield Results
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***Preliminary Draft™**
Table of Preliminary Reduction or Gain in Future Baseline
Yield Results Relative to Historical Baseline Period

RCP 8.5 H NF FF

e CCSMA4 baseline -30.3% -47.8%
* CSIRO-Mk3-6-0 baseline -35.2% -72.8%
e HadGEMZ2-CC365 baseline -51.4% -47.2%
* |PSL-CM5B-LR baseline +1.4% -29.9%
* MIROC-ESM-CHEM baseline -19.7% -57.6%
5 Member Ensemble Mean baseline -27.0% -51.1%
RCP 4.5 H

e CCSMA4 baseline

* CSIRO-Mk3-6-0 baseline

e MIROC-ESM CHEM baseline

3 Member Ensemble Mean baseline %eﬁgtlﬁic

29 UtﬂltleS




Potential Adaptation Approaches

Operational

e Earlier refill in Chester Morse Lake — allow reservoir
refill to 1563 feet beginning first week in March

 Deeper drawdown for South Fork Tolt Reservoir —
allow reservoir to drawdown to 1690 feet anytime

Seattle
S Public
23 Utilities




***Preliminary Draft™**
Effect of adaptation options:
gain/reduction in yield relative to baseline historic

RCP 8.5 H NF FF
e (CSIRO-Mk3-6-0 Baseline 0% -35% -73%
* (CSIRO-Mk3-6-0 Adaptation +12% -26% -60%

e |PSL-CM5B-LR  Baseline 0% +1% -30%
 |PSL-CM5B-LR  Adaptation 0% +9% -17%

So in the near future, these two adaption options would add back, relative to
the unmitigated effects, between 8-9% and in the far future, 13%.

adaptation options are:
. - Seattle
» earlier refill in Chester Morse Lake % Public

24 deeper drawdown in South Fork Tolt Reservoir Utilities



Next Steps

 SPU to evaluate remaining 32 scenarios

 SPU to conduct “forensics” on yield defining events
 SPU to identify and evaluate adaptation options

* Integration into SPU’s 2019 Water System Plan

 Continued engagement with research and utility
communities

Seattle
S Public
25 Utilities
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Fall delta T vs delta P

Foll (2040—-2089) — (18950-20035) Temperoture vs Precipitotion
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Winter delta T vs delta P

Winter (2040-2069) — {1950-2005} Temperature vs Precipitation
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Spring delta T vs delta P

Spring {2040—2069) — (1850—2005) Ternperature vs Precipitation
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Summerdelta T vs delta P

Summer (2[}40—2059] - [1 QED—EDDE:] Termperature vs Precipitotion
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PUMA projections: annual delta T vs
delta P

Annual {2040—2069) — (1950—2005) Temperature vs Precipitatian
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