The Eastside Rail Corridor Regional Trail Master Plan Project develops a baseline inventory and planning guidelines for portions of the Eastside Rail Corridor owned by King County and Sound Transit.

A variety of uses is possible for the corridor in the future, and various agencies and jurisdictions have ownership interests in the corridor. This document is an internal work product supporting a study for future development of a shared use trail in the corridor.

For more information please visit: Kingcounty.gov/parks/eastsiderailcorridor

Prepared for:
King County Parks, King County Department of Natural Resources and Parks

Prepared by:
ESA
PHOTOS

PHOTO 1 – BRIDGE OVER LAKE HILLS CONNECTOR 17
PHOTO 2 – BRIDGE OVER I-90 .. 17
PHOTO 3 – ASPHALT GRADE CROSSING ... 17
PHOTO 4 – GRAVEL GRADE CROSSING .. 17
PHOTO 5 – PREMIERE BRAND, PRE-CAST CONCRETE CROSSING 17
PHOTO 6 – WOOD RAILROAD GRADE CROSSING 17
PHOTO 7 – POST-MOUNTED FLASHING LIGHT SIGNAL 18
PHOTO 8 – CANTILEVER FLASHING LIGHT SIGNAL 18
PHOTO 9 – TIE PLATE .. 19
PHOTO 10 – WATER-QUENCHED, HIGH-CARBON TRACK SPIKE 19
PHOTO 11 – STEEL RAIL MARK, 112 LBS. PER YARD, SECTION 28, OPEN-HEARTH, INLAND STEEL COMPANY, FEBRUARY 1940 19
PHOTO 12 – STEAD RAIL ANCHOR; IMPROVED FAIR ANCHOR; E-CLIP RAIL ANCHOR; ERICSON RAIL ANCHOR; U-SHAPED ANCHOR. ... 20
PHOTO 13 – JOINT (FISHPLATE) ... 20
PHOTO 14 – DERAILER ... 20
PHOTO 15 – DOUBLE-INSULATED GAGE ROD ... 20
PHOTO 16 – MILEPOST WITH “X” SIGN .. 20
PHOTO 17 – RAILROAD CROSSBUCK ... 21
PHOTO 18 – RAILROAD CROSSING ADVANCE SIGN 21
PHOTO 19 – RAILROAD CROSSING SIGN .. 21
PHOTO 20 – ADVANCE WARNING SIGN ... 21
PHOTO 21 – REDUCE SPEED SIGN .. 21
PHOTO 22 – REDUCE SPEED SIGN FOR PASSENGER AND FREIGHT TRAINS .. 21
PHOTO 23 – WILBURTON STATION SIGN .. 22
PHOTO 24 – WHISTLE POST .. 22
PHOTO 25 – SPUR LINE, SHOWING FROG ... 24
PHOTO 26 – MODEL 112E STANDING SWITCH .. 24
PHOTO 27 – MODEL 51A SWITCH ... 24
PHOTO 28 – REMAINS OF A RETAINING WALL .. 24
PHOTO 29 – OVERVIEW OF THE WYE AT WOODINVILLE JUNCTION, SPUR ... 24
PHOTO 30 – BRIDGE OVER THE LAKE HILLS CONNECTOR 27
PHOTO 31 – NORTHERN PACIFIC RAILWAY COMPANY
LAKE WASHINGTON BELT LINE ...27
PHOTO 32 – WILBURTON TRESTLE ...29
PHOTO 33 – TRESTLE AT RIPLEY LANE ...29
PHOTO 34 – TRESTLE OVER COAL CREEK ..31
PHOTO 35 – BRIDGE OVER LAKE WASHINGTON BOULEVARD 31
PHOTO 36 – BRIDGE OVER I-90 ..33
PHOTO 37 – BRIDGE OVER THE LAKE HILLS CONNECTOR33

TYPES OF RESOURCES

INVENTORIED RESOURCES

HISTORIC AND CULTURAL RESOURCES INVENTORY

HISTORIC PROPERTY INVENTORY
1. INTRODUCTION

1.1 OVERVIEW

“Our Puget Sound region is blessed with dramatic topography, majestic natural features, and large, picturesque water bodies. While adding immensely to the beauty and quality of life in our region, those same features also create challenges when developing transportation, recreation and utility connections. The Eastside Rail Corridor (ERC) provides a rare and unique chance to develop a major north-south corridor for a variety of important purposes: mobility, utility infrastructure, and recreation.”

-Excerpt from the Eastside Rail Corridor Regional Advisory Council report

The Eastside Rail Corridor (ERC) connects some of the King County’s largest and fastest-growing communities. As part of the Woodinville Subdivision, a 42-mile rail corridor that stretches from Renton to Snohomish, the ERC passes through Renton, Bellevue, Kirkland, Woodinville, Redmond, and portions of unincorporated King and Snohomish Counties. Originally a rail line, known as the Lake Washington Belt Line, that supported development along the eastern shore of Lake Washington, the corridor has been brought into public ownership to provide a potential route for trail, transit, and utilities. The ERC Regional Trail Master Plan (Master Plan) will develop a strategy to build a non-motorized trail in the corridor without precluding potential future use for transit and utilities. Any future transit or utility uses of the corridor would be considered in separate planning processes.

The ERC includes approximately 42 miles of right-of-way. Currently, only a portion of the ERC is being planned for potential trail use—a segment of the former railroad main line between Renton and Woodinville, and a spur line connecting Woodinville and Redmond. The cities of Kirkland and
Redmond have completed their planning for a trail in the corridor. The Master Plan includes the segments of the ERC between Renton and Kirkland, between Kirkland and Woodinville, and along the spur from Woodinville to Redmond. Throughout the Master Plan, the line between Renton and Woodinville is referred to as the “main line,” and the line between Woodinville and Redmond is referred to as the “spur.” See Figure 1 for an understanding of the ERC ownership interests considered in the Master Plan.

As part of the baseline inventory for the Master Plan, this study documents the railroad and its history. The inventory includes documentary research specific to the railroad including the alignment, features, bridges, and trestles.

1.2 A STRATEGIC CORRIDOR FOR THE EAST SIDE’S FUTURE

After nearly a century of rail use, in 2003 Burlington Northern Sante Fe (BNSF) began conversations with local jurisdictions about abandoning the rail line. In 2009 a group of public partners, including King County and the Port of Seattle, signed a Memorandum of Understanding that envisioned a regional approach to preserve the corridor for multiple uses. Although no specific projects were in development at that time, the partners recognized the potential value of a continuous corridor linking the east side from north to south as the region continues to develop. To begin that regional effort, the Port of Seattle purchased the 42-mile corridor between Renton and Snohomish. The southern portion of the line between Woodinville and Renton was railbanked, a legal designation that allows certain uses of the corridor while preserving it for potential reinstatement of freight rail. The northern portion, between Woodinville and Snohomish, remained an active freight area.

The jurisdictions and public agencies involved in the acquisition of the corridor envisioned potential future needs for a non-motorized trail, water distribution, sewer, power transmission, and transit in the corridor. Between 2010 and 2013 ownership interests were purchased from the Port of Seattle by the City of Redmond, Puget Sound Energy (utility easement), the City of Kirkland, Sound Transit (primarily transportation-related easements), and King County (see Figure 1). These five entities are now the owners of the corridor between Renton and Woodinville.

1.3 THE ERC REGIONAL ADVISORY COUNCIL—A COLLABORATIVE VISION FOR THE FUTURE OF THE ERC

Recognizing the value of collaboration for future development of the ERC, the owners of the corridor formed a Regional Advisory Council (RAC) as a forum to coordinate planning for the ERC. The RAC summarized the findings of their initial planning effort in the report entitled Creating Connections – Recommendations on the Eastside Rail Corridor, which provides a guide for the next steps in collaboratively planning, developing and using the ERC. The RAC vision for the corridor emphasizes its long-term value for the development of transit, utilities, and a trail:

“Development of the corridor will enhance the mobility of our region by creating a critical north-south transportation corridor that will allow for multimodal connections,
Figure 1 – Eastside Rail Corridor (ERC) Ownership
including high-capacity transit (e.g. heavy rail, light rail, or other forms of fixed guideway transportation) and nonmotorized trail use. The corridor will help us integrate the pieces of our larger transportation networks. The corridor will enable key utility improvements to help meet the demands of a growing population. The corridor will expand the recreation network, creating equitable access for all residents, and benefiting generations of Puget Sound residents.”

1.4 PLANNING FOR A TRAIL ALONG THE EASTSIDE RAIL CORRIDOR

The Master Plan is focused on implementing the RAC vision for a non-motorized trail in the ERC. The location of the ERC represents a critical link in King County’s Regional Trail System, which includes a network of shared-use trails connecting county communities. King County is currently responsible for over 175 miles of regional trails throughout the county. These trails include both paved and soft-surface trails; however, they all share common features of providing a safe and enjoyable trail experience for a variety of users. The ERC provides a rare and unique opportunity to establish a major new component of the county’s regional trail system—a component that provides a significant new north-south trail corridor, as well as creating the opportunity to introduce critical connectivity within the county’s existing regional trail system and trail systems managed by neighboring communities.

The Master Plan will further several important goals from the RAC recommendations for the ERC and the county’s vision for the regional trail system:

- Advance the understanding of opportunities and constraints for development in the corridor
- Engage jurisdictions, agencies, and the public in a planning process to implement a trail as part of the corridor’s multi-use vision
- Connect communities and existing trails to expand access and connectivity to King County’s Regional Trail System
- Develop the historic and cultural resources within the corridor inventory is an important early component of the master planning process and helps to advance RAC’s vision by providing a baseline for evaluation of trail development opportunities and constraints.

A regional trail is a shared use path that serves as a component of an extensive network of off road, non-motorized routes connecting all parts of King County. A regional trail accommodates a wider variety and higher volumes of trail users than local trails typically would. Regional trail design aims to safely accommodate non-motorized activities including walking, jogging, bicycling, rollerblading, skateboarding, and other uses.
2. PLANNING FOR HISTORIC AND CULTURAL RESOURCES IN THE EASTSIDE RAIL CORRIDOR

Beginning in the northern end of the corridor at Woodinville Junction, this report inventories rail-related resources along the King County-owned portions of the ERC. These resources range from small pieces of hardware such as railroad spikes and ties, to large elements including the Wilburton Trestle.

In addition, this report includes a brief history of the rail line and opportunities for treatment.

All of the resources found during the field inventory are recorded on Historic Property Inventory (HPI) forms to aid in preservation and documentation. Opportunities for the treatment and interpretation of these resources are provided in this report.

3. METHODOLOGY

This inventory consists of two parts: historical research and field survey.

3.1 HISTORICAL RESEARCH

Historians conducted research using resources available at the University of Washington libraries, King County Roads Division map vault, Washington State University libraries, Northern Pacific Railway Historical Association, Minnesota Historical Society, and the U.S. Bureau of Land Management. Types of historic records reviewed include the King County Snapshots photographic database, railroad track profiles, timetables, and station rosters; photographs; U.S. Surveyor General maps, Sanborn Fire Insurance Company maps, county atlases, U.S. Geological Survey topographic maps, U.S. Coast and Geodetic Survey maps, railroad, county, and road survey maps; and aerial photographs.

Specific record series examined at the Minnesota Historical Society (MHS) include the Northern Pacific Railway Company Engineering Department collection and Valuation Engineer collection. Primary documents related to the Seattle Belt Line’s sub-segments Lake Washington Belt Line and Snoqualmie Branch were identified and obtained. The information gathered from the MHS was primarily related to construction contracts and right-of-way engineering documents. This information has been included, as relevant, in the Background section below. Copies of these resources will be provided to King County with the final report.

The King County Assessor was utilized to provide current land ownership information.

Searches within the Washington State Department of Archaeology and Historic Preservation (DAHP) Washington Information System for Architectural and Archaeological Records Data (WISAARD) furnished existing HPI forms for structures within the former Seattle, Lake Shore & Eastern Railway (SLS&E) right-of-way and for the railway itself.

3.2 FIELD SURVEY

The field team walked the entirety of the King County alignment (approximately 15.6 miles) between Woodinville and Renton. They photographed each bridge, grade crossing, sign, spur, and switch, and recorded each location with a GPS. They also looked for railroad-associated buildings such as warehouses, depots, and stations.
A 1922 Northern Pacific station roster was used in the field to help identify station locations by milepost, but none remained (Northern Pacific Railway 1922). The team took notes recording dimensions and heights of resources (when applicable), and documented legible pieces of hardware, such as rails, tie plates, spikes, and joints intermittently along the alignment to gather a representative sample of the materials used in the construction and repair of the line.

Each feature was assigned a unique identifier (ID). These IDs have a prefix indicating the segment, followed by a sequential number. These numbers go north to south, except in Segment 1 where the numbering begins at the south end of the belt Line near Redmond, north to Woodinville Junction, and then south along the main line towards Kirkland.

4. BACKGROUND
Presented below is a brief history of the SLS&E Railway, followed by an inventory of previously identified resources along the alignment. A detailed history can be found in Armbruster (1999).

4.1 HISTORY OF THE SLS&E

1883: Thomas Burke and Daniel Gilman spearhead the effort to get Seattle a railroad; found the Seattle, Lake Shore & Eastern Railway (SLS&E) (Armbruster 1999:121)

- Line was intended to go from Seattle to Snoqualmie Falls, Cle Elum, Ellensburg, Rock Island Rapids (near Wenatchee), and finally Spokane where it would connect with a larger railroad (Cheever 1949:102; Renz 1980:141)

- Locally, the line would service coal-mining operations in the Squak veins, then over to Lake Washington and finally Puget Sound via Seattle.

- Their vision was to access coal and gypsum near Squak Lake (near Issaquah), coal, iron, and precious metals in Snoqualmie Pass, hops in the Snoqualmie Valley, and timber, grazing, and wheat in eastern Washington, ultimately connecting Spokane and Walla Walla by Snoqualmie Pass and connecting to a larger line (Armbruster 1999:123).

- Burke and Gilman began fundraising. One of their largest prospects, Franklin Jones (a partner in a Wall Street investment-banking house) initially showed interest, but Gilman’s trip to New York to raise money came up empty.

1885: Money troubles befall the company, resulting in Burke and Gilman taking on additional partners.

- April 28, 1885: The SLS&E is incorporated, sponsored by Thomas Burke and Daniel Gilman (Armbruster 1999:122; Cheever 1949:102).

- Progress with the SLS&E seemingly lit a fire under the Oregon Improvement Company (OIC), who felt pressure to get a presence in the Snoqualmie Valley. The SLS&E surveyors had their stakes in the ground one day before the OIC. The Northern Pacific made a feint, but retreated upon seeing that the SLS&E had already staked their claim (Armbruster 1999:124).
• The route was to follow the proposed route for the Seattle Walla Walla & Baker City Railway, going from Seattle, north to Lake Union and Union Bay, down the western shore of Lake Washington to Renton, and up May and Coal Creeks to the mountains (Armbruster 1999:123).

1886: In September, Gilman began working on Peter Kirk, to furnish rail for the line. Kirk would later be convinced to build a steel mill along the right-of-way (Armbruster 1999:125).

• November 1886: Jones again showed interest in investing. Support for the railroad was garnered from James D. Smith, president of the New York Stock Exchange, and others. These investors left Burke and Gilman in charge, but had other ideas regarding the operation of the railroad. Other changes wrought by the new investors include changing the terminus from Walla Walla to Deadwood in the Dakota Territory, and constructing two additional lines: the Eastern Division from Spokane Falls to Columbia, and the Northern Division from Seattle to the Canadian border to connect with the Canadian Pacific Railway (Armbruster 1999:123-124).

• December 1886: When Burke traveled to New York to close the deal, he was told to put up $10,000, which he and Gilman borrowed. With this money, the route underwent survey (Armbruster 1999:124).

1887: In this year, the SLS&E had 63.32 miles between Seattle and Sallal Prairie (just outside of North Bend) (Cheever 1949:102).

• January 12, 1887: A contract was struck with the Puget Sound Construction Company to begin construction (Renz 1980:141).

Figure 2 – Daniel Gilman (Armbruster 1999:122).

Figure 3 – Thomas Burke (Armbruster 1999:122)
January 25, 1887: Ordinance 804 gave the SLS&E an unimpeded thoroughfare through Seattle (Armbruster 1999:125).

February 25, 1887: Seattle granted a right-of-way through the city; construction began on February 25 (Renz 1980:141).

March 25, 1887: Kern Bros. began to clear five miles of grade along Smith Cove (Renz 1980:141).

April 1, 1887: Ground was broken for construction of the SLS&E (Renz 1980:141; Robertson 1995:266).

June 1887: Roadbed along Lake Union and Lake Washington was completed, and the first locomotive, the D.H. Gilman, arrived in June (Armbruster 1999:128).

August 11, 1887: Steel rail arrived from England on August 11. With the progress being made, it was anticipated that 300 miles of line would be in place by January 1, 1889 (Armbruster 1999:128; Renz 1980:141).

Logging and shingle mills sprung up along the corridor, as expected, but the costs of operating the railroad outweighed the profits (Armbruster 1999:130).

Thanksgiving 1887: SLS&E reaches Bothell (Grindeland 2000:29).

December 1887: the Seattle and Eastern Construction Company (incorporated by Burke, Angus McIntosh, F.M. Jones, and W.H. Scott) started building, and finished the 20 miles from Woodinville to Sallal Prairie (Renz 1980:141).

- Burke struggled to find additional investors, sending Gilman east once again. This trip to Wall Street was successful, however, with him returning with money in hand (Armbruster 1999:132).

- March 24, 1888: As the possibility of a Cascade route became more remote, the SLS&E acquired the Seattle and West Coast Railway Company (S&WCRC) in order to run to Canada (operated independently). The S&WCRC had 14.4 miles of graded roadbed from Woodinville to Snohomish (Cheever 1949:102; Renz 1980:142).

- October 1888: Freight and passenger trains began traveling from Snohomish, and suburban service to Ballard transformed that neighborhood. The rail took tourists to Snoqualmie Falls as well. The Lake Washington Belt Line, traveling between Black River Junction and Woodinville via Kirkland, was built in 1890 (Cheever 1949:34).

- Financial troubles mounted, but Peter Kirk finally chose a location for his steel mill, naming the location Kirkland (Armbruster 1999:130).

1889: SLS&E has 50.05 miles between Spokane and Davenport (Cheever 1949:102).

- After the 1889 fire that gutted most of downtown Seattle, Gilman returned to New York for more money, returning successful. Soon after, however, he
withdrew from the company, and Burke attempted to sell the line to larger companies (Armbruster 1999:135).

- July 1889: The Northern Pacific purchased the majority interest in capital stock of the SLS&E.
- October 1889: Money troubles continued and the town of Davenport paid for grading the remaining 5 miles from Spokane to Davenport (Renz 1980:142).
- Late 1889: Peter Kirk bought machinery and erected buildings at Kirkland (Armbruster 1999:137).

1890: Lake Washington Belt Line of the Northern Pacific (from Black River Junction to Woodinville via Kirkland) was started (Cheever 1949:34).

- 1890-1891: Built 6.5 miles from Black River Junction to Kennydale, graded 10.7 miles of right-of-way to Kirkland, and completed the 5.6 miles into Woodinville. Became the Lake Washington Belt Line (Renz 1980:128).
- June 1890: Reports began stating that the Northern Pacific had control of the SLS&E, but these were denied. The two companies were coordinating; however, on the construction of the Lake Washington Belt Line (Renz 1980:142).
- July 1890: The firm of Henry and Balch of Minneapolis began working on a 20-mile section of the belt Line east of Lake Washington (Renz 1980:142).
1891: SLS&E constructed 88.50 miles between Snohomish and Sumas (Cheever 1949:102).

- June 1891: Traffic Manager Hannaford assumed duties for the SLS&E (Renz 1980:143).
- 1891: SLS&E and the Northern Pacific entered into a traffic agreement (Cheever 1949:103).

1892: On May 1, the SLS&E operations were consolidated with those of the Northern Pacific (Renz 1980:143).

1893: The Lake Washington Belt Line ceased construction due to the 1893 Depression (McDonald 2000:71).

- June 26: the SLS&E passed into receivership (Cheever 1949:103).

1896: On May 16, the SLS&E was sold at foreclosure; the eastern portion of the line went to the Spokane and Seattle Railway Company; the western part went to the Seattle & International Railway Company (Cheever 1949:103).

- June 30: Property was conveyed to the Union Trust Co. for $1,000,000. It was reorganized as the Seattle & International Railway (Armbruster 1999:138).

1901: On April 1, the Seattle & International ended independent existence and became the Seattle Division of the Northern Pacific (Armbruster 1999:140).

1903: The Lake Washington Belt Line of the Northern Pacific was built between Black River Junction and Woodinville on a 22-mile stretch through Bellevue (McDonald 2000:71).

- September 10, 1903: H.C. Henry was contracted on September 10 for tracklaying, surfacing, and ballasting a portion of the Seattle Belt Line (Engineering Department Subject Files).

1904: Wilburton Trestle built (Grindeland 2000:28; McDonald 2000:71).

1905: On February 28, the Northern Pacific granted the Lake Washington Mill Co. the right to use and maintain the under—crossing at Bridge No. 6. (Northern Pacific n.d.).

1908: On April 16, by easement (No. 20,107), the Northern Pacific authorized King County to establish a public highway upon and across the right-of-way at Kennydale (Northern Pacific n.d.).

1915: On June 15, by contract between the Northern Pacific and King County, Northern Pacific provided a highway crossing under the Northern Pacific tracks near Coal Creek (Northern Pacific n.d.).

1917: February 26: By contract between the Northern Pacific and King County, Northern Pacific provided reconstruction of Bridge No. 11½ (Coal Creek Bridge) as a permanent structure for a highway undercrossing (Northern Pacific n.d.).

- July 21, 1917: By contract the Northern Pacific authorized the May Valley Logging Co. to construct, maintain, and use a log railroad track across the right-of-way and under the main and side tracks at Quendall station; passing through or under Bridge No. 6 (replaced that contract from February 28, 1905 favoring the Lake Washington Mill Co.) (Northern Pacific n.d.).
1922: On September 18, by contract between the Northern Pacific and King County, the Northern Pacific agreed to construct and repair or rebuild, at joint cost, a pile bulkhead on the Lake Washington Belt Line right-of-way between stations 825+19 and 826+24 at 13 feet southeast of the centerline (Northern Pacific n.d.).

1970: The Northern Pacific merged with the Chicago, Burlington & Quincy Railroad, the Great Northern, the Spokane, Portland & Seattle Railway, and the Pacific Coast Railroad to become the Burlington Northern Railroad (BNSF Railway 2013:35).

1993: The belt Line was used for the Spirit of Washington dinner train until 2007, with stops at the Columbia and Chateau Ste. Michelle wineries (Hall 2012).

2007: All rail traffic ended on the belt Line route.

2008: The Wilburton Tunnel [bridge] over Interstate 405 (I-405) was demolished, creating a 1 mile break in the right-of-way.

4.2 PREVIOUSLY IDENTIFIED RESOURCES

The entirety of the project area has undergone survey and inventory as part of other projects and has been recorded on HPI forms (Allen 2007; Allen and O’Brien 2007a, b; Gilpin 2011; O’Brien 2008a, b; Soderberg 1980; Stewart 1978; Tobin 1992; Walker-Gray 2004). The current project necessitated updates of each of those HPI forms to provide additional structural information, supplementary data on the character of the resource, and revisions of property ownership. The original HPI forms are provided in the attached Historic Property Inventory alongside the updated versions. New HPI forms were created for the trestle over Coal Creek, the bridge over Lake Washington Boulevard North, the bridge over Interstate 90 (I-90), and the bridge over the Lake Hills Connector. A brief summary of these resources is below.

Seattle, Lake Shore & Eastern Railway

Located within Segment 1 of the ERC project area in Woodinville, Washington, previously recorded portions of the alignment extend from milepost (MP) 1.86 south to MP 7.3 in Redmond (Allen and O’Brien 2007), and from MP 0.0 at Woodinville Junction south to MP 1.86 (O’Brien 2008). The current survey extended from MP 0.0 at Woodinville Junction, south approximately 3.4 miles to NE 124th Street. Few changes have taken place since 2008, but the current survey necessitated an update of the HPI form to provide additional structural information and a revision of property ownership (see the attached Historical and Cultural Resources Inventory).

Northern Pacific Railway Company

Lake Washington Belt Line

The Northern Pacific Railway Company Lake Washington Belt Line was originally recorded in 2007 between MP 23.9 near Woodinville Junction and mp11.25 in Bellevue, and between MP 10.6 in Bellevue and MP 5.0 in Renton (Allen and O’Brien 2007). A portion of the Belt Line was surveyed again in 2011: from NE 8th Street in Bellevue south to SE 32nd Street in Bellevue (at MP 10.1) as the Northern Pacific Lake Washington Belt Line Route (Gilpin 2011). Resources inventoried include the Wilburton Crossing over Mercer Slough, the trestle over SE 32nd Street, the bridge over Lake Washington, the bridge over Coal Creek, and the bridge over May Creek.
That portion of the Northern Pacific Railway Company Belt Line inventoried here includes (north to south): ERC Segment 1 between MP 23.8 and 20.3, ERC Segment 4 between MP 14.8 and 13.5 and MP 12.4 and 10.0 (the alignment is interrupted by I-405), and ERC Segment 5 between MP 10.0 and 5.0. In addition to providing information on hardware, signage, and crossings, bridges and trestles were also re-recorded during this survey. Both the Wilburton Trestle and the trestle over Ripley Lane have previously been recorded independently (Stewart 1978; Soderberg 1980; Tobin 1992; Walker-Gray 2004), as well as on the Northern Pacific Railway Company Lake Washington Belt Line HPI, and have been updated both here as well as on their individual HPI forms. In addition, the bridge over the Lake Hills Connector and the bridge over I-90 have been added to the Northern Pacific Railway Company Lake Washington Belt Line HPI form (see the attached Historic Property Inventory).

The Wilburton Trestle
The Wilburton Trestle is located at MP 11.5 on ERC Segment 4, and was recorded in 1978 (Stewart 1978), and again in 1980 as part of an Historic American Engineering Record (HAER) Inventory (Soderberg 1980). An HPI form was completed in 1992 (Tobin 1992). This HPI was updated during the current survey to account for changes in condition and property ownership. The trestle has also been updated on the Northern Pacific Railway Company Lake Washington Belt Line HPI form (see Appendix A).

Trestle over Ripley Lane
The Northern Pacific Trestle over Ripley Lane is located at MP 6.7 on ERC Segment 5 and was originally recorded in 2004 (Walker-Gray 2004). Few changes have taken place since then, but the current survey necessitated an update of the HPI form to provide additional structural information and a revision of property ownership (see the attached Historical and Cultural Resources Inventory). The trestle has also been added to the Northern Pacific Railway Company Lake Washington Belt Line HPI form.

A field survey was conducted to map locations of various railroad-related hardware and infrastructure. No rail-related platforms, warehouses, depots, or buildings were encountered during the survey.

OPPORTUNITIES AND INTERPRETATIONS
During this inventory, only two resources were found to be eligible for listing in the NRHP—the Wilburton Trestle and the SLS&E Railway Spur Line (referred to in the Master Plan as the spur). The former is a 1904 structure listed in the Washington Heritage Register. The latter is the remains of a segment of the single-track, standard gauge railroad. These, and each of the other resources encountered during this project (the Northern Pacific Railway Company Lake Washington Belt Line/Route, the trestle over Ripley Lane, the trestle over Coal Creek, the bridge over Lake Washington Boulevard North, the bridge over I-90, and the bridge over the Lake Hills Connector), have been recorded on HPI forms for submission to Department of Archaeology and Historic Preservation (DAHP). Due to its significance, the Wilburton Trestle should be protected from adverse effects.

Interpretive possibilities for the Wilburton Trestle may include repairing the trestle
and adding non-intrusive safety measures to allow pedestrian traffic, erecting informational kiosks that illustrate the engineering and importance of the structure, and compiling walking guides.

One way to preserve the other resources is by turning the right-of-way into a trail for the public. This, when combined with educational and interpretive panels along the trails can help inform the community about the history of the railway and its contribution to the development of the area. In addition, access points and amenities on the trail can be named for nearby resources, trail signs can be designed with logos that are a tribute to the history of the SLS&E, and features along the corridor can be used as landmarks.
REFERENCES

Engineering Department Subject Files

KCDOT-RSD (King County Department of Transportation—Road Services Division). 2011. BNSF East Corridor Bridge Safety Inspection. On file King County Department of Transportation—Road Services Division, Seattle, Washington.

Soderberg, Lisa. 1980. HAER Inventory: Wilburton Trestle. (Location, DAHP?)

ADDITIONAL REFERENCES

Cooper, Francis W. and Henry Steadworthy. 1926. Rail Anchor, US 1602751 A.

King County Assessor’s Records, Washington State Archives, Puget Sound Regional Branch, Bellevue

Northern Pacific Railway Company. 1942. Northern Pacific Railway Company, Tacoma Division, Time Table No. 69K

Northern Pacific TellTale, e-mail discussion list, posting by James M. Frederickson, May 30, 2002

Renton Historical Society, Renton, Washington

A field survey was conducted to map locations of various railroad-related hardware and infrastructure. No railroad-related platforms, warehouses, depots, or buildings were encountered during the survey. Resources included bridges, grade crossings, hardware, signs, spurs/turnouts/switches, trestles, walls, and wyes.
BRIDGES

Two bridges were recorded during this survey. Both are steel, single-track bridges. The first crosses the Lake Hills Connector (Photo 1), and the second runs over I-90 (Photo 2).

GRADE CROSSINGS

Each crossing recorded during the project was a level grade crossing, meaning the train tracks and roadway crossing the tracks (a road, for example), are at the same level. Four types of grade crossings were encountered: asphalt, gravel, pre-cast concrete, and wood.

TYPES OF CROSSINGS

- The asphalt grade crossings are typically observed on asphalt roadways where the asphalt is laid around the rails (Photo 3).
- A single, gravel grade crossing was encountered. The gravel was placed to allow a walking/cart path to cross the tracks (Photo 4).
- The three identifiable brands of pre-cast concrete railroad grade crossings observed were Premier, Omega Industries, Inc., and OMNI Grade Crossings Systems.
- The Premier brand crossings are a 3-piece module, 4-foot tangent length system (Weszka 2014) (Photo 5). The other systems (Omega and OMNI), are pre-cast slabs, but no specific information about them could be located (Omega Industries, Inc. 2014; OMNI Grade Crossing Systems 2014).
- There were two wood grade crossings observed (Photo 6).

BOOTS

A rail boot is a piece of equipment that is placed around a rail to reduce noise, limit rail movement, and, when necessary, maintain electrical current in paved surfaces (such as a grade crossing). Both rubber and metal boots were observed in the project area.

CLADDING

Metal cladding was observed on several of the pre-cast concrete panels. Metal cladding is placed around the edges of the panels providing increased durability.

SIGNAL MANUFACTURERS

There were five manufacturers of signal equipment observed on the right-of-way: Safetran (Railway Gazette 2012; Safetran Systems 2008); Harmon Industries (Whiteley 1999); Union Switch & Signal (Vantuono 2011); Griswold Signal Company; and Modern Industries, Louisville, Kentucky (Whiteley 1999).

SIGNAL TYPES

The two signal types observed are post-mounted flashing light signals (Photo 7) and cantilever flashing light signals (Photo 8).
Hardware was recorded intermittently along the right-of-way. This includes rail, tie plates, track spikes, anti-creepers, joints, gage rods, and derailers.

TIE PLATES

Tie plates fit between the steel rail and the railroad tie, helping distribute the load of the rail over a larger area and helping to hold the track to the gage (Photo 9; Ogden 2007:225). Plates with and without shoulders (shoulders were thought to relieve spikes of pressure) were observed (Webb 1903:257). The plates also help prevent wear on the rail tie (Wilson 1915: 45).

TRACK SPIKES

Track spikes (railroad nails) hold the steel rails to the correct gage and maintain alignment (USDOA 1970:5-3). The only information available on identifying track spikes notes that “W” stands for water-quenched, and “HC” stands for high-carbon (Photo 10).

RAILS

Railroad rails are typically marked with the weight and specifications for the rail, manufacturer, section, method of hydrogen elimination, month (indicated by slashes), and year of manufacture. The weight of the rail determines rail strength, and therefore, loads and speed. Rails found during this project are 112, 115, and 125 weights and were cast according to the specifications of the American Railway Engineering Association (marked “R.E.”) or the American Railway Association (marked “R.A.”). For example, a 115RE rail weighs 115 pounds per yard, and was designed according to American Railway Engineering Association specifications (Unitrac Railroad Materials, Inc. 2014; USDOA 1970:5-1).

Manufacturers include the Colorado Fuel & Iron Company (CF&I; COLORADO), the Inland Steel Company of Indiana (part of U.S. Steel), Bethlehem Steel, Lackawanna Steel Company (a subsidiary of Bethlehem Steel), and the Indiana Steel Company of Gary, Indiana.
The section of rail indicates the cross-section/size of the rail. The method of hydrogen elimination relates to rail hardness, chemical composition, and metal cleanliness. The harder and cleaner a rail, the longer its service life (USITC 1988:a-4). Those methods marked on recorded rails were control cooled, head hardened, or open-hearth (FRA 2011:6; USITC 1988:a4-6). Control cooled rail are the most common in the United States, with open-hearth rail being the oldest and most basic steel-making process (Photo 11).

ANTI-CREEPER (RAIL ANCHOR)

Anti-creepers, also known as rail anchors, reduce lateral movement of the rails (Howson et al. 1921:11; USDOA 1970:5-4). Five types of anti-creepers were observed: the stead anchor, the improved fair rail anchor, the e-clip anchor, the Ericson anchor, and a U-shaped (unnamed) anchor (Photo 12).

JOINTS (FISHPLATES)

A rail joint (fishplate) is a piece of hardware used to join two abutting pieces of rail (Photo 13; Ogden 2007:225). Joints observed were broken joints, meaning that the joint in one rail is opposite the middle of the other rail (Wilson 1915:90). This was the most common joint method.

DERAILERS

Derailers prevent rolling stock from traveling along rails. It serves as an obstruction (Photo 14).

GAGE RODS (TIE RODS)

Several gage rods were seen (Photo 15). These are used, normally along curves, to hold the rails to the proper gage against the thrust of the wheels (USDOA 1970:5-4).
MILEPOSTS

Milepost signs were posted every mile along the rail corridor. These are metal signs with black lettering on a white background (Photo 16).

RAILROAD CROSSING SIGNS

Three types of railroad crossing signs were encountered during the project. These include the crossbuck sign, the railroad-crossing advance sign, and a “RRX / xxx FT” sign. The crossbuck consists of black lettering on a white background, with “RAILROAD” on one sign and “CROSSING” on a second sign. These are oriented as an “X” and identified the location where a roadway crosses railroad tracks (Photo 17).

The railroad crossing advance sign is a simple, circular sign marked “R X R” in black lettering on a yellow background. These signs are posted in advance of a rail crossing (Photo 18) (USDOT-FHWA 2013).

Only one sign was encountered that indicated an upcoming railroad crossing with distance to that crossing. This is a simple metal sign with black lettering on a white background (Photo 19).
Photo 17 – Railroad crossbuck

Photo 18 – Railroad crossing advance sign

Photo 19 – Railroad crossing sign

Photo 20 – Advance warning sign

Photo 21 – Reduce speed sign

Photo 22 – Reduce speed sign for Passenger and Freight trains
SHUNT
A single shunt sign was observed. These signs indicate those locations where a locomotive switches from one rail to another (Fallows 1835:424). This is a metal sign with black lettering reading “SHUNT” on a white background.

SPEED LIMIT SIGNS
Two types of speed limit signs were encountered during the survey: advance warning and reduce speed. Among the reduce speed signs were limit signs for passenger trains, freight trains, and all trains. Each of these signs is in miles per hour.

- Advance warning signs are metal signs with black lettering on a yellow background, posted at an angle (typically diagonally upwards). These signs are posted 1 mile (when possible) ahead of a reduce speed sign, indicating that the train needs to reduce its speed (Photo 20).
- Reduce speed signs are metal signs with black lettering on a yellow background posted horizontally (level). These signs indicate the maximum permissible speed that the train may be moving at that location (Photo 21) (McCready 1967:69).

Variations on these signs are “P-##” and “F-##”, which indicate specific speeds for passenger (P) and freight (F) trains (Photo 22) (McCready 1967:68). When no “P” or “F” is specified, the speed limit applies to all trains.

STATION SIGNS
Two stations signs were found along the rail corridor. These are metal sign with black lettering on a white background indicating a station location (Photo 23). None of the station buildings remained.

TRAFFIC SIGNS
Three types of traffic signs were observed: yellow caution, red stop, and written stop. The yellow caution sign is a yellow rectangle metal sign indicating the operator to proceed with caution. The red stop sign is a red rectangle metal sign notifying the operator to stop. Likewise, the simple black lettered “STOP” on white background indicates the operator to stop.

“W”: WHISTLE POSTS
Whistle posts indicate that a feature is coming up along the track (usually crossings) where a whistle signal is required according to operating rules. These posts are placed roughly 1/4 mile from the crossing (or other feature), allowing the train to sound the whistle and have it be heard at the feature while operating at maximum authorized speed (McVarish 2008:88) (Photo 24).

Whistle posts encountered within the project area typically consisted of a metal sign with black lettering on a white background, mounted on a metal U-channel post.
SPURS/TURNOUTS/SWITCHES

A spur track is a stub track that diverges from the main line (McVarish 2008:92). Those found in the project area are lateral turnouts—wherein the main rail continues straight with a single track moving to the side (Photo 25).

FROG

The frog provides support for wheels at a spur when crossing from one rail to another. The frog number indicates the diverging angle of the turnout and the maximum speed the train can travel. The larger the frog number, the higher speed the turnout (see Photo 25).

SWITCHES

Switches adjust the rail so a train can move from one line to another. The switches observed were either a Model 112E standing switch (Photo 26) or a Model 51A hand-thrown switch (Photo 27) (Unitrac Railroad Materials, Inc. 2013).

GAGE PLATE

A gage plate holds the gage at the point of a switch. It is usually 1/2 inch thick, 6-inches wide, and 6 feet long (Howson et al. 1921:89).

TRESTLES

A trestle is built similar to a stringer bridge, wherein the stringers rest on trestle bents rather than wall abutments or piers. The bents are constructed of timber piles. Several trestles were recorded during this survey, including the Wilburton Trestle, the SE 32nd Street trestle, the trestle over Coal Creek, the trestle over Ripley Lane, and the May Creek Trestle.

WALLS

The remains of a single possible retaining wall were observed. It consists of three studded t-posts cut to within 1 foot of the ground (Photo 28).

WYES

Wyes are an arrangement of spurs and turnouts to turn cars around and/or move cars from one track to another. These are preferable to turntables due to their lower cost and ease of repair. Wyes are typically located at stations and junctions. The wye identified during this project was at the Woodinville Junction (Photo 29).
Photo 25 – Spur line, showing frog

Photo 26 – Model 112E standing switch

Photo 27 – Model 51A switch

Photo 28 – Remains of a retaining wall

Photo 29 – Overview of the wye at Woodinville Junction, spur
Several more significant resources were inventoried and recorded on HPI forms. These included:

- The Seattle, Lake Shore & Eastern Railway
- Northern Pacific Railway Company Lake Washington Belt Line
- Wilburton Trestle
- Trestle over Ripley Lane
- Trestle over Coal Creek
- Bridge over Coal Creek
- Bridge over Lake Washington Boulevard North
- Bridge over I-90
- Bridge over the Lake Hills Connector
SEATTLE, LAKE SHORE & EASTERN RAILWAY (UPDATE)

The SLS&E Railway is along the eastern portion of ERC Segment 1 and is comprised of a single-track, standard gauge railroad constructed on gravel ballast (Photo 30). These include grade crossings, hardware, signs, switches, spurs, and the wye at Woodinville Junction. No bridges or trestles were encountered along this portion of the ERC. The Woodinville Junction is also recorded on the Northern Pacific Railway Company Lake Washington Belt Line HPI form.

The SLS&E Railway was recommended eligible for listing to the National Register of Historic Places (NRHP) in Allen and O’Brien 2007. A detailed history and Statement of Significance can be found there.

NORTHERN PACIFIC RAILWAY COMPANY LAKE WASHINGTON BELT LINE (UPDATE)

The Northern Pacific Railway Company Lake Washington Belt Line Route is along the western portion of ERC Segment 1, and the entirety of ERC Segments 4 and 5. It is a single-track, standard gauge railroad constructed on gravel ballast (Photo 31). Resources include grade crossings, hardware, signs, switches, spurs, trestles, bridges, and the wye at Woodinville Junction. The Woodinville Junction is also recorded on the SLS&E HPI form.

Larger resources inventoried along the alignment include the bridge over the Lake Hills Connector, the Wilburton Trestle, the trestle over SE 32nd Street, the bridge over I-90, the bridge over Lake Washington Boulevard North and bike path, the trestle over Coal Creek, the trestle over Ripley Lane, and the trestle over May Creek. The Wilburton Trestle and the trestle over Ripley Lane have also been updated on their individual HPI forms.

The original HPI for this property recommended to the NRHP the Northern Pacific Lake Washington Belt Line Route be eligible for listing (Allen and O’Brien 2007). An update of that form no longer recommended the property be eligible for listing due to the resource not retaining distinctive characteristics to link the railroad to the community. The sections of track remaining in 2011 were non-descript and no longer represented those themes under which it was recommended in 2007 (Gilpin 2011).
Photo 30 – Bridge over the Lake Hills Connector

Photo 31 – Northern Pacific Railway Company Lake Washington Belt Line
WILBURTON TRESTLE (UPDATE)

Located within the northern portion of Segment 4 in Bellevue, Washington, at MP 11.5 along the SLS&E right-of-way, this 1904 structure is a 977-foot-long, single-track, open-deck, timber and steel trestle grade crossing over Mercer Slough (Photo 32). The original HPI for the trestle is updated here, and it is also documented on the Northern Pacific Railway Company Lake Washington Belt Line HPI form.

The Wilburton Trestle has previously been recommended eligible for listing in the NRHP and Washington Heritage Register (Stewart 1978; Tobin 1992).

TRESTLE OVER RIPLEY LANE (UPDATE)

The trestle over Ripley Lane is a single-track, open-deck trestle that spans Ripley Lane (Photo 33). The original HPI form is updated here, and it is also documented on the Northern Pacific Railway Company Lake Washington Belt Line HPI form.

A detailed history and Statement of Significance is provided in Walker-Gray 2004. At that time, it was recommended to not be eligible for listing in the NRHP.
Photo 32 – Wilburton Trestle

Photo 33 – Trestle at Ripley Lane
TRESTLE OVER COAL CREEK

This 1950 structure is a 133-foot-long, single-track, open-deck, timber-frame trestle. It is at MP 9.1 along the former SLS&E right-of-way, crossing over Coal Creek (Photo 34). Each bent consists of five timber piles (with diameters of 12 to 14 inches), two to four sway braces (one to two on either side of the bent), and one to two sash braces on each bent. The deck consists of six timber stringers (10 x 17 ½ inches), with three stringers under each rail. The timber caps measure 12 x 14 x 14 inches. The track is laid directly on the stringers (KCDOT—RSD 2011). Prior to 2011, a timber walkway was installed along the eastern side of the trestle, with two steel cables provided as railing. Since then, a chain link fence has been erected at the north and south ends of the trestle to prevent the public from crossing the structure.

BRIDGE OVER LAKE WASHINGTON BOULEVARD

Located in Bellevue, Washington, this 1916 structure is a 44-foot-long, single-track, open-deck, steel, concrete, and timber bridge crossing over Lake Washington Boulevard (Photo 35). It is at MP 9.2 along the former SLS&E right-of-way. The bents are concrete pier walls, on which steel girders sit with steel floor beams. The track is laid on timber deck planks (KCDOT—RSD 2011). “NORTHERN PACIFIC” is painted on the west elevation of the bridge. A chain link fence has been erected at the north and south ends of the trestle since 2011 to prevent the public from crossing the structure.

The bike path bridge is on the south end of the Lake Washington Boulevard North bridge. Built in 2000, it is a 70-foot, three-span bridge with concrete slabs on steel H-piles. The rails are placed on ballast on the slab deck (KCDOT—RSD 2011). This bridge over Lake Washington Boulevard North was originally recorded on an HPI form for the Northern Pacific Lake Washington Belt Line Route (Allen and O’Brien 2007). At that time, the belt Line route and associated infrastructure were recommended as eligible for listing in the NRHP. A subsequent inventory of a portion of that same line recommended the belt Line not eligible (Gilpin 2011), although that survey did not extend as far south as the bridge over Lake Washington Boulevard North. As argued in 2011 report, the trestles encountered did not represent a structurally unique or innovative style. This holds true for the bridge over Lake Washington Boulevard North and nearby bike path.
Photo 34 – Trestle over Coal Creek

Photo 35 – Bridge over Lake Washington Boulevard
BRIDGE OVER I-90

Located at MP 9.9 along the former SLS&E right-of-way, the Bridge over I-90 is a solid-deck, single-track, steel rail bridge (Photo 36). Built in 1969, this structure is 617 feet long and spans I-90. It is built using steel plate girders (103 feet long and 121 feet tall) and five concrete caps supported by two concrete columns each. The track is laid on ballast. Steel plate girders (60 inches tall) are on either side of the rail for safety (KCDOT-RSD 2011).

The bridge over I-90 does not retain themes of association (Criterion A), since it was built long after the boom of railroad construction in western Washington; it cannot be ascribed to or associated with any famous persons (Criterion B); it is not of a structurally unique or innovative design (Criterion C); nor does it contain any data that can be related to historic railroad themes (Criterion D). Therefore, the railroad bridge over I-90 is recommended to not be eligible for listing in the NRHP.

BRIDGE OVER THE LAKE HILLS CONNECTOR

This 1973 bridge is on the north side of the Wilburton Trestle at MP 11.7 along the former SLS&E right-of-way (Photo 37). It is a 99-foot-long, solid-deck, single-track bridge with concrete slab deck, four steel girders with floor beams, and concrete pier wall and abutment (KCDOT-RSD 2011). The rails are set on ballast.

The bridge over the Lake Hills Connector does not retain themes of association (Criterion A), since it was built long after the boom of railroad construction in western Washington; it cannot be ascribed to or associated with any famous persons (Criterion B); it is not of a structurally unique or innovative design (Criterion C); nor does it contain any data that can be related to historic railroad themes (Criterion D). Therefore, the railroad bridge over Lake Hills Connector is recommended not eligible for listing in the NRHP.
Photo 36 – Bridge over I-90

Photo 37 – Bridge over the Lake Hills Connector
A detailed inventory of each resource encountered along the corridor right-of-way is included on the following sheets. The inventory progresses generally from north to south, overlaid on an aerial photograph with location information and description for each resource.
Segment 4 - Part 1
Segment 4 - Part 2
Segment 4 - Part 3
Segment 4 - Part 4

SOURCE: WDNR, 2007
Service Layer Credits: Copyright © 2013
National Geographic Society, i-cubed

Eastside Rail Corridor Cultural Resources Survey, 130858
Segment 4.1 Overview
King County, Washington
1-1: Grade crossing
Zone 10 N262326.198 E1315316.979
Across NE 124th Street // level grade crossing;
pre-cast concrete panel with metal boots and metal
cladding; no skirt; no brand marking // cantilevered
signal structure with post-mounted flashing light
signal; east side // post-mounted flashing light signal
with automatic gate; west side // Union Switch and
Signal and Harmon safety/signal equipment

1-2: Hardware
Zone 10 N262879.637 E1315438.977
Rail: “OH 9030 ILLINOIS G ILLI 1914” (open hearth,
American Railway Association, class B, Illinois Steel
Company of Chicago, May 1914)
Single-shoulder tie plate: “RRSC PAT / 828 ILL G
U.S.A. 22” (1922, Illinois Steel Company of Chicago)

1-3: Sign
Zone 10 N263726.373 E1315632.09
“3”: MP // north/southbound; west side of track;
metal u-channel post; 8'5" tall
“x”: (unknown) // north/southbound; west side of
track; metal u-channel post; 8'5" tall

Key
X Crossing
▼ Hardware
口 Sign
□ Parcel Boundary

Start East Portion
of Segment 1

SOURCE: WDNR, 2007
Service Layer Credits: Source: Esri,
DigitalGlobe, GeoEye, i-cubed, Earthstar
Geographics, CNES/Airbus DS, USDA,
USGS, AEX, Getmapping, Aerogrid, IGN,
IGP, swisstopo, and the GIS User Community
1-4: Hardware

Zone 10 N266102.985 E1316179.608

Rail: “COLORADO SEC 905 V 1914 OH” (Colorado Fuel & Iron Company, section 905, 1914, open-hearth)
1-5: Switch
Zone 10 N268101.71 E1316639.53
Model 112E switch stand; west side of tracks

1-6: Sign
Zone 10 N268745.64 E1316770.03
“2”: MP // north/southbound; east side of tracks; metal u-channel post; 8’11” tall //
“x”: (unknown) // north/southbound; east side of tracks; metal u-channel post; 8’11” tall
Red block: stop // southbound; west side of tracks; metal u-channel post; 3’ tall
1-7: Sign
Zone 10 N268892.58 E1316780.53
“W”: whistle stop // northbound; east side of tracks; metal u-channel post; 8’ tall

1-8: Grade crossing
Zone 10 N270077.07 E1316402.37
Across NE 145st Street/SR 202 at MP 1.8 // level grade crossing; pre-cast concrete panels with rubber boots and cladding; no skirt; 10’1” wide; “OMNI” brand panels // cantilevered signal structure with post mounted flashing light signal; east side // cantilevered signal structure with post mounted flashing light signal; west side // Safetran Systems Corp. brand equipment
1-9: Sign
Zone 10 N271000.27 E1315849.11
“P-25”: reduce speed sign // northbound; east side of tracks; metal u-channel post; 10’10” tall

1-10: Hardware
Zone 10: N271000.27 E1315849.11
Rail: “OH 9030…” (open hearth, American Railway Association, illegible)

1-11: Sign
Zone 10 N271196.98 E1315687.09
“W”: whistle stop // southbound; west side of tracks; metal u-channel post; 7’ tall

1-12: Grade crossing
Zone 10 N271394.18 E1315522.57
Across unnamed gravel road // level grade crossing; asphalt; no boots; no skirt; 23’10” long // no signal hardware

1-13: Grade crossing
Zone 10 N271603.19 E1315349.59
Access to business park between 14710 and 15100 Woodinville/Redmond Road NE; 10’2” wide; 48’1” long; no brand markings // level grade crossing; pre-cast concrete panels with ‘diamond-plate’ pattern and rubber boots; no skirt // no signal hardware
1-14: Grade crossing
Zone 10 N272469.34 E1314882.96
Access to 15500 Woodinville/Redmond Road NE // level grade crossing; asphalt with metal boots; 30' long // no signal hardware

1-15: Grade crossing
Zone 10 N273096.28 E1314589.87
Access to 15400 Woodinville/Redmond Road NE // level grade crossing; asphalt with metal boots; 54' long // no signal hardware
1-16: Grade crossing
Zone 10 N273657.51 E1314323.98
Access to 15800 Woodinville/Redmond Road NE // level grade crossing; asphalt; no boots; 35'6" long // no signal hardware

1-17: Hardware
Zone 10 N273841.23 E1314237.51
Rail: “COLORADO SEC 905. / 1914 OH” (Colorado Fuel & Iron Company, section 905, 1914, open hearth)

1-18: Sign
Zone 10 N274064.30 E1314132.68
“1”: MP; north/southbound; west side of tracks; metal u-channel post; 4'7" tall
“x”: (unknown); north/southbound; west side of tracks; metal u-channel post; 4'7" tall

1-19: Grade crossing
Zone 10 N274084.53 E1314123.36
Access to 15900 Woodinville/Redmond Road NE; 31'10" long // level grade crossing; asphalt; no boots // no signal hardware

1-20: Grade crossing
Zone 10 N274336.97 E1314005.08
Access to 16120 Woodinville/Redmond Road NE // level grade crossing; pre-cast concrete panels with rubber boots; no skirt; 48’ long, 10’2” wide; no brand markings // no signal hardware

Key
- Crossing
- Hardware
- Sign
- Parcel Boundary

SOURCE: WDNR, 2007

Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Eastside Rail Corridor Cultural Resources Survey - 130858

Cultural Resources Survey Inventory:

Eastside Rail Corridor King County Owned Planning

Segment 1 - Part 8

King County, Washington
1-21: Grade crossing
Zone 10 N274661.66 E1313832.00
Access to 16140 Woodinville/Redmond Road NE
level grade crossing; asphalt; no boots; 48’6” long
no signal hardware

1-22: Grade crossing
Zone 10 N275115.08 E1313356.03
Access to 16620 Woodinville/Redmond Road NE
level grade crossing; pre-cast concrete panels
with diamond-plate patterns and steel skirt; 3-piece
module, 4’ tangent length; 38’4” long, 8’ wide;
PREMIERE brand; “PREMIERE / 808-285-8331” no
signal hardware

1-23: Grade crossing
Zone 10 N275695.40 E1312683.34
Access to 16650 Woodinville/Redmond Road NE
level grade crossing; pre-cast concrete panel with
cladding; rubber boots; no skirt; 10’1” wide; 56’1”
long; Omega brand; “ΩMEGA / 5 2599109 1800 v
115” no signal hardware
End East Portion of Segment 1

Start West Portion of Segment 1

1-24: Hardware
Zone 10 N276052.58 E1312487.53
Rail: “OH 9030 I S CO GARY 1934” (open hearth, American Railway Association, Indiana Steel Company of Gary, Indiana, 1934)

1-25: Sign
Zone 10 N276538.04 E1312300.11
“RRX / 800 FT”: railroad crossing in 800 ft; northbound; east side of tracks; metal u-channel post; 8’3” tall

1-26: Grade crossing
Zone 10 N276756.26 E1312215.27
Access to 16928 Woodinville/Redmond Road NE; 38’8” long // level grade crossing; asphalt; metal boots; no skirt // no signal hardware

1-27: Grade crossing
Zone 10 N277065.38 E1312097.48
Access to 16120 Woodinville/Redmond Road NE // level grade crossing; asphalt; metal boots; no skirt; 32’ long // no signal hardware

Key

Power Source: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
1-28: Sign
Zone 10 N277097.41 E1312085.50
“10”: reduce speed sign; northbound; east side of tracks; metal u-channel post; 8’10” tall
“P-25”: reduce speed sign; southbound; west side of tracks; metal u-channel post; 9’7” tall
“10”: reduce speed sign; southbound; west side of tracks; metal u-channel post; 9’7” tall

1-29: Switch
Zone 10 Zone 10: N277129.81 E1312071.63
Model 112E switch stand; “RACOR” (Racor brand); east side

1-30: Spur (Woodinville Junction)
Zone 10 N277198.97 E1312044.47
Lateral turnout; northbound; leading into the Woodinville Junction wye from the south; no. 10 frog;

1-31: Sign
Zone 10 N277288.11 E1312021.65
“STOP”: stop sign; northbound; in the middle of the wye; metal u-channel post; 6’ tall

1-32: Sign
Zone 10 N277337.89 E1312015.57
“WOODINVILLE”: station sign; northbound; double-post; metal u-channel post; 10’2” tall

1-33: Spur (Woodinville Junction)
Zone 10 N277531.09 E1312030.62
Lateral turnout; southbound; leading into the Woodinville Junction wye from the northeast.

1-34: Hardware
Zone 10 N277322.10 E1311967.23

1-35: Spur (Woodinville Junction)
Zone 10 N277322.10 E1311967.23
Lateral turnout; northbound; leading into the Woodinville Junction wye from the southwest.

1-36: Hardware
Zone 10 N277291.67 E1311963.56
Derail

1-37: Sign
Zone 10 N277291.67 E1311963.56
“STOP”: stop sign; southbound; west side of tracks; metal u-channel post; 7’6” tall
Red rectangle: stop sign; southbound; middle of track; 3’2” tall

1-38: Grade crossing
Zone 10 N277172.49 E1311949.37
Across Woodinville/Redmond Road NE // level grade crossing; asphalt; metal boots; concrete retaining wall held with metal u-channel posts // cantilevered signal structure with post mounted flashing light signal; west side // cantilevered signal structure with post mounted flashing light signal; east side // Modern Industries Lou., KY equipment

1-39: Sign
Zone 10 N277117.99 E1311946.28
“STOP”: stop sign; northbound; east side of tracks; metal u-channel post; 10’ tall

1-40: Sign
Zone 10 N277038.42 E1311943.99
“10”: reduce speed sign; northbound; east side of tracks; metal u-channel post; 9’4” tall
“P-30” and “F-25”: reduce speed signs; southbound; west side of tracks; metal u-channel posts; 9’6” tall
1-41: Sign

Zone 10 N276388.85 E1312105.97

Yellow rectangle: proceed with caution; southbound; west side of tracks; metal u-channel post; 2'7" tall
1-42: Sign
Zone 10 N275897.49 E1312355.90
“W”: whistle post; northbound; east side of tracks; metal u-channel post; 6'4” tall

1-43: Hardware
Zone 10 N274986.68 E1312811.61
Rail: “112 RE O.H. B.S.Co LACKAWANNA 1941” (112 lbs per yard, American Railway Engineering Association, open-hearth, Bethlehem Steel Co., Lackawanna, New York, 1941)
Tie plate: “COLO T.P... / 113 RE HW” (Colorado Fuel & Iron Company, 113 lbs per yard, American Railway Engineering Association)
1-44: Sign
Zone 10 N273697.67 E1313458.73
“23”: MP; north/southbound; east side of tracks; metal u-channel post; 8’ tall

SOURCE: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Eastside Rail Corridor Cultural Resources Survey . 130858
Cultural Resources Survey Inventory:
Eastside Rail Corridor King County Owned Planning
Segment 1 - Part 12
King County, Washington

EASTSIDE RAIL CORRIDOR - REGIONAL TRAIL MASTER PLAN PROJECT
1-45: Hardware

Zone 10 N272126.49 E1314497.02

Tie plate: “100.P.C.S. CO.’28” (100 lbs. per yard, 1928, manufacturer unknown)

Tie plate: “100RE B.S.C.’36” (100 lbs per yard American Railway Engineering Association, Bethlehem Steel Co, 1936)

Tie plate: “100 P.C.S. CORE ’35” (100 lbs. per yard, 1935, manufacturer unknown)
1-46: Grade crossing
Zone 10 N271413.23 E1315081.74
Across Tolt Pipeline Trail // level grade crossing; wood; 7'5'' wide, 13' long // no signal hardware

1-47: Sign
Zone 10 N271046.83 E1315292.20
“P-30” and “F-25”: reduce speed signs; northbound; east side of tracks; metal u-channel posts; 10'1” tall
1-48: Grade crossing
Zone 10 N270126.78 E1315583.58
Across 145th Street // level grade crossing; asphalt with metal boots; 27' long // post mounted flashing light signal; west side // post mounted flashing light signal; east side // Griswold Signal Co. Minneapolis equipment

1-49: Sign
Zone 10 N269133.69 E1315802.48
“W”: whistle post repurposed to indicate a drain; facing the track; west side of tracks; metal u-channel post; 3’7” tall

1-50: Sign
Zone 10 N269105.04 E1315811.40
“22”: MP; north/southbound; east side of tracks; metal u-channel post; 5’9” tall

1-51: Sign
Zone 10 N268834.48 E1315842.02
“W”: whistle post; northbound; east side of tracks; metal u-channel post; 6’8” tall

1-52: Grade crossing
Zone 10 N268684.63 E1315850.59
Across access road to sand pit on Chateau Ste. Michelle property // level grade crossing; gravel; 17’ long // no signal hardware

Key
- Crossing
- Platform
- Sign
- Parcel Boundary

SOURCE: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
1-53: Hardware

Zone 10 N267751.63 E1315844.60

Tie plate: “100. P.C.S. Co. ‘26” (100 lbs. per yard, 1926, manufacturer unknown)

Tie plate: “S...-1927-100-RE” (illegible; 1927, 100 lbs. per yard, American Railway Engineering Association)

SOURCE: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Eastside Rail Corridor Cultural Resources Survey. 130858
Cultural Resources Survey Inventory:
Eastside Rail Corridor King County Owned Planning
Segment 1 - Part 16
King County, Washington
(No resources identified)
1-54: Hardware
Zone 10 N264311.21 E1315410.57
Tie plate: “100. P.C.S. CO. 28.” (100 lbs. per yard, 1928, manufacturer unknown)
Tie plate: “100. P.C.S. CO. ‘26” (100 lbs. per yard, 1926, manufacturer unknown)
Tie plate: “100. P.C.S. CORP. ‘35” (100 lbs. per yard, 1935, manufacturer unknown)
Joint: “HF 10025 P&MCG 1943 HT” (100 lbs. per yard, American Railway Engineering Association, 1943, manufacturer unknown)

1-55: Grade crossing
Zone 10 N264115.188 E1315354.815
Across 139th Avenue NE/Willows Road NE // level grade crossing; pre-cast concrete panel; no boots; no skirt; 8’ wide, no brand markings // post-mounted flashing light signal with automatic gate; west side // post-mounted flashing light signal with automatic gate; east side

SOURCE: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Eastside Rail Corridor Cultural Resources Survey Inventory:
Eastside Rail Corridor King County Owned Planning
Segment 1 - Part 18
King County, Washington
1-56: Sign
Zone 10 N263537.02 E1315192.88
"21": MP; north/southbound; east side of tracks; metal u-channel post; 5'2" tall

1-57: Sign
Zone 10 N262957.00 E1314885.89
Spray-painted: whistle post; southbound; west side of tracks; metal u-channel post; 8'3" tall

1-58: Sign
Zone 10 N262930.67 E1314863.17
"W": whistle post; northbound; east side of tracks; metal u-channel post; 7'4" tall
1-59: Sign
Zone 10 N262470.26 E1313678.93
“W”: whistle post; southbound; west side of tracks; metal u-channel post; 8’4” tall

1-60: Sign
Zone 10 N262472.40 E1313665.17
“SHUNT”: shunt location; southbound; west side of tracks; metal u-channel post; 7’2” tall

1-61: Sign
Zone 10 N262463.38 E1313734.36
“RAILROAD // CROSSING”: crossbuck; street-facing; west side of tracks; pressure treated wood 4x4s; 9’4” tall

1-62: Sign
Zone 10 N262467.05 E1313699.05
“RAILROAD // CROSSING”: crossbuck; street-facing; east side of tracks; pressure treated wood 4x4s; 9’3” tall

1-63: Grade crossing
Zone 10 N262466.30 E1313715.03
Access to 12506 135th Avenue NE from NE 124th
Street // level grade crossing; asphalt with metal boots; no skirt // no signal hardware

1-64: Hardware
Zone 10 N262661.45 E1312747.02
Rail plate: “100.P.C.S. C.C. 28” (100 lbs per yard, control cooled, 1928, manufacturer unknown)
Rail: “B.S.Co. LACKAWANNA O.H. TX 1927 100-AREA” (Bethlehem Steel Company, Lackawanna, New York, open-hearth; 100 lbs per yard, American Railway Engineering Association”
Spike: “W H C / 9 / 96” (water quenched, high carbon steel)

1-65: Sign
Zone 10 N262713.51 E1312445.80
“W”: whistle post; northbound; east side of tracks; metal u-channel post; 8’8” tall

1-66: Grade crossing
Zone 10 N262718.62 E1312389.54
Across Slater Avenue NE // level grade crossing; pre-cast concrete panel with rubber boots; no skirt; ; 10’2” wide; Premiere brand; “PREMIER / 1-800-426-5556 / RAIL / FIELD / LBS WT” metal label // cantilevered signal structure with post mounted flashing light signal and automatic gate; east side // cantilevered signal structure with post mounted flashing light signal and automatic gate; west side // Safetran and Harmon equipment
4-01: Grade crossing

Zone 10 N237937.229 E1304933.65

Across 108th Avenue NE // level grade crossing; pre-cast concrete slab with cladding; metal skirt; Omega brand; “ΩMEGA” // cantilevered signal structure with post mounted flashing light signal (lights missing) and automatic gate (missing); west side // cantilevered signal structure with post mounted flashing light signal (lights missing) and automatic gate (missing); east side // Safetran Systems Corp. and Hayes brand equipment

4-02: Hardware

Zone 10 N237868.31 E1305003.53

Rail plate: 100RE B.S.C. 36” (100 lbs per yard, American Railway Engineering Association, Bethlehem Steel Co., 1936)

4-03: Sign

Zone 10 N236925.10 E1305809.68

“W”: whistle post; northbound; east side of tracks; metal u-channel post; 7’4” tall
4-04: Sign
Zone 10 N236467.89 E1305961.37
“P-30”: reduce speed; southbound; west side of tracks; metal u-channel post; 10’3” tall
“25”: reduce speed sign; northbound; east side of tracks; metal u-channel post; 10’ tall

4-05: Hardware
Zone 10 N236248.691 E1306005.985
Tie plate: 11525 RE CC INLAND U.S.A. 1952 ""IIIIIIIIIIIIIIIIIIIIII""; backwards italics (115 lbs per yard, section 25, American Railway Engineering Association, control-cooled, Inland Steel Company, December 1952)

4-06: Grade crossing
Zone 10 N235799.183 E1306107.039
Walkway behind 2901 115th Avenue NE; 6’4” long // level grade crossing; asphalt with metal boots; no skirt // no signal hardware

4-07: Sign
Zone 10 N235799.183 E1306107.039
“R X R” railroad crossing advance sign; road-facing; round metal post; east side of tracks; 6’7” tall
4-08: Sign
Zone 10 N235128.008 E1306333.335
“14”: MP (fallen); north/southbound; west side of tracks; metal u-channel post

4-09: Sign
Zone 10 N234082.946 E1307005.788
“10”: advance warning speed sign; southbound; west side of tracks; metal u-channel post; 8’3” tall
4-10: Hardware
Zone 10 N233720.777 E1307235.021
Double-insulated jaw gage

4-11: Hardware
Zone 10 N233536.346 E1307300.27
Double-insulated jaw gage

4-12: Switch
Zone 10 N233058.835 E1307379.681
Model 112E switch stand; “RACOR”; west side of tracks (Racor brand)

4-13: Spur
Zone 10 N232985.834 E1307387.174
Lateral turnout; southbound; east side of tracks; no. 7 frog

4-14: Switch
Zone 10 N232933.449 E1307393.049
Model 51A switch stand
Joint: “PORTEC 3,003,701”, patented 1961
Joint: “1105 R-1152” (unknown)

4-15: Spur
Zone 10 N232860.444 E1307401.102
Lateral turnout; southbound; east side of tracks; no. 9 frog

SOURCE: WDNR, 2007
Service Layer Credits: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
4-16: Hardware
Zone 10 N232790.924 E1307439.856
Joint: “115RE / PORTEC / A / 100 / RA / WORN” (115 lbs. per yard, American Railway Engineering Association, Portec Rail Products, Inc.)

4-17: Hardware
Zone 10 N232770.307 E1307447.497
Tie rods (three single gage rods; three double-insulated jaw gages)

4-18: Switch
Zone 10 N232366.079 E1307467.459
Model 112E switch stand; west side of tracks
4-19: Spur
Zone 10 N227163.961 E1307460.004
Lateral turnout; northbound; east side of tracks

4-20: Switch
Zone 10 N227087.529 E1307470.429
Former switch location; east side of tracks
Hardware: “PMCO / 119-112 RE” (112 lbs. per yard, American Railway Engineering Association, manufacturer unknown)

4-21: Spur
Zone 10 N227039.744 E1307477.442
Lateral turnout; southbound; east side of tracks

4-22: Hardware
Zone 10 N226572.831 E1307475.464
(Colorado Fuel & Iron Company, 1941, 112 lbs. per yard, American Railway Engineering Association)
(112 lbs. per yard, American Railway Engineering Association, 1935, Illinois Steel Company of Chicago)
Rail: “1121 R E O H COLORADO 1944 I I I I I I I I I I” (112 lbs per yard, American Railway Engineering Association, open-hearth, the Colorado Fuel & Iron Company, December 1944)

4-23: Sign
Zone 10 N226442.616 E1307460.848
“W”: whistle post; southbound; west side of tracks; metal u-channel post; 8-6” tall
4-24: Sign
Zone 10 N226241.466 E1307422.06
“25”: advance warning speed; northbound; east side of tracks; metal u-channel post; 9’ tall

4-25: Hardware
Zone 10 N226272.423 E1307427.986
Tie plate: “RACOR-942 PAT115115” (Racor brand)

4-26: Hardware
Zone 10 N226198.503 E1307413.348
Former switch location; east side of tracks
4-27: Hardware
Zone 10 N225534.019 E1307272.086
Tie plate: “100RE.B.S.C.36.” (100 lbs per yard, American Railway Engineering Association, Bethlehem Steel Company, 1936)
Spike: “1098 / W”; water quenched

4-28: Grade crossing
Zone 10 N225199.711 E1307205.665
Across SE 1st Street at MP 12.07 // level grade crossing; pre-cast concrete panels with rubber boots; no skirt; 10’1” wide; 56’ long; “OMNI” // cantilevered signal structure with post mounted flashing light signal (lights missing) and automatic gate (missing); west side // cantilevered signal structure with post mounted flashing light signal (lights missing) and automatic gate (missing); east side // Safetran Systems Corp. equipment

4-29: Sign
Zone 10 N224921.55 E1307148.374
“W”: whistle post; southbound; west side of tracks; metal u-channel post; 7’7” tall

4-30: Sign
Zone 10 N224713.378 E1307120.602
“WILBURTON”; station sign; north/southbound; west side of tracks; double metal u-channel post; 8’7” tall
“12”: MP; north/southbound; east side of tracks; metal u-channel posts; 10’1” tall
4-31: Hardware

Zone 10 N224411.888 E1307136.034

Derailer on spur line

(illegible, 115 lbs per yard, American Railway Engineering Association)
4-32: Sign
Zone 10 N223908.931 E1307307.557
“W”: whistle post; northbound; east side of tracks; metal u-channel post; 9’5” tall

4-33: Spur
Zone 10 N223803.524 E1307363.333
Lateral turnout; northbound; east side of tracks;
“RACOR 0205 / No11 M5RE” (Racor brand, American Railway Engineering Association); no. 12 frog
Tie plate: “9 #11 115HEEL” (unknown)
Label: “RACOR ® / HARDENED / DEPTH” (Racor brand)

4-34: Switch
Zone 10 N223730.006 E1307400.247
Model 112E switch stand; “RACOR / 112RE 115RE 119 // L3514A / RACOR / LOOSE NUTS TO ADJUST” // Engineering switch identification tag (112/115 lbs per yard; American Railway Engineering Association; Racor brand)
4-35: Grade crossing
Zone 10 N223646.889 E1307445.786
Across SE 5th Street // level grade crossing; pre-cast concrete panel with rubber boots; “ΩMEGA” // cantilevered signal structure with post mounted flashing light signal (lights missing) and automatic gate (missing); west side // cantilevered signal structure with post mounted flashing light signal (lights missing) and automatic gate (missing); east side

4-36: Bridge over Lake Hills Connector
Zone 10 N223420.421 E1307565.166
Located on the north side of the Wilburton Trestle, this is a solid-deck, single-track bridge with concrete slab deck, four steel girders with floor beams, and concrete pier wall and abutment (KCDOT-RSD 2011). The rails are set on ballast. It was built in 1973 and is 99 feet long.

4-37: Sign
Zone 10 N223216.662 E1307673.528
(Illegible)

4-38: Trestle over Mercer Slough (Wilburton Trestle)
Zone 10 N223208.344 E1307678.111
Located within the northern portion of Segment 4 in Bellevue, Washington, at MP 11.5 along the SLS&E right-of-way, this 1904 structure is a 977-foot long, single-track, open-deck, timber and steel trestle grade crossing over Mercer Slough. Timber is used for 873 feet of its length, and steel for 104 feet. The bents (n=63) are primarily constructed of timber piles (with diameters of 12 to 14 inches for the bottom of the piles, and 26 to 36 inches for the top of the piles). Steel H-piles with steel caps are found in some places that have been repaired. Each bent has several sway and sash braces. The deck consists of six timber stringers (10 x 17 ½ inches), with three or four stringers under each rail. The track is laid directly on the stringers (KCDOT—RSD 2011). Planks along the east side of the deck function as a pedestrian walkway. Two strands of cable run the length of the trestle as railing. Chain link fence has been installed on the north and south ends of the trestle to prevent the public from crossing the structure.
4-39: Sign

Zone 10 N222330.913 E1308136.986

“10”: reduced speed; northbound; east side of tracks; metal u-channel post; 9’2” tall

4-40: Sign

Zone 10 N222262.474 E1308166.174

“W”: whistle post; northbound; east side of tracks; metal u-channel post; 8’7” tall

4-41: Hardware

Zone 10 N221563.81 E1308269.115

(Colorado Fuel & Iron Works, manufactured in 1941, 112 lbs. per yard, American Railway Engineering Association)
(No resources identified)
Cultural Resources Survey Inventory: Eastside Rail Corridor King County Owned Planning

Segment 4 - Part 11

King County, Washington

Source: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Eastside Rail Corridor Cultural Resources Survey 130858

(No resources identified)
4-42: Trestle at SE 32nd Street
Zone 10 N215374.122 E1308658.235
This 1969 structure is a 74-foot long, single track, solid-deck, timber trestle grade crossing over SE 32nd Street. The bents (n=6) consist of six timber piles (with diameters of 12 to 14 inches); with two sway braces (one on each side of the bent). The steel rails sit on timber deck planks with two-inch ballast (KCDOT—RSD 2011). The 2011 survey noted that the trestle had been re-aligned at least once during its lifetime, as observed by six broken-off pilings at the northern end of the trestle (Gilpin 2011). Since 2011, chain link fence has been placed along the east and west sides of the trestle for safety, and there is evidence of repair to both the trestle and the rails.

4-43: Hardware
Zone 10 N214858.1 E1308652.886
Tie plate: “112 RE BSC 40” (112 lbs per yard, American Railway Engineering Association, Bethlehem Steel Company, 1940)
Tie plate: “COLO TP-27-1944 / 112-REHW” (Colorado Fuel & Iron Works, manufactured in 1944, 112 lbs. per yard, American Railway Engineering Association)
Spike: “1908 / W” (water-quenched)
4-44: Bridge over I-90
Zone 10 N214264.834 E1308391.245
Located at MP 9.9, the Bridge over I-90 is a solid-deck, single-track, steel rail bridge. Built in 1969, this structure is 617-feet long and spans the length of I-90. It is built using steel plate girders (103-feet long and 121-feet tall) and five concrete caps supported by two concrete columns each. The track is laid on ballast. Steel plate girders (60-inches tall) are on either side of the rail for safety.

5-01: Hardware
Zone 10 N212999.564 E1307840.194
Joint: “F 10025 P&McG 1045 HT” (100 lbs. per yard, American Railway Engineering Association, manufacturer unknown)

5-02: Sign
Zone 10 N212983.478 E1307838.077
“10”: advanced warning speed sign; southbound; west side of track; metal u-channel post; 9’2” tall

SOURCE: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Cultural Resources Survey Inventory:
Eastside Rail Corridor King County Owned Planning
Segment 5 - Part 1, Segment 4 - Part 12
King County, Washington
5-03: Sign
Zone 10 N212447.177 E1307765.02
“10”: advanced warning speed sign; southbound; east side of track; metal u-channel post; 10’5” tall
5-04: Hardware
Zone 10 N211184.637 E1307860.694
Spike: “299 / W” (water quenched)
Rail: “…ILLINOIS U.S.A. 1943…” (Illinois Steel Company, 1943)

5-05: Bridge over Lake Washington Boulevard and Lake Washington Boulevard Bike Path Bridge
Zone 10 N210634.922 E1307865.124
Located within Segment 5 in Bellevue, Washington, this 1916 structure is a 44-foot long, single-track, open-deck, steel and timber bridge, crossing over Lake Washington Boulevard. It is at MP 9.2 along the SLS&E right-of-way. The bents (n=2) are concrete pier walls, on which steel girders sit with steel floor beams. The track is laid on timber deck planks (KCDOT—RSD 2011). “NORTHERN PACIFIC” is painted on the west elevation of the bridge. A chain link fence has been erected at the north and south ends of the trestle since 2011 to prevent the public from crossing the structure.

The Bike Path bridge is on the south end of the Lake Washington Boulevard Bridge. Built in 2000, it is a three-span bridge with concrete slabs on steel H-piles. The rails are placed on ballast on the slab deck (KCDOT—RSD 2011).
5-06: Trestle over Coal Creek
Zone 10 N210151.114 E1307673.158
This 1950 structure is a 133-foot long, single-track, open-deck, timber-frame trestle. It is at MP 9.1 along the SLS&E right-of-way, crossing over Coal Creek. Each bent (n=10) consists of five timber piles (with diameters of 12 to 14 inches), two to four sway braces (one to two on either side of the bent), and one to two sash braces on each bent. The deck consists of six timber stringers (10 x 17 ½ inches), with three stringers under each rail. The timber caps measure 12 x 14 x 14 inches. The track is laid directly on the stringers (KCDOT—RSD 2011). Prior to 2011, a timber walkway was installed along the eastern side of the trestle, with two steel cables provided as railing. Since then, a chain link fence has been erected at the north and south ends of the trestle to prevent the public from crossing the structure.

5-07: Sign
Zone 10 N209873.029 E1307454.284
“9”: MP; north/southbound; east side of track; metal u-channel post; 5'5" tall
5-08: Sign
Zone 10 N209619.874 E1307101.956
“P-30”: passenger train speed limit/reduced speed sign; northbound; east side of track; metal u-channel post; 9’ tall
“25”: reduced speed sign; southbound; west side of track; metal u-channel post; 11’5” tall

5-09: Hardware
Zone 10 N209417.6 E1306746.446
Tie plate: “55 12 55 / S C…” (no information available)
Rail: “COLORADO 1944 I I I I I I I I I I” (Colorado Fuel & Iron Company; August 1944)

5-10: Grade crossing
Zone 10 N208676.663 E1306114
Across Lake Washington Boulevard; MP 8.64 // level crossing; asphalt; 49.5’ wide // cantilevered signal structure with post mounted flashing light signal (lights missing) and automatic gate (missing); west side // cantilevered signal structure with post mounted flashing light signal (lights missing) and automatic gate (missing); east side
5-11: Sign
Zone 10 N208182.877 E1305998.948
“W”: whistle post; southbound; west side of track;
metal u-channel post; 8’ tall

5-12: Grade crossing
Zone 10 N207921.887 E1305956.267
Across Bagley Lane // pre-cast concrete slab with
rubber boots; no skirt; 10’1” wide; 16’ long “115” on
face // no signal hardware

5-13: Grade crossing
Zone 10 N207715.842 E1305919.408
Across unnamed road // pre-cast concrete slab with
rubber boots; no skirt; 10’1” wide; 16’ long; “115” on
face // no signal hardware

5-14: Sign
Zone 10 N207266.371 E1305728.461
“W”: whistle post; northbound; east side of track;
metal u-channel post; 8’7” tall
5-15: Grade crossing
Zone 10 N206964.516 E1305479.208
Across Lakehurst Lane SE // pre-cast concrete panel with 'diamond-plate' pattern; 8' wide; 40’6" long; Premier // no signal hardware

5-16: Hardware
Spike: “1098 / W” (water-quenched)
Tie plate: “85.12-55 / 1942” (manufactured in 1942, no other information)
Rail: “115 RE C.C. B.S.Co LACKAWANNA 1964 IIII” (115 lbs per yard, American Railway Engineering Association, control-cooled, Bethlehem Steel Company, Lackawanna, New York, April 1964)

5-17: Sign
Zone 10 N205882.666 E1304833.155
“W”: whistle post; northbound; east side of track; metal u-channel post; 8’3” tall

5-18: Sign
Zone 10 N205710.991 E1304799.424
“8”: MP; north/southbound; east side of tracks; metal u-channel post; 9’2” tall
5-19: Sign
Zone 10 N205548.399 E1304773.164
“W”: whistle post; northbound; east side of track; metal u-channel post; 7’9” tall

5-20: Grade crossing
Zone 10 N204459.291 E1304092.46
Across Pleasure Point Way // pre-cast concrete slab with rubber boots and steel skirt; 10’1” wide; 27’1” long; Omega brand; “OMEGA”; (Omega brand grade crossing; pre-cast concrete, clad panel) // no signal hardware
5-21: Sign
Zone 10 N204009.072 E1303885.002
“W”: whistle post; southbound; west side of track; metal u-channel post; 7’9” tall

5-22: Sign
Zone 10 N203873.14 E1303858.577
“25”: reduced speed sign; northbound; east side of track; metal u-channel post; 8’7” tall
“10”: reduced speed sign; southbound; west side of track; metal u-channel post; 8’ tall

5-23: Hardware
Zone 10 N203497.424 E1303839.132
Double-jaw insulated tie gage

5-24: Sign
Zone 10 N203289.905 E1303834.406
“10”: reduced speed sign; northbound; east side of track; metal u-channel post; 10’9” tall
“25”: reduced speed sign; southbound; west side of track; metal u-channel post; 8’ tall

5-25: Sign
Zone 10 N203179.817 E1303832.323
“W”: whistle post; northbound; east side of track; metal u-channel post; 10’5” tall

5-26: Grade crossing
Zone 10 N202693.493 E1303823.597
At Hazelwood and 106th Avenue SE // pre-cast concrete panel; metal cladding, no boots or skirt; 9’2” wide; 24’1” long; OMNI brand // no signal hardware

SOURCE: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Eastside Rail Corridor Cultural Resources Survey. 130858
Cultural Resources Survey Inventory:
Eastside Rail Corridor King County Owned Planning
Segment 5 - Part 8
King County, Washington
5-27: Wall
Zone 10 N202256.219 E1303817.7
Possible retaining wall; three studded t-posts; west side of track

5-28: Sign
Zone 10 N201361.567 E1303802.698
"W": whistle post; northbound; east side of tracks; metal u-channel post; 8' tall
5-29: Sign
Zone 10 N200686.988 E1303806.867
“7”: MP; north/southbound; east side of track; metal u-channel post; 7’3” tall

5-30: Hardware
N199833.58 E1303970.623
Rail: “112-RE OH BSCo LACKAWANNA 1945 I II III II II”
(112 lbs per yard, American Railway Engineering Association, open-hearth, Bethlehem Steel Company, Lackawanna, New York, September 1945)
5-31: Trestle at Ripley Lane
N199002.653 E1303969.134
Located within Segment 5 of the ERC in Renton, Washington, this 1967 structure is a 406-foot long, single-track, open-deck, timber-frame trestle. It is at MP 6.7 along the SLS&E right-of-way, crossing over an unnamed creek and two private drives near Ripley Lane. Each bent (n=27) consists of five timber piles (with diameters between 12 and 14 inches) and two sway braces—one on each side of the bent. Three to four stringers (9 x 18 inches) run under each track, with 6 to 8 stringers per span. An I-beam (10 x 10 inches) with stiffeners is at each bent. The track is laid directly on the stringers (KCDOT–RSD 2011). Prior to 2011, a timber walkway was installed along the western side of the tracks. Since then, a chain link fence has been erected along either side of the walkway for safety, and fencing installed on the north and south ends of the trestle to prevent people from walking along the track.

5-32: Hardware
N198824.435 E1303907.326
Double-jaw insulated tie gage

5-33: Grade crossing
N198628.884 E1303804.115
Across Ripley Lane // pre-cast concrete panel with ‘diamond-plate’ pattern; no cladding, boots, or skirt; 10’ wide; 32’1” long; no brand markings // no signal
hardware

5-34: Grade crossing
N198245.715 E1303573.16
To VMAC // asphalt; 32'8" long // no signal hardware

5-35: Sign
N198211.23 E1303551.586
“W”: whistle post; southbound; west side of track; metal u-channel post; 8’5” tall

5-36: Sign
N198170.084 E1303521.787
“W”: whistle post; northbound; east side of track; metal u-channel post; 10’3” tall
5-37: Grade crossing
N197347.725 E1303036.814
At VMAC // asphalt; 26' long // no signal hardware

5-38: Sign
N197281.426 E1302996.064
“10”: advanced warning speed sign; southbound; west side of track; metal u-channel post; 7’4” tall

5-39: Sign
N196813.181 E1302715.969
“RAILROAD // CROSSING”: crossbuck; road-facing; east side of track pressure treated wood; 4x4”; 10’5” tall;

5-40: Sign
N196777.013 E1302693.392
“…” // CROSSING”: crossbuck (missing “RAILROAD”); road-facing; west side of track; pressure treated wood; 4x4”; 10’4” tall;

5-41: Grade crossing
N196794.93 E1302704.011
Across N 43rd Street // asphalt; 39’ long // no signal hardware

5-42: Switch
N196726.611 E1302662.819
Model 112E standing switch; west side of track

SOURCE: WDNR, 2007
Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community
5-43: Spur
N196683.498 E1302637.106
Lateral turnout; southbound; west side of tracks; no. 12 frog

5-44: Sign
N196570.464 E1302570.023
“W”: whistle post; southbound; west side of tracks; metal u-channel post; 7’ tall
5-45: Trestle at May Creek
N196336.191 E1302438.142
This 1960 structure is a 60-foot long, single-track, open-deck, timber-frame trestle. It is at MP 6.1 along the SLS&E right-of-way, crossing over May Creek. Each bent (n=5) consists of five timber piles (with diameters between 12 and 14 inches) and two sway braces—one on each side of the bent. The deck consists of six timber stringers (10 x 17 ½ inches) to support the track, with three stringers under each rail. The timber caps measure 12 x 14 x 14 inches. The track is laid directly on the stringers (KCDOT—RSD 2011). Prior to 2011, a timber walkway was installed along the eastern side of the trestle, with two steel cables provided as railing. Since then, a chain link fence has been erected along either side of the walkway for safety, and fencing installed on the north and south ends of the trestle to prevent people from walking along the track.

5-46: Sign
N196067.269 E1302269.744
“RAILROAD // CROSSING”: crossbuck; east side of tracks; pressure treated wood post; 10’6” tall

5-47: Sign
N196030.879 E1302245.505
“RAILROAD // CROSSING”: crossbuck; west side of tracks; pressure treated wood post; 4x4”; 11’ tall
<table>
<thead>
<tr>
<th>Grade Crossing</th>
<th>Sign</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-48: Grade crossing
N196050.575 E1302257.96
Across Wells Avenue N // asphalt with metal boots; 37’7” long // no signal hardware</td>
<td>5-49: Sign
N195808.909 E1302101.74
“6”: MP; northbound; east side of tracks; metal u-channel post; 6’7” tall</td>
<td>5-50: Grade crossing
N195667.976 E1301990.471
Across walking trail // wood; 8’5” wide; 26.3” long // no signal hardware</td>
</tr>
<tr>
<td>5-51: Hardware
N195099.84 E1301516.411
Tie plate: “A.28...G.U. / 130 RE” (unknown; 130 lbs. per yard, American Railway Engineering Association)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5-52: Sign
N194707.257 E1301243.821
“W”: whistle post; northbound; east side of tracks; metal u-channel post; 7’5” tall

5-53: Sign
N194425.351 E1301122.771
“RAILROAD // CROSSING”: crossbuck; road-facing; east side; pressure treated wood post; 4x4”; 10’ tall

5-54: Sign
N194367.659 E1301099.699
“RAILROAD // CROSSING”: crossbuck; road-facing; west side; pressure treated wood post; 4x4”; 8’9” tall

5-55: Grade crossing
N194402.771 E1301112.983
At N 33rd Street // level grade crossing; pre-cast concrete slabs with rubber boots and steel skirts; 10’ wide; 58’5” long; OMNI brand // no signal hardware

5-56: Sign
N193639.246 E1300834.235
“10”: advance warning speed sign; northbound; east side of tracks; metal u-channel post; 9’ tall
5-57: Grade crossing
N193476.832 E1300771.711
Near 3324 Lake Washington Boulevard // level grade crossing; wood (railroad ties); 8’ wide; 24’ long // no signal hardware

5-58: Grade crossing
N192952.738 E1300443.249
Across Mountain View Avenue // level grade crossing; pre-cast concrete slabs with cladding, rubber boots, and steel skirts; 10’1” wide; OMEGA brand // no signal hardware

5-59: Sign
N192863.957 E1300394.532
“RAILROAD // CROSSING”: crossbuck; northbound/road; west side of tracks; pressure treated wood post; 4x4”; 10’6” tall

5-60: Sign
N192729.325 E1300339.128
“R X R”: railroad crossing advance sign; northbound; west side of tracks; pressure treated wood post; 4x4”; 10’5” tall
5-61: Hardware
N191812.681 E1300417.048
Tie plate: 112 RE B.S.C. 44" (112 lbs per yard, American Railway Engineering Association, Bethlehem Steel Company, 1944)

5-62: Hardware
N191811.9 E1300415.232
Rail: “11228 RE OH INLAND 1940 II” backwards italics (112 lbs per yard, section 28, American Railway Engineering Association, open-hearth, Inland Steel Company, February 1940)

5-63: Sign
N191467.764 E1300675.633
“W”: whistle post; northbound; east side of tracks; metal u-channel post; 7’8” tall

5-64: Sign
N191377.077 E1300742.712
“5”: MP; north/southbound; east side of tracks; metal u-channel post; 7’1” tall
Red rectangle: stop sign; northbound; east side of tracks; metal u-channel post; 7’1” tall
PAGE INTENTIONALLY LEFT BLANK
The original and updated Historic Property Inventory (HPI) forms prepared for this project are included here.
Historic Inventory Report

Location

Field Site No. -- DAHP No.

Historic Name: Seattle, Lake Shore, and Eastern Railway
Common Name: SLS&E Spur Line
Property Address: xxxx at Woodinville Junction, Woodinville, WA 98072
Comments:

Tax No./Parcel No. 162605-9164; 222605-9122; 222605-9121; 272605-9147

Plat/Block/Lot

Acreage 28.13

Supplemental Map(s)

<table>
<thead>
<tr>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T26R05E</td>
<td>09</td>
<td>NE</td>
<td>SE</td>
<td>King</td>
<td>KIRKLAND</td>
</tr>
<tr>
<td>T26R05E</td>
<td>09</td>
<td>SE</td>
<td>SE</td>
<td></td>
<td>BOTHELL</td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>NW</td>
<td>NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>SW</td>
<td>NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>SE</td>
<td>NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>NE</td>
<td>SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>SE</td>
<td>SW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>SW</td>
<td>SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>NW</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>SW</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>NW</td>
<td>SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>SW</td>
<td>SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>27</td>
<td>NW</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>27</td>
<td>SW</td>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>27</td>
<td>SE</td>
<td>NW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coordinate Reference

Easting: 1230031
Northing: 886510
Projection: Washington State Plane South
Datum: HARN (feet)

Identification

Survey Name: Eastside Rail Corridor
Field Recorder: Alicia Valentino & Colin Lothrop
Owner’s Name: King County-Parks
Owner Address: 201 S. Jackson Street, #700
City: Seattle
State: WA
Zip: 98104

Thursday, October 02, 2014
Historic Inventory Report

Classification: Structure

Resource Status: Survey/Inventory

Comments: part of the Eastside Rail Corridor inventory (Valentino 2014)

Within a District? No

Contributing? National Register: No

Local District: National Register District/Thematic Nomination Name:

Eligibility Status: Not Determined - SHPO

Determination Date: 1/1/0001

Determination Comments:

Description

Historic Use: Transportation - Rail-Related
Current Use: Vacant/Not in Use

Plan: Other
Stories: n/a

Structural System: Mixed

Changes to Plan: Intact
Changes to Interior: Not Applicable

Changes to Original Cladding: Not Applicable
Changes to Windows: Not Applicable

Changes to Other: Not Applicable

Other (specify): Style:
Cladding: Other - Industrial

Roof Type: None
Roof Material: None

Foundation: Other
Form/Type: Industrial

Narrative

Study Unit Other
Transportation

Date of Construction: 1887 Built Date

1922 Remodel

Builder:

Engineer:

Property appears to meet criteria for the National Register of Historic Places: Yes

Property is located in a potential historic district (National and/or local): Yes - Local

Property potentially contributes to a historic district (National and/or local): Yes
Historic Inventory Report

Statement of Significance:
The Seattle, Lake Shore, and Eastern Railway was recommended eligible for listing to the NRHP in Allen and O'Brien 2007.

Description of Physical Appearance:
This inventory was conducted as part of the Eastside Rail Corridor (ERC) project to record King County-owned portions of the alignment. Previously recorded portions of the alignment extend from milepost 1.86 in Woodinville south to milepost 7.3 in Redmond (Allen and O'Brien 2007), and from milepost 0.0 at Woodinville Junction south to milepost 1.86 (O'Brien 2008). The current survey inventoried resources between mp 0.0 (Woodinville Junction) and mp 3.4 (NE 124th Street). Few changes have taken place since 2008, but the current survey necessitated an update of the HPI form to provide additional information and a revision of property ownership. The SLS&E Railway is a single-track, standard gauge railroad constructed on gravel ballast. Resources identified during this survey include grade crossings (n=14), hardware, signs, switches, spurs, and the wye at Woodinville Junction (Valentino 2014).

Major Bibliographic References:
Valentino, Alicia B. 2014. Eastside Rail Corridor Historic/Cultural Resources Inventory, King County, Washington. Prepared for King County, Seattle, Washington.
Photos

Looking south
SLS&E railway crossing (1-1) at NE 124th Street
2014

Looking north
SLS&E signal and spur (1-5)
2014

Looking northwest
SLS&E railway crossing (1-8) at 145th Street
2014

Looking north
SLS&E signal (1-29) and wye (1-30) at Woodinville Junction
2014
Looking south
SLS&E at Woodinville Junction (1-33)
2014
LOCATION SECTION

<table>
<thead>
<tr>
<th>County</th>
<th>Township-Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>Quadrangle</th>
<th>UTM Reference</th>
<th>Zone</th>
<th>Spatial Type</th>
<th>Acquisition Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>King</td>
<td>T28NRE</td>
<td>12</td>
<td>NE</td>
<td></td>
<td>REDMOND</td>
<td></td>
<td></td>
<td></td>
<td>USGS topo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>12</td>
<td>NW</td>
<td></td>
<td>KIRKLAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>11</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>10</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>9</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>2</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>1</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>27</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>22</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>21</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>20</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T28NRE</td>
<td>19</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tax No./Parcel No.

Plat/Block/Lot

Supplemental Map(s)

Acreage

Historic Property Inventory Report for

Seattle, Lake Shore & Eastern Railway

at vicinity of Redmond, WA 88052
Historic Property Inventory Report for

Seattle, Lake Shore & Eastern Railway

at vicinity of Redmond, WA 98052

LOCATION SECTION

<table>
<thead>
<tr>
<th>Field Site No.</th>
<th>GAMP No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0014802</td>
</tr>
</tbody>
</table>

Historic Name: Seattle, Lake Shore & Eastern Railway

Property Address: vicinity of Redmond, WA 98052

<table>
<thead>
<tr>
<th>County</th>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>Quadrangle</th>
<th>UTM Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>King</td>
<td>T25R8E</td>
<td>12</td>
<td>NE</td>
<td></td>
<td>REDMOND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T26R8E</td>
<td>12</td>
<td>NW</td>
<td></td>
<td>KIRKLAND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T25R8E</td>
<td>11</td>
<td>NE</td>
<td></td>
<td>REDMOND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T25R8E</td>
<td>2</td>
<td>NW</td>
<td></td>
<td>REDMOND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T26R8E</td>
<td>2</td>
<td>SW</td>
<td></td>
<td>REDMOND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T26R8E</td>
<td>3</td>
<td>NE</td>
<td></td>
<td>REDMOND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T26R8E</td>
<td>27</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T26R8E</td>
<td>22</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T26R8E</td>
<td>22</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T26R8E</td>
<td>24</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T26R8E</td>
<td>34</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tax No./Parcel No.

Plat/Block/Lot

Supplemental Map(s)

Acreage

Comments:

EASTSIDE RAIL CORRIDOR - REGIONAL TRAIL MASTER PLAN PROJECT

Page 1 of 4

Printed on 6/8/2017 9:37:18 AM
Historic Property

Inventory Report for

Seattle, Lake Shore & Eastern Railway

at **vicinity of Redmond, WA 98052**

IDENTIFICATION SECTION

Survey Name: BNSF King County Abandonment

Field Recorder: Jason Allen and Elizabeth O'Brien

Date Recorded: 7/9/2007

Owner's Name: BNSF

Owner Address: 2650 Lou Men Drive

City/State/Zip: Fort Worth, Texas 76131-2832

Classification: Structure

Resource Status: Survey/Inventory

Comments

Within a District? No

Contributing?

National Register Nomination:

Local District:

National Register District/Thematic Nomination Name:

DESCRIPTION SECTION

Historic Use: Transportation - Rail-Related

Current Use: Transportation - Rail-Related

Plan:

No. of Stories:

Structural System:

Changes to plan: Intact

Changes to interior:

Changes to original cladding:

Changes to windows:

Cladding:

Foundation:

Post & Pier

Style

Form/Type

Roof Material

Roof Type

Date Of Construction: 1867-1868, 1922

Builder: same

Engineer: same

Comments: The view is to the northwest.

View of bridge over Sammamish River at milepost 6.2 taken 7/10/2007

Photography Neg. No (Roll No./Frame No.): IMG-6922.jpg

NARRATIVE SECTION

Study Unit: Transportation

Other

Property appears to meet criteria for the National Register of Historic Places: Yes

Page 2 of 4

Printed on 8/8/2007 9:37:29 AM
<table>
<thead>
<tr>
<th>Historic Property Inventory Report for</th>
<th>Seattle, Lake Shore & Eastern Railway at vicinity of Redmond, WA 98052</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property is located in a potential historic district (National and/or local):</td>
<td>Yes - Local</td>
</tr>
<tr>
<td>Property potentially contributes to a historic district (National and/or local):</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Statement of Significance

The railroad segment is a part of the 63-mile long rail line constructed in 1887-1888 by the Seattle, Lake Shore & Eastern Railway Company. The line extended from Seattle, north of Lake Washington to Woodinville, then south through Redmond and Fall City. This railroad segment is recommended to be eligible for listing in the National Register of Historic Places (NRHP) under Criterion A for its role in the development of Seattle as a major Pacific Northwest railroad hub, in competition with the Tacoma terminus of the Northern Pacific Railroad Company. Although the railroad was eventually purchased by the Northern Pacific, the Seattle, Lake Shore & Eastern Railway was organized and created by local Seattle interests, and played a major role in the development of Seattle, a major Pacific Northwest railroad hub, in competition with the Tacoma terminus of the Northern Pacific Railroad Company. Although the railroad was eventually purchased by the Northern Pacific, the Seattle, Lake Shore & Eastern Railway was organized and created by local Seattle interests, and played a major role in the development of Seattle, a major Pacific Northwest railroad hub, in competition with the Tacoma terminus of the Northern Pacific Railroad Company.

The Seattle, Lake Shore & Eastern Railway Company was incorporated in April 1885. Organized by Seattle businessmen Thomas Burke and Daniel Gilman, and supported by other local Seattle businessmen and citizens, the formation of the railroad was driven by an effort to create a direct rail link with eastern Washington and beyond (Washington 1905). Originally intended to extend east from Seattle, through Snoqualmie Pass to Spokane, the company filed supplementary articles of incorporation in 1886, dedicating its intention to extend its route to Deadwood, Dakota Territory (now in South Dakota) (Cheever 1934:165-170). Although these plans would never be fully implemented, the company began construction of its line between Seattle and Fall City in 1887.

The line went into service between Seattle and Fall City in May 1888, and by December 1888, the line was extended from Fall City to Sallal Prairie. Already, however, the Seattle, Lake Shore & Eastern Railway was operating at a loss due to high maintenance costs. In addition, difficulties with the associated construction branch of the corporation led to the filling of a lawsuit to place the line into receivership after the construction company was found to be in default of bonds & had issued to cover the expenses of construction in the Spokane area. Although the suit was eventually thrown out, the power behind the motion, the Northern Pacific Railroad Company (which had since the outset been opposed to the development of the Seattle, Lake Shore & Eastern), continued its efforts to eliminate the Seattle, Lake Shore & Eastern as a competitor, buying up stock in the company in a behind-the-scenes effort to gain control of it. They couldn’t get it entirely (Ambruster 1999:135-136).

By 1890, the Seattle, Lake Shore & Eastern Railway operated 156 miles of track, extending to the Canadian border at Sumas. The following year, with financial tensions mounting, large blocks of stockholders began selling their holdings in the Seattle, Lake Shore & Eastern Railway to the Northern Pacific. In July, 1891, the Seattle, Lake Shore & Eastern Railway became an operating subsidiary of the Northern Pacific Railroad Company. In 1893, the Seattle, Lake Shore & Eastern Railway became a victim of the Great Panic of 1893, a nationwide market reaction to over speculation in companies that had to that point failed to show profit (Ambruster 1999:137-138). That year, the Seattle, Lake Shore & Eastern was placed in receivership, and in 1896 was sold as a foreclosure. The company’s holdings were sold to two companies. Track laid in eastern Washington was sold to the Spokane & Seattle Railway, while the trackage in western Washington (including the subject segment) was sold to the newly formed Southern & International Railway Company (Robertson 1995:265-267).

The Seattle and International Railway Company was incorporated in 1896 by interests associated with the Northern Pacific Railway Company for the purpose of acquiring the western Washington holdings of the Seattle, Lake Shore & Eastern Railway including all of its 156 miles of track. Between 1888 and 1893, the Northern Pacific expanded to the Pacific Northwest and especially the Seattle area, booming after the discovery of gold in Alaska. As part of the flurry of purchases, the Northern Pacific Railway Company formally purchased the Seattle and International Railway in 1901 (Ambruster 1999:159; Cheever 1948:17).

The Northern Pacific Railroad Company, incorporated in 1864, was sold under foreclosure to the Northern Pacific Railway Company in 1898, incorporated that year under Henry Villard for that purpose (Robertson 1991:332). The Northern Pacific Railway Company operated and maintained the line from 1901 until 1970, when the Northern Pacific Railway Company merged with several other railroads to form the Burlington Northern Railroad. During that time, in 1922, the bridge located at milepost 1.2 was built, replacing the earlier bridge at that location built by the Seattle, Lake Shore & Eastern Railway Company. In 1995, the Atchison, Topeka & Santa Fe Railroad merged with the Burlington Northern to form the Burlington Northern and Santa Fe Railway Company (BNSF 2007). The Burlington Northern and Santa Fe Railway Company changed its name in 2005 to BNSF Railway Company.

Description of Physical Appearance

This segment of the BNSF railroad extends from a previously abandoned segment at milepost 7.33 (southwest of Redmond, Washington), across the Sammamish River, and along the western side of the Sammamish Valley, north to where the railroad crosses Washington State Route 302 (milepost 1.86). The railroad remains intact north of milepost 1.86, at least as far as Woodinville Junction, but BNSF has limited the current abandonment work to the above-defined segment (MP 1.85 to MP 7.30). The railroad is carried over the Sammamish River on an open pin-truss bridge at milepost 6.2, considered to be a contributing feature to this NRHP-eligible railroad segment.

This segment is a single-track railroad on a raised gravel embankment. At the crossing of the Sammamish River (milepost 6.2), the railroad is carried on a 220-foot-long, 5-span, open...
pilile trestle bridge with a central 70-foot-long steel deck plate girder span. The bridge, built in 1922, crosses the river at an overall height of 32 feet above the surface of the Sammamish River. The trestle bridge is supported at both ends by wooden embankments set into the built-up embankment. The bridge has a planked pedestrian walkway on the south side, extending alongside the tracks, with flange metal posts strung with steel cable. The bridge appears to have been burned, and has some superficial burn damage on the east side of the river. The railroad segment has not carried rail traffic for some time, though the rails and ties remain in place.

Armbuster, Kurt E.

BNSF

Cheever, Bruce Base I

Robertson, Donald B.
Additional Photos for: Seattle, Lake Shore & Eastern Railway at vicinity of Redmond, WA 98052

View of Seattle, Lake Shore & Eastern Railway taken 7/10/2007
Photography Neg. No (Roll No./Frame No.): IMG-5918.JPG
Comments: Looking northwest along railroad from milepost 7.3.

View of Seattle, Lake Shore & Eastern Railway taken 7/10/2007
Photography Neg. No (Roll No./Frame No.): IMG-5911.JPG
Comments: Looking south along railroad from milepost 3.9.

View of Seattle, Lake Shore & Eastern Railway taken 7/10/2007
Photography Neg. No (Roll No./Frame No.): IMG-5914.JPG
Comments: Looking southeast along railroad from milepost 1.86.
Historic Property
inventory Report for

Seattle, Lake Shore and Eastern Railway at vicinity of Woodinville, WA

LOCATION SECTION

Field Site No. 66127641
DAHP No. 117

Historic Name: Seattle, Lake Shore and Eastern Railway

Property Address: vicinity of Woodinville, WA

Common Name: BNSF

Comments: Also Quadrangle BELLEVUE NORTH

County

Township/Range/East/West

Sequence

1/4 Sec

1/4 1/4 Sec

Quadrangle

UTM Reference

Zone: 10

Spatial Type: Acquisition Code: Unknown

Sequence

1 Easting: 562124

Nothing: 536720

2 Easting: 573027

Nothing: 528760

Tax No./Parcel No.

Rearranged

Lot/Block

Supplemental Map(s)

Acres

1.127.25
Historic Property Inventory Report for

Identification Section

- **Survey Name:** BNSF King County Abandonment
- **Date Recorded:** 7/10/2006
- **Owner's Name:** BNSF
- **Owner Address:** 2650 Lou Menk Drive
- **Classification:** Structure
- **Within a District?** No
- **National Register Nomination:**

<table>
<thead>
<tr>
<th>Field Recorder</th>
<th>Survey Name</th>
<th>Date Recorded</th>
<th>King County Abandonment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elizabeth O'Brien</td>
<td>BNSF</td>
<td>7/10/2006</td>
<td>2650 Lou Menk Drive</td>
</tr>
</tbody>
</table>

Description Section

- **Historic Use:** Transportation - Rail-Related
- **Current Use:** Transportation - Rail-Related
- **Plan:** N/A
- **Changes to plan:** Intact
- **Change to cladding:** Intact
- **Change to windows:** Intact
- **Style:**
- **Form/Type:**
- **Date of Construction:** 1887
- **Architect:** Seattle, et al. Railway Co.
- **Builder:** same
- **Engineer:** same

<table>
<thead>
<tr>
<th>View of</th>
<th>Railroad segment where the old Woodinville business center was located.</th>
<th>Taken</th>
<th>7/10/2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photography Neg. No (Roll No./Frame No.):</td>
<td>IMG_8185.jpg</td>
<td>Comments:</td>
<td>The view is to the northwest.</td>
</tr>
</tbody>
</table>

Narrative Section

- **Study Unit:** Transportation
- **Other:**

<table>
<thead>
<tr>
<th>Study Unit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>Other</td>
</tr>
</tbody>
</table>
Historic Property Inventory Report for
Seattle, Lake Shore, and Eastern Railway at vicinity of Woodinville, WA

Property appears to meet criteria for the National Register of Historic Places: Yes

Property is located in a potential historic district (National and/or local): Yes

Property potentially contributes to a historic district (National and/or local): Yes

Statement of Significance

The Seattle, Lake Shore & Eastern Railway recorded railroad segment (NP 000 to MPC 186) is part of the 101.3-kilometer (63-mile) long line constructed in 1884-1885 by the Seattle, Lake Shore & Eastern Railway Company. The line extended from Seattle, near of Lake Washington to Woodinville, then south through Redmond and Fall City. The segment is significant as an extension of the previously recorded segment of the same alignment (36607). The railroad segment is recommended to be eligible for listing in the NRHP under Criterion A for its role in the development of railroads in the Pacific Northwest, the State of Washington, and the Puget Sound area. The Seattle, Lake Shore & Eastern Railway also played a significant role in the development of Seattle as a major Pacific Northwest railroad hub. In combination with the Tacoma terminals of the Northern Pacific Railroad Company, although the railroad was eventually purchased by the Northern Pacific, the Seattle, Lake Shore & Eastern Railway was organized and operated by local Seattle interests and played a major part in the development of Seattle as a major and eventually dominant neighbor of Tacoma.

The BNSF Railway segment is recommended to be eligible for listing in the NRHP. The mile, tie, switch, main, and bridge system, tracks, sidings, and alignments are considered to be contributing features to the significance of the historic resource. The segment is significant as an extension of the previously recorded segment of the same alignment (36607).

Seattle, Lake Shore & Eastern Railway Company

The Seattle, Lake Shore & Eastern Railway Company was incorporated in April 1885 and organized by Seattle businessmen William Burke and Daniel Common. The railway was succeeded by other local Seattle businessmen in 1887. The terminus of the railway was drawn by an act to create a direct link with eastern Washington and beyond (Armstrong 1999:122). A line was constructed from Seattle to Ballard in 1887, and in service by fall of 1888 and to Seattle by 1889.

As a result of the response to the railroad, there was an increase in the number of local industrial facilities due to the development of a new industry. At first, the Seattle, Lake Shore & Eastern Railway became an operating subsidiary of the Northern Pacific Railway Company in 1888, becoming a part of the Great Northern Railway in 1921. Then, the Seattle, Lake Shore & Eastern Railway was purchased by the Northern Pacific Railway. The company's holding company was sold to the newly established Seattle & International Railway Company in 1907, the railway was sold to Northern Pacific and became known as the Seattle, Lake Shore & Eastern Railway (Armstrong 1999:136-140).

The Northern Pacific Railway Company operated and maintained the line from 1907 to 1970, when the Northern Pacific Railway Company merged with several other railroads to form the Burlington Northern Railroad. During that time (un until 1922), the rail line was known as the Snoqualmie Branch of the BNSF Railway operated by the Northern Pacific Railway. The company's holding company was sold to the newly established Seattle & International Railway Company, which changed in 2002 to BNSF Railway Company (BNSF 2007).

Woodinville

The Woodinville community benefited from the opening of the railroad. The community became a transportation crossroad for the prevailing modes of transportation, including river, stage, and railroad travel. The first known structures to spring up in the vicinity were Susan and the Woodinville, which brought their rolling stock from Seattle via a boat and then along the Lake Washington and the Squak Slough, later named Sammamish River. A community formed and others came to the Woodinville settlement and a town. When the Seattle, Lake Shore & Eastern Railway reached Woodinville in 1887, many people created a living by logging the land and trapping the rocks by river to the mills. These farms were transformed into large agricultural plots used for growing and vegetable farms. A commercial center formed near the railroad tracks at the crossing of the Sammamish River. Several commercial buildings were built on plats near the railroad tracks, including the Woodinville-Sammamish Store in 1889 (Edwards 1995, Woodinville Heritage Society 2005:1)."
Historic Property

Inventory Report for
Seattle, Lake Shore, and Eastern Railway
at vicinity of Woodinville, WA

Description of Physical Appearance
The recorded segment of the BNSF Railway (MP 0.32 to MP 1.36) extends to the northwest from the segment that was documented by ARK in 2017 (MP 1.86 to NF 7.30). The current study segment begins at MP 0.00 of Woodinville Junction, at the northwest corner of the Woodinville Wire, approximately 344 meters (1,125 feet) northwest of NE 175th Street. This segment continues to the northwest where it terminates at MP 1.36 at Washington State Highway 208 (NE 145th Street). The recorded railroad segment remains intact. The standard gauge single-track railroad is on a raised gravel bed that varies in height up to 1.2 to 1.5 m (4 to 5 ft).

At the start of the segment, remnants of a deep tracked conveyor system is visible on both sides of the track. Also at the start of the segment are a Racer 220 low switch stand and a metal conveyor system that extends the bend and lies under the track. The segment continues to the southeast crossing NE 175th Street in a commercial area and crosses the BNSF Woodinville Subdivision tracks. This segment then parallels Woodinville Boulevard where it passes through an area of modern commercial buildings located on a lower bench of the Sammamish River floodplain. A series of private crossings over the railroad tracks provide access from Woodinville Boulevard to these businesses. Though the piers provide drainage in this area, the rail segment leaves the open commercial floodplain area and continues through a corridor of trees and undergrowth. Columbia Way provides access to the west, where an asphalt-paved roadway leading area abuts the tracks. The Redhook Brewery development is on the opposite side to the east, both operations are located at the segment terminus at MP 1.85 at Washington State Highway 208 (NE 145th Street).

Major References
Additional Photos for: Seattle, Lake Shore, and Eastern Railway at vicinity of Woodinville, WA

View of the beginning of segment with Woodinville Wye in the distance taken 7/10/2008
Photography Neg. No (Roll No./Frame No.): IMG_8178.JPG
Comments: The view is to the southeast.

View of the storm sewer located west of Woodinville Wye taken 7/10/2008
Photography Neg. No (Roll No./Frame No.): IMG_8192.JPG
Comments: The view is to the southwest.

View of the east edge of Woodinville Wye where railroads cross taken 7/10/2008
Photography Neg. No (Roll No./Frame No.): IMG_8191.JPG
Comments: The view is to the northeast.

View of the segment terminus at MP 1.86 (NE 145th Street). The Columbia Winery is to the left taken 7/10/2008
Photography Neg. No (Roll No./Frame No.): IMG_8221.JPG
Comments: The view is to the north-northwest.
Historic Inventory Report

Location

Field Site No. -- DAHP No.

Historic Name: Northern Pacific Lake Washington Beltline
Common Name: BNSF Railroad
Property Address: 11640 NE 8th, Bellevue, WA 98005
Comments:

Tax No./Parcel No. 162605-9021; 152605-9523; 222605-9030; 272605-9019

Plat/Block/Lot

Acreage 50.83

Supplemental Map(s)

<table>
<thead>
<tr>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T26R05E</td>
<td>16</td>
<td>NE</td>
<td></td>
<td>King</td>
<td>MERCER ISLAND</td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>27</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coordinate Reference

Easting: 1225146
Northing: 837556
Projection: Washington State Plane South
Datum: HARN (feet)

Identification

Survey Name: Eastside Rail Corridor Date Recorded: 06/23/2014
Field Recorder: Alicia Valentino & Colin Lothrop
Owner's Name: King County-Parks
Owner Address: 201 S. Jackson Street, #700
City: Seattle State: WA Zip: 98104

Classification: Structure

Resource Status: Survey/Inventory Comments:
part of Eastside Rail Corridor inventory (Valentino 2014)

Within a District? No
Contributing?
National Register:
Local District:

National Register District/Thematic Nomination Name:
Eligibility Status:
Determination Date: 1/1/0001
Determination Comments:

Description

Historic Use: Transportation - Rail-Related

Current Use: Vacant/Not in Use

Plan: Other

Stories: n/a

Structural System: Mixed

Changes to Plan: Intact

Changes to Original Cladding: Not Applicable

Changes to Windows: Not Applicable

Changes to Other: Not Applicable

Other (specify):

Style:

Cladding: None

Roof Type: None

Roof Material: None

Foundation: Post & Pier

Other - Industrial

Form/Type:

Industrial

Narrative

Study Unit

Other

Transportation

Date of Construction: 1891 Built Date

Builder:

Engineer:

Architect: Northern Pacific Railway Co.

Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local): No

Statement of Significance:
The original HPI for this property recommended the Northern Pacific Lake Washington Beltline Route eligible for listing to the NRHP (Allen and O'Brien 2007). An update of that form no longer recommended the property eligible for listing due to the resource not retaining distinctive characteristics to link the railroad to the community. The sections of track remaining in 2011 were non-descript and no longer represented those themes under which it was recommended in 2007 (Gilpin 2011).

Description of Physical Appearance:
This inventory was conducted as part of the Eastside Rail Corridor (ERC) project to record historic resources along the ERC in King County-owned portions of the alignment. The Northern Pacific Railway Company (NPRCo) Lake Washington Beltline was originally recorded in 2007 between mp 23.9 in Woodinville and mp 11.25 in Bellevue, and between mp 10.6 in Bellevue and mp 5.0 in Renton, and (Allen 2007; Allen and O’Brien 2007). A portion of the Route was surveyed again in 2011: from NE 8th Street in Bellevue south to SE 32nd Street in Bellevue (at mp 10.1) as the Northern Pacific Lake Washington Beltline Route (Gilpin 2011). Resources inventoried include the Wilburton Crossing over Mercer Slough, the Trestle over SE 32nd Street, the Bridge over Lake Washington, the Bridge over Coal Creek, and the Bridge over May Creek (Allen and O’Brien 2007; Gilpin 2011).

That portion of the NPRCo Lake Washington Beltline inventoried runs between mp 23.8 and 20.3, between mp 14.8 and 13.5 and mp 12.4 and 5.0 (the alignment is interrupted by I-405). In addition to providing information on hardware, signage, and crossings, several bridges and trestles were re-recorded during this survey: both the Wilburton Trestle and the trestle over Ripley Lane have historically been recorded individually (Stewart 1978, Soderberg 1980, Tobin 1992, Walker-Gray 2004), and have been updated here as well as on their respective HPI forms (Valentino and Lothrop 2014a/b). In addition, the bridge over Lake Hills Connector and the bridge over I-90 have been added to the NPRCo Lake Washington Beltline HPI form.

The Northern Pacific Railway Company Lake Washington Beltline is a single-track, standard gauge railroad constructed on gravel ballast. Resources inventoried include grade crossings (n=26), hardware, signs, switches (n=4), spurs (n=6), trestles (n=5), bridges (n=2), and the wye at Woodinville Junction. The Woodinville Junction is also recorded on the Seattle, Lake Shore, and Eastern Railway HPI form. Larger resources inventoried along the alignment include the bridge over Lake Hills Connector, the Wilburton Trestle, the Trestle over SE 32nd Street, the bridge over I-90, the bridge and bike path over Lake Washington Boulevard, the trestle over Coal Creek, the trestle over Ripley Lane, and the trestle over May Creek.

Bridge over Lake Hills Connector: Located on the north side of the Wilburton Trestle at mp 11.7, this is a solid-deck, single-track bridge with concrete slab deck, four steel girder with floor beams, and concrete pier wall and abutment (KCDOT-RSD 2011). The rails are set on ballast. It was built in 1973 and is 99 feet long.

Wilburton Trestle: The Wilburton Trestle was originally recorded in 1978 (Stewart 1978), and again in 1980 as part of a Historic American Engineering Record (HAER) Inventory (Soderberg 1980). An HPI form for the trestle itself (not including the Beltline Route) was completed in 1992 (Tobin 1992), and was updated during this survey to account for changes in condition and property ownership.

Located at mp 11.5 along the SLS&E right-of-way, this 1904 structure is a 977-foot long, single-track, open-deck, timber and steel trestle grade crossing over Mercer Slough. Timber is used for 873 feet of its length, and steel for 104 feet. The bents (n=63) are primarily constructed of timber piles (with diameters of 12 to 14 inches for the bottom of the piles, and 26 to 36 inches for the top of the piles). Steel H-piles with steel caps are found in some places that have been repaired. Each bent has several sway and sash braces. The deck consists of six timber stringers (10 x 17 ½ inches), with three or four stringers under each rail. The track is laid directly on the stringers (KCDOT—RSD 2011). Planks along the east side of the deck function as a pedestrian walkway. Two strands of cable run the length of the trestle as railing. Chain link fence has been installed on the north and south ends of the trestle to prevent the public from grade crossing the structure.

Trestle over SE 32nd Street: This structure was first recorded in 2011 (Gilpin 2011). This 1969 structure is a 74-foot long, single track, solid-deck, timber trestle grade crossing over SE 32nd Street. The bents (n=6) consist of six timber piles (with diameters of 12 to 14 inches); with two sway braces (one on each side of the bent). The steel rails sit on timber deck planks with two-inch ballast (KCDOT—RSD 2011). The 2011 survey noted that the trestle had been re-aligned at least once during its lifetime, as observed by six broken-off pilings at the northern end of the trestle (Gilpin 2011). Since 2011, chain link fence has been placed along the east and west sides of the trestle for safety, and there is evidence of repair to both the trestle and the rails.
Bridge over I-90: Located at mp 9.9, the Bridge over I-90 is a solid-deck, single-track, steel rail bridge. Built in 1969, this structure is 617-feet long and spans the length of I-90. It is built using steel plate girders (103-feet long and 121-feet tall) and five concrete caps supported by two concrete columns each. The track is laid on ballast. Steel plate girders (60-inches tall) are on either side of the rail for safety (KCDOT-RSD 2011).

Bridge and bike path over Lake Washington Boulevard: The bridge over Lake Washington Boulevard was originally recorded in 2007 (Allen 2007a). Located at mp 9.2, this 1916 structure is a 44-foot long, single-track, open-deck, steel and timber bridge crossing over Lake Washington Boulevard. The bends (n=2) are concrete pier walls, on which steel girders sit with steel floor beams. The track is laid on timber deck planks (KCDOT—RSD 2011). "NORTHERN PACIFIC" is painted on the west elevation of the bridge. A chain link fence has been erected at the north and south ends of the trestle since 2011 to prevent the public from crossing the structure.

The Bike Path bridge is on the south end of the Lake Washington Boulevard Bridge. Built in 2000, it is a three-span bridge with concrete slabs on steel H-piles. The rails are placed on ballast on the slab deck (KCDOT—RSD 2011).

Trestle over Coal Creek: The trestle over Coal Creek was originally recorded in 2007 (Allen 2007a).

Located at mp 9.1, this 1950 structure is a 133-foot long, single-track, open-deck, timber-frame trestle crossing over Coal Creek. Each bent (n=10) consists of five timber piles (with diameters of 12 to 14 inches), two to four sway braces (one to two on either side of the bent), and one to two sash braces on each bent. The deck consists of six timber stringers (10 x 17 ½ inches), with three stringers under each rail. The timber caps measure 12 x 14 x 14 inches. The track is laid directly on the stringers (KCDOT—RSD 2011). Prior to 2011, a timber walkway was installed along the eastern side of the trestle, with two steel cables provided as railing. Since then, a chain link fence has been erected at the north and south ends of the trestle to prevent the public from crossing the structure.

Trestle over Ripley Lane: Located at mp 6.7, this 1967 structure is a 406-foot long, single-track, open-deck, timber-frame trestle. The trestle crosses over an unnamed creek and two private drives near Ripley Lane. Each bent (n=27) consists of five timber piles (with diameters between 12 and 14 inches) and two sway braces—one on each side of the bent. Three to four stringers (9 x 18 inches) run under each track, with 6 to 8 stringers per span. An I-beam (10 x 10 inches) with stiffeners is at each bent. The track is laid directly on the stringers (KCDOT—RSD 2011). Prior to 2011, a timber walkway was installed along the western side of the tracks. Since then, a chain link fence has been erected along either side of the walkway for safety, and fencing installed on the north and south ends of the trestle to prevent people from walking along the track.

Trestle over May Creek: Located at mp 6.1, this 1960 structure is a 60-foot long, single-track, open-deck, timber-frame trestle crossing over May Creek. Each bent (n=5) consists of five timber piles (with diameters between 12 and 14 inches) and two sway braces—one on each side of the bent. The deck consists of six timber stringers (10 x 17 ½ inches) to support the track, with three stringers under each rail. The timber caps measure 12 x 14 x 14 inches. The track is laid directly on the stringers (KCDOT—RSD 2011). Prior to 2011, a timber walkway was installed along the eastern side of the trestle, with two steel cables provided as railing. Since then, a chain link fence has been erected along either side of the walkway for safety, and fencing installed on the north and south ends of the trestle to prevent people from walking along the track.
Historic Inventory Report

<table>
<thead>
<tr>
<th>Major Bibliographic References</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCDOT-RSD (King County Department of Transportation—Road Services Division). 2011. BNSF East Corridor Bridge Safety Inspection. On file King County Department of Transportation—Road Services Division, Seattle, Washington.</td>
</tr>
<tr>
<td>Valentino, Alicia B. 2014. Eastside Rail Corridor Historic/Cultural Resources Inventory, King County, Washington. Prepared for King County, Seattle, Washington.</td>
</tr>
</tbody>
</table>
Photos

Looking south
Bridge over Lake Hills Connector
2014

Looking south
Bridge over Lake Hills Connector
2014

Looking north
Wilburton Trestle
2014

Looking northwest
Wilburton Trestle
2014
Looking south
Trestle over SE 32nd Street
2014

Looking north
Trestle over SE 32nd Street
2014

Looking south
Bridge over I-90
2014

Looking south
Bridge over Lake Washington Boulevard (foreground) and bike path (background)
2014

Looking east
Bridge over Lake Washington Boulevard 2014

Looking north
Trestle over Coal Creek 2014

Looking east
Bridge over Lake Washington Boulevard Bike Path 2014

Bridge over Coal Creek 2014

Looking north
Trestle over Ripley Lane 2014

Looking north
Trestle over Coal Creek 2014

Looking north
Trestle over Ripley Lane 2014
Looking north
Trestle over May Creek
2014

Looking north
Trestle over May Creek
2014

Looking north, from mp 9.3
Northern Pacific Lake Washington Beltline right-of-way overview
2014
Location

Field Site No. 07/1480-1
DAHP No.

Historic Name: Northern Pacific Railway Lake Washington Beltline
Common Name: BNSF
Property Address: vicinity of Bellevue, WA
Comments:

Tax No./Parcel No.
Plat/Block/Lot
Acreage
Supplemental Map(s)

<table>
<thead>
<tr>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T24R05E</td>
<td>32</td>
<td>NW</td>
<td></td>
<td>King</td>
<td>MERCER ISLAND</td>
</tr>
<tr>
<td>T24R05E</td>
<td>31</td>
<td>SE</td>
<td></td>
<td></td>
<td>KIRKLAND</td>
</tr>
<tr>
<td>T24R05E</td>
<td>31</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>29</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>29</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>29</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>29</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>20</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>20</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>20</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>17</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>16</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>16</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>09</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>09</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T24R05E</td>
<td>04</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>33</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>33</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>28</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>28</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>21</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>20</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>20</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>20</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>17</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>17</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>08</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>08</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>08</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>05</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T25R05E</td>
<td>05</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Quadrant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>32</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>32</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>33</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>28</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>28</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>28</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>27</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>27</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>16</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>09</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>09</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coordinate Reference

- **Easting:** 1230080
- **Northing:** 887043
- **Projection:** Washington State Plane South
- **Datum:** HARN (feet)
Identification

Survey Name: BNSF King County Abandonment
Date Recorded: 07/10/2007
Field Recorder: Jason Allen and Elizabeth O'Brien
Owner's Name: BNSF
Owner Address: 2650 Lou Menk Drive
City: Fort Worth State: Texas Zip: 76131-2830
Classification: Structure
Resource Status: Comments:
Within a District? No
Contributing? Yes
National Register: Yes - Local
Local District:
National Register District/Thematic Nomination Name:
Eligibility Status: Determined Eligible - SHPO
Determination Date: 7/19/2007
Determination Comments: 090208-55-stb

Description

Historic Use: Transportation - Rail-Related Current Use: Transportation - Rail-Related
Plan: Stories:
Changes to Plan: Intact
Changes to Original Cladding:
Changes to Other:
Other (specify):
Style:
Cladding:
Foundation:
Post & Pier
Roof Type:
Roof Material:
Form/Type:

Narrative

Study Unit
Transportation
Manufacturing/Industry

Date of Construction: 1891 Built Date
Builder: Northern Pacific Railway Company
Engineer: Northern Pacific Railway Company
Architect: Northern Pacific Railway Company

Property appears to meet criteria for the National Register of Historic Places: Yes
Property is located in a potential historic district (National and/or local): Yes - Local
Property potentially contributes to a historic district (National and/or local): Yes

Description of Physical Appearance:

The subject railroad consists of two segments, both of which are parts of Northern Pacific Railroad Company’s Lake Washington Beltline that extends from a junction near Renton, Washington northward to a junction at Woodinville, Washington. Within that alignment there are two segments proposed for abandonment by the current owner BNSF. The railroad is a single-track railroad on a built-up rock berm that extends north along the approximate route of I-405, generally staying within approximately 0.75 mile of that highway, until it reaches the I-405/NE 124th Street interchange, at which point it turns to the east and proceeds to the west side of Sammamish Valley, at which point it turns north, following the west side of Sammamish Valley until it reaches the junction at Woodinville. The southern of the two segments extend from milepost 5.00, in the community of Kennydale, to milepost 10.60, just north of the I-405/I-90 interchange. The northern of the two segments begins at milepost 11.25, near the community of Wilburton, and extends to milepost 23.9 at Woodinville. The segments include six historic-period bridges and/or trestles, ranging in date of construction from 1904 to 1960. Each is documented below.

Statement of Significance:

The two subject segments the Northern Pacific (now BNSF) railroad were built in 1891 as a spur line connecting the Kirkland and Bellevue areas with a major Northern Pacific line at Renton. During the early years of operation, this line was primarily used to transport coal and iron from mines located in the hills to the developing steel plants in the area. The two segments include six bridges, all of which are recommended as contributing elements to the overall NRHP-eligibility of the railroad.

The railroad bridges and trestles are the most sustaining and substantial structures besides the alignments, grades and tracks. The structures are obvious expressions of the engineering challenges faced by the pioneering construction engineers and workers. As such, they are important contributing features to the significance of the railroad.

The type of bridge employed at a given location depended on the lay of the land, soil composition, climate, load capacities, material availability and time constraints. Many of the railroad bridges in the Pacific Northwest, because of the ready availability of timber, were constructed of wood, most commonly timber trestles in the late nineteenth and twentieth centuries and as late as the 1930s (Soderberg 1980:12). The Wilburton Trestle, located at milepost 11.5 spanning Mercer Slough, has been singled out as one the most outstanding examples of a timber trestle in the state of Washington due to its rarity because of the declining numbers (Soderberg 1980:10). There are timber trestles on the railroad line which were constructed within the historic period, most of these are diminutive in comparison to the Wilburton Trestle. Because of the material employed, the timber trestle bridges are more typically of more recent construction due to the relatively short lifespan of the wooden framing members. The bridges composed of timbers were regularly rebuilt and the timbers were replaced, more frequently in the earliest years, when untreated timbers, with a life expectancy of 10 to 15 years, were used (Soderberg 1980:11). The bridges not constructed of timber, were commonly constructed of steel. Commonly types of steel structures included steel trusses and riveted steel plate types. The riveted steel plate girder type bridges were found at several locations within the subject railroad segments. The steel plate members and other components were typically prefabricated and transported by railcar, but by this time could also be constructed onsite due to the advances in riveting technology which allowed for onsite fabrication.

As the Puget Sound economy expanded branches of the railroad webbed out from the commercial centers of Puget Sound extending to developing markets and emerging areas of natural resources. The eastern shore of Lake Washington was home to milling operations of lumber, and coal tar products. Industrialists such as William Renton and Peter Kirk platted cities along Lake Washington’s shoreline and engaged with railroad companies to bring spur lines to the plants they built. Northern Pacific’s Lake Washington beltline railroad was graded by 1891 from Kirkland to Renton (Grant 1891:314-315).
The bridge over Mercer Slough, also known as the Wilburton Trestle, is a wood pile trestle bridge measuring 977 feet long with 32 spans, 34 bents, and a maximum height of 102 feet. The bridge was originally constructed in 1904, and its framing has been replaced four times over its lifespan (1913, 1924, 1933, and 1944). In 1972, when SE 8th Street (which passes beneath the trestle) was widened, a steel plate girder span was installed, supported by full-height concrete buttresses.

MP 11.5 Wilburton Crossing over Mercer Slough (Listed in NRHP)

The bridge over Coal Creek at Mile Post 9.1 is located east of the Newport Shores residential community. The structure was constructed in 1950, replacing a previous bridge at that location. It is a 38-foot-high, 9-span, open deck pile trestle structure with an overall length of 133 feet, carrying a single track. The structural bents are composed of four rounded timber posts and timber bracing members. A planked pedestrian crossing with a steel cable guard rail is located along the east side of the bridge. The area is heavily treed and next to a residential area developed in the late 1950s and 1960s.

MP 9.2 Bridge over Lake Washington Boulevard

The bridge over Lake Washington Boulevard is located east of the Newport Shores residential community. It was constructed in 1916 and consists of a single-span, 43-foot-long steel deck plate girder structure supported by two poured-concrete skewed abutments with adjacent basalt rock retaining walls. The deck is open with a single track. A metal label on the bridge’s west elevation was unreadable. On the west elevation of the bridge, “Northern Pacific” is still visible, painted in large block lettering, although it is very worn, and only barely readable. The bridge is located immediately to the east of Newport Shores, a residential development established in the late 1950s and 1960s on the site of a former air landing strip.

MP 17.1 Bridge over Kirkland Way

The bridge over Kirkland Way is located in eastern Kirkland, southwest of the I-405/Central Way interchange. Constructed in 1927, the structure measures 43 feet in overall length and 17 feet in height with a 39-foot-long single deck, plate girder span. The girders appear to have been covered in a concrete spray. The plate girder span rests on concrete abutments, the southern of which carries the Northern Pacific logo painted on the west elevation. The bridge carries a single track on a gravel bed, and railings composed of metal flange posts and pipe rails line both sides. The surrounding area is primarily residential with some industrial buildings along the railroad including a warehouse and former canning factory to the south.

MP 23.9 Bridge over Sammamish River

The bridge over the Sammamish River is located in Woodinville, to the south of NE 175th Street. Constructed in 1914, the structure is 159 feet in overall length with a central 70-foot-long through plate girder span with ballast covered pile trestles at each end. The bridge has four open pile trestle spans at the east end and three open pile trestle spans at the west end. Modifications to the bridge include opening the east end for a pedestrian trail, and reinforcement of the central piles with steel framing members to bear the load of the through plate girder span.
Major Bibliographic References:

<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
<th>Publisher/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>Grant, Frederic James, Editor</td>
<td>Historic Bridges and Tunnels in Washington State</td>
<td>Washington State Department of Archaeology and Historic Preservation, Olympia.</td>
</tr>
</tbody>
</table>
Photos

The view is to the northwest. Wilburton Trestle (MP 11.5).

The view is to the north. south end of southern segment (MP 5.0).

The view is to the south. bridge at MP 6.1.

The view is to the south. bridge at MP 9.1.
The view is to the south.
bridge at MP 9.2.

The view is to the south.
north end of southern segment (MP 10.60).

The view is to the southwest.
south end of Wilburton Trestle, also the south end of northern segment (MP 11.25).

The view is to the west.
north end of Wilburton Trestle (MP 11.5).
Location

Field Site No. --

DAHP No.

Historic Name: Northern Pacific Lake Washington Beltline

Common Name: BNSF Railroad

Property Address: 11640 NE 8th, Bellevue, WA 98005

Comments:

Tax No./Parcel No. 162605-9021; 152605-9523; 222605-9030; 272605-9019

Plat/Block/Lot

Acreage 50.83

Supplemental Map(s)

<table>
<thead>
<tr>
<th>Township/Range/ EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T26R05E</td>
<td>16</td>
<td>NE</td>
<td></td>
<td>King</td>
<td>MERCER ISLAND</td>
</tr>
<tr>
<td>T26R05E</td>
<td>15</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>22</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T26R05E</td>
<td>27</td>
<td>NW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coordinate Reference

Easting: 1225146

Northing: 837556

Projection: Washington State Plane South

Datum: HARN (feet)
Identification

<table>
<thead>
<tr>
<th>Survey Name:</th>
<th>Sound Transit East Link - Round 3</th>
<th>Date Recorded:</th>
<th>01/26/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Recorder:</td>
<td>Jennifer Gilpin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner's Name:</td>
<td>Port of Seattle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner Address:</td>
<td>2711 Alaskan Way</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>Seattle</td>
<td>State:</td>
<td>Washington</td>
</tr>
<tr>
<td>Classification:</td>
<td>Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Status:</td>
<td>Survey/Inventory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within a District?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributing?</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Register:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local District:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Register District/Thematic Nomination Name:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility Status:</td>
<td>Not Determined - SHPO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determination Date:</td>
<td>1/1/0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determination Comments:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

<table>
<thead>
<tr>
<th>Historic Use:</th>
<th>Transportation - Rail-Related</th>
<th>Current Use:</th>
<th>Vacant/Not in Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan:</td>
<td>Unknown</td>
<td>Stories:</td>
<td>N/A</td>
</tr>
<tr>
<td>Changes to Plan:</td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes to Original Cladding:</td>
<td>Not Applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes to Other:</td>
<td>Not Applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style:</td>
<td>Vernacular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladding:</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Type:</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Material:</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Utilitarian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation:</td>
<td>Form/Type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Utilitarian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Narrative

<table>
<thead>
<tr>
<th>Study Unit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Commerce</td>
<td></td>
</tr>
<tr>
<td>Date of Construction:</td>
<td>1891 Built Date</td>
</tr>
<tr>
<td>Builder:</td>
<td></td>
</tr>
<tr>
<td>Engineer:</td>
<td></td>
</tr>
<tr>
<td>Architect:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local): No

Statement of Significance:
The settlement of Lake Washington was spurred by industrialists such as William Renton and Peter Kirk, who constructed plants, platted towns, and contracted railroads to build spur lines to their developments. The Northern Pacific Railroad constructed the Lake Washington Beltline Route, running from Renton to Kirkland, in 1891. The route passes through Bellevue, roughly along the SR-405 corridor. In the early years, this route was primarily used to transport coal and iron from the Cascade foothills in the vicinity of Redmond to steel plants in the Kirkland area (Allen 2007:4).

Although the overall alignment has been determined eligible for listing in the NRHP (O'Brien and Allen 2007), Sound Transit and FTA recommend that the two distinct portions of the BNSF railroad surveyed in 2010-11 are not eligible for inclusion in the NRHP, based on the following observations:

Criterion A — Broadly speaking, as asserted in Allen 2007 and Allen and O'Brien 2007, these segments of the BNSF Railway are associated with the spread of railroads across western Washington, and the subsequent rural development and growth of industry (e.g., mining, logging) that the transportation route entailed. More locally, the railroad linked Bellevue to Renton, Woodinville, and locations beyond. Freight trains frequented the tracks, contributing to the prosperity of the Seattle metro region. However, the resource does not retain distinctive characteristics (e.g., a depot) to link this particular railroad to its community. These sections are non-descript and do not well represent the theme asserted in the 2007 HPI (Allen and O’Brien 2007a). Therefore, these segments are not recommended eligible under Criterion A.

Criterion B — This segment of the former Northern Pacific railroad cannot firmly be ascribed to, or associated with, persons significant in our past, outside of the tangential connection to its founders, who were prominent businessmen on the East side. Therefore, this segment of the railroad does not appear eligible under Criterion B.

Criterion C — The trestle in the southern segment does not appear to represent anything structurally unique or innovative other than the typical construction style for such a structure, although its components (including post piles and rails) appear to have been maintained and/or replaced. This trestle was not considered by Allen (2007) to be a contributing resource to the eligible alignment. None of the materials observed along the remaining sections of the railroad embody the distinctive characteristics of a type, period, or particular method of construction; nor do they represent the work of a master, possess high artistic values, or represent a significant and distinguishable entity whose components may lack individual distinction. As a result, this segment of the railroad, as currently recorded, does not appear eligible under Criterion C.

Criterion D — The two surveyed segments of the railroad do not appear eligible for listing in the NRHP under Criterion D, as they do not contain any remnants that are distinctive or that well represent historical railroad themes. As stated above, the trestle located at the south end of the survey area does not appear to be a unique example of such a structure, nor was it included in the list of contributing structures in Allen and O’Brien 2007a. Significant intact properties representative of the BNSF’s and the preceding owners’ contributions to railroad technology are not present in the historic resources along these segments of the project right-of-way.
Further examination of the site (including intact and potentially discarded rails) may contribute slightly to our understanding of the operation of the Northern Pacific Railway, along with subsequent operators/owners. However, limited information is expected from such observations, and the resource as it is currently recorded would not contribute significantly to our understanding of regional or local railroading history.

Description of Physical Appearance:

Two distinct segments of the BNSF located in Bellevue were surveyed for this inventory. The southern survey area is comprised of approximately 4,700 feet of the BNSF grade, extending north from Mile Point (M.P. 10.1), where the railroad crosses SE 32nd Street in Bellevue, Washington. This survey overlapped Allen’s 2007 survey by approximately 0.5 mile (mi). A 75-foot (ft) long wooden trestle is located at BNSF M.P. 10.1, at the south end of this surveyed area. The northern survey area extends from approximately 200 ft south of NE 8th Street to approximately 2,200 ft north of the NE 12th St overpass. In the northern survey area, the only rail-related features observed were the railroad grade, some spurs, and switches: no depots or other such associated structures currently stand along this stretch of the railroad.

In the southern survey area (which measures approximately 4,600 ft), the treated wooden trestle crosses SE 32nd Street at M.P 10.1, carrying a single track of rails on a wooden deck covered in gravel spall. The trestle measures approximately 15 ft wide by 15 ft high, with 9 x 18 x 84-inch wooden boards providing an extra 4 ft of width at either end. There is a steel cable railing, supported by steel posts, along the east edge of the trestle. The trestle is supported by four structural bents, each consisting of six creosoted timber post piles (12-in diameter). Two diagonal sway braces are fastened to each bent, one on each side (north and south). Some of the post piles have been resealed as late as 1997, according to a plaque observed on one of the piles at the southwest end of the bridge. The structure has been realigned at least once in its lifetime, as six broken-off pilings were observed on the north end of the trestle, with the easternmost located approximately 5 ft east of the upper deck of the trestle.

On the east side of the trestle, rails dated to 1940 (as observed in the raised brands printed on the lateral sides), while rails dated to 1980 on the west side of the trestle. This trestle is not mentioned in Allen 2007, who surveyed to MP 10.6 on the BNSF line.

The standard-gauge railroad grade and rails remain intact for another approximate 2,570 ft north of the trestle: however, many of the components of this single-track line have been replaced. The majority of the observed rails dated to 1979 (e.g., “13225 RE CC USS ILLINOIS 1979 //////////”) and 1980. The gravel spall grade is trapezoidal in cross-section, and it is moderately raised (from 0.5 to 1 ft) from the surrounding earthen grade (itself raised 15 to 20 ft from properties to the west). No associated artifacts, other than a few tie fragments, were observed along the grade.

At approximately 0.5 mi north of the trestle, which is presumably the northern end of the southern portion of Allen’s 2007 survey, the tracks terminate. All gravel spall, rails, ties, and associated spikes and plates from this segment have been removed from the right-of-way. This portion of the railroad grade was removed in 2008, as part of the construction for I-405 that also removed the Wilberton Tunnel. The remaining earthen grade remains somewhat recognizable as a transportation route, but no remaining features of the railroad are present. In the northern end of the south surveyed area, the former grade has been modified beyond recognition, as a paved storage area for construction vehicles and supplies. The railroad right-of-way observed in the northern survey area has been maintained and kept clear of vegetation through the majority of its length, likely due to its continued use until very recently. One set of standard-gauge tracks was observed from the southern extent of the surveyed area to approximately 350 feet south of the NE 12th Street overpass. At this point, the track splits into two standard-gauge tracks, and a third parallel, spur line, which continue to the northern extent of the surveyed area.

With the exception of the rails at the NE 8th Street crossing, which are more recent, the majority of rails are intact and historic-period, supported by what are most likely historic-period ties (some have been replaced more recently). The gravel spall grade is trapezoidal in cross-section, and it is moderately raised (from 0.2 to approximately 1.5 m). The observed rails, as observed in the raised brands printed on the lateral sides (for instance, “RI OH 10025 ILLINOIS G I II III 1926 USA”), were constructed from the 1920s to the 1940s.
At the northern extent of the surveyed area along the existing railroad, several spur tracks lead into warehouses and industrial properties. Archaeologists observed at least five manual rail switches: multiple forms of switches were present in the northern portion of the railroad segment in the surveyed area, and some appeared historic-period while others had been obviously repaired and/or replaced in modern times. Unlike the main line, which appeared relatively well-groomed, the spur tracks were partially overgrown with grasses and some Himalayan blackberries.

Major Bibliographic References:
Photos

View to south
BNSF Railroad Grade crossing NE 8th Street, Bellevue
2011

View to north
BNSF Railroad Grade north of NE 8th Street, Bellevue
2011

View to east; located approximately 150 feet north of NE 8th Street, Bellevue
View of “Illinois G” rail from 1926 on BNSF Railroad in Bellevue
2011

View to north
Switch and split in BNSF Railroad Tracks as they approach the NE 12th Street overpass in Bellevue
2011
View to south; approximately 2,200 feet north of the NE 12th Street overpass
BNSF main and side tracks, also spurs, at northern end of surveyed area, Bellevue
2011

View to north
Rail switches on BNSF Railroad, north end of the surveyed area, approximately 2,200 feet north of NE 12th St, Bellevue
2011

View to southeast
"Inland" 1940 rail on the BNSF alignment north of NE 12th St, Bellevue
2011

View to southwest
Trestle crossing SE 32nd Street, Bellevue
2011

View to north
View to northeast
Bracing on southern bent of wood trestle crossing SE 32nd Street, Bellevue
2011

Broken off piles (former alignment) at north end of trestle crossing SE 32nd St, Bellevue
2011

View to northeast. Showing gravel spall and rails manufactured in 1940 (on east side) and 1980 (on west side)
Upper deck of trestle crossing SE 32nd St, Bellevue
2011

View south; I405 southbound to left in frame
Termination of railroad tracks at north end of south survey area
2011

View to northwest; full brand reads "13224 RE CC USS ILLINOIS 1979 ///////////
BNSF rail in south survey area, manufactured in 1979
2011
Historic Inventory Report

Location

Field Site No. -- DAHP No. KI00262
Historic Name: Wilburton Trestle
Common Name: Wilburton Trestle
Property Address: 11800 8th St SE, Bellevue, WA 98005
Comments:
Tax No./Parcel No. 042405-9024
Plat/Block/Lot Acreage 10.87
Supplemental Map(s)

Township/Range/EW Section 1/4 Sec 1/4 1/4 Sec County Quadrangle
T25R05E 33

Coordinate Reference
Easting: 1225667
Northing: 832138
Projection: Washington State Plane South
Datum: HARN (feet)

Identification
Survey Name: Eastside Rail Corridor Date Recorded: 06/26/2014
Field Recorder: Alicia Valentino and Colin Lothrop
Owner’s Name: King County-Parks
Owner Address: 201 S. Jackson Street, #700
City: Seattle State: WA Zip: 98104
Classification: Structure
Resource Status: Survey/Inventory Comments:
Within a District? No
Contributing? No
National Register:
Local District:
National Register District/Thematic Nomination Name:
Eligibility Status:
Determination Date: 1/1/0001
Determination Comments:

Thursday, October 02, 2014
Page 1 of 4
Historic Use: Transportation - Rail-Related
Current Use: Vacant/Not in Use
Plan: Rectangle
Stories: n/a
Structural System: Other
Changes to Plan: Intact
Changes to Interior: Not Applicable
Changes to Original Cladding: Not Applicable
Changes to Windows: Not Applicable
Changes to Other: Slight

Style:
Form/Type:
Cladding: None
Foundation:
Roof Type: Industrial
Roof Material: None

Narrative

Study Unit
Transportation

Date of Construction: 1904 Built Date
1924 Remodel
1933 Remodel
1943 Remodel
1972 Remodel

Builder:

Engineer: Bernard Blum, R. R Brockway, G.R. Hopkins

Architect:

Property appears to meet criteria for the National Register of Historic Places: Yes
Property is located in a potential historic district (National and/or local): No
Property potentially contributes to a historic district (National and/or local): No

Statement of Significance:
The Wilburton Trestle has previously been recommended eligible for listing in the NRHP and Washington Heritage Register (Stewart 1978; Tobin 1992).
Historic Inventory Report

Description of Physical Appearance:
This inventory was conducted as part of the Eastside Rail Corridor (ERC) project to record historic resources along the ERC in King County-owned portions of the alignment (Valentino 2014). The Wilburton Trestle was originally recorded in 19789 (Stewart 1978) and again in 1980 as part of an Historic American Engineering Record (HAER) Inventory (Soderberg 1980). An HPI form was completed in 1992 (Tobin 1992) and was updated during this survey to account for changes in condition and property ownership. The Wilburton Trestle is also recorded on the Northern Pacific Lake Washington Beltline HPI (Valentino and Lothrop 2014).

Located at milepost 11.5 along the former Seattle, Lake Shore, & Eastern Railway/Northern Pacific Railroad right-of-way, this 1904 structure is a 977-foot long, single-track, open-deck, timber and steel trestle grade crossing over Mercer Slough. Timber is used for 873 feet of its length, and steel for 104 feet. The bents (n=63) are primarily constructed of timber piles with diameters of 12 to 14 inches for the bottom of the piles, and 26 to 36 inches for the top of the piles. Steel H-piles with steel caps are found in some places that have been repaired. Each bent has several sway and sash braces. The deck consists of six timber stringers (10 x 17 ½ inches), with three or four stringers under each rail. The track is laid directly on the stringers (KCDOT—RSD 2011). Planks along the east side of the deck function as a pedestrian walkway. Two strands of cable run the length of the trestle as railing. Chain link fence has been installed on the north and south ends of the trestle to prevent the public from crossing the structure.

Major Bibliographic References:
KCDOT-RSD (King County Department of Transportation—Road Services Division). 2011. BNSF East Corridor Bridge Safety Inspection. On file King County Department of Transportation—Road Services Division, Seattle, Washington.
Soderberg, Lisa. 1980. HAER Inventory: Wilburton Trestle. (Location, DAHP?)
Photos

Looking north
Wilburton Trestle
2014

Looking northwest
Wilburton Trestle
2014
This structure is a long, high, single track trestle. The original structure was a six-post, frame bent trestle on pile footings, built in 1904. The frame bents of the old trestle were untreated materials and gave an average service life of ten years; framing was completely replaced in 1913, 1924, 1933 and 1943-44. "When the structure was rebuilt in 1943-44, about half was constructed with frame bents of preframed timber treated with Wolman Salts, and the other half was built with creosoted pile bents."

The entire existing deck of the structure, consisting of ties 8"x8"x10' and stringers 9"x16"x20', three per chord, was in such sound condition that it did not require replacement.

In 1972, steel girders and concrete pilings were added, when the road beneath the trestle was widened. However, in 1972, the frame bents and pile bents did not need replacement and are still in serviceable condition.

"Most of the frame bents are unusually high, those in the north half, where frame bents were used, having an average height of 68 feet and a maximum height of 98 feet to top of tie, and those in the south half, where long piles were driven, having an average height of 70 feet and a maximum of 89 feet. The bridge has a total length of 984 feet, of which 479 feet, or 32 spans, is of frame construction while the remaining 505 feet, or 34 bents, is of pile construction."

The design of the present trestle is similar to that of earlier trestles spanning Mercer Slough, which it replaced. Six posts for the higher bents were used, as well
Bridges, Trestles, and Aqueducts

<table>
<thead>
<tr>
<th>Site I.D. No.</th>
<th>HAER Inventory</th>
<th>Historic American Engineering Record</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of the Interior, Washington, D.C. 20240</td>
<td></td>
</tr>
</tbody>
</table>

Bridges, Trestles, and Aqueducts

<table>
<thead>
<tr>
<th>Name of Structure</th>
<th>Date of Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilberton Trestle</td>
<td>1904; 1913; 1924; 1933; 1943-44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>County</th>
<th>City</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>King</td>
<td>Wilberton</td>
<td>Pacific Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>810 Third Avenue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seattle, Washington 98104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lisa Soderberg
HAER/Washington State Bridge Inventory
March 1980

John H. Stewart, King County Historic Sites Survey, January 1979.
"High Trestle Test Construction Types." Railway Age, 22 (8 February 1947)
The timber salvaged from the old structure in 1943-44 was not used in the construction of the new trestle. It was later treated with wood preservatives and used elsewhere as mudsills, bulkhead timbers, and turntable pit walls.

2. Ibid.

3. Ibid.
HISTORIC PROPERTY INVENTORY FORM

Identification Section
- Field Site No.: LP
- OAH No.: 941
- Date Recorded: 9/1/92
- Site Name: Wilburton Railroad Trestle
- Owner's Name: Burlington Northern, Inc.
- City/State/Zip Code: Seattle, WA

Photography
- Photography Neg. No.: 38959
- View of: [Image of bridge structure]

Description Section
- Building Type: Transportation
- Structural System: Engineered forms for ironwork and pilings
- No. of Stories: 1
- Crediting: Exterior Wall Surfaces
 - Log
 - Horizontal Wood Siding
 - Wood Shingle
 - Board and Batten
- Roof Material: Wood Shingle
- Roof Type: Gable

History
- Foundation: Not visible
- Post & Pier: Not visible

Integrity
- Detailed Description: [Include detailed description of physical appearance]
- Changes to plan: Slight
- Changes to windows: Slight
- Changes to exterior cladding: Slight
- Other: Not visible

Area Section
- Address: Lake Hills Connector
- City/Country Code: Bellemead King
- Parcel Info: Parcel No. A, Tax Lot 29, Acreage: NA
- Quadrangle: Map Name: Bellemead South, 7.5 x 15 minute
- UTM References:
 - Zone: 4
 - Easting: 650500
 - Northing: 4748000

State of Washington, Department of Community Development
- Office of Archaeology and Historic Preservation
- 111 W 21st Avenue, K-11
- Olympia, WA 98504 (360) 753-4011

Supplemental Maps
- [Map of area]
However, the unstable material underneath the slough extended to a depth of 20 feet. As a result, it was decided that the existing trestle would be reconstructed with creosoted timber. The project was halted in 1941 because the creosoting plants were overloaded with work, and it became impossible to obtain the treated material. When the creosoted material became available again in 1943, there was only enough for the short foundation piles for half of the trestle. At this time, it was possible to secure timber treated with Wolman salts. Consequently, short creosoted foundation piles were topped by Wolman treated timber for the posts, sills, struts, and braces. In 1944, the remaining part of the trestle was renewed with creosoted timber. The vast quantity of timber and hardware material that was necessary to replace the structure is reflected in the following numbers: in the portion of the structure that was of frame construction, 330,000 ft. b.m. of timber treated with Wolman salts and 4,077 linear feet of creosoted fir pilings was used. In the portion of the structure that was of pile bent construction, 188,000 ft. b.m. of creosoted timber and 17,000 linear feet of piling was used. Throughout the entire structure, 24,000 lbs. of bridge hardware was used. In addition, a total of 54,000 ft. b.m. of old stringers were shifted longitudinally. The existing deck was in sound condition, and did not require replacement.

Like the earlier trestles that it replaced, the higher bents of the existing structure were composed of 6 posts. There was also a wide spread of the posts at the ground, in order to increase the structure’s rigidity in the face of high winds which are common in the area. When the road beneath the trestle was widened in 1972, steel girders and concrete pilings were added.

The bridge is currently on the Lake Washington Belt line which provides a detour around Seattle’s urban district. Today, the line is primarily used for freight transportation. In 1970, the bridge became the property of Burlington Northern, Inc.

Although the Wilberton Trestle has been altered since it was first built as an important link in the expanding coal mining industry in the Renton area in 1904, it is very similar to the original structure. The alterations were necessary as a result of the short life span of timber structures. And, it is the very material out of which it was built that is the primary source of the structure’s significance. The Wilberton Trestle is a rare surviving example within the state of a bridge type that once dominated railroad construction. It demonstrates the magnitude of the length and height of the early timber trestles that once traversed the varied and seemingly formidable topography of Washington. The trestle is typical of the structures built by the Northern Pacific during the late nineteenth century to complete their transcontinental line to Puget Sound. During this period, when the railroad’s primary objective was to cross the continent rapidly, steel construction became a luxury both in time of construction, and in initial expense. Timber, however, was abundant throughout western Washington, and was free for the taking.
25. Photos and Sketch Map of Location

Wilburton Trestle
HISTORIC PROPERTY INVENTORY FORM

IDENTIFICATION SECTION
- Field Site No.: 1
- OAH No.: 3
- Date Recorded: 9/4/92
- Site Name: Wilburton Railroad Trestle

PHOTOGRAPHY
- Photography Neg. No.: 38959
- View of: Structure
- Date:

LOCATION SECTION
- Address: Lake Hills Country Club, BelleVue, King 98005
- City/Town/Country Code: 576
- Section: 2
- Township: 26 N
- Range: 5 E
- Quarter Section: 33
- Tax No./Parcel No.: 000004072
- Acreage: 2.9
- Quadrangle or map name: BelleVue South
- UTM References Zone: 5
- Easting: 7.5
- Northing: 15
- Flint/Block/Lot:
- Supplemental Map(s):

DESCRIPTION SECTION
- Roof Type: Gable
- Exterior Wall Surfaces:
 - Wood Shingle
 - Wood Shake
 - Fiberboard
 - Vinyl Aluminum Siding
 - Metal
 - Non-visible

Supplemental Map(s):
- High Styles/Forms:
 - Greek Revival
 - Gothic Revival
 - Italianate
 - Second Empire
 - Romanesque Revival
 - Stick Style
 - Queen Anne
 - Shingle Style
 - Colonial Revival
 - French/Neoclassical
 - Chicago/Commercial Style
 - American Foursquare
 - Mission Revival
 - Other (specify): Industrial Vernacular

Vernacular House Types:
- Gable Front
- Gable Front and Wing
- Side Gable

Vernacular Structure:
NARRATIVE SECTION

Study Unit Themes (check one or more of the following)

☐ Agriculture
☐ Architecture/Landscape Architecture
☐ Arts
☐ Commerce
☐ Communications
☐ Community Planning/Development
☐ Conservation
☐ Education
☐ Entertainment/Recreation
☐ Ethnic Heritage (specify)
☐ Health/Medicine
☐ Manufacturing/Industry
☐ Military
☐ Politics/Government/Law
☐ Religion
☐ Science & Engineering
☐ Social Movements/Organizations
☐ Transportation
☐ Other (specify)
☐ Study Unit Sub-Theme(s) (specify)

Statement of Significance

Date of Construction: 1904, 1923, 1933, 1942, 1944, 1972

Engineers: Bernard Bloom, R.R. Goodwin, C.R. Hopkins

☐ In the opinion of the surveyor, this property appears to meet the criteria of the National Register of Historic Places
☐ In the opinion of the surveyor, this property is located in a potential historic district (National and/or local).

Description of Physical Appearance

Major Bibliographic References

DCC 10/06 - 11/08.
6 WILBURTON RAILROAD TRESTLE

Statement of Significance
The original railroad trestle spanning Mercer Slough was built in 1904 by the Northern Pacific Railroad as part of a spur connecting the Bellevue area with the major railroad center in Renton, near the coal mines. The frame bents used to construct the original trestle were of untreated material. The rapid decomposition of the wood required the complete replacement of the frame bents in 1913, 1924, and 1933.

When the structure was rebuilt in 1943-1944, about half was constructed with bents of preframe timber treated with Wolman Salts and the other half was built with creosoted pile bents. The deck was still sound and was re-used on the new structure. Because of the unstable material of the slough, it was determined that filling was not practical. In 1941, it was decided to redrive the foundation materials and renew the frame bents using creosoted material throughout, but the project was halted because it was impossible to secure a sufficient amount of creosoted material. Eventually, it was decided to use short creosoted foundation piles for half the structure, topped with Wolman-treated timber for the posts, sills, struts, and braces. The rest of the trestle was renewed with creosoted material in 1944.

The present structure is on a detour belt line extending around the east side of Seattle, known as the Lake Washington Belt Line. This line became the property of Burlington Northern following a merger in 1970. It is used mainly for freight transportation. For additional details, see King County Historic Sites Inventory Sheet.

The railroad trestle relates to the study unit theme of transportation and is an extremely prominent structure that can be seen from many locations in the Wilburton/Mercer Slough area of Bellevue.

Description of Physical Appearance
This structure is a long, high, single-track trestle. The original structure was a six-post, frame bent trestle on pile footings built in 1904. The framing was completely replaced in 1913, 1924, 1933, and 1943-44. In 1972, steel girders and concrete pilings were added when the road beneath the trestle was widened. At that time, the frame bents and pile bents were in good condition and did not require replacement. The structure measures 984 feet in length and was originally 98 feet above Mercer Slough. Of the total, 479 feet, or 32 spans, is of frame construction, while the remaining 505 feet, or 34 bents, is of pile construction.

The design of the present trestle is similar to that of earlier trestles, which it replaced. Six posts for the higher bents were used as well as a wide spread at the ground, as a safeguard against the high winds that are common in the area.

Major Bibliographic References

Historic Inventory Report

Location

Field Site No. DAHP No.

Historic Name: Railroad Bridge over I-90
Common Name: Railroad Bridge over I-90
Property Address: xxxx near 118th Avenue SE and I-90, Bellevue, WA 98006
Comments:
Tax No./Parcel No. 0924059032
Plat/Block/Lot
Acreage
Supplemental Map(s)

<table>
<thead>
<tr>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T24R05E</td>
<td>09</td>
<td>NE</td>
<td>SW</td>
<td>King</td>
<td>MERCER ISLAND</td>
</tr>
</tbody>
</table>

Coordinate Reference
Easting: 1226262
Northing: 823831
Projection: Washington State Plane South
Datum: HARN (feet)

Identification

Survey Name: Eastside Rail Corridor
Field Recorder: Alicia Valentino & Colin Lothrop
Owner's Name: King County-Parks
Owner Address: 201 S. Jackson Street, Suite 700
City: Seattle
State: WA
Zip: 98104
Classification: Structure
Comments: part of Eastside Rail Corridor inventory (Valentino 2014)

Within a District? No
Contributing?
National Register:
Local District:
National Register District/Thematic Nomination Name:
Eligibility Status: Not Determined - SHPO
Determination Date: 1/1/0001
Determination Comments:

Thursday, October 02, 2014 Page 1 of 3
Description

Historic Use: Transportation - Rail-Related

Current Use: Vacant/Not in Use

Plan: Rectangle
Stories: n/a

Structural System: Other

Changes to Plan: Intact

Changes to Interior: Not Applicable

Changes to Original Cladding: Not Applicable

Changes to Windows: Not Applicable

Changes to Other: Not Applicable

Other (specify):

Style: Other - Industrial

Form/Type: Industrial

Cladding: None

Roof Type: None

Roof Material: None

Narrative

Study Unit
Transportation

Date of Construction: 1969
Built Date

Builder:

Engineer:

Architect:

Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local): No

Statement of Significance:

The bridge over I-90 does not retain themes of association (Criterion A), since it was built long after the boom of railroad construction in western Washington; it cannot be ascribed to or associated with any famous persons (Criterion B); it is not of a structurally unique or innovative design (Criterion C); nor does it contain any data that can be related to historic railroad themes (Criterion D). Therefore, the railroad bridge over I-90 is recommended not eligible for listing in the NRHP.

Description of Physical Appearance:

Located at milepost 9.9 along the former Seattle, Lake Shore, and Eastern Railroad (later Northern Pacific) right-of-way, the Bridge over I-90 is a solid-deck, single-track, steel rail bridge. Built in 1969, this structure is 617-feet long and spans the length of I-90. It is built using steel plate girders (103-feet long and 121-feet tall) and five concrete caps supported by two concrete columns each. The track is laid on ballast. Steel plate girders (60-inches tall) are on either side of the rail for safety (KCDOT-RSD 2011).

Major Bibliographic References:

KCDOT-RSD (King County Department of Transportation—Road Services Division). 2011. BNSF East Corridor Bridge Safety Inspection. On file King County Department of Transportation—Road Services Division, Seattle, Washington.

Photos

Looking south
Bridge over I-90
2014
Historic Inventory Report

Location

Field Site No. DAHP No.

Historic Name: Railroad Bridge over Lake Hills Connector
Common Name: Railroad Bridge over Lake Hills Connector
Property Address: xxxx near Lake Hills Connector and SE 5th Street, Bellevue, WA 98005

Comments:
Tax No./Parcel No. 3325059029
Plat/Block/Lot
Acreage
Supplemental Map(s)

<table>
<thead>
<tr>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T24R05E</td>
<td>09</td>
<td>SW</td>
<td>SW</td>
<td>King</td>
<td>MERCER ISLAND</td>
</tr>
</tbody>
</table>

Coordinate Reference

Easting: 1225312
Northing: 832704
Projection: Washington State Plane South
Datum: HARN (feet)

Identification

Survey Name: Eastside Rail Corridor
Field Recorder: Alicia Valentino & Colin Lothrop
Owner's Name: King County--Parks
Owner Address: 201 S. Jackson Street, Suite 700
City: Seattle
State: WA
Zip: 98104
Classification: Structure

Resource Status: Survey/Inventory
Comments: part of Eastside Rail Corridor inventory (Valentino 2014)

Within a District? No
Contributing? No
National Register:
Local District:
National Register District/Thematic Nomination Name:
Eligibility Status: Not Determined - SHPO
Determination Date: 1/1/0001
Determination Comments:
Description

<table>
<thead>
<tr>
<th>Historic Use:</th>
<th>Transportation - Rail-Related</th>
<th>Current Use:</th>
<th>Vacant/Not in Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan: Rectangle</td>
<td>Stories: n/a</td>
<td>Structural System:</td>
<td>Other</td>
</tr>
<tr>
<td>Changes to Plan: Intact</td>
<td>Changes to Interior:</td>
<td>Not Applicable</td>
<td>Changes to Windows:</td>
</tr>
<tr>
<td>Changes to Other:</td>
<td>Not Applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other (specify):

<table>
<thead>
<tr>
<th>Style:</th>
<th>Cladding:</th>
<th>Roof Type:</th>
<th>Roof Material:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other - Industrial</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Foundation: Form/Type:

None Industrial

Narrative

Study Unit

<table>
<thead>
<tr>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
</tr>
</tbody>
</table>

Date of Construction: 1973 Built Date

Builder:

Architect:

Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local): No

Statement of Significance:
The bridge over Lake Hills Connector does not retain themes of association (Criterion A), since it was built long after the boom of railroad construction in western Washington; it cannot be ascribed to or associated with any famous persons (Criterion B); it is not of a structurally unique or innovative design (Criterion C); nor does it contain any data that can be related to historic railroad themes (Criterion D). Therefore, the railroad bridge over Lake Hills Connector is recommended not eligible for listing in the NRHP.

Description of Physical Appearance:

Located on the north side of the Wilburton Trestle at milepost 11.7 along the former Seattle, Lake Shore, & Eastern right-of-way (later the Northern Pacific Railroad), this is a solid-deck, single-track bridge with concrete slab deck, four steel girders with floor beams, and concrete pier wall and abutment (KCDOT-RSD 2011). The rails are set on ballast. It was built in 1973 and is 99 feet long.

Major Bibliographic References:

KCDOT-RSD (King County Department of Transportation—Road Services Division). 2011. BNSF East Corridor Bridge Safety Inspection. On file King County Department of Transportation—Road Services Division, Seattle, Washington.

Valentino, Alicia B. 2014. Eastside Rail Corridor Historic/Cultural Resources Inventory, King County, Washington. Prepared for King County, Seattle, Washington.
Photos

Looking south towards the Wilburton Trestle
Bridge over Lake Hills Connector
2014

Looking south
Bridge over Lake Hills Connector
2014
Location

Field Site No. DAHP No.

Historic Name: Railroad Bridge over Lake Washington Boulevard SE and Bike Path
Common Name: Railroad Bridge over Lake Washington Boulevard SE and Bike Path
Property Address: xxxx near 120th Ave SE and Lake Washington Boulevard SE, Bellevue, WA 98006
Comments:

Tax No./Parcel No. 1624059033
Plat/Block/Lot
Acreage
Supplemental Map(s)

<table>
<thead>
<tr>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T24R05E</td>
<td>09</td>
<td>SW</td>
<td>NW</td>
<td>King</td>
<td>MERCER ISLAND</td>
</tr>
</tbody>
</table>

Coordinate Reference

Easting: 1225569
Northing: 819890
Projection: Washington State Plane South
Datum: HARN (feet)

Identification

Survey Name: Eastside Rail Corridor
Field Recorder: Alicia Valentino & Colin Lothrop
Owner's Name: King County-Parks
Owner Address: 201 S. Jackson Street, Suite 700
City: Seattle
Classification: Structure

State: WA
Zip: 98104

Resource Status:
Survey/Inventory

Comments:
part of Eastside Rail Corridor inventory (Valentino 2014)

Within a District? No
Contributing? No
National Register:
Local District:
National Register District/Thematic Nomination Name:
Eligibility Status: Not Determined - SHPO
Determination Date: 1/1/0001
Determination Comments:
Description

Historic Use: Transportation - Rail-Related
Plan: Rectangle Stories: n/a
Changes to Plan: Intact
Changes to Original Cladding: Not Applicable
Changes to Other: Not Applicable

Other (specify):

Style: Cladding: Roof Type: Roof Material:
Other - Industrial None None None
Foundation: Form/Type:
None Industrial

Narrative

Study Unit Other
Transportation

Date of Construction: 1916 Built Date
2000 Built Date

Builder:
Engineer:
Architect:

Property appears to meet criteria for the National Register of Historic Places: No
Property is located in a potential historic district (National and/or local): No
Property potentially contributes to a historic district (National and/or local): No

Statement of Significance:
This bridge over Lake Washington Boulevard was originally recorded on an HPI form for the Northern Pacific Lake Washington Beltline Route (Allen and O’Brien 2007). At that time, the Beltline Route and associated infrastructure was recommended eligible for listing in the National Register of Historic Places. A subsequent inventory of a portion of that same line recommended the Beltline not eligible (Gilpin 2011), although that survey did not extend as far south as the Bridge over Lake Washington Boulevard. As argued in 2011 report, the trestles encountered did not represent a structurally unique or innovative style. This holds true for the bridge over Lake Washington Boulevard SE and Bike Path.

Description of Physical Appearance:
Located in Bellevue, Washington, this 1916 bridge is a 44-foot long, single-track, open-deck, steel, concrete, and timber bridge crossing over Lake Washington Boulevard. It is at milepost 9.2 along the former Seattle, Lake Shore, & Eastern (later the Northern Pacific) right-of-way. The bents (n=2) are concrete pier walls, on which steel girders sit with steel floor beams. The track is laid on timber deck planks (KCDOT—RSD 2011). “NORTHERN PACIFIC” is painted on the west elevation of the bridge. A chain link fence has been erected at the north and south ends of the trestle since 2011 to prevent the public from crossing the structure.

The Bike Path bridge is at the south end of the Lake Washington Boulevard Bridge. Built in 2000, it is a 70-foot, three-span bridge with concrete slabs on steel H-piles. The rails are placed on ballast on the slab deck (KCDOT—RSD 2011).
Major Bibliographic References:

KCDOT-RSD (King County Department of Transportation—Road Services Division). 2011. BNSF East Corridor Bridge Safety Inspection. On file King County Department of Transportation—Road Services Division, Seattle, Washington.

Valentino, Alicia B. 2014. Eastside Rail Corridor Historic/Cultural Resources Inventory, King County, Washington. Prepared for King County, Seattle, Washington.
Photos

Looking south; Bike Path bridge in background
Bridge over Lake Washington Boulevard
2014

Looking east
Bridge over Lake Washington Boulevard
2014

Looking southeast
Bridge over the Lake Washington Blvd Bike Path
2014
Location

Field Site No.

<table>
<thead>
<tr>
<th>Historic Name</th>
<th>Railroad Trestle over Coal Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Railroad Trestle over Coal Creek</td>
</tr>
<tr>
<td>Property Address</td>
<td>xxx near Lake Washington Boulevard SE and 120th Avenue, Bellevue, WA 98006</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Tax No./Parcel No.</td>
<td>1624059033</td>
</tr>
<tr>
<td>Plat/Block/Lot</td>
<td></td>
</tr>
<tr>
<td>Acreage</td>
<td></td>
</tr>
<tr>
<td>Supplemental Map(s)</td>
<td></td>
</tr>
</tbody>
</table>

Coordinate Reference

- **Easting:** 1225351
- **Northing:** 819363
- **Projection:** Washington State Plane South
- **Datum:** HARN (feet)

Identification

Survey Name: Eastside Rail Corridor

Date Recorded: 06/23/2014

Field Recorder: Alicia Valentino and Colin Lothrop

Owner's Name: King County-Parks

Owner Address: 201 S. Jackson Street, #700

City: Seattle

State: WA

Zip: 98104

Classification: Structure

Resource Status: Survey/Inventory

Comments: part of Eastside Rail Corridor inventory (Valentino 2014)

Within a District? No

Contributing?

National Register:

Local District:

National Register District/Thematic Nomination Name:

Eligibility Status: Not Determined - SHPO

Determination Date: 1/1/0001

Determination Comments:

Thursday, October 02, 2014
Historic Inventory Report

Description

Historic Use: Transportation - Rail-Related
Current Use: Vacant/Not in Use

Plan: Rectangle
Stories: n/a

Changes to Plan: Slight
Changes to Other: Not Applicable

Style: Other - Industrial
Cladding: None
Form/Type: Industrial

Foundation: None

Roof Type: None
Roof Material: None

Narrative

Study Unit
Transportation

Date of Construction: 1950 Built Date

Builder:

Engineer:

Architect:

Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local): No

Statement of Significance: This trestle was originally recorded on an HPI form for the Northern Pacific Lake Washington Beltline Route (Allen and O’Brien 2007). At that time the Beltline Route and associated infrastructure was recommended eligible for listing in the National Register of Historic Places. A subsequent inventory of a portion of that same line recommended the Beltline not eligible (Gilpin 2011), although that survey did not extend as far south as the Trestle over Coal Creek. As argued in 2011 report, the trestles encountered did not represent a structurally unique or innovative style. This holds true for the Trestle over Coal Creek.

Description of Physical Appearance: This 1950 structure is a 133-foot long, single-track, open-deck, timber-frame trestle. It is at milepost 9.1 along the former Seattle, Lake Shore, & Eastern (later the Northern Pacific) right-of-way, crossing over Coal Creek. Each bent (n=10) consists of five timber piles (with diameters of 12 to 14 inches), two to four sway braces (one to two on either side of the bent), and one to two sash braces on each bent. The deck consists of six timber stringers (10 x 17 ½ inches), with three stringers under each rail. The timber caps measure 12 x 14 inches. The track is laid directly on the stringers (KCDOT—RSD 2011). Prior to 2011, a timber walkway was installed along the eastern side of the trestle, with two steel cables provided as railing. Since then, a chain link fence has been erected at the north and south ends of the trestle to prevent the public from crossing the structure.
Major Bibliographic References:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCDOT-RSD (King County Department of Transportation—Road Services Division). 2011. BNSF East Corridor Bridge Safety Inspection. On file King County Department of Transportation—Road Services Division, Seattle, Washington.</td>
<td></td>
</tr>
</tbody>
</table>
Photos

Looking north
Trestle over Coal Creek from milepost 9.1
2014

Looking north
Trestle over Coal Creek from milepost 9.1
2014
Location

<table>
<thead>
<tr>
<th>Field Site No.</th>
<th>DAHP No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Historic Name: Railroad Trestle over Ripley Lane
Common Name: Burlington Northern and Santa Fe Railroad Trestle
Property Address: xxxx off Hazelwood and Ripley lanes, Renton, WA 98056
Comments:

Identification

<table>
<thead>
<tr>
<th>Survey Name</th>
<th>Date Recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastside Rail Corridor</td>
<td>06/23/2014</td>
</tr>
</tbody>
</table>

Survey Name: Eastside Rail Corridor
Field Recorder: Alicia Valentino & Colin Lothrop
Owner's Name: King County-Parks
Owner Address: 201 S. Jackson Street, #700
City: Seattle
State: WA
Zip: 98104

Classification: Structure
Resource Status: Survey/Inventory
Comments: part of Eastside Rail Corridor inventory (Valentino 2014)

Within a District? No
Contributing? No
National Register:
Local District:
National Register District/Thematic Nomination Name:
Eligibility Status: Not Determined - SHPO
Determination Date: 1/1/0001
Determination Comments:

Thursday, October 02, 2014
Page 1 of 4
Historic Inventory Report

Description

Historic Use: Transportation - Rail-Related Current Use: Vacant/Not in Use
Plan: Rectangle Structural System: Other
Stories: N/A Changes to Interior: Not Applicable
Changes to Plan: Unknown Changes to Windows: Not Applicable
Changes to Original Cladding: Not Applicable Changes to Other: Not Applicable
Other (specify):

<table>
<thead>
<tr>
<th>Style</th>
<th>Cladding:</th>
<th>Roof Type:</th>
<th>Roof Material:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other - Industrial</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Foundation:</td>
<td>Form/Type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Industrial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Narrative

Study Unit Other
Transportation

Date of Construction: 1904 Built Date Builder:

Engineer:

Architect:

Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local): No

Statement of Significance: A detailed history and Statement of Significance is provided in Walker-Gray 2004. At that time, it was recommended not eligible for listing in the National Register of Historic Places.

Description of Physical Appearance: This inventory was conducted as part of the Eastside Rail Corridor (ERC) project to record historic resources along the ERC in King County-owned portions of the alignment (Valentino 2014). The trestle over Ripley Lane was originally recorded in 2004 (Walker-Gray 2004). Few changes have taken place since then, but the current survey necessitated an HPI update to provide additional structural information and a revision of property ownership. The trestle has also been added to the Northern Pacific Railroad Company Lake Washington Beltline HPI form (Valentino and Lothrop 2014).

This 1967 structure is a 406-foot long, single-track, open-deck, timber-frame trestle located at milepost 6.7 along the former Seattle, Lake Shore & Eastern Railroad/Northern Pacific Railroad right-of-way. The trestle crosses over an unnamed creek and two private drives near Ripley Lane. Each bent (n=27) consists of five timber piles (with diameters between 12 and 14 inches) and two sway braces—one on each side of the bent. Three to four stringers (9 x 18 inches) run under each track, with 6 to 8 stringers per span. An I-beam (10 x 10 inches) with stiffeners is at each bent. The track is laid directly on the stringers (KCDOT—RSD 2011). Prior to 2011, a timber walkway was installed along the western side of the tracks. Since then, a chain link fence has been erected along either side of the walkway for safety, and fencing installed on the north and south ends of the trestle to prevent people from walking along the trestle.
Historic Inventory Report

| Major Bibliographic References | KCDOT-RSD (King County Department of Transportation—Road Services Division). 2011. BNSF East Corridor Bridge Safety Inspection. On file King County Department of Transportation—Road Services Division, Seattle, Washington.
Photos

Looking north
Trestle at Ripley Lane
2014

Looking north
Trestle at Ripley Lane
2014

Looking south
Trestle at Ripley Lane
2014
Location

<table>
<thead>
<tr>
<th>Field Site No.</th>
<th>DAHP No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1070-16</td>
<td></td>
</tr>
</tbody>
</table>

Historic Name: Northern Pacific Railroad Trestle
Common Name: Burlington Northern and Santa Fe Railroad Trestle
Property Address: off of Hazelwood and Ripley lanes, Renton, WA
Comments:

<table>
<thead>
<tr>
<th>Tax No./Parcel No.</th>
<th>Plat/Block/Lot</th>
<th>Acreage</th>
<th>Supplemental Map(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T24R05E</td>
<td>29</td>
<td></td>
<td></td>
<td>King</td>
<td>RENTON</td>
</tr>
</tbody>
</table>

Coordinate Reference

- **Easting:** 1221529
- **Northing:** 807864
- **Projection:** Washington State Plane South
- **Datum:** HARN (feet)
Historic Property Inventory Report

Identification

Survey Name: I-405: North Renton Date Recorded: 04/07/2004
Field Recorder: C. Walker Gray
Owner’s Name:
Owner Address:

City: State: Zip:
Classification: Structure
Resource Status: Inventory
Comments: Survey/Inventory

Within a District? No
Contributing?
National Register:
Local District:
National Register District/Thematic Nomination Name:
Eligibility Status: Not Determined - SHPO
Determination Date: 1/1/0001
Determination Comments:

Description

Historic Use: Transportation - Rail-Related Current Use: Transportation - Rail-Related
Plan: Rectangle Stories:
Changes to Plan: Unknown Structural System: Other
Changes to Original Cladding:
Changes to Other:
Other (specify):
Style: Cladding:
Foundation: Form/Type:
Roof Type:
Roof Material:

Narrative

Study Unit Other
Transportation

Date of Construction: 1904 Built Date Builder:
Engineer:
Architect:

Property appears to meet criteria for the National Register of Historic Places: No
Property is located in a potential historic district (National and/or local): No
Property potentially contributes to a historic district (National and/or local):

Statement of Significance:
The BNSF train trestle at Ripley Drive was likely constructed around 1904 in association with the Northern Pacific Railroad’s Renton to Woodinville segment of the larger Sumas to Auburn line, which opened in 1904. The Wilburton Trestle is also located on this track. Although mostly used for freight traffic, there exists some possibility that logging trains used the track. Passenger trains also used this segment of the railroad, which extended along the eastern shore of Lake Washington, in the early twentieth century. According to a retired Northern Pacific employee, until the 1920s, trains 445 and 446 ran daily from North Bend via the so-called Belt Line (Woodinville to Black River to Seattle) to Seattle and back (NP TellTale 2002). In 1970, Northern Pacific, Great Northern, and Burlington Railroads merged to form Burlington Northern Railroad, whose successor Burlington Northern and Santa Fe currently uses the track for freight along with the Spirit of Washington historic dinner train.
The trestle and section of tracks associated with it appear to have both been modified at different times during the twentieth century, as evidenced by the date of 1941 on cast steel parts on the tracks and the date of 1966 stamped on the large timber beams holding the trestle up over Ripley Drive. Because of the short life span of untreated timber structures and what appears to be evidence of vehicle impacts to the underside and supporting beams of the narrow bridge over Ripley Drive, these changes were likely necessary to maintain the trestle’s safety and function. However, the repairs appear to have been minor and in kind, leaving the trestle’s overall integrity intact.
Although the trestle is undoubtedly historic in age and maintains integrity, it does not appear to be an individually significant example of wooden rail trestle construction. Unlike the impressive Wilburton Trestle, this is a relatively small common example of this construction type. The BNSF trestle it is not known to be uniquely associated with settlement or industry in the Renton to Bellevue corridor, and would not meet NRHP eligibility criterion A. It is not part of a historic district. It does not appear to be associated with the life of a significant person. Further, it does not represent "a significant and distinguishable entity whose components may lack individual distinction" (36 CFR 60.4), and would not meet NRHP eligibility criterion C. It is not a potential archaeological site and would not meet NRHP eligibility criterion D.
The BNSF train trestle at Ripley Drive was likely constructed around 1904 in association with the Northern Pacific Railroad’s Renton to Woodinville segment of the larger Sumas to Auburn line, which opened in 1904. The Wilburton Trestle is also located on this track. Although mostly used for freight traffic, there exists some possibility that logging trains used the track. Passenger trains also used this segment of the railroad, which extended along the eastern shore of Lake Washington, in the early twentieth century. According to a retired Northern Pacific employee, until the 1920s, trains 445 and 446 ran daily from North Bend via the so-called Belt Line (Woodinville to Black River to Seattle) to Seattle and back (NP TellTale 2002). In 1970, Northern Pacific, Great Northern, and Burlington Railroads merged to form Burlington Northern Railroad, whose successor Burlington Northern and Santa Fe currently uses the track for freight along with the Spirit of Washington historic dinner train.
The trestle and section of tracks associated with it appear to have both been modified at different times during the twentieth century, as evidenced by the date of 1941 on cast steel parts on the tracks and the date of 1966 stamped on the large timber beams holding the trestle up over Ripley Drive. Because of the short life span of untreated timber structures and what appears to be evidence of vehicle impacts to the underside and supporting beams of the narrow bridge over Ripley Drive, these changes were likely necessary to maintain the trestle’s safety and function. However, the repairs appear to have been minor and in kind, leaving the trestle’s overall integrity intact.
Although the trestle is undoubtedly historic in age and maintains integrity, it does not appear to be an individually significant example of wooden rail trestle construction. Unlike the impressive Wilburton Trestle, this is a relatively small common example of this construction type. The BNSF trestle it is not known to be uniquely associated with settlement or industry in the Renton to Bellevue corridor, and would not meet NRHP eligibility criterion A. It is not part of a historic district. It does not appear to be associated with the life of a significant person. Further, it does not represent "a significant and distinguishable entity whose components may lack individual distinction" (36 CFR 60.4), and would not meet NRHP eligibility criterion C. It is not a potential archaeological site and would not meet NRHP eligibility criterion D.

Description of Physical Appearance:
This elevated timber trussed single-track train trestle is approximately 300 feet long and 12 feet tall at its two bridges, which span Ripley Drive and a private driveway. Rows of five heavy timber poles support the trestle platform at approximately 6 foot intervals and are further buttressed by timber truss beams crossing diagonally and parallel to the pole rows. Heave timber beams and cross beams support the wooden platform on which the tracks rest; a delicate wire cable fence lines the length of the trestle on each side.

Major Bibliographic References:
King County Assessor’s Records, Washington State Archives, Puget Sound Regional Branch, Bellevue.
Photos

Bridge over Hazelwood Lane
northern section of trestle, facing SW

Hazelwood Lane running parallel along east and under the trestle at beginning of platform; Ripley Lane at west.
northern end of trestle, facing S

bridge over Hazelwood Lane
northern end of trestle, facing SE

bridge over private drive (Ripley Lane)
trestle mid-section, facing W
Showing distance between 2 bridges. Private drive (Ripley Lane) in foreground curves under bridge and runs parallel at west of trestle; Hazelwood Lane runs parallel along east side and under bridge near car in right back of picture.

northern half of trestle, view NW

from under Hazelwood Lane bridge, showing timber pole and trestle platform detail

underneath north end of trestle, view S
Inventoried Waters and Wetlands
Eastside Rail Corridor
Regional Trail Master Plan Project

Wetland Feature(s):
Water Feature(s):
Jurisdiction: Renton (Page 1 of 7)